2015年高考“立体几何”专题解题分析
2015年高考数学真题分类汇编:专题(10)立体几何(文科)及答案

2015年高考数学真题分类汇编 专题10 立体几何 文1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm【答案】C 【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B) 136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A【解析】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A .【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼“至少”、“至多”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60o ,B 为斜足,平面α上的动点P 满足30∠PAB =o ,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60o 角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.【名师点睛】本题主要考查圆锥曲线的定义以及空间线面的位置关系.解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60o 角的平面截得的图形是椭圆的结论.本题属于中等题,重点考查学生的空间想象能力以及对圆锥曲线的定义的理解.8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.10.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )A .822+B .1122+C .1422+D .15【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为2+2+4+22=8+22, 所以该几何体的表面积为1122+,故选B .【考点定位】三视图和表面积.【名师点睛】本题考查三视图和表面积计算,关键在于根据三视图还原体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利用外部补形法,将几何体补成长方体或者正方体等常见几何体,属于中档题.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )错误!未找到引用源。
2015年三年高考数学(理)真题精编——专题10立体几何(大题01)

三、解答题1. 【2015高考天津,理17】(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,AC AA AD CD ===且点M 和N 分别为11C D B D 和的中点.(I)求证://MN 平面ABCD ; (II)求二面角11D AC B --的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长 【答案】(I)见解析;(III)2-. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,N1DND(III)依题意,可设111A E A B λ=,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+,又(0,0,1)n =为平面ABCD 的一个法向量,由已知得1cos ,3(NE n NE n NE n⋅===⋅-,整理得2430λλ+-=,又因为[0,1]λ∈,解得2λ=-,所以线段1A E 2 .【考点定位】直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.4. 【2013天津,理17】如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD=1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1,求线段AM 的长.【答案】(Ⅰ)详见解析;;易得11B C =(1,0,-1),CE =(-1,1,-1),于是11B C ·CE =0, 所以B1C1⊥CE.(2)1B C =(1,-2,-1).设平面B1CE 的法向量m =(x ,y ,z),则10,0,B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.x y z x y z --=⎧⎨-+-=⎩(3)AE =(0,1,0),1EC =(1,1,1).设EM =λ1EC =(λ,λ,λ),0≤λ≤1,有AM =AE +EM =(λ,λ+1,λ). 可取AB =(0,0,2)为平面ADD1A1的一个法向量. 设θ为直线AM 与平面ADD1A1所成的角,则sin θ=|cos 〈AM ,AB 〉|=AM ABAM AB⋅⋅=.=,解得13λ=,所以AM (方法二)(1)证明:因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1, 所以CC1⊥B1C1.经计算可得B1E B1C1,EC1, 从而B1E2=22111B C EC +, 所以在△B1EC1中,B1C1⊥C1E ,又CC1,C1E ⊂平面CC1E ,CC1∩C1E =C1, 所以B1C1⊥平面CC1E , 又CE ⊂平面CC1E ,故B1C1⊥CE.(3)连接D1E ,过点M 作MH ⊥ED1于点H ,可得MH ⊥平面ADD1A1,连接AH ,AM ,则∠MAH 为直线AM 与平面 ADD1A1所成的角.设AM =x ,从而在Rt △AHM 中,有MH x ,AH x .在Rt △C1D1E 中,C1D1=1,ED1,得EH 13x =.5. 【2014天津,理17】如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.C(Ⅰ)证明:BE DC ^;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为棱PC 上一点,满足BF AC ^,求二面角F AB P --的余弦值. 【答案】(Ⅰ)详见试题分析;(Ⅱ)直线BE 与平面PBD;. 【解析】试题分析:(Ⅰ)可以建立空间直角坐标系,利用向量数量积来证明BE DC ^。
2015年高考数学理科试题解析汇编【解析几何题】

b2 4 3 截得的线段长为 c, | FM | 。 4 3
c a 2 b2 3 解: (I)∵ e a a 3
∴ a2
(2 c )2 4 2 1 2 a 3b
由(I)可知, a 2 3c 2 , b2 2c 2 代入上式化简整理得 c 2 2c 3 0 解得:c=1 或-3(舍去)
2
tan OQM
2
OM OQ tan ONQ OQ ON
∵椭圆的离心率是
2 2
即 OQ OM ON 设点 Q 的坐标为(0,yQ) ,则有
c a 2 b2 2 ∴e a a 2
∴ a 2b 2
2 2
yQ
2
m m m2 1 n 1 n 1 n2
m ) 3
∵直线 l 不过原点 O 且不平行于坐标轴 ∴k>0,且 k≠3 比较(I)可得: n
m (3 k ) 3
则 xM
m(k 2 3k ) 3(9 k 2 )
9 x k
【难度系数】★★★
由(I)的结论知, 直线 OM 的方程为 y
2105 年全国高考数学理科试题分类解析汇编——解析几何题
∵点 A(m,n)在椭圆 C 上
x2 ∴椭圆 C 的方程为 y2 1 2
由点 P、A 坐标可得,直线 PA 的方程为:
m2 m2 2 ∴ n 1 ,即 1 n2 2 2
∴ yQ 2 2 ,得 yQ 2 故,存在满足题述条件的点 Q,点 Q 的坐标为 (0, 2 )或(0, 2 )
(m≠0)都在椭圆 C 上,直线 PA 交 x 轴于点 M. (Ⅰ)求椭圆 C 的方程,并求点 M 的坐标(用 m,n 表示) ; (Ⅱ)设 O 为原点,点 B 与点 A 关于 x 轴对称,直线 PB 交 x 轴于点 N.问:y 轴上是否存在点 Q,使得 OQMONQ?若存在,求点 Q 的坐标;若不存在,说明理由。 解: (I)∵点 P(0,1)在椭圆 C 上 ∴b 1
2015年高考真题解答题专项训练:立体几何(文科)学生版

