广西壮族自治区河池市广西2019届数学中考二模试卷及参考答案

合集下载

广西河池市中考数学二模试卷

广西河池市中考数学二模试卷

广西河池市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2017七上·顺德期末) 在0,,-5,-3这四个数中,最大的数是()A . 0B . -3C .D . -52. (2分)已知,则锐角A的度数是()A . 30°B . 45°C . 60°D . 75°3. (2分)下列图形,既是中心对称图形,又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 正五边形D . 正六边形4. (2分)估算的值是在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间5. (2分)多项式(x﹣y)2﹣(y﹣x)分解因式正确的是()A . (y﹣x)(x﹣y)B . (x﹣y)(x﹣y﹣1)C . (y﹣x)(y﹣x+1)D . (y﹣x)(y﹣x﹣1)6. (2分) (2018八上·临安期末) 不等式 1-x>0 的解在数轴上表示正确的是()A .B .C .D .7. (2分)若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A . 8B . 7C . 8或7D . 9或88. (2分)为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法正确的是()A . 众数是5元B . 平均数是3.5元C . 极差是4元D . 中位数是3元9. (2分)一个正方形的内切圆半径、外接圆半径与这个正方形边长的比为()A . 1∶2∶B . 1∶∶2C . 1∶∶4D . ∶2∶410. (2分) (2015九上·应城期末) 如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A . 135°B . 120°C . 110°D . 100°11. (2分)一个多边形的边数每增加一条,这个多边形的()A . 内角和增加360°B . 外角和增加360°C . 对角线增加一条D . 内角和增加180°12. (2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x袖于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a 与b的数量关系为()A . a=bB . 2a+b=﹣1C . 2a﹣b=1D . 2a+b=113. (2分) (2015八上·福田期末) 如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A,B,C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2= OB2 .A . 1个B . 2个C . 3个D . 4个14. (2分) (2019九上·大丰月考) 如图,为直角三角形,,,,以点为圆心,以为半径作圆,则斜边的中点与圆的位置关系是()A . 点在圆上B . 点在圆内C . 点在圆外D . 不能确定15. (2分)(2019·深圳模拟) 如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG,BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③DF∥DE;④S△BEF =.其中所有正确结论的个数是()A . 1B . 2C . 3D . 416. (2分)如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A . 点MB . 格点NC . 格点PD . 格点Q二、填空题 (共3题;共4分)17. (1分) (2020七下·镇江月考) 计算:(﹣3)0=________.18. (1分) (2015八下·杭州期中) 已知,那么的值等于________.19. (2分) (2020七上·兰州期末) 用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖________块;(2)第n个图案有白色地面砖________块.三、解答题 (共7题;共73分)20. (10分) (2017八上·乐清期中) 育英学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.21. (7分)(2017·洛阳模拟) 如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG⊥AD于点G,连接FE,FC.(1)求证:GC是⊙F的切线;(2)填空:①若∠BAD=45°,AB=2 ,则△CDG的面积为________.②当∠GCD的度数为________时,四边形EFCD是菱形.22. (6分) (2018九上·南召期末) 在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同.(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是________;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.(请利用树状图或列表法说明.)23. (10分)(2017·达州模拟) 小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.24. (10分) (2019七上·长兴月考) 为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元。

广西河池市2019-2020学年数学中考二模试卷(含答案)

广西河池市2019-2020学年数学中考二模试卷(含答案)

广西河池市2019-2020学年数学中考二模试卷(含答案)一、单选题1.下列四个实数中最小的是()A. 1.4B.C. 2D.【答案】A【考点】实数大小的比较2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A. 20°B. 30°C. 35°D. 50°【答案】C【考点】平行线的性质3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,将440000用科学记数法表示为()A. 4.4×106B. 4.4×105C. 44×104D. 0.44×105【答案】B【考点】科学记数法—表示绝对值较大的数4.下列长度的线段中,能构成直角三角形的一组是()A. ,,B. 6,7,8C. 12,25,27D. 2 ,2 ,4【答案】 D【考点】勾股定理的逆定理5.直线y=ax+b经过第二、三、四象限,那么下列结论正确的是()A. =a+bB.点(a,b)在第一象限内C.反比例函数,当x>0时,函数值y随x增大而减小D.抛物线y=ax2+bx+c的对称轴过二、三象限【答案】 D【考点】二次根式的性质与化简,反比例函数的性质,二次函数图象与系数的关系,一次函数图像、性质与系数的关系,点的坐标与象限的关系6.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()A. 30°B. 45°C. 60°D. 90°【答案】B【考点】圆周角定理,正多边形和圆7.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A. 主视图的面积最小B. 左视图的面积最小C. 俯视图的面积最小D. 三个视图的面积相等【答案】B【考点】简单组合体的三视图8.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A. (-1,2)B. (-9,18)C. (-9,18)或(9,-18)D. (-1,2)或(1,-2)【答案】 D【考点】位似变换9.数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是()A.中位数和众数都是8小时B.中位数是25人,众数是20人C.中位数是13人,众数是20人,D.中位数是6小时,众数是8小时【答案】A【考点】利用统计图表分析实际问题,中位数,众数10.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为()A.B.C.D.【答案】C【考点】含30度角的直角三角形,正方形的性质,二次函数图象上点的坐标特征11.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为()A. ﹣1B.C. +1D.【答案】A【考点】直角三角形斜边上的中线,圆周角定理,几何图形的面积计算-割补法12.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2 个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A. (3,﹣1)B. (1,﹣3)C. (﹣2,﹣1)D. (2 +1,2 +1)【答案】A【考点】平移的性质,等腰直角三角形,点的坐标与象限的关系二、填空题13.要使式子有意义,则a的取值范围为________.【答案】a≥﹣2且a≠0【考点】二次根式有意义的条件14.分解因式:ax2﹣4ay2=________.【答案】a(x+2y)(x﹣2y)【考点】提公因式法与公式法的综合运用15.在某一时刻,测得一根高为1.2m的竹竿的影长为3m,同时测得一栋楼的影长为45m,那么这栋楼的高度为________m.【答案】18【考点】相似多边形的性质16.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为________.【答案】【考点】圆心角、弧、弦的关系17.任取不等式组的一个整数解,则能使关于x的方程:2x+k=-1的解为非负数的可能性为________.【答案】【考点】一元一次方程的解,一元一次不等式组的特殊解,概率公式18.小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在n点钟响起后,下一次则在(3n﹣1)小时后响起,例如钟声第一次在3点钟响起,那么第2次在(3×3﹣1=8)小时后,也就是11点响起,第3次在(3×11﹣1=32)小时后,即7点响起,以此类推…;现在第1次钟声响起时为2点钟,那么第3次响起时为________点,第2017次响起时为________点(如图钟表,时间为12小时制).【答案】3;11【考点】探索数与式的规律三、解答题19.计算:()﹣2﹣(π+ )0+ ﹣4cos45°.【答案】解:()﹣2﹣(π+ )0+ ﹣4cos45°=4-1+2=3.【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,二次根式的性质与化简,特殊角的三角函数值20.化简,再求值:(a+1﹣)÷ ,其中a=【答案】解:原式===a(a﹣2)=a2﹣2a,当a= 时,原式=()2﹣2× =3﹣2 .【考点】利用分式运算化简求值21.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.【答案】(1)解:如图所示:△ABC即为所求(2)解:如图所示:CD′即为所求,BD=DC= ,四边形BDCD′的面积为:× =10.【考点】勾股定理,正方形的判定与性质,旋转的性质,等腰直角三角形22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【答案】(1)解:56÷20%=280(名),答:这次调查的学生共有280名(2)解:280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°(3)解:由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.【考点】扇形统计图,条形统计图,列表法与树状图法,概率公式23.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF.(1)试探究△A′DE的形状,请说明理由;(2)当四边形EDD′F为菱形时,判断△A′DE与△EFC′是否全等?请说明理由.【答案】(1)解:△A′DE是等腰三角形.理由:∵△ACB是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形(2)解:∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【考点】三角形全等的判定,等腰三角形的判定,直角三角形斜边上的中线,菱形的性质24.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.【答案】(1)解:设该商场计划购进甲种手机x部,乙种手机y部,由题意得,解得,答:该商场计划购进甲种手机20部,乙种手机30部(2)解:设甲种手机减少a部,则乙种手机增加3a部,由题意得4000(20﹣a)+2500(30+3a)≤172500,解得a≤5,设全部销售后的毛利润为w元,则w=300(20﹣a)+500(30+3a)=1200a+21000,∵1200>0,∴w随着a的增大而增大,=1200×5+21000=27000,∴当a=5时,w有最大值,w最大答:当商场购进甲种手机15部,乙种手机45部时,全部销售后毛利润最大,最大毛利润是2.7万元.【考点】一元一次不等式的应用,一次函数的实际应用,二元一次方程组的实际应用-销售问题25.如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C作⊙O的切线交DE的延长线于点H.(1)求证:HC=HF;(2)若⊙O的半径为5,点F是BC的中点,tan∠HCF=m,写出求线段BC长的思路.【答案】(1)解:连接OC,如图1,∵CH是⊙O的切线,∴∠2+∠1=90°,∵DE⊥AB,∴∠3+∠4=90°,∵OB=OC,∴∠1=∠4,∴∠2=∠3,又∵∠5=∠3,∴∠2=∠5,∴HC=HF(2)解:求解思路如下:思路一:连接OF,如图2.①OF过圆心且点F是BC的中点,由垂径定理可得BC=2CF,∠OFC=90°;②由∠6与∠1互余,∠2与∠1互余可得∠6=∠2,从而可知tan∠6=m;③在Rt△OFC中,由tan∠6= =m,可设OF=x,CF=mx,由勾股定理,得x2+(mx)2=52,可解得x的值;④由BC=2CF=2mx,可求BC的长.思路二:连接AC,如图3.①由AB是⊙O的直径,可得△ACB是直角三角形,知∠6与∠4互余,又DE⊥AB可知∠3与∠4互余,得∠6=∠3;②由∠6=∠3,∠3=∠2,可得∠6=∠2,从而可知tan∠6=m;③在Rt△ACB中,由tan∠6= =m,,可设AC=x,BC=mx,由勾股定理,得x2+(mx)2=102,可解得x的值;④由BC=mx,可求BC的长.【考点】勾股定理,垂径定理,切线的性质,锐角三角函数的定义,同角三角函数的关系26.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【答案】(1)解:∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4(2)解:如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴= ,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)解:①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′= m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2 ,菱形CM′P′N′的边长为(4﹣2 )=4 ﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4 ﹣4.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,二次函数的三种形式,平行四边形的判定与性质,菱形的性质,二次函数与一次函数的综合应用,二次函数的实际应用-几何问题。

