2006年广东省梅州市初中毕业生学业考试数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梅州市2006年初中毕业生学业考试数学试卷
一、选择题:每小题3分,共15分;每小题给出四个答案,其中有一个是正确的,把所选答案的编号填写在题目后面的括号内. 1.1
2
-
等于( ) A.2
B.2-
C.12
-
D.
1
2
2.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )
3.我市大部分地区今年5月中、下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映我市主要河流水位变化情况的图象大致是( )
4.如图1,把矩形ABCD 沿EF 对折,若150∠=,则AEF ∠等于( ) A.115 B.130
C.120
D.65
5.在同一平面直角坐标系中,直线3y x =+与双曲线1
y x
=-
的交点个数为( ) A.0个 B.1个 C.2个 D.无法确定 二、填空题:每小题3分,共30分;答案填写在该题的横线上.
6.我市约有495万人口,用科学记数法表示为 人.
7.如果一个几何体的主视图是等腰三角形,那么这个几何体可以是 .(填上满足条件的一个几何体即可)
A .
B .
C .
D . A . B . C . D . A B
C
D E
F
1 图1
8.一个袋中装有6个红球、4个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出 球的可能性最大.
9.计算:1
01(sin 601)2-⎛⎫
---= ⎪⎝⎭

10.计算:23
22
2
()()a b a b ab -÷= .
11.将抛物2
(1)y x =--向左平移1个单位后,得到的抛物线的解析式是 .
12.当x = 时,分式223
3
x x x ---的值为零.
13.能使平行四边形ABCD 为正方形的条件是 .(填上一个符合题目要求的条件即可)
14.如图2,两个半圆中,小圆的圆心O '在大O 的直径CD 上, 长为4的弦AB 与直径CD 平行且与小半圆相切,那么圆中阴影部
分面积等于 .
15.如图3,已知ABC △的周长为m ,分别连接AB BC CA ,, 的中点111A B C ,,得111A B C △,再连接111111A B B C C A ,,的中点
222A B C ,,得222A B C △,再连接222222A B B C C A ,,的中点
333A B C ,,得333A B C △,这样延续下去,最后得n n n A B C △.
设111A B C △的周长为1l ,222A B C △的周长为2l ,333A B C △的周长为3l , n n n
A B C △的周长为n l ,则n l = . 三、解答题:本大题有10小题,共75分. 16.本小题满分6分.
因式分解:2
2
2
2
(1)2(1)(1)x y x y y -+-+-.
17.本小题满分6分.
C
图2
C
图3
解不等式组:53(4)223 1.
x x >-+⎧⎨
-⎩,