2015年高考真题解答题专项训练:立体几何(文科)学生版1.(2015.浙江)如图,在三棱锥中,,在底面ABC的射影为BC的中点,D为的中点.(1)证明:平面;(2)求直线和平面所成的角的正弦值.2.(2015.新课标1卷)如图四边形ABCD为菱形,G为AC与BD交点,平面,(I)证明:平面平面;(II)若,三棱锥的体积为,求该三棱锥的侧面积.3.(2015.湖南)如图,直三棱柱的底面是边长为2的正三角形,分别是的中点。
(1)证明:平面平面;(2)若直线与平面所成的角为,求三棱锥的体积.称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明: DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 5.((2015.广东)如图,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.6.(2015.安徽)如图,三棱锥P-ABC中,PA ⊥平面ABC ,1,1,2,60PA AB AC BAC ===∠=.(Ⅰ)求三棱锥P-ABC 的体积;PM7.(2015.新课标2卷)如图,长方体1111ABCD A B C D -中, 116,10,8AB BC AA ===,点,E F 分别在1111,A B D C 上, 114A E D F ==,过点,E F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由). (2)求平面α把该长方体分成的两部分体积的比值.8.(2015.福建)如图, AB 是圆O 的直径,点C 是圆O 上异于,A B 的点, PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.9.(2015.重庆)如图,三棱锥P-ABC 中,平面PAC ⊥平面ABC , ∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC . (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.10.(2015.天津)如图,已知平面ABC,AB=AC=3,,,点E,F分别是BC,的中点.(Ⅰ)求证:EF∥平面;(Ⅱ)求证:平面平面.(Ⅲ)求直线与平面所成角的大小.11.(2015.四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF平面BEG12.(2015.陕西)如图1,在直角梯形ABCD 中,,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1AOC ; (Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为求a 的值. 13.(2015.山东)如图,三棱台DEF ABC -中, 2AB DE G H =,,分别为AC BC ,的中点.(Ⅰ)求证: //BD 平面FGH ;(Ⅱ)若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .14.(2015.北京)如图,在三棱锥 中,平面 平面 , 为等边三角形, 且 , , 分别为 , 的中点.(1)求证: 平面 ;(2)求证:平面平面;(3)求三棱锥的体积.参考答案1.(1)见解析;(2)【来源】2015年全国普通高等学校招生统一考试文科数学(浙江卷带解析)【解析】(1)利用线面垂直的定义得到线线垂直,根据线面垂直的判定证明直线与平面垂直;(2)通过添加辅助线,证明平面,以此找到直线与平面所成角的平面角,在直角三角形中通过确定边长,计算的正弦值.试题解析:(1)设为中点,由题意得平面,所以.因为,所以.所以平面.由,分别为的中点,得且,从而且,所以是平行四边形,所以.因为平面,所以平面.(2)作,垂足为,连结.因为平面,所以.因为,所以平面.所以平面.所以为直线与平面所成角的平面角.由,得.由平面,得.由,得.所以考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角.视频2.(1)见解析(2)3+2【来源】2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ带解析)【解析】试题分析:(Ⅰ)由四边形ABCD为菱形知AC BD,由BE平面ABCD知AC BE,由线面垂直判定定理知AC平面BED,由面面垂直的判定定理知平面平面;(Ⅱ)设AB=,通过解直角三角形将AG、GC、GB、GD用x表示出来,在AEC中,用x表示EG,在EBG中,用x表示EB,根据条件三棱锥的体积为求出x,即可求出三棱锥的侧面积.试题解析:(Ⅰ)因为四边形ABCD为菱形,所以AC BD,因为BE平面ABCD,所以AC BE,故AC平面BED.又AC平面AEC,所以平面AEC平面BED(Ⅱ)设AB=,在菱形ABCD中,由ABC=120°,可得AG=GC=,GB=GD=.因为AE EC,所以在AEC中,可得EG=.由BE平面ABCD,知EBG为直角三角形,可得BE=.由已知得,三棱锥E-ACD的体积.故=2从而可得AE=EC=ED=.所以EAC的面积为3,EAD的面积与ECD的面积均为.故三棱锥E-ACD的侧面积为.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力视频3.(Ⅰ)见解析;(Ⅱ).【来源】2015年全国普通高等学校招生统一考试文科数学(湖南卷带解析)【解析】试题分析:(1)由面面垂直的判定定理很容易得结论;(2)所求三棱锥底面积容易求得,是本题转化为求三棱锥的高,利用直线与平面所成的角为,作出线面角,进而可求得的值,则可得的长.试题解析:(1)如图,因为三棱柱是直三棱柱,所以,又是正三角形的边的中点,所以又 ,因此 平面 而 平面 ,所以平面 平面 (2)设 的中点为 ,连结 ,因为 是正三角形,所以又三棱柱 是直三棱柱,所以因此 平面 ,于是 为直线 与平面 所成的角, 由题设, ,所以在 中, ,所以故三棱锥 的体积考点:直线与平面垂直的判定定理;直线与平面所成的角;几何体的体积.视频4.(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D ⋂=,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C ⋂=,所以DE ⊥平面PBC .四面体EBCD 是一个鳖臑;(Ⅱ)124.V V = 【来源】2015年全国普通高等学校招生统一考试文科数学(湖北卷带解析)【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D ⋂=,所以BC ⊥平面PCD . DE ⊂平面PC D ,所以BC DE⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C ⋂=,所以DE ⊥平面PBC . 由BC ⊥平面PCD , DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(Ⅱ)由已知, PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D B C E -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以2DE CE ==,于是12123 4.16BC CD PDV CD PD V CE DE BC CE DE ⋅⋅⋅===⋅⋅⋅考点:本题考查直线与平面垂直的判定定理、直线与平面垂直的性质定理和简单几何体的体积,属中高档题.视频5.(1)证明见解析;(2)证明见解析;(3 【来源】2015年全国普通高等学校招生统一考试文科数学(广东卷带解析) 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证P E ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D C DV V -P A P-A=三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在R t D ∆P E 中,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以,即,所以点C 到平面D P A 的距离是考点:1、线面平行;2、线线垂直;3、点到平面的距离. 6.(Ⅰ)6;(Ⅱ)13【来源】2015年全国普通高等学校招生统一考试文科数学(安徽卷带解析) 【解析】(Ⅰ)解:由题设=1,可得.由面可知是三棱锥的高,又所以三棱锥的体积 (Ⅱ)证:在平面内,过点B 作,垂足为,过作交于,连接.由面知,所以.由于,故面,又面,所以.在直角中,,从而.由,得.考点:本题主要考查锥体的体积公式、线面垂直的判定定理和其性质定理.视频7.(Ⅰ)见试题解析(Ⅱ)97或79【来源】2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ带解析)【解析】试题分析:(Ⅰ)分别在,AB CD 上取H,G,使10AH DG ==;长方体被平面α分成两个高为10的直棱柱,可求得其体积比值为97或79试题解析:解:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作垂足为M,则18EM AA ==,,,因为EHGF 是正方形,所以,于是因为长方体被平面α分成两个高为10的直棱柱,所以其体积比值为97(79也正确). 考点:本题主要考查几何体中的截面问题及几何体的体积的计算.视频8.(Ⅰ)详见解析;(Ⅱ)13;【来源】2015年全国普通高等学校招生统一考试文科数学(福建卷带解析) 【解析】解法一:(Ⅰ)在C ∆AO 中,因为C OA =O , D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面,所以C PO ⊥A . 因为D O⋂PO =O ,所以C A ⊥平面D P O . (Ⅱ)因为点C 在圆O 上,所以当C O ⊥AB 时, C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =,故三棱锥C P -AB 体积的最大值为111133⨯⨯=.(Ⅲ)在∆POB 中, 1PO =OB =, 90∠POB =,所以PB ==同理C P =C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C'B P ,使之与平面ABP 共面,如图所示.当O , E , C'共线时, C E +OE 取得最小值. 又因为OP =OB , C'C'P =B ,所以C'O 垂直平分PB ,即E 为PB 中点.从而C'C'222O =OE +E =+=,亦即C E +OE 的最小值为2.解法二:(Ⅰ)、(Ⅱ)同解法一.(Ⅲ)在∆POB 中, 1PO =OB =, 90∠POB =,所以45∠OPB =, PB ==C P =所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C'B P ,使之与平面ABP 共面,如图所示.当O , E , C'共线时, C E +OE 取得最小值. 所以在C'∆O P 中,由余弦定理得:()2C'1221cos 4560O =+-⨯+1122222=+--⨯⎭2=+从而C'2O ==.所以C E +OE 考点:1、直线和平面垂直的判定;2、三棱锥体积.视频9.(1)见解析(2) BC=3或【来源】2015年全国普通高等学校招生统一考试文科数学(重庆卷带解析)【解析】试题分析:(Ⅰ)先由已知易得PE AC ⊥,再注意平面PAC ⊥平面ABC ,且交线为AC ,由面面垂直的性质可得PE ⊥平面ABC ,再由线面垂直的性质可得到AB PE ⊥,再注意到//EF BC ,而B C A B ⊥,从而有AB EF ⊥,那么由线面垂的判定定理可得AB ⊥平面PFE ,(Ⅱ)设B C =x 则可用x 将四棱锥P DFBC -的体积表示出来,由已知其体积等于7,从而得到关于x 的一个一元方程,解此方程,再注意到0x >即可得到BC 的长.试题解析:证明:如题(20)图.由,DE EC PD PC ==知, E 为等腰PDC ∆中DC 边的中点,故PE AC ⊥,又平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =, PE ⊂平面PAC ,PE AC ⊥,所以PE ⊥平面ABC ,从而PE AB ⊥. 因ABC=,,AB EF 2EF BC π∠⊥故.从而AB 与平面PFE 内两条相交直线PE , EF 都垂直, 所以AB ⊥平面PFE .(2)解:设BC=x ,则在直角ABC ∆中,从而11S AB BC=22ABC ∆=⨯由EFBC ,知23AF AE AB AC ==,得AEF ABC ∆~∆,故224S 39AEF ABC S ∆∆⎛⎫== ⎪⎝⎭,即4S 9AEF ABC S ∆∆=. 由1AD=2AE,11421S S =S S 22999AFB AFE ABC ABC ∆∆∆∆=⋅==从而四边形DFBC的面积为DFBC 11S S -=29ABC ADF S ∆∆=718=由(1)知,PE PE ⊥平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC ∆中, =,体积DFBC 117S 73318P DFBC V PE -=⋅⋅=⋅=, 故得42362430x x -+=,解得,由于0x >,可得333x x ==或.所以3BC =或BC =考点:1. 空间线面垂直关系,2. 锥体的体积,3.方程思想.视频10.(Ⅰ)见试题解析;(Ⅱ)见试题解析;(Ⅲ) .【来源】2015年全国普通高等学校招生统一考试文科数学(天津卷带解析)【解析】(Ⅰ)要证明EF ∥平面 , 只需证明 且EF 平面 ;(Ⅱ)要证明平面 平面 ,可证明 , ;(Ⅲ)取 中点N,连接 ,则 就是直线 与平面 所成角,Rt △ 中,由得直线 与平面所成角为 .试题解析:(Ⅰ)证明:如图,连接 ,在△ 中,因为E 和F 分别是BC, 的中点,所以 ,又因为EF 平面 , 所以EF ∥平面 .(Ⅱ)因为AB=AC,E 为BC 中点,所以 ,因为 平面ABC,所以 平面ABC,从而 ,又 ,所以 平面 ,又因为 平面 ,所以平面 平面 .(Ⅲ)取中点M和中点N,连接,因为N和E分别为,BC中点,所以,,故,,所以,,又因为平面,所以平面,从而就是直线与平面所成角,在△中,可得AE=2,所以=2,因为,所以又由,有,在Rt△中,可得,在Rt△中,因此,所以,直线与平面所成角为.考点:本题主要考查空间中线面位置关系的证明,直线与平面所成的角等基础知识,考查空间想象能力及推理论证能力.视频11.见解析【来源】2015年全国普通高等学校招生统一考试文科数学(四川卷带解析)【解析】(Ⅰ)点F,G,H的位置如图所示(Ⅱ)平面BEG∥平面ACH.证明如下因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCEH为平行四边形所以BE∥CH又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH同理BG∥平面ACH又BE∩BG=B所以平面BEG∥平面ACH(Ⅲ)连接FH因为ABCD -EFGH 为正方体,所以DH ⊥平面EFGH 因为EG ⊂平面EFGH ,所以DH ⊥EG又EG ⊥FH ,EG ∩FH =O ,所以EG ⊥平面BFHD 又DF ⊂平面BFDH ,所以DF ⊥EG 同理DF ⊥BG 又EG ∩BG =G 所以DF ⊥平面BEG.考点:本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力.12.(Ⅰ) 证明见解析,详见解析;(Ⅱ) 6a =.【来源】2015年全国普通高等学校招生统一考试文科数学(陕西卷带解析) 【解析】试题分析:(Ⅰ) 在图1中,,E 是AD 的中点,所以四边形ABCE 是正方形,故BE AC ⊥,又在图2中,1,BE AO BE OC ⊥⊥,从而BE ⊥平面1AOC ,又//DE BC 且DE BC =,所以//CD BE ,即可证得CD ⊥平面1AOC ; (Ⅱ)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE平面BCDE BE = ,又由(Ⅰ)知,1A O BE ⊥,所以1AO ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,易求得平行四边形BCDE 面积2S B CA B a =⋅=,从而四棱锥1A BCDE -的为,得6a =.试题解析:(Ⅰ)在图1,E 是AD 的中点所以BE AC ⊥,即在图2中,1,BE AO BE OC ⊥⊥ 从而BE ⊥平面1AOC 又//CD BE所以CD ⊥平面1AOC .(Ⅱ)由已知,平面1A BE ⊥平面BCDE , 且平面1A BE平面BCDE BE =又由(Ⅰ)知,1AO BE ⊥,所以1AO ⊥平面BCDE , 即1A O 是四棱锥1A BCDE -的高,由图1,平行四边形BCDE 面积2S BC AB a =⋅=, 从而四棱锥1A BCDE -的为,得6a =. 考点:1.线面垂直的判定;2.面面垂直的性质定理;3.空间几何体的体积. 13.证明见解析【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】(Ⅰ)证法一:连接,.DG CD 设CD GF M ⋂=,连接MH ,在三棱台DEF ABC -中, 2AB DE G =,分别为AC 的中点,可得//,DF GC DF GC =,所以四边形DFCG 是平行四边形,则M 为CD 的中点,又H 是BC 的中点,所以//HM BD , 又HM ⊂平面FGH , BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点,可得//,,BH EF BH EF =所以HBEF 为平行四边形,可得//.BE HF 在ABC ∆中, G H ,分别为AC BC ,的中点, 所以//,GH AB 又GH HF H ⋂=, 所以平面//FGH 平面ABED , 因为BD ⊂平面ABED , 所以//BD 平面FGH .(Ⅱ)证明:连接HE .因为G H ,分别为AC BC ,的中点,所以//,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,所以//,,EF HC EF HC =因此四边形EFCH 是平行四边形,所以//.CF HE 又CF BC ⊥,所以HE BC ⊥.又,HE GH ⊂平面EGH , HE GH H ⋂=,所以BC ⊥平面EGH , 又BC ⊂平面BCD ,所以平面BCD ⊥平面.EGH 考点:1.平行关系;2.垂直关系.视频14.(1)见解析;(2)见解析;(3).【来源】2015年全国普通高等学校招生统一考试文科数学(北京卷带解析)【解析】试题分析:(Ⅰ)利用三角形的中位线得出OM ∥VB ,利用线面平行的判定定理证明VB ∥平面MOC ;(Ⅱ)证明OC ⊥平面VAB ,即可证明平面MOC ⊥平面VAB ;(Ⅲ)利用等体积法求三棱锥A-MOC 的体积即可试题解析:(Ⅰ)证明:∵O ,M 分别为AB ,VA 的中点,∴OM∥VB,∵VB平面MOC,OM平面MOC,∴VB∥平面MOC;(Ⅱ)证明:∵AC=BC,O为AB的中点,∴OC⊥AB,又∵平面VAB⊥平面ABC,平面 ∩平面VAB=AB,且OC平面ABC,∴OC⊥平面VAB,∵OC平面MOC,∴平面MOC⊥平面VAB(Ⅲ)在等腰直角三角形中,,所以.所以等边三角形的面积.又因为平面,所以三棱锥的体积等于.又因为三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积为.考点:平面与平面垂直的判定;直线与平面平行的判定;用向量证明平行视频答案第15页,总15页。
2015年新课标高考立体几何分类赏析