广西河池市中考数学二模考试试卷

广西河池市中考数学二模考试试卷

广西河池市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·百色) 下列几何体中,俯视图不是圆的是()A . 四面体B . 圆锥C . 球D . 圆柱2. (2分)(2016·金华) 若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A . a<0B . ab<0C . a<bD . a,b互为倒数3. (2分)(2020·濮阳模拟) 下列计算正确的是()A .B .C .D .4. (2分) (2020八下·巴中月考) 某种感冒病毒的直径是米,用科学记数法表示为米.A .B .C .D .5. (2分)(2018·菏泽) 如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A . 45°B . 30°C . 15°D . 10°6. (2分) (2019八上·威海期末) 一组数据0,1,2,2,3,4,若添加一个数据2,则下列统计量中发生变化的是()A . 方差B . 中位数C . 平均数D . 极差7. (2分)在8:9中,如果前项增加16,要使比值不变,后项应()A . 增加16B . 乘3C . 不变D . 无法确定8. (2分)(2020·郑州模拟) 关于x的一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根9. (2分)已知圆的半径是2 ,则该圆的内接正六边形的面积是()A . 3B . 9C . 18D . 3610. (2分) (2020九上·龙岩期末) 二次函数y=2(x﹣3)2﹣6的顶点是()A . (﹣3,6)B . (﹣3,﹣6)C . (3,﹣6)D . (3,6)二、填空题 (共9题;共9分)11. (1分)(2019·武昌模拟) 在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).写出各点关于原点的对称点的坐标________,________,________.12. (1分) (2020七下·南京期末) 计算:20=________,()-3=________.13. (1分)如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).14. (1分)(2020·皇姑模拟) 如图,直角△ABC中,∠C=90°,AC=5,BC=12则内部五个小直角三角形的周长的和为________.15. (1分) (2017七下·江都期中) 计算: =________.16. (1分)(2020·南开模拟) 在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.则甲、乙抽中同一篇文章的概率为________.17. (1分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为________.18. (1分) (2016八上·岑溪期末) 方程的解是x=________.19. (1分) (2019八下·哈尔滨期中) 如图,在中,,点在上,连接,点在上,连接,,,若AB=5,则AC的长为________.三、计算题 (共2题;共15分)20. (10分) (2019九上·南海期末) 计算:2cos60°+tan45°.21. (5分)(2018·台州) 解不等式组: .四、综合题 (共7题;共81分)22. (5分)(2018·安徽) 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)23. (6分)(2019·新余模拟) 2019年,我省中考体育分值增加到55分,其中女生必考项目为八百米跑,我校现抽取九年级部分女生进行八百米测试成绩如下:成绩3′40″及以下3′41~4′4′01″~4′20′4′21″~4′40″4′41″及以上等级A B C D E百分比10%25%m20%n(1)求样本容量及表格中的m和n的值(2)求扇形统计图中A等级所对的圆心角度数,并补全统计图.(3)我校9年级共有女生500人.若女生八百米成绩的达标成绩为4分,我校九年级女生八百米成绩达标的人数有多少?24. (15分) (2018九上·深圳开学考) 如图,在平面直角坐标系中,矩形的顶点E的坐标为,顶点G的坐标为,将矩形绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形,与交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(1)中的反比例函数图象交于点B,求出直线的解析式.25. (15分)如图,四边形ABCD内接于⊙O,AC和BD是对角线,AB=CD.求证:(1) AC=DB;(2)AD∥BC26. (10分)小慧和小聪沿图1中的景区公路游览.小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB、GH的交点B的坐标,并说明它的实际意义.(3)如果小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?27. (15分) (2019九上·句容期末) 如图,在▱ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=3,AD=7,BE=2,求FC的长.28. (15分) (2017八上·莒南期末) 已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、计算题 (共2题;共15分)20-1、21-1、四、综合题 (共7题;共81分)22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。

广西河池市2019年中考数学答案

广西河池市2019年中考数学答案

2019年河池市初中学业水平考试数学参考答案及评分意见一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBADDBBCDCB二、填空题 13. 3x = 14.2515. 12 16. 76 17. 24y x =- 18. 6.三、解答题19.解:原式=12243+-+ (每算对一个知识点得1分) .............................................. ............. 4分=22. ......................................................................................................................... 6分 20.解:原式=221210x x x -++- (每算对一个知识点得2分) ...................................... ............... 4分=29x - .......................................................................................................................... 5分 =(3)(3)x x +-. ............................................................................................................. 6分 21.解:(1)如图 ................................................................ ................ 3分(2)OE AC ∥......................................................... ................ 4分 12OE AC =. .................................................... ................ 5分 证明:在O 中,AD 是BAC ∠的平分线,BAD CAD ∴∠=∠,BD DC ∴=. ..................................................... .. ............... 6分EB EC ∴=. ....................................................................................... ............... 7分 OE ∴是ABC △的中位线,即OE AC ∥,12OE AC =. ................. ............... 8分 22.解一:过点A 作AD BC ⊥于D ,则AD 为所求. . ....................................................... ............... 1分依题意,得906030ABC ︒︒︒∠=-=, ............................................................................... 2分 903060ACD ︒︒︒∠=-=. .................................................................................................... 3分 BAC ABC ACD ∠+∠=∠,即3060BAC ︒︒∠+=,30BAC ︒∴∠=. ............... ............... 4分30ABC BAC ︒∴∠=∠=,∴ 120CA CB ==. .................................................................. 5分 在Rt ACD △中,1206090AC ACD ADC ︒︒=∠=∠=,,,sin 60AD AC ∴==.............................. ................ 6分 60 1.732103.92103.9=⨯=≈(m ). ........ ................ 7分∴河的宽度约为103.9 m . ................................... .............. 8分解二:过点A 作AD BC ⊥于D ,则AD 为所求.设AD x =. .................................................... 1分 在Rt ACD △中,903060ACD ︒︒︒∠=-=. ....................................................... ............... 2分 tan ∠ACD=AD CD ∴CD. ............................................................ ............... 3分 在Rt ABD △中,906030ABD ︒︒︒∠=-=, ...................................................... ............... 4分 tan ∠ABD=AD BD =,∴BD. .............................................................. ............... 5分 120BD CD -=,120=,........................................................ ............... 6分 解得x60 1.732⨯=103.92≈103.9(m ). .......................................................... 7分 ∴河的宽度约为103.9 m. ................................................................................ ............... 8分北23.解:(1)100,a =30%,b =40,c =20%.(每答对一个知识点给1分) ........ ............... 4分(2)如图 .................................................................................. 6分 (3)200020%400⨯=(人), ............................................. 7分答:估计该校参加音乐兴趣班的学生有400人.......... 8分24.解:(1)设跳绳和毽子的单价分别是x 元,y 元. .................................................. ............... 1分依题意,得30607201050360.x y x y +=⎧⎨+=⎩,......................................................................... ............... 3分 解得164.x y =⎧⎨=⎩,.................................................................................................... ............... 4分答:跳绳的单价是16元,毽子的单价是4元. . ......................................................... 5分 (2)设该店的商品按原价a 折销售...................................................................... ............... 6分 依题意,得 10016100418001010a a⨯⨯+⨯⨯=. ............................................. ............... 7分 解得 9a =.答:该店的商品按原价9折销售. ............................................................................... 8分25. (1)证明:五边形ABCDE 内接于O ,AE DC =,∴ADE ∠=DBC ∠. ................................................................................. ............... 1分在ADE △和DBC △中,ADE DBC ∠=∠,E BCD ∠=∠,AE DC =,∴ADE DBC ≌△△. ................................................................................ ............... 3分 ∴DE BC =. ........................................................................................... ............... 4分(2)解一:过圆心O 作OG AB ⊥于G . .............................5分AB BD DA ==,∴ 60ABD ︒∠=∴OBG ∠=30︒.∴OG =12OB =122⨯=1. ............................................. 6分连接CO 并延长交AB 于点H , CF 与O 相切于点C ,∴ HC ⊥CF .F ∠=45,∴HCF △和HGO △是等腰直角三角形. .............................................. ............... 7分 ∴CF =CH ,HG =OG =1. ......................................................................... ............... 8分 在Rt HGO △中,OH.......................... ............... 9分 又OC =OB =2,∴CH = OC +OH∴CF........................................................................................ ............. 10分解二:过点D ,O 的直线交AB 于点P ,交FC 延长线于点Q ,∵AB BD DA ==,∴PQ ⊥AB ,OBP ∠=30︒...................................................................... ............... 5分 ∴OP =12OB =122⨯=1. ....................................................................... 6分 连接CO , CF 与O 相切于点C ,∴ CO ⊥QF.F ∠=45︒,∴FQP △和OQC △是等腰直角三角形. ∴QC =OC =OB =2,EEF∴OQ. ........................................... ....................... ............... 7分 ∴PQ =OQ +OP=+1. ........................................................................ ............... 8分在等腰直角三角形FQP 中,sin F ∠=PQFQ, ∴FQ =sin 45PQ....................................................... ............... 9分422CF FQ QC ∴=-== .................................................. ............. 10分26.解:(1)(34)E ,. ....................................................................................................... ............... 1分双曲线的解析式为12y x=. ........................................................................... ............... 3分 (2)M ,N 在双曲线2k y x =上,22(6)(8)68k kM N ∴,,,. 228668k kCM CN ∴=-=-,, ...................................... 4分 2148k CM CN CB CD ∴==-, .................................................... 5分 又90BCD MCN ︒∠=∠=,CMN CBD ∴∽△△. ........... 6分 点C 关于MN 的对称点是C ',CC MN '∴⊥.∴90C CN CNM NMC CNM ︒'∠+∠=∠+∠=. C CD NMC '∴∠=∠.由CMN CBD ∽△△得NMC DBC ∠=∠, C CD DBC '∴∠=∠. 又90BCD CDC ︒'∠=∠=,BCD CDC '∴∽△△. .......................................... ............... 7分 BC CD CD DC ∴=',即866DC =',92DC '∴=. ..................................................................... 8分97822AC AD DC ''∴=-=-=.即C '的坐标为7(0)2,. .................................. ............... 9分 (3)平移后,(34)E m +,, 双曲线3k y x =过点E ,343km ∴=+,即3412k m =+ ① 1)当EP EA =时,点P 与点D 重合,则(8)P m ,. 双曲线3k y x =点P ,38km∴= ,即38k m = 将①代入,解得3m =.即3m =时,AEP △为等腰三角形. ........................................................ ............. 10分 2)当AE AP =时,则(5)P m ,. 双曲线3k y x =过点P ,35km∴=,即35k m = 将①代入,解得12m =.即12m =时,AEP △为等腰三角形. ...................................................... ............. 11分 3)当PA PE =时,连接P 与AE 的中点H ,则90AHP ADC ︒∠=∠=HAP DAC ∠=∠,AHP ADC ∴∽△△. AH AP AD AC ∴=,即2.5810AP =. 258AP ∴=. 25()8P m ∴,.双曲线3k y x =过点P ,3258k m ∴=,即3258k m =, 将①代入,解得9607m =-<,不合题意. 综上所述,当3m =或12m =时,AEP △为等腰三角形. ........................................... 12分。