18.本小题满分6分.
如图4是某文具店在2005年卖出供学生使用的甲、乙、丙三种品牌科学计算器个数的条形统计图,试解答下面问题:
(1)求卖出甲、乙、丙三种科学计算器的个数的频率;
(2)根据以上统计结果,请你为该文具店进货提出一条合理化建议.
19.本小题满分6分.
如图5,已知ABC △的顶点A B C ,,的坐标分别是(11)(43)(41)A B C ------,,,,,. (1)作出ABC △关于原点O 中心对称的图形;
(2)将ABC △绕原点O 按顺时针方向旋转90后得到111A B C △,画出111A B C △,并写出点1A 的坐标.
20.本小题满分7分.
图5
图4
小明与小华在玩一个掷飞镖游戏,如图6-甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷). (1)不考虑其他因素,你认为这个游戏公平吗?说明理由.
(2)请你在图6-乙中,设计一个不同于图6-甲的方案,使游戏双方公平.
21.本小题满分7分.
梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB 的高度.如图7,当阳光从正西方向照射过来时,旗杆AB 的顶端A 的影子落在教学楼前的坪地
C 处,测得影长2420CE m
DE m BD m DE ===,,,与地面的夹角30α=.在同一时刻,测得一根长为1m 的直立竹竿的影长恰为4m .根据这些数据求旗杆AB 的高度.(可能
1.414 1.732≈≈,结果保留两个有效数字)
D
22.本小题满分8分.
图6-甲
图6-乙
图7
某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天比甲工厂多加工20件.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
23.本小题满分8分.
用两个全等的正方形ABCD 和CDFE 拼成一个矩形ABEF ,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF 的中点D 重合,且将直角三角尺绕点D 按逆时针方向旋转. (1)当直角三角尺的两直角边分别与矩形ABEF 的两边BE EF ,相交于点G H ,时,如图8-甲,通过观察或测量BG 与EH 的长度,你能得到什么结论?并证明你的结论. (2)当直角三角尺的两直角边分别与BE 的延长线,EF 的延长线相交于点G H ,时(如8-图乙)
,你在图8-甲中得到的结论还成立吗?简要说明理由.
24.本小题满分10分.
A B
G C E
H
F D
图8-甲
A B
G
C
E
H
F D
图8-乙
如图9,直线l 的解析式为4
43
y x l =
+,与x 轴,y 轴分别交于点A
B ,. (1)求原点O 到直线l 的距离; (2)有一个半径为1的
C 从坐标原点出发,
以每秒1个单位长的速度沿y 轴正方向运动,设运动时间为t (秒).当C 与直线l 相切时,求t 的值.
25.本小题满分11分.
如图10,点A 在抛物线2
14y x =上,过点A 作与x 轴平行的直线交抛物线于点B ,延长AO BO ,分别与抛物线21
8
y x =-相交于点C D ,,连接AD BC ,,
设点A 的横坐标为m ,且0m >.
(1)当1m =时,求点A B D ,,的坐标;
(2)当m 为何值时,四边形ABCD 的两条对角线互相垂直; (3)猜想线段AB 与CD 之间的数量关系,并证明你的结论.
梅州市2006年初中毕业生学业考试
数学试卷参考答案及评分意见
一、选择题:每小题3分,共15分 1.D 2.B 3.B 4.A 5.C
二、填空题:每小题3分,共30分
6.6
4.9510⨯; 7.圆锥或正三棱锥或正四棱锥;
8.红; 9.3
10.1b -;

9
图10
11.2
y x =-; 12.1x =-; 13.AC BD =且AC BD ⊥或AB BC =且AB BC ⊥等;
14.2π;
15.12n
m ⎛⎫
⎪⎝⎭