2015年新课标高考立体几何分类赏析
2015年的新课标高考,在立体几何方面给出了一些新的考题设计,与往年的考题有很大的不同,这也使得高考考生在取得好成绩的同时,要加强对立体几何的学习。
下面,就以2015年新课标高考立体几何考题为例,对其进行分类赏析,希望能为考生提供参考。
一、平面几何
2015年新课标高考立体几何考题中,有很多是关于平面几何的知识点,比如,定义平面图形、计算面积、计算周长等。
在发现相关几何图形时,涉及到一些经典的几何命题,比如直角三角形中,直角线的边长乘积等于其他两边的长度的平方之和,或者求解两个平行四边形的面积之比等。
二、曲面几何
2015年新课标高考立体几何考题中,也有一些是关于曲面几何的知识点,比如球的表面积和体积的计算、棱柱的表面积和体积的计算、圆柱的表面积和体积的计算等。
有关曲面几何的问题,往往是求出某个特定几何形状面积和体积,或者求解特定几何形状的一些角度等。
三、几何关系
2015年新课标高考立体几何考题中,也有一些是关于几何关系的知识点。
比如,利用几何关系推导某个几何图形的边长,或者通过几何关系推导某个几何图形的面积、体积等。
有关几何关系的问题,往往是求出某个特定几何形状的定义,或者求解特定几何形状的一些
参数等。
总之,2015年新课标高考立体几何考题中,考查的知识点有平面几何、曲面几何以及几何关系等三大类。
考生在备考时,需重点掌握球的表面积和体积计算、棱柱的表面积和体积计算、圆柱的表面积和体积计算以及几何关系的使用等。
只有利用好这些知识点,考生才能够取得理想的成绩。
2015年广东高考文科数学试题立体几何分类整理详细解答

2015广东高考文科数学试题分类汇编:立体几何详细解答一、选择题:1、某几何体的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+ 【解析】:本题考查两个方面的内容:一、三视图;二、立体图形的体积计算; 一、三视图:1、如果三个三视图中有两个三角形,这个立体图形一定是椎体,另一个三视图用来说明其为锥体的那一种;2、如果三个三视图中有两个矩形,这个立体图形一定是柱体,另一个三视图用来说明其为柱体的那一种;3、如果三个三视图中有两个梯形,这个立体图形一定是台体,另一个三视图用来说明其为台体的那一种;二、立体图形的体积计算:1、锥体的体积计算:⨯=31V 底面积⨯高2、柱体的体积计算:=V 底面积⨯高3、台体的体积计算:=V 大椎体体积-小椎体体积解:本题目是由两个立体图形组成的一个组合图形,一般情况下,我们需要分为两个部分各自处理。
上半部分:三视图为三个矩形,说明这个立体图形为四棱柱。
=V 底面积⨯高=16224=⨯⨯下半部分:三视图为两个矩形一个半圆,说明这个立体图形为圆柱的一半。
ππ842212=⨯⨯⨯=V所以:该组合立体图形的体积为π816+。
2、已知正四棱锥1111D C B A ABCD -中,AB AA 21=,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .13【解析】本题考查线与面的夹角计算,线与面的夹角计算有两种方法: 方法一:第一步:线中两个端点一般情况下一个在平面上,一个在平面,由不在平面上的点找到在该平面上的投影点。
(该点和投影点之间的连线垂直于该平面) 第二步:连接线重在平面的端点和投影点,形成一个直角三角形。
第三步:三角形中在平面的边与该直线之间的夹角就是线与面的夹角。
第四步:在直角三角形中利用三角函数求该角的三角函数值。
如图所示:其中'PAP ∠为直线'PP 和平面α的夹角,在'PAP Rt ∆中计算'PAP ∠的三角函数值。
2015年高考数学(理)核按钮:第八章《立体几何》(含解析)