广西河池市中考数学二模试卷

广西河池市中考数学二模试卷

广西河池市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A . AO=BOB . BO=EOC . 点A关于点O的对称点是点DD . 点D 在BO的延长线上2. (2分) (2016九上·庆云期中) 某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场()A . 5个B . 6个C . 7个D . 8个3. (2分)(2019·毕节模拟) 如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y= 的图象经过点A的对应点A′,则k的值为()A . -6B . ﹣3C . 3D . 64. (2分) (2016九上·孝南期中) 抛物线y=﹣2x2+1的对称轴是()A . 直线B . 直线C . y轴D . x轴5. (2分)将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式成立的事件发生的概率为()A .B .C .D .6. (2分)(2018·萧山模拟) 如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A .B .C .D .7. (2分) (2015九上·重庆期末) 反比例函数的图象经过点A(﹣1,3),则k的值为()A . k=3B . k=﹣3C . k=6D . k=﹣68. (2分) (2020·龙海模拟) 如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为()A .B .C .D . 49. (2分)下列命题正确的是A . 对角线互相垂直的四边形是菱形B . 对角线相等的四边形是矩形C . 对角线相等且互相垂直的四边形是菱形D . 对角线相等的平行四边形是矩形10. (2分) (2019九上·呼兰期末) 如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A .B .C .D .二、填空题 (共8题;共13分)11. (1分)(2017·东莞模拟) 因式分解:x2y﹣y=________.12. (1分)某体育馆的圆弧形屋顶如图所示,最高点C到弦AB的距离是20m,圆弧形屋顶的跨度AB是80m,则该圆弧所在圆的半径为________m.13. (1分) (2019九上·东台期中) 设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=(x+1)2+2上的三点,则y1 , y2 , y3的大小关系为________.(用>号连接).14. (1分)(2020·红河模拟) 已知分式有意义,则x的取值范围是________.15. (1分)(2017·普陀模拟) 如果x:y=4:3,那么 =________.16. (4分)化y=x2+4x+3为y=a(x﹣h)2+k的形式是________,图象的开口向________,顶点是________,对称轴是________.17. (3分)如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).①若点A(,3),则A′的坐标为________;②△ABC与△A′B′C′的相似比等于________;③若△ABC的面积为m,则△A′B′C′的面积=________.18. (1分) (2019七下·宜昌期末) 下列图案是由边长相等的黑白两色正方形瓷砖铺设的地面,则按此规律可以得到,第 n 个图案中白色瓷砖块数是________.三、计算题 (共4题;共41分)19. (10分) (2019九下·乐清月考)(1)计算;:(2)先化简,再求值:,其中x=-2,y= ;20. (10分)计算:(1)(2)化简:(1+ )÷ ,用一个你最喜欢的数代替x计算结果.21. (10分) (2017九上·镇雄期末) 已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM 交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.22. (11分) (2017七下·兴化期末) 观察下列关于自然数的等式:a1:32-12=8×1;a2:52-32=8×2;a3:72-52=8×3;……根据上述规律解决下列问题:(1)写出第a4个等式:________;(2)写出你猜想的第an个等式(用含n的式子表示),并验证其正确性;(3)对于正整数k,若ak , ak+1 , ak+2为△ABC的三边,求k的取值范围.四、解答题 (共6题;共63分)23. (12分)(2017·莒县模拟) 某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有________,并补全条形统计图________ ;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.24. (10分) (2018九上·宁城期末) 如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA 为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.25. (10分) (2017九下·盐都期中) 如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)26. (11分) (2017八下·无棣期末) 如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A,B两地相距________千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?27. (10分) (2019九下·杭州期中) 如图,△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB= ,BC=1,连结BF,分别交AC、DC、DE于点P、Q、R.(1)求证:△BFG∽△FEG(2)求sin∠FBG的值.28. (10分) (2019九上·萧山月考) 如图,在平行四边形ABCD中,EF∥AB.(1)写出所有相似三角形;(2)若,,求的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、计算题 (共4题;共41分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、四、解答题 (共6题;共63分) 23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。

广西省河池市2019-2020学年中考数学模拟试题含解析

广西省河池市2019-2020学年中考数学模拟试题含解析

广西省河池市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知某几何体的三视图(单位:cm )如图所示,则该几何体的侧面积等于( )A .12πcm 2B .15πcm 2C .24πcm 2D .30πcm 22.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上 B .当k >0时,y 随x 的增大而减小C .过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y=﹣x 成轴对称3.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多 ③有15的人每周使用手机支付的次数在35~42次 ④每周使用手机支付不超过21次的有15人 其中正确的是( )A .①②B .②③C .③④D .④4.已知443y x x =--,则yx的值为()n n A .43 B .43-C .34D .34-5.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)6.下列运算正确的是()A.a12÷a4=a3B.a4•a2=a8C.(﹣a2)3=a6D.a•(a3)2=a7 7.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.63B.62C.33D.328.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为()A.34-B.34C.43D.43-9.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017 10.若a与5互为倒数,则a=()A.15B.5 C.-5 D.15-11.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.4312.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB 的长为125cm ,支架CD 、CE 的长分别为60cm 、40cm ,支点C 到立柱顶点B 的距离为25cm .支架CD ,CE 与立柱AB 的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm ,D ,E 分别是FG ,MN 的中点,且CD ⊥FG ,CE ⊥MN ,则两个转盘的最低点F ,N 距离地面的高度差为_____cm .(结果保留根号)14.在平面直角坐标系中,抛物线y=x 2+x+2上有一动点P ,直线y=﹣x ﹣2上有一动线段AB ,当P 点坐标为_____时,△PAB 的面积最小.15.化简:2222444221(1)2a a a a a a a --+÷-+++- =____. 16.计算52a a ÷的结果等于_____________.17.请写出一个 开口向下,并且与y 轴交于点(0,1)的抛物线的表达式_________ 18.若2216a b -=,13a b -=,则+a b 的值为 ________ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y (包)与售价x (元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式,并直接写出售价x 的范围;当售价x (元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w (元)最大?最大利润是多少?20.(6分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? 21.(6分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?22.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.23.(8分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.24.(10分)(1)计算:2﹣2﹣12+(1﹣6)0+2sin60°.(2)先化简,再求值:(121x xx x---+)÷22121xx x-++,其中x=﹣1.25.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.26.(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC 沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.27.(12分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm5=(cm),∴侧面积=π×3×5=15π(cm2),故选B.2.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.3.B【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据4.C【解析】由题意得,4−x⩾0,x−4⩾0,解得x=4,则y=3,则yx=34,故选:C. 5.A 【解析】【分析】设反比例函数y=kx(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=kx(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-6x的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.D【解析】【分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【详解】解:A、a12÷a4=a8,此选项错误;B、a4•a2=a6,此选项错误;C、(-a2)3=-a6,此选项错误;D、a•(a3)2=a•a6=a7,此选项正确;本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则. 7.A 【解析】试题分析:根据垂径定理先求BC 一半的长,再求BC 的长. 解:如图所示,设OA 与BC 相交于D 点.∵AB=OA=OB=6, ∴△OAB 是等边三角形.又根据垂径定理可得,OA 平分BC , 利用勾股定理可得226333-= 所以BC=2BD=3. 故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O 与圆A 的半径相等,从而得出△OAB 是等边三角形,为后继求解打好基础. 8.B 【解析】 【分析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值. 【详解】解:59x y k x y k +=⎧⎨-=⎩①②,①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-, 将7x k =,2y k =-代入236x y +=得:1466k k -=,解得:34k =.故选:B . 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值. 9.A 【解析】 【分析】利用直接开平方法解方程. 【详解】 (x+2017)2=1 x+2017=±1,所以x 1=-2018,x 2=-1. 故选A . 【点睛】本题考查了解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 10.A 【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案. 详解:根据题意可得:5a=1,解得:a=15, 故选A . 点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键. 11.C 【解析】 【分析】连接AC ,交O e 于点,F 设,FN a =则2,NC a =()222,DC a =+()224,AC a =+根据△AMN的面积为4,列出方程求出a 的值,再计算半径即可. 【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线,AC 经过点,,O F FNC V 为等腰直角三角形,,NC =,CD MN 为O e 的切线, ,EN NF =设,FN a =则,NC =(2,DC a =+()4,AC a =()3,AF AC CF a ∴=-=△AMN 的面积为4,则14,2MN AF ⋅⋅=即()1234,2a a ⋅⋅=解得2,a = ))()112 2.r EC a ====故选:C. 【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强. 12.A 【解析】 【分析】由菱形ABCD ,∠B=60°,易证得△ABC 是等边三角形,继而可得AC=AB=4,则可求得以AC 为边长的正方形ACEF 的周长. 【详解】解:∵四边形ABCD 是菱形,∴AB=BC .∵∠B=60°,∴△ABC 是等边三角形,∴AC=AB=BC=4,∴以AC 为边长的正方形ACEF 的周长为:4AC=1. 故选A . 【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13. 【解析】 【分析】作FP ⊥地面于P ,CJ ⊥PF 于J ,FQ ∥PA 交CD 于Q ,QH ⊥CJ 于H .NT ⊥地面于T .解直角三角形求出FP 、NT 即可解决问题. 【详解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由题意△QDF,△QCH都是等腰直角三角形,四边形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD−DQ=60−30=30cm,∴FJ=QH=152cm,∵AC=AB−BC=125−25=100cm,∴PF=(152+100)cm,同法可求:NT=(100+52),∴两个转盘的最低点F,N距离地面的高度差为=(152+100)-(100+52)=102故答案为2【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.(-1,2)【解析】【分析】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P 点,然后求得平移后的直线,联立方程,解方程即可.【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P点,设平移后的直线为y=-x-2+b,∵直线y=-x-2+b与抛物线y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,则△=4-4(4-b)=0,∴b=3,解212y x y x x -+⎧⎨++⎩==得x=-1,y=2, ∴P 点坐标为(-1,2), 故答案为(-1,2). 【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P 点是解题的关键. 15.2aa - 【解析】 【分析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可. 【详解】 原式()()22222(1)222(1)(2)222a a a a aa a a a a +-++-=⋅-==+----, 故答案为2aa - 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键. 16.a 3 【解析】试题解析:x 5÷x 2=x 3. 考点:同底数幂的除法.17.221y x x =-++(答案不唯一) 【解析】 【分析】根据二次函数的性质,抛物线开口向下a<0,与y 轴交点的纵坐标即为常数项,然后写出即可. 【详解】∵抛物线开口向下,并且与y 轴交于点(0,1)∴二次函数的一般表达式2y ax bx c =++中,a<0,c=1, ∴二次函数表达式可以为:221y x x =-++(答案不唯一). 【点睛】本题考查二次函数的性质,掌握开口方向、与y 轴的交点与二次函数二次项系数、常数项的关系是解题的18.-12.【解析】分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.详解:∵a2﹣b2=(a+b)(a﹣b)=16,a﹣b=13,∴a+b=12.故答案为12.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.20.从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】【分析】设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得. 【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键. 21.探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】 【分析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论; (2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对. 【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1. 故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数), ∴每人需跟(n-1)人握手, ∴握手总数为()12n n -.故答案为()12n n -.(3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0, 解得:n 1=8,n 2=-7(舍去). 答:参加聚会的人数为8人. 拓展:琪琪的思考对,理由如下: 如果线段数为2,则由题意,得:()12m m -=2,整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去).∵m 为正整数, ∴没有符合题意的解, ∴线段总数不可能为2.本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.22.(1);(2),见解析.【解析】【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)证明见解析;(2)23(3)33;【解析】【分析】(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;==O的直径;(2)利用∠P=30°得到OP=2OA,则PD OD(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设DH=x,则DE=2x,HE AH HE,,所以)1x=然后求出x即可===得到DE的长.【详解】(1)证明:连接OA、AD,如图,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD为直径,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO为等边三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,==∴PD OD∴⊙O的直径为(3)解:作EH⊥AD于H,如图,∵点B等分半圆CD,∴∠BAC=45°,∴∠DAE=45°,设DH=x,在Rt△DHE中,DE=2x,HE=,在Rt △AHE 中,3AH HE x ,== ∴()331AD x x x =+=+,即()313x +=,解得33.x -=∴233DE x ==-.【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理. 24.(1)534-(2)20172018【解析】 【分析】(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】 解:(1)原式=14﹣33=14﹣33543; (2)原式=2(1)(1)(2)(+1)(1)21x x x x x x x x -+--⋅+- =22212(+1)(1)21x x x x x x x --+⋅+-=221(+1)(1)21x x x x x -⋅+-=+1x x, 当x=﹣1时,原式=2018+12018--=20172018.本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法. 25.(1) 平均数(分) 中位数(分) 众数(分) 初中部 85 85 85 高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定 【解析】解:(1)填表如下: 平均数(分) 中位数(分) 众数(分) 初中部 85 85 85 高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 26.(1)y=﹣x 2+2x+3(2)(2+102,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面【解析】 【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案. 【详解】(1)将点B 和点C 的坐标代入函数解析式,得9603,a c c ++=⎧⎨=⎩ 解得13,a b =-⎧⎨=⎩二次函数的解析式为y=﹣x 2+2x+3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP ′,则PE ⊥CO ,垂足为E ,∵C (0,3), ∴30,2E ,⎛⎫⎪⎝⎭∴点P 的纵坐标32, 当32y =时,即23232x x -++=,解得12210210x x +-==(不合题意,舍), ∴点P 的坐标为210322;⎛⎫⎪ ⎪⎝⎭P 在抛物线上,设P (m ,﹣m 2+2m+3), 设直线BC 的解析式为y=kx+b ,将点B 和点C 的坐标代入函数解析式,得3303,k b +=⎧⎨=⎩解得13.k b =-⎧⎨=⎩直线BC 的解析为y=﹣x+3, 设点Q 的坐标为(m ,﹣m+3),PQ=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m . 当y=0时,﹣x 2+2x+3=0, 解得x 1=﹣1,x 2=3, OA=1,()314AB =--=,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ111,222AB OC PQ OF PQ FB =⋅+⋅+⋅ ()2114333,22m m =⨯⨯+-+⨯ 23375228m ⎛⎫=--+ ⎪⎝⎭,当m=32时,四边形ABPC 的面积最大. 当m=32时,215234m m -++=,即P 点的坐标为315,24⎛⎫ ⎪⎝⎭.当点P 的坐标为315,24⎛⎫ ⎪⎝⎭时,四边形ACPB 的最大面积值为758.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.27.(1)60,90°;(2)补图见解析;(3)300;(4)2 3 .【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为1 9003003⨯=.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123 P==.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.。