三、解答下列各题:共75分
16.解:原式2
2
(1)(21)y x x =-++ ·································································· 2分 2
2
(1)(1)y x =-+ ·········································································· 4分 2
(1)(1)(1)y y x =+-+ ·································································· 6分 17.解:由53(4)2x >-+,得5x <, ····························································· 2分 由231x -≥,得2x ≥, ··································································· 4分 ∴原不等式组的解集是:25x <≤. ···················································· 6分
18.解:(1)卖出甲计算器个数的频率:
36
0.2365490
=++ ·
·································· 2分 卖出乙计算器个数的频率:54
0.3365490
=++ ·
·································· 3分 卖出丙计算器个数的频率:90
0.5365490
=++. ·
······························· 4分 (2)0.2:0.3:0.52:3:5=, ··································································· 5分 ∴该文具店进甲、乙、丙三种科学计算器时,按2:3:5的比例进货. ··········· 6分
(或该文具店进货时,丙科学计算器进多一些,而甲、乙科学计算器进少一些.类
似这样的合理答案5分)
19.(1)正确画出图形 ······························································· 3分 (2)正确画出图形 ······························································· 5分
1(11)A -, ············································································ 6分 20.解:(1)这个游戏公平. ······················································ 2分 根据图6-甲的对称性,阴影部分的面积等于圆面积的一半, ∴这个游戏公平. ···················································································· 4分 (2)把图6-乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略) ············································································································· 7分 21.解:如图,过点C E ,分别作CF AB ⊥于点F EH BD ,⊥的延长线于H . ······ 1分 在Rt DEH △中,
4m 30D E E D H =∠=,,
2m EH ∴=, ·························································· 2分
DH ==···································· 3分 又
1
4
AF CF = ·
·························································································· 5分
11
()44AF CF EF CE ∴=
=+ 1
() 6.44
BD DH CE =++≈. ··························································· 6分
8.4(m )A B E H A F ∴=+≈. ···································································· 7分 22.解:设甲工厂每天能加工x 件新产品, ························································· 1分 则乙工厂每天能加工(20)x +件新产品. ······················································· 2分
依题意得方程
12001200
1020
x x -=+.
···························································· 4分 解得40x =或60x =-(不合题意舍去), ····················································· 6分 经检验40x =是所列方程的解, 2060x ∴+=. ······················································································· 7分
答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品. ··············· 8分 23.解:(1)BG EH =. ··············································································· 2分 四边形ABCD 和CDFE 都是正方形,
90DC DF DCG DFH FDC ∴=∠=∠=∠=,,
90CDG CDH CDH FDH CDG FDH ∠+∠=∠+∠=∴∠=∠,, ··············· 3分
C D G F D H ∴△≌△,
C G F H ∴=, ························································································ 4分 B C E F B G E H =∴=,. ······································································· 5分 (2)结论BG EH =仍然成立. ······································································· 6分 同理可证CDG FDH △≌△, C G F H B C E F B G E
∴==∴=,,. ······················································ 8分 24.解:(1)在4
43
y x =+中,令0x =,得4y =,得4BO =.
令0y =,得3x =-,得3AO =,
5AB ∴=. ·
············································ 2分 设点O 到直线AB 的距离为h ,
11
22AOB S AO BO AB h ==△,
2.4A O B O
h AB
∴==. ·························································
(其它解法参照给分)
(2)如图,设C 与直线l 相切于点D ,连CD ,则CD AB ⊥, ·························· 5分 90AO BO BDC BOA ∴∠=∠=,⊥,
A B O C B D
∠=∠ x
B C C D
A B O C B D A B A O
∴∴=,,
△∽△ ····························································· 6分 由(1)得345AO BO AB ===,,,
1557453333
BC BC OC ∴=∴=∴=-=,,,
7
3
t C O ∴==(秒). ··············································································· 8分
根据对称性得5
3
BC BC '==,
517174333
O C t O C ''∴=+=∴==,(秒)
. ················································· 9分 ∴当C 与直线l 相切时,73t =秒或17
3
秒. ··············································· 10分
25.解:(1)
点A 在抛物线214y x =
上,且1x m ==,11
4A ⎛⎫
∴ ⎪⎝⎭
,, ···················· 1分
点B 与点A 关于y 轴对称,114B ⎛
⎫∴- ⎪⎝

,.················································· 2分
设直线BD 的解析式为y kx =, 1
1
44
k y x ∴=-∴=-
,. ··········································································· 3分 解方程组2
14
18y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩
,得122D ⎛⎫- ⎪⎝⎭,. ························································ 4分
(2)当四边形ABCD 的两对角线互相垂直时,由对称性得直线AO 与x 轴的夹角等于45
所以点A 的纵、横坐标相等, ··································································· 5分
这时,设()A a a ,,代入2
14
y x =,得4a =,(44)4A m ∴∴=,,
. 即当4m =时,四边形ABCD 的两条对角线互相垂直. ··································· 7分 (3)线段2CD AB =. ·················································································· 8分
点A 在抛物线214y x =
,且214x m A m m ⎛⎫
=∴ ⎪⎝⎭

,, 得直线AO 的解析式为4
m
y x =
, 解方程组2
4
18m y x y x ⎧=⎪⎪⎨⎪=-⎪⎩
,得点2122C m m ⎛⎫-- ⎪⎝⎭, ··············································· 9分
由对称性得点2
21122B m m D m m ⎛
⎫⎛⎫-- ⎪ ⎪⎝
⎭⎝⎭
,,,
4
,·········································· 10分 24AB m CD m ∴==,,
2C D A B ∴=. ····················································································· 11分。

相关文档
最新文档