第八章立体几何§8.1空间几何体的结构,三视图和直观图1.认识柱,锥,台,球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.高考主要考查空间几何体的结构和视图,柱,锥,台,球的定义与性质是基础,以它们为载体考查线线,线面,面面的关系是重点,三视图一般会在选择题,填空题中考查,以给出空间图形选择其三视图或给出三视图判断其空间图形的形式出现,考查空间想象能力.1.棱柱,棱锥,棱台的概念(1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相________,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是有一个公共顶点的__________,由这些面所围成的多面体叫做棱锥.※注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.※注:由正棱锥截得的棱台叫做正棱台.※2.棱柱,棱锥,棱台的性质(1)棱柱的性质侧棱都相等,侧面是______________;两个底面与平行于底面的截面是__________的多边形;过不相邻的两条侧棱的截面是______________;直棱柱的侧棱长与高相等且侧面,对角面都是________.(2)正棱锥的性质侧棱相等,侧面是全等的__________;棱锥的高,斜高和斜高在底面上的射影构成一个____________;棱锥的高,侧棱和侧棱在底面上的射影也构成一个____________;侧面的斜高,侧棱及底面边长的一半也构成一个____________;侧棱在底面上的射影,斜高在底面上的射影及底面边长的一半也构成一个____________.(3)正棱台的性质侧面是全等的____________;斜高相等;棱台的高,斜高和两底面的边心距组成一个____________;棱台的高,侧棱和两底面外接圆的半径组成一个____________;棱台的斜高,侧棱和两底面边长的一半也组成一个____________.3.圆柱,圆锥,圆台(1)圆柱,圆锥,圆台的概念分别以________的一边,__________的一直角边,________中垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱,圆锥,圆台.(2)圆柱,圆锥,圆台的性质圆柱,圆锥,圆台的轴截面分别是________,___________,___________;平行于底面的截面都是__________.4.球(1)球面与球的概念以半圆的______所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球的________.(2)球的截面性质球心和截面圆心的连线________截面;球心到截面的距离d与球的半径R及截面圆的半径r的关系为______________.5.平行投影在一束平行光线照射下形成的投影,叫做__________.平行投影的投影线互相__________.6.空间几何体的三视图,直观图(1)三视图①空间几何体的三视图是用正投影得到的,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的.三视图包括__________,__________,__________.②三视图尺寸关系口诀:“长对正,高平齐,宽相等.” 长对正指正视图和俯视图长度相等,高平齐指正视图和侧(左)视图高度要对齐,宽相等指俯视图和侧(左)视图的宽度要相等.(2)直观图空间几何体的直观图常用斜二测画法来画,其规则是:①在已知图形所在空间中取水平面,在水平面内作互相垂直的轴Ox ,Oy ,再作Oz 轴,使∠xOz =________且∠yOz =________.②画直观图时,把Ox ,Oy ,Oz 画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=____________,∠x ′O ′z ′=____________.x ′O ′y ′所确定的平面表示水平面.③已知图形中,平行于x 轴,y 轴或z 轴的线段,在直观图中分别画成____________x ′轴,y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的__________.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.注:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形,直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是在平行投影下画出的平面图形,用斜二测画法画出的直观图是在平行投影下画出的空间图形.【自查自纠】1.(1)平行 四边形 平行 (2)多边形 三角形2.(1)平行四边形 全等 平行四边形 矩形 (2)等腰三角形 直角三角形 直角三角形 直角三角形 直角三角形(3)等腰梯形 直角梯形 直角梯形 直角梯形 3.(1)矩形 直角三角形 直角梯形 (2)矩形 等腰三角形 等腰梯形 圆4.(1)直径 球心 (2)垂直于 d =R 2-r 2 5.平行投影 平行6.(1)①正(主)视图 侧(左)视图 俯视图 (2)①90° 90°②45°(或135°) 90° ③平行于 ④一半下列说法中正确的是( ) A .棱柱的底面一定是平行四边形B .棱锥的底面一定是三角形C .棱锥被平面分成的两部分不可能都是棱锥D .棱柱被平面分成的两部分可以都是棱柱解:根据棱柱,棱锥的性质及截面性质判断,故选D.以下关于几何体的三视图的论述中,正确的是( )A .球的三视图总是三个全等的圆B .正方体的三视图总是三个全等的正方形C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆解:几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆.故选A.(2012·陕西)将正方体(如图a 所示)截去两个三棱锥,得到图b 所示的几何体,则该几何体的侧视图为( )解:还原正方体知该几何体侧视图为正方形,AD 1为实线,B1C 的正投影为A 1D ,且B 1C 被遮挡为虚线.故选B.用一张4cm×8cm 的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为________cm 2(接头忽略不计).解:以4cm 或8cm为底面周长,所得圆柱的轴截面面积均为32πcm 2,故填32π.已知正三角形ABC 的边长为a ,那么△ABC的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′×C ′D ′=12×a×68a =616a 2.故填616a 2.类型一 空间几何体的结构特征(2012·湖南)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()解:D 选项的正视图应为如图所示的图形. 故选D.【评析】本题主要考查空间想象能力,是近年高考中的热点题型.本题可用排除法一一验证:A ,B ,C 都有可能,而D 的正视图与侧视图不可能相同.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解:从俯视图看,B ,D 符合,从正视图看,B 不符合,D 符合,而从侧视图看D 也是符合的.故选D.类型二 空间几何体的三视图如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A .6 3B .93C .12 3D .18 3解:由三视图可知该几何体是一个斜四棱柱,高h=22-1=3,底面积为9,所以体积V =9×3=9 3.故选B.【评析】通过三视图考查几何体的体积运算是较为常规的考题,考生对此并不陌生.对于空间几何体的考查,从内容上看,柱,锥的定义和相关性质是基础,以它们为载体考查三视图,体积是重点.本题给出了几何体的三视图,只要掌握三视图的画法“长对正,高平齐,宽相等”,不难将其还原得到斜四棱柱.如图所示的三个直角三角形是 一个体积为20cm 3的几何体的三视图,则h =________cm.解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三角形,直角边长分别为5cm ,6cm ,三棱锥的高为h cm ,则三棱锥的体积为V=13×12×5×6×h=20,解得h =4cm.故填4.类型三 空间多面体的直观图如图是一个几何体的三视图,用斜二测画法画出它的直观图.解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥.画法:(1)画轴.如图1,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =90°.图1(2)画底面.利用斜二测画法画出底面ABCD ,在z 轴上截取O ′使OO ′等于三视图中相应高度,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′.(3)画正四棱锥顶点.在Oz 上截取点P ,使PO ′等于三视图中相应的高度.(4)成图.连接P A ′,PB ′,PC ′,PD ′,A ′A ,B ′B ,C ′C ,D ′D ,整理得到三视图表示的几何体的直观图如图2所示.图2【评析】根据三视图可以确定一个几何体的长,宽,高,再按照斜二测画法,建立x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴,y 轴,z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A . 2B .6 2C .13D .2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =2 2.因此该四棱锥的体积为V =13Sh =13×22×3=2 2.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上,下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上,下底面半径分别为r ,4r .根据相似三角形的性质得, 33+l =r4r ,解得 l =9. 所以,圆台的母线长为9cm.【评析】用平行于底面的平面去截柱,锥,台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.圆锥底面半径为1cm ,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1如图所示. 设正方体棱长为x ,则CC 1=x ,C 1D 1=2x .作SO ⊥EF 于O ,则SO =2,OE =1.∵△ECC 1∽△ESO ,∴CC 1SO =EC 1EO ,即x2=1-22x1, 解得x =22(cm).故内接正方体的棱长为22cm.1.在研究圆柱,圆锥,圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a 的正四面体A 1-BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).3.长方体的外接球(1)长,宽,高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图,侧(左)视图,俯视图分别是从几何体的正前方,正左方,正上方观察几何体画出的轮廓线,对于能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变,三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=24S 原图形,S 原图形=22S 直观图.1.由平面六边形沿某一方向平移形成的空间几何体是( )A .六棱锥B .六棱台C .六棱柱D .非棱柱,棱锥,棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C .2.下列说法中,正确的是( ) A .棱柱的侧面可以是三角形B .若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C .正方体的所有棱长都相等D .棱柱的所有棱长都相等解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A .一个圆台,两个圆锥B .两个圆台,一个圆柱C .两个圆台,一个圆锥D .一个圆柱,两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱,两个圆锥.故选D.4.将正三棱柱截去三个角(如图1所示A ,B ,C 分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )A B C D解:观察图形,易知图2所示几何体的侧视图为直角梯形,且EB 为直角梯形的对角线.故选A.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()A .棱柱B .棱台C .圆柱D .圆台 解:由俯视图可知该几何体的上,下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为()A .2 2 B. 2 C .2 3 D. 3 解:由三视图可知,此多面体是四棱锥,底面是边长为2的正方形,并且有一条长为2的侧棱垂直于底面,所以最长棱长为22+22+22=2 3.故选C.7.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为2,高为1的正三棱柱,所以底面积为2×12×2×2×32=23,侧面积为3×2×1=6,所以其表面积为6+2 3.故填6+23.8.如图是某个圆锥的三视图,根据图中所标尺寸可得俯视图中圆的面积为________,圆锥母线长为________.解:由三视图可知,圆锥顶点在底面的射影是底面圆的中心,根据图中的数据,底面圆的半径为10,则俯视图中圆的面积为100π,母线长为302+102 =1010,故填100π;1010.9.如图a 是截去一个角的长方体,试按图示的方向画出其三视图.解:图a 中几何体三视图如图b 所示:10.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图.解:图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =∠yOz =90°.(2)画底面,利用斜二测画法画出底面ABCDEF ,在z 轴上截取O ′,使OO ′等于正六棱柱的高,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′E ′F ′.(3)画正六棱锥顶点.在Oz 上截取点P ,使PO ′等于正六棱锥的高.(4)成图.连接P A ′,PB ′,PC ′,PD ′,PE ′,PF ′,AA ′,BB ′,CC ′,DD ′,EE ′,FF ′,整理得到三视图表示的几何体的直观图如图3所示.注意:图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.11.某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分别为a 和b ,求ab的最大值.解:如图,则有AC 1=7,DC 1=6, BC 1=a ,AC =b ,设AB =x ,AD =y ,AA 1=z ,有 x 2+y 2+z 2=7,x 2+z 2=6,∴y 2=1.∵a 2=y 2+z 2=z 2+1,b 2=x 2+y 2=x 2+1, ∴a =z 2+1,b =x 2+1. ∴ab =(z 2+1)(x 2+1)≤z 2+1+x 2+12=4,当且仅当z 2+1=x 2+1,即x =z =3时,ab 的最大值为4.水以匀速注入某容器中,容器的三视图如图所示,其中与题中容器对应的水的高度h 与时间t的函数关系图象是( )解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2空间几何体的表面积与体积1.了解棱柱,棱锥,台,球的表面积和体积的计算公式.2.会利用公式求一些简单几何体的表面积与体积.高考主要考查空间几何体的侧面积,表面积,体积以及相关元素的关系与计算,这些内容常与三视图相结合,以选择题,填空题的形式出现,也可能以空间几何体为载体,考查线面关系,侧面积,表面积以及体积.1.柱体,锥体,台体的表面积(1)直棱柱,正棱锥,正棱台的侧面积S直棱柱侧=__________,S正棱锥侧=__________,S正棱台侧=__________(其中C,C′为底面周长,h为高,h′为斜高).(2)圆柱,圆锥,圆台的侧面积S圆柱侧=________,S圆锥侧=________,S圆台侧=________(其中r,r′为底面半径,l为母线长).(3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体,锥体,台体的体积(1)棱柱,棱锥,棱台的体积V棱柱=__________,V棱锥=__________,V棱台=__________(其中S,S′为底面积,h为高).(2)圆柱,圆锥,圆台的体积V圆柱=__________,V圆锥=__________,V圆台=__________(其中r,r′为底面半径,h为高).3.球的表面积与体积(1)半径为R的球的表面积S球=________.(2)半径为R的球的体积V球=________.【自查自纠】1.(1)Ch 12Ch′12()C+C′h′(2)2πrlπrlπ(r+r′)l(3)侧面积两个底面积侧面积一个底面积2.(1)Sh 13Sh13h()S+SS′+S′(2)πr2h13πr2h13πh()r2+rr′+r′23.(1)4πR2(2)43πR3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为()A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2)解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,∴S底=πr2=4π,S侧=6π×4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3.∴S底=πr2=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).故选C.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V=13×12×(2)2×2=23.故选C.已知圆柱的底面直径与高都等于球的直径,则圆柱的体积与球体积之比为()A.1∶2 B.2∶1 C.2∶3 D.3∶2解:设球半径为R,圆柱底面半径为R,高为2R.∵V球=43πR3,V圆柱=πR2·2R=2πR3,∴V圆柱∶V球=3∶2.故选D.长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=3,AA1=1,则球面面积为________.解:∵长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,则外接球的直径是长方体的体对角线,而长方体的体对角线的长为AB2+AD2+AA21=22,∴半径R= 2.∴S球=4πR2=8π.故填8π.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为____________.解:设圆锥底面半径为r,母线长为l,则⎩⎪⎨⎪⎧πr2=π,πrl=2π,有⎩⎪⎨⎪⎧r=1,l=2,从而可知圆锥的高h=l2-r2=4-1= 3.∴V=13×π×3=33π.故填33π.类型一空间几何体的面积问题如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD=1,求三棱锥D-ABC的表面积.解:(1)证明:∵折起前AD是BC边上的高,∴沿AD把△ABD折起后,AD⊥DC,AD⊥BD.又DB∩DC=D,∴AD⊥平面BDC.又∵AD⊂平面ADB,∴平面ADB⊥平面BDC.(2)由(1)知,DA⊥BD,BD⊥DC,DC⊥DA,DB=DA=DC=1,∴AB=BC=CA= 2.从而S△DAB=S△DBC=S△DCA=12×1×1=12,S△ABC=12×2×2×sin60°=32.∴三棱锥D-ABC的表面积S=12×3+32=3+32.【评析】充分运用图形在翻折前后的不变性,如角的大小不变,线段长度不变,线线关系不变等,再由面面垂直的判定定理进行推理证明,然后再计算.(2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图,侧视图,俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是____________.解:由三视图可知该组合体为球内接一个棱长为2的正方体,∴正方体的体对角线为球的直径2r=22+22+22=23,S球=4πr2=12π.故填12π.类型二空间旋转体的面积问题如图,半径为4的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.解:如图,设球的一条半径与圆柱相应的母线的夹角为α,圆柱侧面积S=2π×4sinα×2×4cosα=32πsin2α,当α=π4时,S取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.故填32π.【评析】根据球的性质,内接圆柱上,下底面中心连线的中点为球心,且圆柱的上,下底面圆周均在球面上,球心和圆柱的上,下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.(2012·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为____________.解:由三视图知该几何体为长4宽3高1的长方体的中间挖去一个半径为1高为1的圆柱所成几何体,所以表面积为2×(4×3+4×1+3×1)-2×π×12+2π×1×1=38.故填38.类型三空间多面体的体积问题一个正三棱锥(底面是正三角形,顶点在底面的射影是底面正三角形的中心)的底面边长为6,侧棱长为15,求这个三棱锥的体积.解:如图所示为正三棱锥S-ABC,设H为正三角形ABC的中心,连接SH,则SH的长即为该正三棱锥的高.连接AH并延长交BC于E,则E为BC的中点,且AH⊥BC.∵△ABC是边长为6的正三角形,∴AE =32×6=33,AH =23AE =2 3. 在△ABC 中,S △ABC =12BC ×AE =12×6×33=93,在Rt △SHA 中,SA =15,AH =23, ∴SH =SA 2-AH 2=15-12= 3.∴V 正三棱锥=13×S △ABC ×SH =13×93×3=9.【评析】(1)求锥体的体积,要选择适当的底面和高,然后应用公式V =13Sh进行计算.(2)求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体,锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD -BNC +V E -AMD +V F -BNC .依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32.作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F -BNC =13·S △BNC ·NF =224, V E -AMD =V F -BNC =224,V AMD -BNC =S △BNC·MN=24. ∴V ABCDEF =23,故选A .类型四 空间旋转体的体积问题某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π3解:由三视图知几何体为一个正方体中间去掉一个圆锥,所以它的体积是V =23-13×π×12×2=8-23π.故选A.【评析】根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2012·河南模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12 B.4π3+16 C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝⎛⎭⎫223+13×⎝⎛⎭⎫12×1×1×1=2π6+16.故选C.1.几何体的展开与折叠(1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上,下弧长分别为圆台的上,下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱,棱锥,棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱,正棱锥,正棱台也可直接利用公式;(2)圆柱,圆锥,圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱,锥,台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法,补体法,还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.4.由几何体的三视图求几何体的表面积与体积问题,一般按如下三个步骤求解:(1)由三视图想象出原几何体的形状;(2)由三视图给出的数量关系确定原几何体的数量关系;(3)如果是规则几何体,直接代入公式求解,如果不是规则几何体,通过“割补”后,转化为规则几何体求解.1.已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为( )A .2π2B .2πC .3π3D .3π 解:易知圆锥的底面直径为2,母线长为2,则该圆锥的高为22-12=3,因此其体积是13π·12×3=3π3.故选C. 2.一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解:设长方体的长,宽,高分别为a ,b ,c ,则有ab =2,ac =3,bc =6,解得a =1,b =2,c=3,则长方体的体对角线的长l =a 2+b 2+c 2= 6.故选D.3.一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233解:该空间几何体由一圆柱和一正四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,正四棱锥的底面边长为2,高为3,所以体积为13×(2)2×3=233.所以该几何体的体积为2π+233.故选C . 4.将长,宽分别为4和3的长方形ABCD 沿对角线AC 折成直二面角,得到四面体A -BCD ,则四面体A -BCD 的外接球的表面积为( )A .25πB .50πC .5πD .10π解:由题设知AC 为外接球的直径,∴2R =32+42=5,S 表=4πR 2=4π×⎝⎛⎭⎫522=25π.故选A.。
2015年新课标高考立体几何分类赏析