广西省河池市2019-2020学年中考数学二模考试卷含解析

广西省河池市2019-2020学年中考数学二模考试卷含解析

广西省河池市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习2.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.72017=,那么点A表示的数是()3.如图,点A、B在数轴上表示的数的绝对值相等,且AB4A.3-B.2-C.1-D.34.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.5.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个6.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A .3-B .3C .2D .87.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 8.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .(12)6B .(12)7C .(22)6D .(22)7 9.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =- 10.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2 B . C .2 D .4 11.如图,直线a ∥b ,∠ABC 的顶点B 在直线a 上,两边分别交b 于A ,C 两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )A .30°B .40°C .50°D .60°12.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )A .28°,30°B .30°,28°C .31°,30°D .30°,30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 14.分解因式:x 2y ﹣2xy 2+y 3=_____.15.如果将“概率”的英文单词 probability 中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b 的概率是________.16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.17.分解因式:34x x -=______.18.如图的三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm.沿过点B 的直线折叠三角形,使点C 落在AB 边的点E 处,折痕为BD.则△AED 的周长为____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,A ,B ,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A ,B 两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的35支援 C 粮仓,从 B 粮仓运出该粮仓存粮的25支援 C 粮仓,这时 A ,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A ,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.20.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60m ,底座BC 与支架AC 所成的角∠ACB=75°,点A 、H 、F 在同一条直线上,支架AH 段的长为1m ,HF 段的长为1.50m ,篮板底部支架HE 的长为0.75m .求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.求篮板顶端F 到地面的距离.(结果精确到0.1 m ;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.7323≈1.732,2≈1.414)21.(6分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).22.(8分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.23.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程s A、s B;(2)在A出发后几小时,两人相距15km?24.(10分)解方程组3{3814 x yx y-=-=25.(10分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.7326.(12分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.(1)试判断直线DE与CF的位置关系,并说明理由;(2)若∠A=30°,AB=4,求»CD的长.27.(12分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.2.B【解析】【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.3.B【解析】【分析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【详解】解:如图,AB的中点即数轴的原点O..根据数轴可以得到点A表示的数是2故选:B.【点睛】.确定数轴的此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点原点是解决本题的关键.4.C【解析】【分析】过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=3x.∵平行四边形ABCD的周长为12,∴AB=12(12-2x)=6-x,∴y=AD∙BE=(6-x)×3x=﹣2333x x+(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.5.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如和是错误的;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.6.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D .【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.7.D【解析】【分析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍,A 、23233x x x y x y++≠--,错误; B 、22629y y x x ≠,错误; C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确; 故选D .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8.A 【解析】试题分析:如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE=CE ,∴S 2+S 2=S 1.观察发现规律:S 1=22=4,S 2=12S 1=2,S 2=12S 2=1,S 4=12S 2=12,…,由此可得S n =(12)n ﹣2.当n=9时,S 9=(12)9﹣2=(12)6,故选A . 考点:勾股定理.9.A【解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.10.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn..即2m n-的算术平方根为1.故选C.11.C【解析】【分析】依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°−40°=50°,故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.考点:众数;算术平均数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 3【解析】 试题分析:1204=2180r ππ⨯,解得r=43. 考点:弧长的计算.14.y (x ﹣y )2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】x 2y ﹣2xy 2+y 3=y (x 2-2xy+y 2)=y (x-y )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.15.211【解析】分析:让英文单词probability 中字母b 的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability 中,一共有11个字母,其中字母b 有2个,∴任取一张,那么取到字母b 的概率为211. 故答案为211. 点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比. 16.1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键. 17.x (x+2)(x ﹣2).【解析】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.18.7【解析】【分析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A、B 两处粮仓原有存粮分别是270,1 吨;(2)此次调拨能满足C 粮仓需求;(3)小王途中须加油才能安全回到B 地.【解析】【分析】(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A 处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=BCAB,要求BC的长,可以运用三角函数解直角三角形.【详解】(1)设A,B两处粮仓原有存粮x,y吨根据题意得:45032 (1)(1)55 x yx y +⎧⎪⎨--⎪⎩==解得:x=270,y=1.答:A,B两处粮仓原有存粮分别是270,1吨.(2)A粮仓支援C粮仓的粮食是35×270=162(吨),B粮仓支援C粮仓的粮食是25×1=72(吨),A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).∵234>200,∴此次调拨能满足C粮仓需求.(3)如图,根据题意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=BC AB,∴BC=AB•sin∠BAC=1×0.44=79.2.∵此车最多可行驶4×35=140(千米)<2×79.2,∴小王途中须加油才能安全回到B地.【点睛】求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20.(1)∠FHE=60°;(2)篮板顶端F 到地面的距离是4.4 米.【解析】【分析】(1)直接利用锐角三角函数关系得出cos∠FHE=12HEHF=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】(1 )由题意可得:cos∠FHE=12HEHF=,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过 A 作AG⊥FM 于G,在Rt△ABC 中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM =AB =2.2392,在 Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =FG AF , ∴sin60°=2.5FG =32, ∴FG≈2.17(m ),∴FM =FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.21.39米【解析】【分析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.22.11a a +-,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a a a a a +=+-n 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解析】【分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设s A 与t 的函数关系式为s A =kt+b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t|=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.24.21x y =⎧⎨=-⎩【解析】解:由①得③把③代入②得把代人③得∴原方程组的解为25.AD的长约为225m,大楼AB的高约为226m【解析】【分析】首先设大楼AB的高度为xm,在Rt△ABC中利用正切函数的定义可求得3AB=3x,然后根据∠ADB的正切表示出AD的长,又由CD=96m,x3x961.11-=,解此方程即可求得答案.【详解】解:设大楼AB的高度为xm,在Rt△ABC中,∵∠C=32°,∠BAC=92°,∴ABAC=3AB3x tan30==o,在Rt△ABD中,ABtan ADB tan48AD ∠=︒=,∴AB xAD=tan48 1.11=︒,∵CD=AC-AD,CD=96m,x3x961.11-=,解得:x≈226,∴x116AD1051.11 1.11=≈≈答:大楼AB的高度约为226m,AD的长约为225m.【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.26.(1)见解析;(2)43π.【解析】【分析】(1)先证明△OAC≌△ODC,得出∠1=∠2,则∠2=∠4,故OC∥DE,即可证得DE⊥CF;(2)根据OA=OC 得到∠2=∠3=30°,故∠COD=120°,再根据弧长公式计算即可.【详解】解:(1)DE ⊥CF .理由如下:∵CF 为切线,∴OC ⊥CF ,∵CA=CD ,OA=OD ,OC=OC ,∴△OAC ≌△ODC ,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC ∥DE ,∴DE ⊥CF ;(2)∵OA=OC ,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴»120241803CD l ππ⨯==.【点睛】本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.27.(1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【详解】试题分析:(1)、根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)、根据网格结构找出点A 、B 、C 关于原点的对称点A 2、B 2、C 2的位置,然后顺次连接即可;(3)、找出点A 关于x 轴的对称点A′,连接A′B 与x 轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P 的位置,然后连接AP 、BP 并根据图象写出点P 的坐标即可.试题解析:(1)、△A 1B 1C 1如图所示;B 1点的坐标(-4,2)(2)、△A 2B 2C 2如图所示;B 2点的坐标:(-4,-2)(3)、△PAB如图所示,P(2,0).考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.。

