初三圆经典练习题
初三数学圆测试题及答案
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。
如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。
2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。
3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。
初三数学圆精选练习题及答案
初三数学圆精选练习题及答案1.正确答案为C。
圆的切线垂直于圆的半径。
2.正确答案为A。
AB>2CD。
3.图中能用字母表示的直角共有4个。
4.正确答案为B。
CD-AB=4cm,根据勾股定理可得AB与CD的距离为14cm。
5.正确答案为120°。
圆周角等于弧所对圆心角的两倍,2×60°=120°。
6.正确答案为130°。
圆周角等于圆心角的两倍,2×100°=200°,而∠ACB为圆周角减去弧所对圆心角,200°-70°=130°。
7.正确答案为B。
根据正弦定理可得S AOB=(1/2)×20×20×sin120°=503cm2.8.正确答案为D。
由于OA=AB,所以∠OAB=∠OBA=30°,而∠BCO=90°-∠OAB=60°,所以∠BOC=2∠BCO=120°。
又因为∠XXX∠OCA=30°,所以∠AOC=120°,所以∠BOD=60°-∠OAB=30°,∠XXX∠OED=∠XXX°。
9.正确答案为A。
根据勾股定理可得d=20√3,所以R2=(d/2)2+202=400,r2=(d/2)2+102=100,所以R=20,r=10,两圆内切。
10.正确答案为225°。
圆锥的侧面展开图为一个扇形,圆心角为360°-2arctan(5/3),约为225°。
11.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为 $120^\circ$。
12.在圆 $\odot O$ 中,若直径 $AB=10$ cm,弦$CD=6$ cm,则圆心 $O$ 到弦 $CD$ 的距离为 $2\sqrt{19}$ cm。
13.在圆 $\odot O$ 中,弦 $AB$ 所对的圆周角等于其所在圆周的一半。
初三数学圆精选练习题及答案
圆精选练习题及答案一一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24 分):1. 下列说法正确的是()A.垂直于半径的直线是圆的切线B. 经过三点一定可以作圆C.圆的切线垂直于圆的半径D. 每个三角形都有一个内切圆2. 在同圆或等圆中,如果AB = 2CD ,则AB与CD的关系是()(A)AB > 2CD (B)AB = 2CD (C)AB V 2CD (D)AB = CD3. 如图(1),已知PA切O O于B,OP交AB于C,则图中能用字母表示的直角共有()个A.3B.4C.5D.6⑵4. 已知O O的半径为10cm,弦AB// CD,AB=12cm,CD=16cr则AB和CD的距离为()A.2cmB.14cmC.2cm 或14cmD.10cm 或20cm5. 在半径为6cm的圆中,长为2 - cm的弧所对的圆周角的度数为()A.30 °B.100C.120°D.130 °6. 如图(2),已知圆心角/ AOB勺度数为100° ,则圆周角/ ACB的度数是()A.80 °B.100 °C.120°D.130 °7. O O的半径是20cm,圆心角/ AOB=120 ,AB是O O弦,则S. AOB等于()A.25 .3 cmB.50 、3 cnfC.100 \ 3 cn iD.200 、3 cnf8. 如图(3),半径0A 等于弦AB,过B 作O 0的切线BC,取BC=AB,O 交O 0于E,AC 交O 0于点D,则BD 和DE 的度数分别为()、填空题:(每小题4分,共20分):11. 一条弦把圆分成1 :3两部分,贝U 劣弧所对的圆心角的度数为 12. 如果O O 的直径为10cm,弦AB=6cm 那么圆心O 到弦AB 的距离为 13. 在O O 中,弦AB 所对的圆周角之间的关系为 14. 如图(4), 。
数学初三圆的试题及答案
数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
关于圆的练习题初三含答案
关于圆的练习题初三含答案一、选择题1. 下列说法中,关于圆的说法正确的是:A. 圆是由无数直线组成的B. 圆是所有点到一个固定点的距离相等的图形C. 圆是一个半径为1的正方形D. 圆是与坐标轴平行的图形答案:B2. 在平面上,如果一个圆的圆心到圆上的任意一点的距离等于半径的长度,那么这个点一定在圆的:A. 外部B. 内部C. 边界D. 中心答案:C3. 若O为圆心,半径为r的圆,P为圆上一点,且角POQ的度数为60°,则弧PQ的弧度数是:A. π/3B. π/4C. π/6D. π/2答案:C二、填空题1. 已知圆O的半径为5cm,点A在圆上,则弧OA的长为_________cm。
答案:5π cm2. 已知圆O的半径为7cm,则圆O的直径为_________cm。
答案:14 cm3. 半径为6cm的圆的面积为_________cm²。
答案:36π cm²三、解答题1. 已知圆O的直径AB的长度为16cm,求圆O的周长和面积。
解析:圆的周长是圆的一部分,即2πr,其中r为半径。
圆的面积是整个圆的面积,即πr²。
半径r = 直径AB的长度 / 2 = 16cm / 2 = 8cm周长= 2πr = 2π * 8cm ≈ 50.27cm面积= πr² = π * 8cm * 8cm ≈ 201.06cm²所以,圆O的周长约为50.27cm,面积约为201.06cm²。
2. 如图,O为一个半径为6cm的圆的圆心,点A、B、C分别是圆上的三个点,弧AB的弧度数为1.5π弧度,弧BC的弧度数为0.5π弧度。
求线段AC的长度。
解析:由于弧AB的弧度数为1.5π,弧BC的弧度数为0.5π,所以弧AC的弧度数为1.5π + 0.5π = 2π弧度,即一圈。
对于一圈的弧度,弧长等于圆的周长。
圆的周长= 2πr = 2π * 6cm ≈ 37.69cm所以,线段AC的长度约为37.69cm。
初三数学圆基础练习题及答案
初三数学圆基础练习题及答案练习题一:直径和半径的关系1. 若一个圆的半径为5cm,求其直径的长度是多少?答案:直径的长度是2倍的半径长度,因此直径的长度为10cm。
2. 若一个圆的直径为12cm,求其半径的长度是多少?答案:半径的长度是直径长度的一半,因此半径的长度为6cm。
练习题二:圆的周长和面积计算3. 已知一个圆的半径为3cm,求其周长和面积。