2015年新课标高考立体几何分类赏析随着2015年高考课程改革的实施,立体几何也作为必考科目出现在考试中。
按新课标的要求,考生需要能够对立体几何的诸多特性和结构有清晰的认识和掌握,从而运用到试卷中。
在2015年新课标高考立体几何考试中,考生需要掌握平面几何和空间几何;了解其特点,区分其中的类别;掌握所有定理的推导以及应用方法;了解它们的变形形态;学会运用几何的知识来解决实际问题,如空间拼图和多面体的体积计算。
首先,2015年新课标高考立体几何考试的第一个重点是平面几何。
平面几何的研究,可以分为三个主要方面:计算几何、利用角和角度来计算;图形几何,是由点、直线、圆和其它曲线图形组成;推理几何,也就是定义和使用几何定理来验证猜测结果。
此外,要准确掌握常见的几何图形,如正方形、矩形、三角形、圆形等,并能运用角和角度来求出不同图形之间的关系。
其次,2015年新课标高考考试的空间几何部分将要求考生研究空间几何的平面、平行四边形、正四棱柱等,掌握它们的性质特点,学会计算各种体积之间的关系,并能运用定理来推导理论结果。
此外,在空间几何中,考生还需要掌握投影的概念,以及投影的类型、特点、知识点,如正投影、俯仰投影、水平投影等。
最后,2015年新课标高考考试还考察变形几何、多面体几何以及空间几何图形拼图等方面的知识。
变形几何是对几何图形进行变形的研究,考生应掌握变形的基本原理以及变形的形式、特征和性质;多面体几何的研究要求掌握多面体的形态和特点,以及多面体之间的关系;空间几何图形拼图是将多个几何图形拼合成一个空间图形,要求考生能够准确地构建出正确的空间图形。
以上就是2015年新课标高考立体几何分类赏析,希望考生们能够准确掌握各个知识点,运用到实际应用中来。
通过掌握这几种立体几何,考生可以更好地理解自然界的结构,发现并分析各种特殊的图形,从而有助于学习科学知识,培养考生的科学思维。
2015高考数学(理)真题分类汇编:专题10 立体几何(Word版含解析)