2019年广西河池市中考数学试卷以及逐题解析版

2019年广西河池市中考数学试卷以及逐题解析版

2019年广西河池市中考数学试卷以及逐题解析一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B 铅笔将答题卡上对应题目的答案标号涂黑.)1.(3分)计算34-,结果是( )A .1-B .7-C .1D .72.(3分)如图,1120∠=︒,要使//a b ,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒3.(3分)下列式子中,为最简二次根式的是( )A B C D 4.(3分)某几何体的三视图如图所示,该几何体是( )A .圆锥B .圆柱C .三棱锥D .球5.(3分)不等式组23121x x x -⎧⎨>+⎩…的解集是( ) A .2x … B .1x < C .12x <… D .12x <…6.(3分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( )A .53,53B .53,56C .56,53D .56,567.(3分)如图,在ABC ∆中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .B F ∠=∠ B .B BCF ∠=∠C .AC CF =D .AD CF =8.(3分)函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.(3分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,则图中与AEB ∠相等的角的个数是( )A .1B .2C .3D .410.(3分)如图,在正六边形ABCDEF 中,AC =( )A .1BCD .211.(3分)如图,抛物线2y ax bx c =++的对称轴为直线1x =,则下列结论中,错误的是( )A .0ac <B .240b ac ->C .20a b -=D .0a b c -+=12.(3分)如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.(3分)分式方程112x=-的解为.14.(3分)如图,以点O为位似中心,将OAB∆放大后得到OCD∆,2OA=,3AC=,则ABCD=.15.(3分)掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是.16.(3分)如图,PA,PB是O的切线,A,B为切点,38OAB∠=︒,则P∠=︒.17.(3分)如图,在平面直角坐标系中,(2,0)A,(0,1)B,AC由AB绕点A顺时针旋转90︒而得,则AC所在直线的解析式是.18.(3分)1a ,2a ,3a ,4a ,5a ,6a ,⋯,是一列数,已知第1个数14a =,第5个数55a =,且任意三个相邻的数之和为15,则第2019个数2019a 的值是 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.(6分)计算:0213()|3|2-+-. 20.(6分)分解因式:2(1)2(5)x x -+-.21.(8分)如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.22.(8分)如图,在河对岸有一棵大树A ,在河岸B 点测得A 在北偏东60︒方向上,向东前进120m 到达C 点,测得A 在北偏东30︒方向上,求河的宽度(精确到0.1)m .参考数据:1.414≈ 1.732≈.23.(8分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a ,b ,c 的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?24.(8分)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?25.(10分)如图,五边形ABCDE 内接于O ,CF 与O 相切于点C ,交AB 延长线于点F .(1)若AE DC =,E BCD ∠=∠,求证:DE BC =;(2)若2OB =,AB BD DA ==,45F ∠=︒,求CF 的长.26.(12分)在平面直角坐标系中,矩形ABCD 的顶点坐标为(0,0)A ,(6,0)B ,(6,8)C ,(0,8)D ,AC ,BD 交于点E .(1)如图(1),双曲线1k y x =过点E ,直接写出点E 的坐标和双曲线的解析式; (2)如图(2),双曲线2k y x=与BC ,CD 分别交于点M ,N ,点C 关于MN 的对称点C '在y 轴上.求证~CMN CBD ∆∆,并求点C '的坐标;(3)如图(3),将矩形ABCD 向右平移(0)m m >个单位长度,使过点E 的双曲线3k y x =与AD 交于点P .当AEP ∆为等腰三角形时,求m 的值.2019年广西河池市中考数学试卷答案与解析一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B铅笔将答题卡上对应题目的答案标号涂黑.)1.(3分)计算34-,结果是()A.1-B.7-C.1D.7【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.【解答】解:341-=-.故选:A.【点评】考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.(3分)如图,1120∠的大小是()a b,则2∠=︒,要使//A.60︒B.80︒C.100︒D.120︒【分析】根据同位角相等,两直线平行即可求解.【解答】解:如果21120∠=∠=︒,那么//a b.所以要使//∠的大小是120︒.a b,则2故选:D.【点评】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.(3分)下列式子中,为最简二次根式的是()A B C D【分析】利用最简二次根式定义判断即可.【解答】解:A、原式=,不符合题意;B 、是最简二次根式,符合题意;C 、原式2=,不符合题意;D 、原式=故选:B .【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4.(3分)某几何体的三视图如图所示,该几何体是( )A .圆锥B .圆柱C .三棱锥D .球【分析】由已知三视图得到几何体是圆锥.【解答】解:由已知三视图得到几何体是以圆锥;故选:A .【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.(3分)不等式组23121x x x -⎧⎨>+⎩…的解集是( ) A .2x … B .1x < C .12x <… D .12x <…【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:23121x x x -⎧⎨>+⎩①②…, 解①得:2x …,解②得:1x >.则不等式组的解集是:12x <….故选:D .【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( )A .53,53B .53,56C .56,53D .56,56【分析】根据众数和中位数的定义求解可得.【解答】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D .【点评】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)如图,在ABC ∆中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .B F ∠=∠ B .B BCF ∠=∠C .AC CF =D .AD CF = 【分析】利用三角形中位线定理得到1//2DE AC =,结合平行四边形的判定定理进行选择. 【解答】解:在ABC ∆中,D ,E 分别是AB ,BC 的中点,DE ∴是ABC ∆的中位线,1//2DE AC =∴. A 、根据B F ∠=∠不能判定//AC DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据B BCF ∠=∠可以判定//CF AB ,即//CF AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC CF =不能判定//AC DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD CF =,//FD AC 不能判定四边形ADFC 为平行四边形,故本选项错误. 故选:B .【点评】本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.(3分)函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据0k >确定一次函数经过第一三象限,根据0b <确定与y 轴负半轴相交,从而判断得解.【解答】解:一次函数2y x =-,10k =>,∴函数图象经过第一三象限,20b =-<,∴函数图象与y 轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B .【点评】本题考查了一次函数的性质,对于一次函数y kx b =+,0k >,函数经过第一、三象限,0k <,函数经过第二、四象限.9.(3分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,则图中与AEB ∠相等的角的个数是( )A .1B .2C .3D .4【分析】根据正方形的性质,利用SAS 即可证明ABE BCF ∆≅∆,再根据全等三角形的性质可得BFC AEB ∠=∠,进一步得到BFC ABF ∠=∠,从而求解.【解答】证明:四边形ABCD 是正方形,//AB BC ∴,AB BC =,90ABE BCF ∠=∠=︒,在ABE ∆和BCF ∆中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE BCF SAS ∴∆≅∆,BFC AEB ∴∠=∠, BFC ABF ∴∠=∠,故图中与AEB ∠相等的角的个数是2. 故选:B .【点评】本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,在正六边形ABCDEF 中,AC =( )A .1B C D .2【分析】过点B 作BG AC ⊥于点G .,正六边形ABCDEF 中,每个内角为(62)1806120-⨯︒÷=︒,即120ABC ∠=︒,30BAC BCA ∠=∠=︒,于是12AG AC ==,2AB =,【解答】解:如图,过点B 作BG AC ⊥于点G .正六边形ABCDEF 中,每个内角为(62)1806120-⨯︒÷=︒, 120ABC ∴∠=︒,30BAC BCA ∠=∠=︒, 12AG AC ∴== 1GB ∴=,2AB =,即边长为2. 故选:D .【点评】本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.11.(3分)如图,抛物线2y ax bx c =++的对称轴为直线1x =,则下列结论中,错误的是()A .0ac <B .240b ac ->C .20a b -=D .0a b c -+=【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A 、由抛物线的开口向下知0a <,与y 轴的交点在y 轴的正半轴上,可得0c >,因此0ac <,故本选项正确,不符合题意;B 、由抛物线与x 轴有两个交点,可得240b ac ->,故本选项正确,不符合题意;C 、由对称轴为12bx a=-=,得2a b =-,即20a b +=,故本选项错误,符合题意; D 、由对称轴为1x =及抛物线过(3,0),可得抛物线与x 轴的另外一个交点是(1,0)-,所以0a b c -+=,故本选项正确,不符合题意.故选:C .【点评】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.(3分)如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C.D.【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【解答】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.(3分)分式方程112x=-的解为3x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:21x-=,解得:3x=,经检验3x=是分式方程的解.故答案为:3x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(3分)如图,以点O为位似中心,将OAB∆放大后得到OCD∆,2OA=,3AC=,则AB CD =25.【分析】直接利用位似图形的性质进而分析得出答案.【解答】解:以点O 为位似中心,将OAB ∆放大后得到OCD ∆,2OA =,3AC =,∴22235OA AB OC CD ===+. 故答案为:25. 【点评】此题主要考查了位似变换,正确得出对应边的比值是解题关键. 15.(3分)掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是12. 【分析】利用随机事件A 的概率P (A )=事件A 可能出现的结果数:所有可能出现的结果数进行计算即可.【解答】解:掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是3162=, 故答案为:12. 【点评】此题主要考查了概率公式,关键是掌握概率的计算方法.16.(3分)如图,PA ,PB 是O 的切线,A ,B 为切点,38OAB ∠=︒,则P ∠= 76︒.【分析】由切线的性质得出PA PB =,PA OA ⊥,得出PAB PBA ∠=∠,90OAP ∠=︒,由已知得出9052PBA PAB OAB ∠=∠=︒-∠=︒,再由三角形内角和定理即可得出结果. 【解答】解:PA ,PB 是O 的切线,PA PB ∴=,PA OA ⊥,PAB PBA ∴∠=∠,90OAP ∠=︒,90903852PBA PAB OAB ∴∠=∠=︒-∠=︒-︒=︒,180525276P ∴∠=︒-︒-︒=︒;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题. 17.(3分)如图,在平面直角坐标系中,(2,0)A ,(0,1)B ,AC 由AB 绕点A 顺时针旋转90︒而得,则AC 所在直线的解析式是 24y x =- .【分析】过点C 作CD x ⊥轴于点D ,易知()ACD BAO AAS ∆≅∆,已知(2,0)A ,(0,1)B ,从而求得点C 坐标,设直线AC 的解析式为y kx b =+,将点A ,点C 坐标代入求得k 和b ,从而得解. 【解答】解:(2,0)A ,(0,1)B2OA ∴=,1OB =过点C 作CD x ⊥轴于点D ,则易知()ACD BAO AAS ∆≅∆ 1AD OB ∴==,2CD OA ==(3,2)C ∴设直线AC 的解析式为y kx b =+,将点A ,点C 坐标代入得 0223k bk b =+⎧⎨=+⎩ ∴24k b =⎧⎨=-⎩∴直线AC 的解析式为24y x =-.故答案为:24y x =-.【点评】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等. 18.(3分)1a ,2a ,3a ,4a ,5a ,6a ,⋯,是一列数,已知第1个数14a =,第5个数55a =,且任意三个相邻的数之和为15,则第2019个数2019a 的值是 6 .【分析】由任意三个相邻数之和都是15,可知1a 、4a 、7a 、31n a +⋯相等,2a 、5a 、8a 、32n a +⋯相等,3a 、6a 、9a 、3n a ⋯相等,可以得出525a a ==,根据12315a a a ++=得34515a ++=,求得3a ,进而按循环规律求得结果.【解答】解:由任意三个相邻数之和都是15可知: 12315a a a ++=, 23415a a a ++=, 34515a a a ++=,⋯1215n n n a a a ++++=,可以推出:14731n a a a a +===⋯=, 25832n a a a a +===⋯=, 3693n a a a a ===⋯=,所以525a a ==, 则34515a ++=, 解得36a =, 20193673÷=,因此201736a a ==. 故答案为:6.【点评】此题主要考查了规律型:数字的变化类,关键是找出第1、4、7⋯个数之间的关系,第2、5、8⋯个数之间的关系,第3、6、9⋯个数之间的关系.问题就会迎刃而解.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.(6分)计算:0213()|3|2-+-.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.【解答】解:原式143=++=【点评】此题主要考查了实数运算,正确化简各数是解题关键. 20.(6分)分解因式:2(1)2(5)x x -+-.【分析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可. 【解答】解:原式221210x x x =-++- 29x =- (3)(3)x x =+-.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键. 21.(8分)如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD 平分BAC ∠,然后连接OD 得到点E ;(2)由AD 平分BAC ∠得到12BAD BAC ∠=∠,由圆周角定理得到12BAD BOD ∠=∠,则BOD BAC ∠=∠,再证明OE 为ABC ∆的中位线,从而得到//OE AC ,12OE AC =. 【解答】解:(1)如图所示;(2)//OE AC ,12OE AC =. 理由如下:AD 平分BAC ∠,12BAD BAC ∴∠=∠,12BAD BOD ∠=∠,BOD BAC ∴∠=∠, //OE AC ∴, OA OB =,OE ∴为ABC ∆的中位线, //OE AC ∴,12OE AC =. 【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.22.(8分)如图,在河对岸有一棵大树A ,在河岸B 点测得A 在北偏东60︒方向上,向东前进120m 到达C 点,测得A 在北偏东30︒方向上,求河的宽度(精确到0.1)m .参考数据:1.414≈ 1.732≈.【分析】过点A 作AD ⊥直线BC ,垂足为点D ,在Rt ABD ∆和Rt ACD ∆中,通过解直角三角形可求出BD ,CD 的长,结合120BC BD CD =-=,即可求出AD 的长. 【解答】解:过点A 作AD ⊥直线BC ,垂足为点D ,如图所示. 在Rt ABD ∆中,tan BDBAD AD∠=,tan60BD AD∴=︒;在Rt ACD∆中,tanCD CADAD∠=,tan30CD AD AD∴=︒=.120BC BD CD AD∴=-==,103.9AD∴=.∴河的宽度为103.9米.【点评】本题考查了解直角三角形的应用-方向角问题,利用解直角三角形结合120BC BD CD=-=,找出关于AD的长的一元一次方程是解题的关键.23.(8分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?【分析】(1)本次调查的样本容量1010%100b=---=(人),÷=(人),10010302040c=÷=;a=÷=,2010020%3010030%(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生200020%400⨯=(人).【解答】解:(1)本次调查的样本容量1010%100÷=(人),b=---=(人),10010302040a=÷=,3010030%c=÷=;2010020%(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生200020%400⨯=(人)答:估计该校参加音乐兴趣班的学生400人.【点评】本题考查统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.(8分)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【分析】(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x 折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【解答】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:30607201050360x y x y +=⎧⎨+=⎩, 解得:164x y =⎧⎨=⎩, 答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:(100161004)180010x ⨯+⨯⨯=, 解得:9x =,答:该店的商品按原价的9折销售.【点评】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.25.(10分)如图,五边形ABCDE 内接于O ,CF 与O 相切于点C ,交AB 延长线于点F .(1)若AE DC =,E BCD ∠=∠,求证:DE BC =;(2)若2OB =,AB BD DA ==,45F ∠=︒,求CF 的长.【分析】(1)由圆心角、弧、弦之间的关系得出AE DC =,由圆周角定理得出ADE DBC ∠=∠,证明ADE DBC ∆≅∆,即可得出结论;(2)连接CO 并延长交AB 于G ,作OH AB ⊥于H ,则90OHG OHB ∠=∠=︒,由切线的性质得出90FCG ∠=︒,得出CFG ∆、OGH ∆是等腰直角三角形,得出CF CG =,OG ,由等边三角形的性质得出30OBH ∠=︒,由直角三角形的性质得出112OH OB ==,OG =,即可得出答案.【解答】(1)证明:AE DC =,∴AE DC =, ADE DBC ∴∠=∠,在ADE ∆和DBC ∆中,ADE DBC E BCDAE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE DBC AAS ∴∆≅∆,DE BC ∴=;(2)解:连接CO 并延长交AB 于G ,作OH AB ⊥于H ,如图所示:则90OHG OHB ∠=∠=︒, CF 与O 相切于点C ,90FCG ∴∠=︒,45F ∠=︒,CFG ∴∆、OGH ∆是等腰直角三角形,CF CG ∴=,OG ,AB BD DA ==,ABD ∴∆是等边三角形,60ABD ∴∠=︒,30OBH ∴∠=︒,112OH OB ∴==,OG ∴2CF CG OC OG ∴==+=.【点评】本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.26.(12分)在平面直角坐标系中,矩形ABCD 的顶点坐标为(0,0)A ,(6,0)B ,(6,8)C ,(0,8)D ,AC ,BD 交于点E .(1)如图(1),双曲线1k y x =过点E ,直接写出点E 的坐标和双曲线的解析式; (2)如图(2),双曲线2k y x=与BC ,CD 分别交于点M ,N ,点C 关于MN 的对称点C '在y 轴上.求证~CMN CBD ∆∆,并求点C '的坐标;(3)如图(3),将矩形ABCD 向右平移(0)m m >个单位长度,使过点E 的双曲线3k y x =与AD 交于点P .当AEP ∆为等腰三角形时,求m 的值.【分析】(1)利用中点坐标公式求出点E 坐标即可.(2)由点M ,N 在反比例函数的图象上,推出DN AD BM AB =,因为BC AD =,AB CD =,推出DN BC BM CD =,推出DN CD BM BC=,可得//MN BD ,由此即可解决问题. (3)分两种情形:①当AP AE =时.②当EP AE =时,分别构建方程求解即可.【解答】解:(1)如图1中,四边形ABCD 是矩形,DE EB ∴=,(6,0)B ,(0,8)D ,(3,4)E ∴, 双曲线1k y x=过点E , 112k ∴=. ∴反比例函数的解析式为12y x=.(2)如图2中,点M ,N 在反比例函数的图象上,DN AD BM AB ∴=,BC AD =,AB CD =,DN BC BM CD ∴=, ∴DN CD BM BC=, //MN BD ∴,CMN CBD ∴∆∆∽.(6,0)B ,(0,8)D ,∴直线BD 的解析式为483y x =-+, C ,C '关于BD 对称,CC BD ∴'⊥,(6,8)C ,∴直线CC '的解析式为3742y x =+, 7(0,)2C ∴'.(3)如图3中,①当5AP AE ==时,(,5)P m ,(3,4)E m +,P ,E 在反比例函数图象上,54(3)m m ∴=+,12m ∴=.②当EP AE =时,点P 与点D 重合,(,8)P m ,(3,4)E m +,P ,E 在反比例函数图象上, 84(3)m m ∴=+,3m ∴=.综上所述,满足条件的m 的值为3或12.【点评】本题属于反比例函数综合题,考查了中点坐标公式,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2019年广西河池市中考数学试卷附分析答案