答案:圆的周长公式为C = 2πr,其中r为半径。
将半径代入公式,可得C = 2π × 3 = 6π ≈ 18.85cm。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 3² = 9π ≈ 28.27cm²。
4. 已知一个圆的周长为10π cm,求其半径和面积。
答案:圆的周长公式为C = 2πr,已知周长为10π,因此10π = 2πr,可得r = 5。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 5² = 25π ≈ 78.54cm²。
练习题三:相交圆的交点个数5. 如果两个圆相交于两个点,这两个圆的关系是什么?答案:两个相交的圆是相交圆。
6. 如果两个圆相交于一个点,这两个圆的关系是什么?答案:两个相交于一个点的圆是切圆。
7. 如果两个圆不相交,也不包含对方,这两个圆的关系是什么?答案:两个不相交也不包含对方的圆是相离圆。
练习题四:判断圆心在坐标系中的位置8. 圆心坐标为(2, 3),半径为4的圆在坐标系中处于哪个位置?答案:根据圆心坐标和半径,我们可以在坐标系中画出这个圆。
圆心(2, 3)代表圆心在横坐标2,纵坐标3处,半径为4表示从圆心向外延伸4个单位的长度。
因此该圆处于横坐标为2,纵坐标为3的位置,并以该点为中心向外扩展4个单位的长度。
练习题五:圆的切线和切点9. 若一条直线与圆相切,这条直线与圆的关系是什么?答案:一条与圆相切的直线称为圆的切线。
初三中考圆的试题及答案
初三中考圆的试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为5,圆心为坐标原点,则圆的方程为()A. (x-0)^2 + (y-0)^2 = 25B. (x-5)^2 + (y-5)^2 = 25C. (x+5)^2 + (y+5)^2 = 25D. (x-5)^2 + (y+5)^2 = 25答案:A2. 圆与直线相切的条件是()A. 圆心到直线的距离等于半径B. 圆心到直线的距离小于半径C. 圆心到直线的距离大于半径D. 圆心到直线的距离等于直径答案:A3. 已知圆的半径为3,圆心坐标为(-2, 3),求圆上的点(1, 4)与圆心的距离为()A. 2B. 3C. 4D. 5答案:D4. 圆的直径是()A. 圆上任意两点间最长的线段B. 圆上任意两点间最短的线段C. 圆上任意两点间距离的两倍D. 圆上任意两点间距离的一半答案:A5. 圆的周长公式为()A. C = 2πrB. C = πrC. C = 4πrD. C = πr^2答案:A6. 圆的面积公式为()A. S = πr^2B. S = 2πrC. S = πrD. S = 4πr^2答案:A7. 圆内接四边形的对角线()A. 相等B. 不相等C. 垂直D. 平行答案:A8. 圆的切线与半径的关系是()A. 切线与半径垂直B. 切线与半径平行C. 切线与半径相交D. 切线与半径重合答案:A9. 圆的内切圆与外切圆的半径之和等于()A. 圆的直径B. 圆的半径C. 圆的周长D. 圆的面积答案:A10. 圆的内接三角形的面积公式为()A. S = 1/2 * a * b * sin(C)B. S = 1/2 * a * b * cos(C)C. S = 1/2 * r * (a + b + c)D. S = 1/2 * r * (a - b + c)答案:C二、填空题(每题3分,共30分)1. 圆的方程为(x-2)^2 + (y+3)^2 = 16,则圆心坐标为______。
九年级数学圆的经典题
九年级上册圆经典题同步练习A 组1.如图所示,MN 为⊙O 的弦,∠N =50°,则∠MON 的度数为()A .40°B .50°C .80°D .100°2.已知⊙O 的半径是5,点A 到圆心O 的距离是7,则点A 与⊙O 的位置关系是()A .点A 在⊙O 上B .点A 在⊙O 内C .点A 在⊙O 外D .点A 与圆心O 重合3.如图所示,圆中弦的条数是()A .2B .3C .4D .54.如图,AC 为⊙O 的直径,点B 在⊙O 上,下列说法错误的是()A.弦BC 所对的弧有两条B.图中共有四条弦C.图中共有两条劣弧D.图中共有两条优化5.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD 于点E ,则图中共有劣弧______条,写出其中的一条优弧,如_____________.6.如图,矩形ABCD 的边AB=4cm ,AD=5cm.以A 为圆心,4cm 为半径作⊙A ,试判断点B ,C ,D 与⊙A 的位置关系.7.如图,在Rt △ABC 中,∠C=90°,BC=6,AC=8,以点B 为圆心,6为半径作⊙B.(1)AB 与AC 的中点D ,E 与⊙B 有怎样的位置关系?(2)若要让点A 和点C 有且只有一个点在⊙B 内,则⊙B 的半径应满足什么条件?N OM第1题A OC第3题BDE C OB第4题A B第5题AB CDCBAEDB 组8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是()A .当a <5时,点B 在⊙A 内B .当1<a <5时,点B 在⊙A 内C .当a <1时,点B 在⊙A 外D .当a >5时,点B 在⊙A 外9.已知⊙O 外有一点P ,⊙O 上有一点Q ,线段PQ 长的最小值为4cm ,最大值为9cm ,则⊙O 的半径为___________.C 组10.如图所示,AB 是⊙O 的直径,CD 是⊙O 的一条弦,延长DC 与BA 的延长线相交于点P ,且PC =OB ,∠BOD =99°,求∠P 的度数.BOPDCA3.1圆(2)A 组1.能确定一个圆的是()A .已知圆心B .已知半径C .过三个已知点D .过三角形的三个顶点2.三角形的外心具有的性质是()A .到三边的距离相等B .到三个顶点的距离相等C .外心在三角形外D .外心在三角形内3.如图所示,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是()A .点PB .点QC .点RD .点M4.用直尺和圆规作出如图三角形的外接圆(只需要作出图形,并保留作图痕迹,不必谢作图过程)5.如图,已知线段AB.(1)经过A ,B 两点可做_______个圆,这些圆的圆心都在_______________.(2)作经过A ,B 两点的所有圆中最小的圆.6.已知A ,B ,C 三点.(1)当AB =1cm,BC =2cm ,AC =3cm 时,A ,B ,C 三点_________(填“能”或“不能”)确定一个圆,理由是_______________________________.