专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2015年高考数学《新高考创新题型》之7:立体几何(含精析)

2015年高考数学《新高考创新题型》之7:立体几何(含精析)之7.立体几何(含精析)一、选择题。
1.如图,正方体的棱长为,点在棱上,且,点是平面上的动点,且动点到直线的距离与点到点的距离的平方差为,则动点的轨迹是()A.圆B.抛物线C.双曲线D.2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A.B.C.D.3.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是()A.2B.C.D.,这两个球相外切,且球与正方体共顶点A的三个面相切,球与正方体共顶点的三个面相切,则两球在正方体的面上的正投影是()(创作:学科网“天骄工作室”)5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()6.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②7.如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(创作:学科网“天骄工作室”)A.B.C.D.8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为A.B.C.D.的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则的取值范围是()A.(0,2) B.(0,1)C.(1,2) D.10.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当APC为钝角时,λ的取值范围是________.12.如右图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).[来源:学§科§网]①当时,S为四边形;②当时,S不为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为________.平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为________.抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是.三、解答题。
2015年高考真题 理科数学立体几何 专项突破 附答案解析

2015年全国数学高考试题——立体几何专项突破(理科部分)1.【2015高考新课标2,理19】(本题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF 与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)4515.【解析】(1)交线围成的正方形EFGH 如图:(2)作AB EM⊥,垂足为M ,则41==E A AM ,81==AA EM ,∵四边形EFGH 为正方形,∴10===BC EF EH。
∴622=-=EM EH MH ∴AH =10.以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示空间直角坐标系xyz D -,则()0010,,A ,()01010,,H ,()8410,,E ,()840,,F ,()0010,,FE =,()860,,HE -=设()z ,y ,x n =是平面EHGF 的法向量,则⎩⎨⎧=∙=∙00HE n FE n 即⎩⎨⎧=+-=086010z y x DDC 1A 1EF A B C B 1∴可取()340,,n =,又()8410,,AF -=∴1554=∙∙==AF n AFn AF ,n cos sin θ∴直线AF 与平面α所成角的正弦值为15154。
【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.【名师点睛】根据线面平行和面面平行的性质画平面α与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面α的法向量,利用sin cos ,n AF θ=<> 求直线AF 与平面α所成角的正弦值.2.【2015江苏高考,16】(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.【答案】(1)详见解析(2)详见解析【解题分析】(1)由三棱锥性质知侧面C C BB 11为平行四边形,因此点E 为C B 1的中点,从而由三角形中位线性质得AC //DE ,由线面平行判定定理得DE //平面C C AA 11。
2015年湖北高考解析几何专题分析

2015年高考解析几何专题分析(含坐标系与参数方程)黄石二中谈运章湖北高考解析几何综述:解析几何是高中数学的又一重要内容,其核心内容是直线与圆以及圆锥曲线。
由于平面向量可以用坐标表示,因此可以以坐标为桥梁,使向量的有关运算与解析几何中的坐标运算产生联系。
在考基础、考能力、考素质、考潜能的考试目标指导下,每年的高考对解析几何的考查都占较大的比例。
近三年的湖北卷中12、13年解析几何部分由一道小题和一道解答题构成,分值共17分,14年增加了一道小题,分值增加到22分。
高考的重点在考查圆锥曲线中的基本知识和基本方法,但由于计算量较大,学生往往失分较大。
解析几何作为高考的重要考点之一,其特点是用代数的方法研究、解决几何问题,重点是用“数形结合”的思想把几何问题转化为代数问题。
其命题一般紧扣课本全面考查,突出重点主干知识、注重知识交汇、强化思想方法、突出创新意识。
客观题的特点:一是侧重考查基础知识。
如直线、圆、椭圆、双曲线、抛物线的定义与方程及基本量计算,焦点方程、渐近线方程等典型的几何性质,直线与圆锥曲线位置关系的应用,点到直线距离公式、三角形面积公式、弦长公式等。
二是注重综合考察多种知识。
如不同曲线(含直线)之间的结合,解析几何与不等式、向量、三角、函数的结合等。
主观题考查的重点仍是直线与圆锥曲线的位置关系这一传统热点,着重围绕范围、轨迹方程、最值、定值、存在性、直线与圆锥曲线的位置关系等方面设置问题。
解题时需要根据具体情境,灵活运用解析几何、平面几何、向量、三角、函数、不等式等知识,具有较强的综合性。
对解析几何中体现的化归、数形结合、分类讨论、函数与方程等数学思想提出了较高要求。
选修4-4坐标系与参数方程部分在我省高考中以选做填空题形式考查,侧重考查学生对极坐标与直角坐标的相互转化,考查问题的形式多为求交点坐标、弦长等基本问题。
一、平面解析几何初步部分1.考点与考试层次要求(依据2014年湖北高考数学考试说明)内容知识要求了解理解掌握平面解析几何直线与方程直线的倾斜角和斜率√过两点的直线斜率的计算公式√两条直线平行或垂直的判定√初步直线方程的点斜式、斜截式、截距式、两点式及一般式√两条相交直线的交点坐标√两点间的距离公式、点到直线的距离公式√两条平行线间的距离√圆与方程圆的标准方程与一般方程√直线与圆的位置关系√两圆的位置关系√用直线和圆的方程解决一些简单的问题√2.考试要求以及查查类型分析纵观近年高考直线与圆的方程试题的特点和高考命题的发展趋势,以下内容仍是高考的重点内容:直线斜率的概念及其计算,直线方程的五种形式;两条直线平行与垂直的条件及其判断,点到直线的距离公式;圆的标准方程、一般方程的概念、性质及其应用。
2015年高考会这样考立体几何剖析