2019年广西河池市中考数学试卷附分析答案

D.a﹣b+c=0
12.(3 分)如图,△ABC 为等边三角形,点 P 从 A 出发,沿 A→B→C→A 作匀速运动,则
线段 AP 的长度 y 与运动时间 x 之间的函数关系大致是( )
第 2页(共 21页)
A.
B.
C.
D.
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案写在答题卡上对应的答题
A.
B.
C.
D.
【解答】解:根据题意得,点 P 从点 A 运动到点 B 时以及从点 C 运动到点 A 时是一条线
段,故选项 C 与选项 D 不合题意;
点 P 从点 B 运动到点 C 时,y 是 x 的二次函数,并且有最小值,
∴选项 B 符合题意,选项 A 不合题意.
故选:B.
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案写在答题卡上对应的答题
2019 年广西河池市中考数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.每小题给出的四个选项中,只有
一项符合题目要求.请用 2B 铅笔将答题卡上对应题目的答案标号涂黑.) 1.(3 分)计算 3﹣4,结果是( )
A.﹣1
B.﹣7
C.1
D.7
2.(3 分)如图,∠1=120°,要使 a∥b,则∠2 的大小是( )
23.(8 分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机 调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整
的统计图表:
兴趣班
人数
百分比
第 4页(共 21页)
美术
10
10%
书法
30

广西壮族自治区2019-2020年度中考二模数学试题(II)卷

广西壮族自治区2019-2020年度中考二模数学试题(II)卷

广西壮族自治区2019-2020年度中考二模数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各式不能成立的是()A.(x=x B.xC.(x D.x2 . 如图所示,几何体的左视图为()A.B.C.D.3 . 如图,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.120°B.80°C.100°D.60°4 . 近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1065 . 若,则函数的图象可能是A.B.C.D.6 . 在下列命题中,为真命题的是()A.两个锐角的和是锐角B.相等的角是对顶角C.同旁内角互补D.邻补角是互补的角7 . 下列三角形中,不一定是直角三角形的是()A.三角形中有一边的中线等于这边的一半B.三角形三内角之比是C.三角形有一内角是,且有一边是另一边的一半D.三角形三边分别是、、8 . 将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为()B.1个单位A.个单位D.个单位C.个单位9 . 下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定10 . 如图,动点P在平面直角坐标系中,按图中筒头所示方向运动:第1次从原点运动到点(1, 1),第2次接看运动到点(2,0),第3次接着运动到点(3, 2) 这样的运动规律经过第2019次运动后动点P的坐标是()A.(2018,2)B.(2019,2)C.(2019,1)D.(2017,1)11 . 的相反数是()A.B.C.D.二、填空题12 . 单项式的系数是m,多项式的次数是n,则m+n= _________.13 . 六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为_____.14 . 已知是锐角,与互补,与互余,则的值等于__________度.15 . 甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,则成绩最稳定的同学是.16 . 如图,点P是△ABC的重心,过点P作DE∥AB交BC于点D,交AC于点E,若AB的长度为6,则DE的长度为_____.17 . 分解因式:a3﹣10a2+25a=_____.18 . 如图所示,直线y=x﹣3分别与x轴、y轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线B′M的解析式为_____.三、解答题19 . 如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足,.(1)求证:;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.20 . 某商户用如图1的长方形和正方形纸板作侧面和底面(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖纸箱. (加工时接缝材料不计)(1)该商户原计划用若干天加工纸箱300个,后因工作需要,将工作效率提高为原计划的1.8倍,提前4天完成了任务,且总共比原计划多加工纸箱60个,问原计划几天完成工作任务?(2)若该商户购进正方形纸板450张,长方形纸板1300张. 问竖式纸箱、横式纸箱各加工多少个,恰好能将购进的纸板全部用完?21 . 计算:(1);(2).(3)(4),并在数轴上表示不等式组的解集.某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩(得分为整数,满分为100分)分成五组:第一组49.5~59.5;第二组59.5~69.5;第三组69.5~79.5;第四组79.5~89.5;第五组89.5~100.5.统计后得到右图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:22 . 第四组的频数为(直接写答案).23 . 若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有________个(直接填写答案).24 . 若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.25 . 如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF DC,BC∥FE,∠A∠D.求证:AB DE.(本题请注明推理依据)26 . 如图,是将抛物线平移后得到的抛物线,其对称轴为,与轴的一个交点为,另一交点为,与轴交点为.(1)求抛物线的函数表达式;(2)若点为抛物线上一点,且,求点的坐标;(3)点是抛物线上一点,点是一次函数的图象上一点,若四边形为平行四边形,这样的点是否存在?若存在,分别求出点的坐标,若不存在,说明理由.27 . 计算:(1)(2)28 . 饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系.直至水温降至20℃时自动开机加热,重复上述自动程序.若在水温为20℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,(1) 分别求出直线及双曲线的解析式.(2) 学生在每次温度升降过程中能喝到50℃以上水的时间有多长?(3) 若某天上午六点饮水机自动接通电源,问学生上午第一节下课时(8:15)能喝到超过50℃的水吗?说明理由.。