(2)当AB =6cm,BC =8cm ,AC =10cm 时A ,B ,C 三点_________(填“能”或“不能”)确定一个圆,理由是_______________________________.第3题A BCBACBA7.在Rt △ABC 中,AB =6,BC =8,那么这个三角形的外接圆直径是_____________.B 组8.已知一个等边三角形的边长为6,则这个三角形的外接圆的半径长为()A .2B.3C .3D .239.如图所示,小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC 中,AB =8m ,AC =6m ,∠BAC =90°,试求小明家圆形花坛的面积.C 组10.如图所示,在平面直角坐标系xOy 中,点A ,B ,P 的坐标分别为(1,0),(2,5),(4,2).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 点是△ABC 的外心,求点C 的坐标.BAC3.2图形的旋转A 组1.下列现象中属于旋转的是()A .电梯的升降运动B .飞机起飞后冲向空中的过程C .汽车方向盘的转动D .笔直的铁轨上飞驰而过的火车2.如图所示,△ABC 按顺时针方向旋转一个角度后得△A′B ′C′,图中的旋转中心是()A .A 点B .B 点C .C 点D .B ′点3.风力发电机可以在风力作用下发电.如图所示的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是()A .45B .60C .90D .1204.如图所示,直角三角形ABC 绕直角顶点C 顺时针方向旋转90°后到达△A 1B 1C ,延长AB 交A 1B 1于点D ,则∠ADA 1的度数是()A .30°B .60°C .75°D .90°5.如图所示,△ABC 为等边三角形,D 是△ABC 内一点,若△ABD 经过逆时针旋转后到△ACP 位置,若点B ,D ,P 三点在同一直线上,则∠DPC =__________.6.如图,已知△ABC 和点O ,将△ABC 绕O 点旋转,点A 的对应点为A’,画出△ABC 经旋转后所得到的图形.A (A ’)BB ’C B第2题图第3题图BAC B 1A 1D 第4题图ABCD P 第5题图ACBO7.如图所示,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图(1)中,画出一个与△ABC 成中心对称的格点三角形;(2)在图(2)中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.B 组8.在平面直角坐标系中,点A 的坐标为(-1,-2),将OA 绕原点O 逆时针旋转90°得到OA ′,点A′的坐标为(a ,b ),则a +b 等于()A.1B.-1C .3D .-39.如图所示,已知AC ⊥BC ,垂足为点C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°得到线段AD ,连结DC ,DB.(1)线段DC =__________;(2)求线段DB 的长度.C 组10.如图所示,在△ABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连结BE.(1)求证:△ACD ≌△BCE ;(2)当AD =BF 时,求∠BEF的度数.ABCDE FC ABD3.3垂径定理(1)A 组1.圆的对称轴有()A .1条B .2条C .4条D .无数条2.下列命题中,正确的是()A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心3.如图,在圆O 中,AB 是弦,OC ⊥AB ,垂足为C ,若AB =8,OC =3,则圆O 的半径OA 等于()A.8B.6C.5D.44.如图,在圆O 中,AB 是弦,OC ⊥AB ,若AO =10,AB =16,则AB 的弦心距等于()A.4B.8C.6D.105.已知在圆O 的半径为13cm ,一条弦心距为5cm ,则这条弦长为____________cm.6.如图所示,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC =6cm ,则∠ACB=_______°,OD =________cm.7.如图,AB 是圆O 的弦,半径OC ⊥AB 与点D ,(1)若半径为5,CD =2,求弦AB 的长(2)若CD =4,AB =16,求其半径长.AOC B第3题AO C B第4题AOCB 第6题D AO D B第7题CB 组8.如图,在⊙O 中,弦AB 垂直平分半径OC.(1)则∠C=___________°(2)若⊙O 的半径为r ,则弦AB=________(用含r 的代数式表示)9.已知:如图,在⊙O 中,弦AB ∥CD ,求证:弧AB=弧BDC 组10.图所示,在半径为5的扇形OAB 中,∠AOB =90°,C 是AB ︵上的一个动点(不与点A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为点D ,E.(1)当BC =6时,求线段OD 的长;(2)求DE 的长;(3)在△ODE 中,是否存在度数不变的角?若存在,请直接指出是何角,并写出它的度数.AO D B第8题C CBODEA A OD BC3.3垂径定理(2)A 组1.如图所示,AB ,AC 是⊙O 的两条弦,AD 是⊙O 的一条直径,BC 与AD 相交于点E ,BD ︵=CD ︵,下列结论中不一定正确的是()A.AB ︵=AC︵B .BE =CEC .BC ⊥ADD .AB =BC2.下列说法错误的是()A.平分弧的直径垂直平分弧所对的弦B.平分弦的直径平分弦所对的的弧C.垂直平分弦的直线必定经过圆心D.垂直于弦的直径平分这条弦。
初三数学圆练习题及答案
初三数学圆练习题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。
A. 相交B. 相切C. 相离D. 包含2. 圆的方程为 \( (x-3)^2 + (y-4)^2 = 25 \),点P(1, 5)在圆上,求过点P的圆的切线斜率。
A. 0B. 1C. -1D. 不存在3. 已知点A(2, 3)和点B(-1, -2),求以线段AB为直径的圆的方程。
A. \( (x-0.5)^2 + (y-0.5)^2 = 13.5 \)B. \( (x-0.5)^2 + (y-0.5)^2 = 5 \)C. \( (x-0.5)^2 + (y-0.5)^2 = 10 \)D. \( (x-0.5)^2 + (y-0.5)^2 = 18 \)二、填空题4. 已知圆心O(0, 0),半径r=4,点P(4, 3),求点P到圆心O的距离OP。