【2015年高考会这样考立体几何】小题:1.以三视图为背景,考查体积;核心与难点在于三视图.2.考查线面的位置关系,核心在线面的平行与垂直.两种形式呈现:一种是符号语言表示;另一种是文字语言表示。
3.立体几何小题以考查空间想象能力为出发点,考查基本定理以及三视图,属于中等或中等偏下的题,能常出在选择题的第5—8题,容易得分。
大题:1、考查垂直,核心是线面垂直;2、考查二面角,此问可以用传统方法,也可用法向量的方法。
传统方法书写简单,但思考难度大;法向量方法思路清淅,不需要太多空间想象能力,但计算复杂,需要耐心。
3、立体向何大题一般出现在第18题,属于中等或中等偏上的题。
【复习指导】复习立体向何要先以基本的定理为基础,以解题模板训练解题的套路,关注题目的不同点,在学习中不断积累总结解题模板。
立体几何的平行与垂直知识点与题型、方法总结(一)、立体几何网络图:2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
4、线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。
即:(2)垂直于同一平面的两直线平行。
即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明。
⑵利用判定定理证明。
⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。
2013—2015立体几何考题分析(全国卷)

500π A. 3 cm3
1372π C. 3 cm3
866π B. 3 cm3
2048π D. 3 cm3
第5页,共30页。
二、近三年全国卷
2.(2013 课标全国Ⅰ,理 8)某几何体的三视
图如图所示,则该 几何体的
体积为(
).
A.16+8π B.8+8π C.16+16π D.8+16π
第6页,共30页。
图,该零件由一个底面半径为 3cm,高为 6cm
的圆柱体毛坯切削得到,则切削掉部分的体积
与原来毛坯体积的比值为( )
A.
17 27
B.
5 9
C. 10
27
D.
1 3
第15页,共30页。
二、近三年全国卷
5(. 2014 课标全国Ⅱ,理 11).直三棱柱 ABC-A1B1C1 中,∠BCA=90°, M,N 分别是 A1B1,A1C1 的中点,BC=CA=CC1,则 BM 与 AN 所 成的角的余弦值为( )
第7页,共30页。
二、近三年全国卷
4.(2014 课标全国Ⅰ,理 12)如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最 长的棱的长度为
A.6 2
B.4 2
C .6
D .4
第8页,共30页。
二、近三年全国卷
5. (2014 课标全国Ⅰ,理 19)(本小题满分 12 分)如图三棱柱 ABC A1B1C1 中, 侧面 BB1C1C 为菱形, AB B1C . (I)证明: AC AB1 ; (Ⅱ)若 AC AB1 ,CBB1 60o ,AB=Bc,求二面角 A A1B1 C1 的余弦值.
第27页,共30页。
2015年高考“立体几何”专题命题分析

2015年高考“立体几何”专题命题分析
魏韧
【期刊名称】《中国数学教育(高中版)》
【年(卷),期】2015(000)007
【摘要】2015年高考数学立体几何试题秉承往年立足基础,能力立意,注重知识与能力融合的命题思路,在试题命制方面体现三个突出,即突出对立体几何主要基础知识、基本技能和基本思想方法的考查;突出对通性、通法的考查;突出对空间想象能力、推理论证能力,以及化归和转化能力的考查。
同时正视文、理科差异,挖掘知识间的内在联系,不断创新,亮点纷呈,透出灵性与活力。
总体风格是“门槛虽低不落俗套,朴实自然不失深刻”。
【总页数】6页(P109-114)
【作者】魏韧
【作者单位】北京市第十八中学
【正文语种】中文
【相关文献】
1.2015年高考“立体几何”专题命题分析 [J], 蔡震雄
2.2019年高考"立体几何"专题命题分析 [J], 周远方; 李冉; 徐新斌
3.2020年高考"立体几何"专题命题分析 [J], 张培强;魏贤刚
4.2021年高考"立体几何"专题命题分析 [J], 金克勤;严永冬
5.2019年高考立体几何专题命题分析 [J], 唐明超;骆妃景;潘敬贞
因版权原因,仅展示原文概要,查看原文内容请购买。
【高考解码】(新课标)2015届高考数学二轮复习 立体几何热点考向