广西省河池市2019-2020学年中考数学第二次调研试卷含解析

广西省河池市2019-2020学年中考数学第二次调研试卷含解析

广西省河池市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作弧AC 、弧CB 、弧BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I 为对称轴的交点,如图2,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE=2π,将它沿等边△DEF 的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( )A .18πB .27πC .452π D .45π2.如图,在Rt △ABC 中,∠C=90°, BE 平分∠ABC ,ED 垂直平分AB 于D ,若AC=9,则AE 的值是 ( )A .63B .63C .6D .43.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-14.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是( )A .a <0,b <0,c >0B .﹣2b a=1 C .a+b+c <0D .关于x 的方程ax 2+bx+c=﹣1有两个不相等的实数根5.已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( ) A .y =(x+2)2+3 B .y =(x ﹣2)2+3 C .y =x 2+1 D .y =x 2+5 6.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A .B .C .D .7.a≠0,函数y =ax与y =﹣ax 2+a 在同一直角坐标系中的大致图象可能是( ) A . B .C .D .8.方程x 2﹣kx+1=0有两个相等的实数根,则k 的值是( ) A .2B .﹣2C .±2D .09.计算-3-1的结果是( ) A .2 B .-2 C .4 D .-4 10.计算()15-3÷的结果等于( ) A .-5B .5C .1-5D .1511.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼12.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( ) A .三棱柱B .四棱柱C .三棱锥D .四棱锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD 内有两点E 、F 满足AE=1,EF=FC=3,AE ⊥EF ,CF ⊥EF ,则正方形ABCD 的边长为_____.14.如图,在△ABC 中,∠ACB=90°,∠B=60°,AB=12,若以点A 为圆心, AC 为半径的弧交AB 于点E ,以点B 为圆心,BC 为半径的弧交AB 于点D ,则图中阴影部分图形的面积为__(保留根号和π)15.已知一次函数y =ax+b ,且2a+b =1,则该一次函数图象必经过点_____.16.如图,在等腰Rt ABC △中,22AC BC ==,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是________.17.如图①,四边形ABCD 中,AB ∥CD ,∠ADC=90°,P 从A 点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图②所示,当P 运动到BC 中点时,△PAD 的面积为______.1812x-x 的取值范围是_____________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,抛物线y=12x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=12MN时,求菱形对角线MN的长.20.(6分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.21.(6分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =23如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C ,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由; ②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)22.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下: 排球 10 9.5 9.5 10 8 9 9.5 9 7 10 4 5.5 10 9.5 9.5 10 篮球 9.5 9 8.5 8.5 10 9.5 10 869.5109.598.59.56整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格) 分析数据:两组样本数据的平均数、中位数、众数如下表所示: 项目 平均数 中位数 众数 排球 8.75 9.5 10 篮球 8.819.259.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)23.(8分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)∠EDB =_____︒(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N. ①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM 、CN 与BC 之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路. 24.(10分)已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;如果△ABC 是等边三角形,试求这个一元二次方程的根.25.(10分)如图,某校数学兴趣小组要测量大楼AB 的高度,他们在点C 处测得楼顶B 的仰角为32°,再往大楼AB 方向前进至点D 处测得楼顶B 的仰角为48°,CD =96m ,其中点A 、D 、C 在同一直线上.求AD 的长和大楼AB 的高度(结果精确到2m )参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.7326.(12分)计算:-2-2 -12 + 21sin60π3⎛⎫-︒+- ⎪⎝⎭027.(12分)如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF =.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.2.C【解析】【分析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∴∠A=∠ABE , ∴∠CBE=30°,∴BE=2EC ,即AE=2EC , 而AE+EC=AC=9, ∴AE=1. 故选C . 3.D 【解析】试题分析:在方程两边同乘(x +1)得:x -a =a(x +1), 整理得:x(1-a)=2a ,当1-a =0时,即a =1,整式方程无解, 当x +1=0,即x =-1时,分式方程无解, 把x =-1代入x(1-a)=2a 得:-(1-a)=2a , 解得:a =-1, 故选D .点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件. 4.D 【解析】试题分析:根据图像可得:a <0,b >0,c <0,则A 错误;12ba->,则B 错误;当x=1时,y=0,即a+b+c=0,则C 错误;当y=-1时有两个交点,即2ax bx c 1++=-有两个不相等的实数根,则正确,故选D . 5.A 【解析】 【分析】结合向左平移的法则,即可得到答案. 【详解】解:将抛物线y =x 2+3向左平移2个单位可得y =(x +2)2+3, 故选A. 【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上. 故选C.考点:三视图7.D【解析】【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项【详解】当a>0时,函数y=ax的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=ax的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.8.C【解析】【分析】根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.【详解】∵方程x2﹣kx+1=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故选C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac >0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.9.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.【分析】根据有理数的除法法则计算可得.【详解】解:15÷(-3)=-(15÷3)=-5,故选:A.【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.11.B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.12.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状二、填空题:(本大题共6个小题,每小题4分,共24分.)5213.【解析】分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.详解:连接AC,交EF于点M,∴∠E=∠F=90°, ∵∠AME=∠CMF , ∴△AEM ∽△CFM , ∴AE EMCF FM =, ∵AE=1,EF=FC=3, ∴13EM FM =, ∴EM=34,FM=94,在Rt △AEM 中,AM 2=AE 2+EM 2=1+916=2516,解得AM=54, 在Rt △FCM 中,CM 2=CF 2+FM 2=9+8116=22516,解得CM=154,∴AC=AM+CM=5,在Rt △ABC 中,AB=BC ,AB 2+BC 2=AC 2=25,∴AB=2,即正方形的边长为2.点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC 的长是解题的关键,注意勾股定理的应用.14.【解析】 【分析】根据扇形的面积公式:S=2360n R π分别计算出S 扇形ACE ,S 扇形BCD ,并且求出三角形ABC 的面积,最后由S阴影部分=S 扇形ACE +S 扇形BCD -S △ABC 即可得到答案.【详解】S 阴影部分=S 扇形ACE +S 扇形BCD -S △ABC ,∵S 扇形ACE =60362360π⨯⨯=12π,S 扇形BCD =3036360π⨯=3π,S △ABC =12×6×∴S 阴影部分.故答案为15π−183. 【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式. 15.(2,1) 【解析】∵一次函数y=ax+b , ∴当x=2,y=2a+b , 又2a+b=1, ∴当x=2,y=1,即该图象一定经过点(2,1). 故答案为(2,1). 16.π 【解析】 【分析】取AB 的中点E ,取CE 的中点F ,连接PE ,CE ,MF ,则112FM PE ==,故M 的轨迹为以F 为圆心,1为半径的半圆弧,根据弧长公式即可得轨迹长. 【详解】解:如图,取AB 的中点E ,取CE 的中点F ,连接PE ,CE ,MF ,∵在等腰Rt ABC V 中,22AC BC ==P 在以斜边AB 为直径的半圆上, ∴2211222PE AB AC BC =+==, ∵MF 为CPE V 的中位线,∴112FM PE ==, ∴当点P 沿半圆从点A 运动至点B 时,点M 的轨迹为以F 为圆心,1为半径的半圆弧,∴弧长180180rππ︒==︒,故答案为:π.【点睛】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题. 17.1 【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P 点运动到C 点时,△PAD的面积最大,S △PAD =12×AD×DC=8,∴AD=4,又∵S △ABD =12×AB×AD=2,∴AB=1,∴当P 点运动到BC 中点时,△PAD 的面积=12×12(AB+CD )×AD=1,故答案为1. 18.x<12【解析】由题意得:1﹣2x >0,解得:12x <, 故答案为12x <. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1) 21262y x x =--,点D 的坐标为(2,-8) (2) 点F 的坐标为(7,92)或(5,72)(3) 菱形对角线MN1. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB ,tan ∠FAG=tan ∠BDE ,求出F 点坐标.(3)分类讨论,当MN 在x 轴上方时,在x 轴下方时分别计算MN. 详解:(1)∵OB=OC=1, ∴B(1,0),C(0,-1).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩, 解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--. ∵21262y x x =--=()21282x --, ∴点D 的坐标为(2,-8).(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --. ∵∠FAB=∠EDB , ∴tan ∠FAG=tan ∠BDE ,即21261222x x x --=+, 解得17x =,22x =-(舍去). 当x=7时,y=92, ∴点F 的坐标为(7,92). 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-). 综上所述,点F 的坐标为(7,92)或(5,72-). (3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0).如图,当MN 在x 轴上方时,设T 为菱形对角线的交点. ∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n). ∵点M 在抛物线上,∴()()212222262n n n =+-+-,即2280n n --=.解得114n +=,214n =(舍去).∴.当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n). ∵点M 在抛物线上, ∴()()212222262n n n -=+-+-, 即22+80n n -=.解得1n =,2n =(舍去).∴1.综上所述,菱形对角线MN 1. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y =ax 2+bx +c (0a ≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x ()(2,0)x ,利用双根式,y=()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点,122x x x +=. 2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.20.(1)100;(2)作图见解析;(3)1. 【解析】试题分析:(1)根据百分比=所占人数总人数计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可; (3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100, 故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.21.(1) 当3MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②221【解析】【分析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【详解】(1)当3MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=12∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵3,∵四边形MCND'是菱形,∴CN=CM,∴CC'=12E'C'=3;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',3,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,22=221AP PD+'.【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.22.130 小明平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数; ()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:()1达到优秀的人数约为16013016⨯=(人); 故答案为130;()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高. 【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.23.(1)α;(2)(2)①见解析;②DM =DN ,理由见解析;③数量关系:sin BM CN BC α+=⋅ 【解析】 【分析】(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α; (2)①如图,利用∠EDF=180°﹣2α画图;②先利用等腰三角形的性质得到DA 平分∠BAC ,再根据角平分线性质得到DE=DF ,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF ,然后证明△MDE ≌△NDF 得到DM=DN ; ③先由△MDE ≌△NDF 可得EM=FN ,再证明△BDE ≌△CDF 得BE=CF ,利用等量代换得到BM+CN=2BE ,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα. 【详解】(1)∵AB=AC ,∴∠B=∠C 12=(180°﹣∠A )=90°﹣α. ∵DE ⊥AB ,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α. 故答案为:α;(2)①如图:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵MED NFDDE DFMDE NDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MDE≌△NDF,∴DM=DN;③数量关系:BM+CN=BC•sinα.证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.24.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形;(3)当△ABC 是等边三角形,∴(a+c )x 2+2bx+(a ﹣c )=0,可整理为: 2ax 2+2ax=0, ∴x 2+x=0,解得:x 1=0,x 2=﹣1. 考点:一元二次方程的应用.25.AD 的长约为225m ,大楼AB 的高约为226m 【解析】 【分析】首先设大楼AB 的高度为xm ,在Rt △ABC 中利用正切函数的定义可求得 ,然后根据∠ADB 的正切表示出AD 的长,又由CD=96m ,x961.11-= ,解此方程即可求得答案. 【详解】解:设大楼AB 的高度为xm ,在Rt △ABC 中,∵∠C=32°,∠BAC=92°,∴ABAC=tan 30==o,在Rt △ABD 中,AB tan ADB tan48AD∠=︒= , ∴AB xAD =tan48 1.11=︒,∵CD=AC-AD ,CD=96m ,x961.11-= , 解得:x≈226, ∴x 116AD 1051.11 1.11=≈≈ 答:大楼AB 的高度约为226m ,AD 的长约为225m . 【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.26. 74-【解析】 【分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【详解】解:原式=171144--+=-【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.27.证明见解析.【解析】【分析】根据菱形的性质,先证明△ABE ≌△ADF ,即可得解.【详解】在菱形ABCD 中,AB =BC =CD =AD ,∠B =∠D.∵点E ,F 分别是BC ,CD 边的中点,∴BE =12BC ,DF =12CD , ∴BE =DF.∴△ABE ≌△ADF ,∴AE =AF.。