\( OP = \) ______5. 若圆x²+y²=r²内有一点P(1, 1),求过点P的最短弦所在直线的方程。
\( 直线方程 = \) ______6. 已知圆的方程为 \( x^2 + y^2 - 6x - 8y + 16 = 0 \),求圆心坐标和半径。
圆心坐标为( , ),半径为______。
三、解答题7. 已知圆C的方程为 \( (x-2)^2 + (y-3)^2 = 9 \),求圆C的圆心坐标和半径。
8. 在平面直角坐标系中,圆x²+y²=9与直线y=2x+3相交于A、B两点,求AB的长度。
9. 已知圆心在直线x-y+c=0上,且经过点P(2, 3),求圆的方程。
四、证明题10. 已知圆O的半径为5,点P在圆上,PA、PB是圆的两条切线,PA 和PB的长度相等,证明PA垂直于PB。
答案:1. A2. C3. B4. \( OP = 5 \)5. \( 直线方程 = x + y - 6 = 0 \)6. 圆心坐标为(3, 4),半径为 \( \sqrt{5} \)7. 圆C的圆心坐标为(2, 3),半径为3。
初三圆测试题及答案
初三圆测试题及答案一、选择题(每题3分,共30分)1. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πr²D. C = 2πd2. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πd²D. S = πd3. 圆的直径是半径的()A. 2倍B. 4倍C. 1/2倍D. 1/4倍4. 圆的半径增加一倍,面积增加()A. 2倍B. 4倍C. 8倍D. 16倍5. 圆的半径增加一倍,周长增加()A. 2倍B. 4倍C. 8倍D. 16倍6. 圆的半径为3cm,圆的直径是()A. 6cmB. 9cmC. 12cmD. 15cm7. 圆的半径为4cm,圆的周长是()A. 8πcmB. 12πcmC. 16πcmD. 20πcm8. 圆的半径为5cm,圆的面积是()A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²9. 一个圆的直径是另一个圆的直径的2倍,那么面积是()A. 2倍B. 4倍C. 8倍D. 16倍10. 圆的半径为2cm,圆的周长是()A. 4πcmB. 8πcmC. 12πcmD. 16πcm二、填空题(每题3分,共30分)1. 圆的周长公式是C = ________。
2. 圆的面积公式是S = ________。
3. 圆的直径是半径的______倍。
4. 圆的半径增加一倍,面积增加______倍。
5. 圆的半径增加一倍,周长增加______倍。
6. 圆的半径为3cm,圆的直径是_______cm。
7. 圆的半径为4cm,圆的周长是______πcm。
8. 圆的半径为5cm,圆的面积是______πcm²。
9. 一个圆的直径是另一个圆的直径的2倍,那么面积是______倍。
10. 圆的半径为2cm,圆的周长是______πcm。
三、解答题(每题10分,共40分)1. 已知一个圆的半径为6cm,求该圆的周长和面积。
初三圆练习题和答案
初三圆练习题和答案在初三数学学习中,圆是一个非常重要的几何概念。
为了帮助同学们更好地掌握圆的相关知识,本文将提供一些初三圆练习题和答案。
一、选择题1. 已知圆的半径为4cm,求其直径是多少?A. 2cmB. 4cmC. 8cmD. 16cm答案:C. 8cm2. 如果一张圆形饼干的半径为6cm,那么它的周长是多少?A. 6cmB. 12cmC. 18cmD. 36cm答案:C. 18cm3. 已知圆的半径为2.5cm,求其面积是多少?A. 3.14 cm²B. 7.85 cm²C. 15.7 cm²D. 19.63 cm²答案:B. 7.85 cm²4. 若扇形的圆心角为60°,圆的半径为5cm,求扇形的面积是多少?A. 3.14 cm²B. 6.28 cm²C. 7.85 cm²D. 15.7 cm²答案:B. 6.28 cm²5. 已知圆的半径为3cm,求圆心角为120°的弧长是多少?A. 1.57 cmB. 3.14 cmC. 9.42 cmD. 18.85 cm答案:D. 18.85 cm二、填空题1. 已知圆的半径为8cm,求其周长是______cm。
答案:16π cm2. 若圆的周长为18π cm,求其半径的长是______cm。
答案:9 cm3. 已知圆心角为90°,圆的半径为6cm,求扇形的面积是______cm²。
答案:π·3² cm²4. 若扇形的半径为10cm,扇形面积为50π cm²,求圆心角的度数是______°。
答案:72°5. 若弧长为12π cm,圆心角的度数是______°。
答案:180°三、解答题1. 一个圆的直径为10cm,求其周长和面积。
解答:已知直径 d = 10cm则半径 r = 10 ÷ 2 = 5cm周长= 2πr = 2π × 5 = 10π cm面积= πr² = π × 5² = 25π cm²2. 计算一个圆心角为45°的扇形的面积,已知圆的半径为8cm。
(完整版)初三圆的经典练习题
圆的概念和性质例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC,求∠A 的度数。
例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm. 例4 在半径为5cm 的圆中,弦AB ∥CD,AB=6cm,CD=8cm,则AB 和CD 的距离是多少?例6。
已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.【考点速练】1。
下列命题中,正确的是( ) A .三点确定一个圆B .任何一个三角形有且仅有一个外接圆C .任何一个四边形都有一个外接圆D .等腰三角形的外心一定在它的外部 2.如果一个三角形的外心在它的一边上,那么这个三角形一定是( ) A .等腰三角形B .直角三角形C .等边三角形D .钝角三角形3.圆的内接三角形的个数为( ) A .1个 B .2 C .3个 D .无数个 4.三角形的外接圆的个数为( ) A .1个 B .2 C .3个 D .无数个 5.下列说法中,正确的个数为( )①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆.A .1个B .2个C .3个D .4个 6。
与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界); B 。