【高考解码】(新课标)2015届高考数学二轮复习 立体几何热点考向利用空间向量证明空间位置关系【例1】 如图所示,在底面是矩形的四棱锥PABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .【证明】 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面PAB ,EF ⊄平面PAB , 所以EF ∥平面PAB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC . 又因为AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面PAD ⊥平面PDC .【规律方法】 使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方程向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.[创新预测]1.在直三棱柱ABCA 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4), 设BA =a ,则A (a,0,0),所以BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2), B 1D →·BA →=0,B 1D →·BD →=0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a2,1,4,F ()0,1,4, 则EG →=⎝ ⎛⎭⎪⎫a 2,1,1,EF →=(0,1,1),B 1D →·EG →=0+2-2=0, B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD .利用空间向量求空间角【例2】 (2014·某某省某某市高考模拟卷)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值X 围.【解】 可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系,如图所示.令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,1),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1). 设n 1=(x ,y ,z )为平面MAB 的法向量, 由错误!得错误!.取x =1,则n 1=(1,3,3-λ), ∵n 2=(1,0,0)是平面FCB 的一个法向量,∴cos θ=n 1·n 2|n 1|·|n 2|=11+3+3-λ2×1=1λ-32+4. ∵0≤λ≤3,∴当λ=0时,cos θ有最小值77,当λ=3时,cos θ有最大值12.∴cos θ∈[77,12]. 【规律方法】 1.利用空间向量求空间角的步骤: 第一步建立适当的空间直角坐标系; 第二步确定出相关点的坐标; 第三步写出相关向量的坐标; 第四步结合公式进行论证、计算; 第五步转化为几何结论.2.巧用“向量法”求解“空间角”: (1)向量法求异面直线所成的角若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |.(2)向量法求线面所成的角求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n ·a ||n ||a |.(3)向量法求二面角求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 1|.[创新预测]2.(2014·某某第一次调研)如图所示.在多面体ABCDA 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值;(2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1; (3)在(2)的条件下,求二面角FCC 1B 的余弦值.【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ),∴|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB1→|·|DD 1→|=33, ∴异面直线AB 1与DD 1所在 角的余弦值为33. (2)∵BB 1→=(-a ,-a ,a ),BC →=(-2a,0,0),FB 1→=(0,a ,a ), ∴⎩⎪⎨⎪⎧FB 1→·BB 1→=0FB 1→·BC →=0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, ∵CC 1→=(0,-a ,a ),FC →=(-a,2a,0), ∴⎩⎪⎨⎪⎧n ·CC 1→=0n ·FC →=0,得错误!.令y 1=1,则n =(2,1,1),∴cos 〈FB 1→,n 〉=FB 1→·n |FB 1→|·|n |=33,∵二面角FCC 1B 为锐角,∴二面角FCC 1B 的余弦值为33.利用空间向量解决探索性问题【例3】 (2014·某某高考)如图在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【解】 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图所示的空间直角坐标系D -xyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0).(1)【证明】 当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ . (2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则 由错误!可得错误!于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 【规律方法】 空间向量巧解探索性问题:(1)空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定X 围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.[创新预测]3.(2014·某某聊城二模)如图(1)所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A DC B .(如图(2))(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E DF C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BP BC的值;如果不存在,请说明理由.【解】 (1)在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF ∥AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF →=(1,3,0),DE →=(0,3,1),DA →=(0,0,2).平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,所以二面角E DF C 的余弦值为217. (3)存在.设P (s ,t,0),有AP →=(s ,t ,-2), 则AP →·DE →=3t -2=0,∴t =233,又BP →=(s -2,t,0),PC →=(-s,23-t,0), ∵BP →∥PC →,∴(s -2)(23-t )=-st , ∴3s +t =2 3.把t =233代入上式得s =43,∴BP →=13·BC →,∴在线段BC 上存在点P ,使AP ⊥DE .此时,BP BC =13.[总结提升] 失分盲点(1)混淆概念致误.混淆向量的夹角与异面直线的夹角的概念,导致结果错误. (2)错用公式致误.在求有关角的问题时,由于对角与向量之间的关系不清楚,导致错用夹角公式. (3)混淆公式致误.混淆二面角、线面角的向量计算公式.从而导致错误. 答题指导在解决角的问题时,注意合理应用转化思想,将空间角转化为平面图形中的角;也可以建立空间直角坐标系.利用向量知识来求角,此时需注意角的X 围及角的三角函数名.方法规律(1)求两条异面直线所成角的方法:一是平移直线法;二是空间向量法.(2)直线与平面所成角的求法:通过求直线的方向向量与平面的法向量的夹角来求直线与平面所成的角.(3)平面与平面所成的角:可利用待定系数法求出这两个平面的法向量,法向量的夹角可能等于两平面的夹角,也可能与两平面的夹角互补.(4)点到平面的距离的求法: ①直接法,即垂线段的长; ②等体积转化法,即换底法; ③向量法:用已知向量表示求解空间向量的运算与立体几何问题1.有了空间向量的知识后,立体几何中的问题就可以转化为向量的运算完成,因此使用空间向量方法解决立体几何问题.不仅要掌握空间向量与立体几何问题的对应关系,还要有一定的运算能力作基础.2.立体几何中向量的运算主要是:建立空间直角坐标系后求点的坐标,向量的坐标.求直线的方向向量,求平面的法向量,进行向量的线性运算、数量积运算等.【典例】 (2014·某某高考)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.【解】 (1)因为四边形ABCD 是等腰梯形,且AB =2CD ,所以AB ∥DC ,又由M 是AB 的中点,因此CD ∥MA 且CD =MA .连接AD 1,在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1//MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因此C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1.(2)连接AC ,MC ,由(1)知CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形. 可得BC =AD =MC ,由题意∠ABC =∠DAB =60°, 所以△MBC 为正三角形, 因此AB =2BC =2,CA =3, 因此CA ⊥CB .以C 为坐标原点,建立如图所示空间直角坐标系C -xyz . 所以A (3,0,0),B (0,1,0),D 1(0,0,3).因此M ⎝ ⎛⎭⎪⎫32,12,0,所以MD 1=⎝⎛⎭⎪⎫-32,12,3,D 1C 1=MB =⎝ ⎛⎭⎪⎫-32,12,0. 设平面C 1D 1M 的一个法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·D 1C 1=0,n ·MD 1=0,得⎩⎨⎧3x -y =0,3x +y -23z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1), 又CD 1=(0,0,3)为平面ABCD 的一个法向量. 因此cos 〈CD 1,n 〉=CD 1·n|CD 1|n ||=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 【规律感悟】 平面的法向量是不唯一的,凡与平面垂直的向量都是其法向量,求解平面的法向量就是解一个由两个方程组成的三元一次方程组,注意对其中一个元赋值求解,得出该方程组的一个特解,就是所求平面的法向量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据线 面平行与垂直的判定 和性质 ,可知 “ 线线
平 行 线 面平行 面面 平行 ” “ 线 线垂 直 线 面
设 球 D的半 径 为 ,此 时
0 嬲 = c 0B =
垂直 三面面垂直”是立体几何 中所表现出的线 、面 平行与垂直关系相互转化 的基本思路 ,利用这种转化 思路 ,可以解决立体几何线、面位置关系的基本问题.
为 行 文 方便 ,现 从 选 择 题 、填 空 题 ,文科 解 答 题 ,理 体 积及 相 关计 算 问题 等. 科解 答 题三 个 方面 ,做 一番 解析 . 攻 克 这 些 题 目的要 领 是 ,明 确 视 图 的一 些 概 念 ,
如正投影的规律 :平行投影形不变 ,倾斜投影形改变
R =3 6 , 故 R= 6 .
4 . 探 索、创新 性 问题
则 球 O的表 面积 为 S=4 ' r r R =1 4 4 , r r .
故选 C .
例5 ( 广东卷・ 理8 )若空间中 n 个不 同的点两两 距离都相等 ,则正整数 n的取值 (
.
— —
解析 :由体积相等,得 × 4 × × 5 + 1 T X 2 × 8 =
图1
×, 2 ×盯×4+叮 r ×, 工 ×8 .解得 r =、 / 7.
j
( A )2 +、 / / ( c )2 + 2 、 /
答 案 :C .
收 稿 日期 :2 0 1 5 —0 7 ~2 0
一
、
选择题 、填 空题 亮点 纷呈
垂 直 投 影 成 一 点 ;掌 握 三 视 图 的 画 法 规 则 :长 对 正 ,
宽平齐 ,高相等 ;能够根据三视 图还原几何体 的直观
1 .三视 图相 关 问题
图 ,这是解决相关面积和体积等问题的基础.
2 .长度 、面积 、体 积 问题
例 1 ( 北京卷 ・ 理5 )某 三棱 锥 的三 视 图如 图 1 所
题 赏析 认 识 起 到 一定 的作 用 , 因而成 为 高考 的热 点 问题 .这
类题型 多以选择题 、填 空题为主 ,只有少数 出现在解 观察近几年各地高考试题 ,立体几何 内容一般是 答题 中.常见高考题型有 :给 出几何体 的直观 图,考 1 道解答题 ,1 ~3 道填 空题或选择题 . 解答题一般与 查三视 图中某种视 图的画法;或给出几何体 的三视 图, 棱柱和棱锥相关 ,主要考查线线关系 、线 面关 系和面 考 查 直观 图的 画法 ;或 给 出几何 体 的部 分 三 视 图,考 面关系 ,其重点是考查空间想象能力和推理运算能力. 查其他视图的画法 ;或据几何体 的三视 图考查表面积、
…
佑 笛
一
。们
申 国 数 螭啮
试 题 研 究》
§ . 1 , I . 1 。 。 I l U ….
) .
( B)6 4 , n " ( D)2 5 6 " t r
C
的表 面积为 (
( A)3 6 ' r r
( C )1 4 4 ' r r
关 系 时 ,就 想 想 相 应 的判 定定 理 是 什 么 ? 以使 我 们 在
( D )至多等于 3
试题要于平淡 中寻求新意 ,给入 耳 目一新 的感觉. 例
例 6 ( 四 川卷 ・ 理 1 4 )如图 3 ,
B C D 和 四边形 AD P O均 为 如 ,利 用 等 量 关 系 ,建 立方 程 求 解 ;取 材 于 《 九章 算 四边 形 A 术》 ,凸显数学的文化价值和 与现实紧密相联 的应用意 正 方形 ,它 们所 在 的平 面互相 垂 直 ,
复杂的图形及杂乱的位置关系中,迅速展开思路 ,找
到 解 题 突 破 口.特 别 是 在 需 要 添 加 辅 助 线 ( 面) 时 , 这 种 思维策 略很 有效 .
解析 :如图 2 ,当点 C位于
垂 直 于平 面 AO B的直径 端 点 时 , 三棱 锥 O - AB C的体积 最大 .
( A)大于 5
) .
【 评析】考查长度 、面积 、体 积问题 ,全面理解 、
熟记表 面积 、体 积 公 式 是对 学 生的基 本 要 求 ,但 如 果 试 题仅 限 于 此 ,就 有 过 于死 板 , 要求 过 低 之 嫌 .高 考
( B)等于 5
( c )至多等于 4
答 案 :C .
( B )4 +、 /
( D)5
例3 ( 新 课 程 全 国 Ⅱ卷 ・ 理9 ) 已知 点 A,B 是 球 O的球 面上两 点 ,厶 4 O B=9 0 。 ,点 C为该 球 面上 的
动点 ,若 三棱锥 O - A B C 体 积的最 大值 为 3 6 ,则球 D
作者简介 : 蔡 震雄 ( 1 9 7 8 一 ) ,男,中学高级教师 ,主要从事 中学数学教学研 究
《试 题 研 究
… …
Hl 丁 l , Y_ A. l J 。 { 。
嬲
绷
蔡震雄 ( 北京 市第十八 中学)
【 评析】 三视 图是高 中新课标新增 的内容 ,也是近
摘 要 :对 2 0 1 5年 高考 立体 几何 部 分 的选择 题 、填
空题 、解答题 等 ,从 亮点呈现 、解 法赏析的 角度进行 几 年 数 学高 考 常考 的 热 点 内容 .三视 图有助 于培 养 学 分析和梳理 ,为新一轮的 高三数 学复习教 学提供帮助. 生 的观 察 能 力 、 空 间想 象 能力 、形象 思维 能力 和 几何 关键词 :2 0 1 5 年 高考 ;立体几何 ;解题分析 ;试 直 观 能 力 ,对 发 展 空 间观 念 ,增 强 学 生对 数 学价 值 的
示 ,则该三棱锥 的表面积是 (
) .
例2 ( 江苏卷 ・ 9 )现有橡皮泥制作 的底面半径为
5 ,高为 4的圆锥和底面半径 为 2 ,高为 8 的圆柱各一
个. 若将 它们重新制作成总体积与高均保持不变 ,但
正 ( 主) 视 图 侧 ( 左) 视 图
底 面半径相同的新 的圆锥 与圆柱各一个 ,则新 的底面 半径为