圆的内部(不包括边界); C.圆; D 。
圆的内部(包括边界) 7.已知⊙O 的半径为6cm ,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长( ) A 。
等于6cm B 。
等于12cm ; C 。
小于6cm D.大于12cm8。
如图,⊙O 的直径为10cm ,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A 。
2个 B 。
3个 C 。
4个 D.5个 9.如图,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A 。
初三数学圆基础经典练习题
初三数学圆基础经典练习题一、选择题1. 在平面直角坐标系内,点A(-2, 3)和点B(4, -1)分别是圆心在x轴上和y轴上的两个圆的直径的端点,则这两个圆的半径之和为:A. 4B. 2C. 6D. 82. 已知圆O的半径为r,点A在圆上的弧AO的长度为3π,则弧AO所对的圆心角的度数为:A. 45°B. 60°C. 90°D. 120°3. 圆心角为20°的圆弧所对的弦长是7cm,则该圆的半径为:A. 1.5 cmB. 3.5 cmC. 7 cmD. 14 cm二、填空题4. 设点A(3, -4)和点B(-5, 2)是在平面直角坐标系内的两点,若O为圆心在AB中点的圆的圆心,则圆的半径为____________。
5. 已知圆O的半径为6,点A在圆上的弧AO的度数是60°,则圆心角所对的弦长为____________。
三、解答题6. 在平面上有一个半径为12的圆,点A、B、C在圆上,且弧AB 是弧AC的1/3。
若弧AB的长度为x,则弧AC的长度为多少?注:此题的具体位置可以自行添加。
7. 图中O为半径为r的圆的圆心,圆上有一点A,过A点作圆的切线BC,BC与圆的半径OA交于点D且OD=6。
求r的值。
注:此题的图形可以自行绘制。
四、应用题8. 图中的ABCD为一个矩形,圆O与矩形的BC边和CD边分别相切于点E和F。
若矩形的长为8,宽为6,求圆的半径。
注:此题的图形可以自行绘制。
五、综合题9. 有一个圆O,圆心为O,半径为r。
过点O作圆的切线AC和圆弧AC交于点A和点C。
若AO的长度为x,圆弧AC的弧度为α,则弧度α与弧AC所对的圆心角的角度关系为?注:此题可以用文字描述,无需具体的图形辅助。
以上为初三数学圆基础经典练习题,希望能够帮助你巩固圆的基本概念和应用。
参考答案请参照实际解答情况或向老师求证。
祝你学习成功!。
初三圆的练习题加答案
初三圆的练习题加答案1. 已知一个圆的半径为5cm,求该圆的直径、周长和面积。
答案:直径 = 2 ×半径 = 2 × 5cm = 10cm周长= 2 × π × 半径= 2 × 3.14 × 5cm ≈ 31.4cm面积= π × 半径² = 3.14 × 5cm² ≈ 78.5cm²2. 已知一个圆的直径为8cm,求该圆的半径、周长和面积。
答案:半径 = 直径 / 2 = 8cm / 2 = 4cm周长= 2 × π × 半径= 2 × 3.14 × 4cm ≈ 25.12cm面积= π × 半径² = 3.14 × 4cm² ≈ 50.24cm²3. 已知一个圆的周长为12πcm,求该圆的半径、直径和面积。
答案:周长= 2 × π × 半径= 12πcm则半径 = (周长/ (2 × π)) = (12πcm / (2 × π)) = 6cm直径 = 2 ×半径 = 2 × 6cm = 12cm面积= π × 半径² = 3.14 × 6cm² ≈ 113.04cm²4. 已知一个圆的面积为36πcm²,求该圆的半径、直径和周长。
答案:面积= π × 半径² = 36πcm²则半径² = 面积/ π = 36cm² / π ≈ 11.46cm²则半径≈ √(11.46cm²) ≈ 3.39cm(保留两位小数)直径 = 2 ×半径= 2 × 3.39cm ≈ 6.78cm(保留两位小数)周长= 2 × π × 半径= 2 × 3.14 × 3.39cm ≈ 21.29cm(保留两位小数)5. 如果一个圆的周长和半径的比例为4:1,求这个圆的半径、直径和面积。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。
答案:10π cm2. 圆的直径是半径的______倍。
答案:23. 半径为4cm的圆的面积是______。
答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。
答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。
答案:平行四边形6. 圆的切线与半径垂直相交于______。
答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。
答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。
初三圆的经典题型练习题
初三圆的经典题型练习题题一:已知半径为8 cm 的圆的周长是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
代入已知数据可得C=2×3.14×8=50.24 cm。
题二:已知半径为10 cm 的圆的面积是多少?解析:圆的面积公式为A=πr²,其中π约等于3.14,r为半径。
代入已知数据可得A=3.14×(10²)=314 cm²。
题三:已知半径为6 cm 的圆的直径是多少?解析:圆的直径是半径的两倍,即直径=2r。
代入已知数据可得直径=2×6=12 cm。
题四:已知圆的周长为18.84 cm,求其半径和直径分别是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
由已知周长可得18.84=2×3.14×r,解得r≈3 cm。
圆的直径是半径的两倍,即直径=2r,所以直径≈6 cm。
题五:已知圆的面积为254.34 cm²,求其半径和直径分别是多少?解析:圆的面积公式为A=πr²,其中π约等于3.14,r为半径。
由已知面积可得254.34=3.14×r²,解得r≈9 cm。
圆的直径是半径的两倍,即直径=2r,所以直径≈18 cm。
题六:已知圆的直径为14 cm,求其周长和面积分别是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
由已知直径可得半径=r/2=14/2=7 cm。
代入公式可得C=2×3.14×7≈43.96 cm。
圆的面积公式为A=πr²,代入半径可得A=3.14×(7²)≈153.86 cm²。
题七:已知圆的半径为5 cm,求其周长和面积分别是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
代入已知数据可得C=2×3.14×5≈31.4 cm。
(必考题)初中九年级数学上册第二十四章《圆》经典习题(含答案解析)
一、选择题1.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等 2.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .2453.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 4.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 5.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .1 6.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A.12B.16C.13D.147.如图,正六边形ABCDEF内接于O,过点O作OM 弦BC于点M,若O的半径为4,则弦心距OM的长为()A.23B.3C.2 D.228.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.1029.下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.三角形的外心在三角形的外面D.与某圆一条半径垂直的直线是该圆的切线10.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A .22+1B .22+2C .42+1D .42-2 11.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .3312.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .2213.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π14.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE= D .BC=2CE 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.18.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)19.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.20.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一⊥于N,点Q是MN的中点,当点P沿着圆周点,过点P作PM AB⊥于M,PN CD从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.OA=,AB是O的切线,点B是切点,弦21.如图,A是半径为1的O外一点,2BC OA,连接AC,则图中阴影部分的面积为________.//22.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为____.23.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.24.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,若以C为圆心,r为半径所作的圆与斜边AB相切,则r的值是________25.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.26.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题27.如图,在⊙O 中,C 是AB 的中点,∠ACB=∠AOB .求证:四边形OACB 是菱形.28.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)29.如图,AB为⊙O的直径,C,D是⊙O上的点,P是⊙O外一点,AC⊥PD于点E,AD 平分∠BAC.(1)求证:PD是⊙O的切线;(2)若DE=3,,∠BAC=60°,求⊙O的半径.30.如图,ABC内接于O,60BAC∠=︒,点D是BC的中点.BC,AB边上的高AE,CF相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,直径为d,则d与r的关系是()A. d=2rB. d=rC. d=r/2D. d=r^22. 圆的周长公式是()A. C=πdB. C=2πrC. C=πr^2D. C=2r3. 已知圆的半径为5cm,那么这个圆的面积是多少平方厘米?()A. 25πB. 50πC. 75πD. 100π4. 圆心到圆上任意一点的距离叫做()A. 半径B. 直径C. 周长D. 面积5. 圆的面积公式是()B. A=πr^2C. A=2πrD. A=r^26. 一个圆的直径增加一倍,那么它的面积增加()A. 一倍B. 两倍C. 四倍D. 八倍7. 圆的半径扩大到原来的2倍,周长扩大到原来的()A. 2倍B. 3倍C. 4倍D. 5倍8. 圆的周长和它的直径的比值叫做()A. 半径B. 直径C. 周长D. 圆周率9. 已知一个圆的周长是12.56cm,那么这个圆的半径是多少厘米?()A. 2B. 3C. 4D. 510. 圆的直径是半径的()B. 1/2倍C. 1/4倍D. 4倍二、填空题(每题2分,共20分)1. 圆的周长公式为C=2πr,其中π是一个常数,约等于______。
2. 圆的面积公式为A=πr^2,其中r表示圆的______。
3. 一个圆的半径为4cm,那么它的直径是_______cm。
4. 一个圆的直径为10cm,那么它的半径是_______cm。
5. 圆的周长和它的直径的比值是一个固定的数,这个数叫做______。
6. 如果一个圆的半径扩大到原来的3倍,那么它的面积扩大到原来的______倍。
7. 一个圆的周长是6.28cm,那么它的半径是_______cm。
8. 圆的直径是半径的______倍。
9. 圆的周长是它直径的______倍。
10. 一个圆的半径为6cm,那么它的面积是______平方厘米。
三、解答题(每题10分,共50分)1. 已知一个圆的半径为8cm,求这个圆的周长和面积。
初三圆的经典练习题
初三圆的经典练习题1. 已知一个圆的半径为4cm,求其直径和周长。
解答:已知半径r=4cm,直径d等于半径的两倍,所以d=2r=2×4cm=8cm。
周长C等于圆的边界长度,可以用公式C=2πr计算,其中π取近似值3.14,所以C=2×3.14×4cm≈25.12cm。
2. 一个圆的周长为18π cm,求其半径和直径。
解答:已知周长C=18π cm,可以用公式C=2πr计算。
将已知值代入公式得到18π=2πr,两边同时除以2π得到r=9cm。
半径r等于9cm,直径d等于半径的两倍,所以d=2r=2×9cm=18cm。
3. 已知一个圆的直径为20cm,求其半径和周长。
解答:已知直径d=20cm,半径r等于直径的一半,所以r=d/2=20cm/2=10cm。
周长C等于圆的边界长度,可以用公式C=2πr计算。
将已知值代入公式得到C=2×3.14×10cm≈62.8cm。
4. 已知一个圆的周长为30cm,求其半径和直径。
解答:已知周长C=30cm,可以用公式C=2πr计算。
将已知值代入公式得到30=2πr,两边同时除以2π得到r=15/π cm。
半径r约等于4.77cm,直径d等于半径的两倍,所以d=2r≈2×4.77cm≈9.54cm。
5. 已知圆A的半径为r cm,圆B的半径为2r cm,圆C的半径为3r cm,三个圆的周长之和为132π cm,求r的值。
解答:已知圆A的半径为r cm,圆B的半径为2r cm,圆C的半径为3r cm。
圆A的周长为2πr cm,圆B的周长为2π(2r) cm,圆C的周长为2π(3r) cm。
根据已知条件,可得到方程2πr + 2π(2r) + 2π(3r) = 132π,将π约去得到2r + 4r + 6r = 132。
整理方程得到12r = 132,两边同时除以12得到r = 11。
所以,r的值为11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的概念和性质例2.已知,如图,CD是直径,︒=∠84EOD,AE交⊙O于B,且AB=OC,求∠A的度数。
例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm。
例4 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为3,2【考点速练】1.下列命题中,正确的是()A.三点确定一个圆B.任何一个三角形有且仅有一个外接圆C.任何一个四边形都有一个外接圆 D.等腰三角形的外心一定在它的外部2.如果一个三角形的外心在它的一边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形3.圆的内接三角形的个数为()A.1个B.2 C.3个D.无数个4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个5.下列说法中,正确的个数为()①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆.A.1个 B.2个 C.3个 D.4个6.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆;D.圆的内部(包括边界)7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cmD.大于12cm8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个9.如图,A是半径为5的⊙O内一点,且OA=3,过点A且长小于8的弦有( )A.0条B.1条C.2条D.4条11.如图,已知在ABC∆中,︒=∠90A,A为圆心,AC长为半径画弧交CB的延长线于点D,求CD的长.12、如图,有一圆弧开桥拱,拱的跨度AB=13、△ABC中,AB=AC=10,BC=1214、如图,点P是半径为5的⊙O内一点,且OP=3,在过点P条数为__。
1、在半径为2的圆中,弦长等于的弦的弦心距为 ____BPAO2. △ABC 的三个顶点在⊙O 上,且AB=AC=2,∠BAC=120o,则⊙O 的半径= __, BC= ___.3. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为_________;•最长弦长为_______.4. 如图,A,B,C 三点在⊙O 上,且AB 是⊙O 的直径,半径OD ⊥AC,垂足为F,若∠则OA=______ , AC=______ , BC= _________ .5.如图5,为直径是52cm 圆柱形油槽,装入油后,油深CD 为16cm,那么油面宽度6.如图6, ⊙O 中弦AB ⊥AC,D,E 分别是AB,AC 的中点.⑴若AB=AC,则四边形OEAD 是 形;⑵若OD=3,半径5=r ,则AB= _cm, AC= ___ _ cm7.如图7,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=8cm ,EB=4cm ,∠CEA=30°,则CD 的长为_________.(5) (6) (7)垂经定理及其推论例1 如图AB 、CD 是⊙O 的弦,M 、N 分别是AB 、CD 的中点,且CNM AMN ∠=∠. 求证:AB=CD . 例2已知,不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F 。
求证:CE=DF .例4 如图,在⊙O 内,弦CD 与直径AB 交成045角,若弦CD 交直径AB 于点P ,且⊙O 半径为1,试问:22PD PC + 是否为定值?若是,求出定值;若不是,请说明理由.【考点速练】 1.已知⊙O 的半径为2cm ,弦AB 长cm 32,则这条弦的中点到弦所对劣孤的中点的距离为( ).A .1cm B.2cm C.cm 2 D.cm 3cm3.如图1,⊙O 的半径为6cm ,AB 、CD 为两弦,且AB ⊥CD ,垂足为点E ,若CE=3cm ,DE=7cm ,则AB 的长为( )A .10cm B.8cm C.cm 24 D.cm 284.有下列判断:①直径是圆的对称轴;②圆的对称轴是一条直径;③直径平分弦与弦所对的孤;④圆的对称轴有无数条.其中正确的判断有( )A .0个 B.1个 C.2个 D.3个5.如图2,同心圆中,大圆的弦交AB 于C 、D 若AB=4,CD=2,圆心O 到AB 的距离等于1,那么两个同心圆的半径之比为( )A .3:2 B.5:2 C.5:2 D.5:4B AB DC O · N MA BC D P O 。
1.已知⊙O 的直径AB=10cm ,弦CD ⊥AB ,垂足为M 。
且OM=3cm ,则CD= .2.D 是半径为5cm 的⊙O 内的一点,且D0=3cm ,则过点D 的所有弦中,最小的弦AB= cm.3.若圆的半径为2cm ,圆中一条弦长为32cm ,则此弦所对应弓形的弓高是 .4.已知⊙O 的弦AB=2cm,圆心到AB 的距离为n,则⊙O 的半径R= ,⊙O 的周长为 . ⊙O 的面积为 .5.在⊙O 中,弦AB=10cm ,C 为劣孤AB 的中点,OC 交AB 于D ,CD=1cm ,则⊙O 的半径是 .6.⊙O 中,AB 、CD 是弦,且AB ∥CD ,且AB=8cm ,CD=6cm ,⊙O 的半径为5cm ,连接AD 、BC ,则梯形ABCD 的面积等于 .7.如图,⊙O 的半径为4cm ,弦AB 、CD 交于E 点,,OF ⊥CD 于F ,OF=2cm ,则∠BED= . 8.已知⊙O 的半径为10cm ,弦MN ∥EF ,且MN=12cm ,EF=16cm ,则弦MN 和EF 之间的距离为 . 圆周角与圆心角例2:如图,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____. 例3:如图,圆心角∠AOB=100例4:如图1,AB 是⊙O 的直径,点D E =∠∠,则A B +=∠∠ o .例5:如图2,⊙O 的直径CD过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .例6:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.例7:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为 cm .· A EF B CD O O A B C (例1)D例2例8 已知:如图所示,ABC ∆是⊙O 的内接三角形,⊙O 的直径BD 交AC 于E ,AF ⊥BD 于F ,延长AF 交BC 于G .求证:BC BG AB ⋅=2考点练习 1.如图,已知ACB ∠是⊙O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒ B. 50︒ C. 80︒ D. 100︒ 2.已知:如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C 的任意一点,则∠BPC的度数是( )A .45°B .60°C .75°D .90°3.△ABC 中,∠A =30°,∠B =60°,AC =6,则△ABC 外接圆的半径为( )A .32B .33C .3D .34.圆的弦长与它的半径相等,那么这条弦所对的圆周角的度数是( )A .30°B .150°C .30°或150°D .60°5.如图右上所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( )A .2个B .3个C .4个D .5 个6.下列命题中,正确的是( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等A .①②③B .③④⑤C .①②⑤D .②④⑤ 7.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2, 则等边三角形ABC 的边长为( ) A .3 B .5 C .23D .25 8.如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD ⊙O 的直径,AD =6,则BC = 。
9.如图9,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台。
10.如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 。
A · OB DC G F 1E B E D A C O AB C O(第9题) A °ABO Cx P11.如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是 . 12.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。
按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是 . 13.如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD 、AD .(1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.14.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.圆心角、弧、弦、弦心距关系定理 例1.如图所示,点O 是∠EPF 的平分线上一点,以O 为圆心的圆和角的两边分别交于A、B 和C 、D ,求证:AB=CD . 例2、已知:如图,EF 为⊙O 的直径,过EF 上一点P 作弦AB 、CD ,且∠APF=∠CPF 。
求证:PA=PC 。
例3.如图所示,在ABC ∆中,∠A=︒72,⊙O 截ABC ∆的三条边长所得的三条弦等长,求∠BOC. 例4.如图,⊙O 的弦CB 、ED 的延长线交于点A ,且BC=DE .求证:AC=AE . 例5.如图所示,已知在⊙O 中,弦AB=CB ,∠ABC=︒120,OD ⊥AB 于D ,OE ⊥BC 于E . 求证:ODE ∆是等边三角形. 综合练习一、选择题1.下列说法中正确的是( ) A 、相等的圆心角所对的弧相等 B 、相等的弧所对的圆心角相等 C 、相等的弦所对的弦心距相等 D 、弦心距相等,则弦相等 2.如图,在⊙O 中,AB 的度数是︒50,∠OBC=︒40,那么∠OAC 等于( ) A 、︒15 B 、︒20 C 、︒25 D 、︒30E D B A OC AB EFOP C 12D· O图 A BC ·OA B O C A E BD · O A DE CA B C O D E 如图 3 如图4 如图53.P 为⊙O 内一点,已知OP=1cm ,⊙O 的半径r=2cm ,则过P 点弦中,最短的弦长为( )A 、1cmB 、3cmC 、32cmD 、4cm4.在⊙O 中,AB 与CD 为两平行弦,AB >CD ,AB 、CD 所对圆心角分别为︒︒60,120,若⊙O 的半径为6,则AB 、CD 两弦相距( )A 、3B 、6C 、13+D 、333±5.如图所示,已知△ABC 是等边三角形,以BC 为直径的⊙O 分别交AB 、AC 于点D 、E 。