广西省河池市2019-2020学年中考第二次大联考数学试卷含解析

广西省河池市2019-2020学年中考第二次大联考数学试卷含解析

广西省河池市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算211aaa---的结果是()A.1 B.-1 C.11a-D.2211+-aa2.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D.53.在函数y=x中,自变量x的取值范围是( )A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠14.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣25.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.146.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件7.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.12B.2 C.55D.2558.若顺次连接四边形ABCD各边中点所得的四边形是菱形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形9.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.1810.下列运算正确的是()A.2a+3a=5a2B.(a3)3=a9C.a2•a4=a8D.a6÷a3=a211.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A.美B.丽C.泗D.阳12.7的相反数是( )A.7 B.-7 C.17D.-17二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.14.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)15.如果分式42xx-+的值为0,那么x的值为___________.16.分解因式:3x2-6x+3=__.17.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.18.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P 的横坐标.20.(6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.21.(6分)如图,以O 为圆心,4为半径的圆与x 轴交于点A ,C 在⊙O 上,∠OAC=60°. (1)求∠AOC 的度数;(2)P 为x 轴正半轴上一点,且PA=OA ,连接PC ,试判断PC 与⊙O 的位置关系,并说明理由; (3)有一动点M 从A 点出发,在⊙O 上按顺时针方向运动一周,当S △MAO =S △CAO 时,求动点M 所经过的弧长,并写出此时M 点的坐标.22.(8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB=4,BC=8,求图中阴影部分的面积.23.(8分)解不等式组()()303129x x x -≥⎧⎨->+⎩.24.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元时,每天可销售______ 件,每件盈利______ 元;(用x 的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.25.(10分)已知,平面直角坐标系中的点A (a ,1),t =ab ﹣a 2﹣b 2(a ,b 是实数) (1)若关于x 的反比例函数y =2a x过点A ,求t 的取值范围.(2)若关于x 的一次函数y =bx 过点A ,求t 的取值范围.26.(12分)解方程:3221xx x=+-.27.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x天)的关系如下表:(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:()()22111=111a aa aaa a a+-------=2211a aa-+-=11a-,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.2.C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.3.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.4.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.C【解析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键. 6.D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.7.A分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.详解:连接AC,由网格特点和勾股定理可知,2,22,10AB BC==AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴tan∠ABC=21222ACAB==.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.8.C【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.9.C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.10.B【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.11.D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键.12.B【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】7的相反数是−7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【详解】由题意可得,DE=DB=CD=12 AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∵在Rt △ABC 中,∠ACB=90°,BC=6,∠B=30°,∴∴故答案为.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.【解析】【分析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m ,又∵∠CAD=30°,∴在Rt △ADC 中,tan ∠CDA=tan30°=CD AD =解得:m ),故答案为【点睛】此题主要考查了解直角三角形的应用,正确得出tan ∠CDA=tan30°=CD AD 是解题关键. 15.4【解析】【详解】 ∵402x x -=+, ∴x-4=0,x+2≠0,解得:x=4,故答案为4.16.3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x-+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.23【解析】【分析】由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=ACsin60︒即可.【详解】由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3∴圆心角∠AO2O1=60°∴在Rt△ACO2中,AO2=ACsin60︒=23.故答案为23.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.18.85【解析】【分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C 1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C 1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).【详解】(1)抛物线的解析式为y=(x-4)(x+2)=x2-x-4.(2)连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C 1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.20.(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形21.(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3、M2(﹣2,﹣3、M3(﹣2,3)、M4(2,3.【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP 是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3;劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3;优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3;优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3、M2(﹣2,﹣3)、M3(﹣2,3)、M4(2,3.【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.22.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD ,∠B=∠D=90°,根据折叠的性质得到∠E=∠B ,AB=AE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF ,EF=DF ,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD 是矩形,∴AB=CD ,∠B=∠D=90°,∵将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,∴∠E=∠B ,AB=AE ,∴AE=CD ,∠E=∠D ,在△AEF 与△CDF 中,∵∠E=∠D ,∠AFE=∠CFD ,AE=CD ,∴△AEF ≌△CDF ;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF ≌△CDF ,∴AF=CF ,EF=DF ,∴DF 2+CD 2=CF 2,即DF 2+42=(8﹣DF )2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S △ACE ﹣S △AEF =12×4×8﹣12×4×3=1. 点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.23.x <﹣1.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 由①得x≤1,由②得x <﹣1,∴原不等式组的解集是x <﹣1.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.24.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.25.(1)t≤﹣34;(2)t≤3;(3)t≤1. 【解析】【分析】(1)把点A 的坐标代入反比例函数解析式求得a 的值;然后利用二次函数的最值的求法得到t 的取值范围.(2)把点A 的坐标代入一次函数解析式求得a=1b;然后利用二次函数的最值的求法得到t 的取值范围. (3)把点A 的坐标代入二次函数解析式求得以a 2+b 2=1-ab ;然后利用非负数的性质得到t 的取值范围.【详解】解:(1)把A (a ,1)代入y =2a x 得到:1=2a a, 解得a =1,则t =ab ﹣a 2﹣b 2=b ﹣1﹣b 2=﹣(b ﹣12)2﹣34. 因为抛物线t =﹣(b ﹣12)2﹣34的开口方向向下,且顶点坐标是(12,﹣34), 所以t 的取值范围为:t≤﹣34;(2)把A (a ,1)代入y =bx 得到:1=ab ,所以a =1b, 则t =ab ﹣a 2﹣b 2=﹣(a 2+b 2)+1=﹣(b+1b )2+3≤3, 故t 的取值范围为:t≤3;(3)把A (a ,1)代入y =x 2+bx+b 2得到:1=a 2+ab+b 2,所以ab =1﹣(a 2+b 2),则t =ab ﹣a 2﹣b 2=1﹣2(a 2+b 2)≤1,故t 的取值范围为:t≤1.【点睛】本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.26.x=12,x=﹣2 【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】3221x x x=+-, 则2x (x+1)=3(1﹣x ),2x 2+5x ﹣3=0,(2x ﹣1)(x+3)=0,解得:x 1=12,x 2=﹣3, 检验:当x=12,x=﹣2时,2(x+1)(1﹣x )均不等于0, 故x=12,x=﹣2都是原方程的解. 【点睛】本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.27.(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y 元,则当1≤x <50时,y=﹣2x 2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:198 3194 k bk b+=⎧⎨+=⎩,解得:2200 kb=-⎧⎨=⎩,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:221604000150120120005090y x x xy x x⎧=-++≤⎨=-+≤≤⎩(<)()当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.。

2019年广西河池市中考数学第二次模拟试题及答案解析

2019年广西河池市中考数学第二次模拟试题及答案解析

最新广西河池市中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣32.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥B.圆柱C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A. B. C. D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2= .16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S 甲2=5.5,S 乙2=7.3,S 丙2=8.6,S 丁2=4.5,则成绩最稳定的是 .17.如图,以O 为位似中心,把五边形ABCDE 的面积扩大为原来的4倍,得五边形A 1B 1C 1D 1E 1,则OD :OD 1= .18.点E 是平行四边形ABCD 边BC 的中点,平行四边形ABCD 的面积是m ,则四边形ABEF 的面积是 .三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O 、M 都在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1;(2)画出将△ABC 绕点O 按顺时针方向旋转90°后得到的△A 2B 2C 2(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC 中,∠A=30°,∠B=60°.(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E (要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE .22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是 册,a= 册;(2)请将条形统计图补充完整; 类别 语文数学 英语 物理 化学 其他数量(册)22 20 18 a 12 14频率 0.14 (3)数据22,20,18,a ,12,14中的众数是 ,极差是 ;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y 1=的图象与一次函数y 2=ax+b 的图象交于点A (1,4)和点B (m ,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y 1>y 2成立的自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.25.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥B.圆柱C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN ⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2= (1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S 甲2=5.5,S 乙2=7.3,S 丙2=8.6,S 丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O 为位似中心,把五边形ABCDE 的面积扩大为原来的4倍,得五边形A 1B 1C 1D 1E 1,则OD :OD 1= 1:2 .【考点】位似变换.【分析】根据五边形ABCDE 的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O 为位似中心,把五边形ABCDE 的面积扩大为原来的4倍,得五边形A 1B 1C 1D 1E 1,则OD :OD 1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E 是平行四边形ABCD 边BC 的中点,平行四边形ABCD 的面积是m ,则四边形ABEF 的面积是 m .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC 的面积为a ,根据△AFD ∽△CFE 和AD=2EC ,求出△AFD 的面积,根据DF=2FE ,求出△DFC 的面积,计算得到a=m ,得到答案.【解答】解:设△EFC 的面积为a ,∵E 是BC 的中点,∴BC=2EC ,则AD=2EC ,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O 、M 都在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1;(2)画出将△ABC 绕点O 按顺时针方向旋转90°后得到的△A 2B 2C 2(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 、C 关于直线OM 的对称点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°后的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A 1B 1C 1如图;(2)△A 2B 2C 2如图;(3)是轴对称,如图直线l 为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC 中,∠A=30°,∠B=60°.(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E (要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE .【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100 册,a= 14 册;(2)请将条形统计图补充完整;类别语文数学英语物理化学其他数量(册)22 20 18 a 12 14频率0.14(3)数据22,20,18,a,12,14中的众数是14 ,极差是10 ;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x 折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x 元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y 折.2400÷(50×1.2)=4080×20+80×0.1y •20﹣2400≥480y ≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y 1=的图象与一次函数y 2=ax+b 的图象交于点A (1,4)和点B (m ,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y 1>y 2成立的自变量x 的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.=,再求【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.=的图象过点A(1,4),即4=,【解答】解:(1)∵函数y1=,∴k=4,即y1=上,又∵点B(m,﹣2)在y1∴m=﹣2,∴B(﹣2,﹣2),=ax+b过A、B两点,又∵一次函数y2即,解之得.∴y 2=2x+2.综上可得y 1=,y 2=2x+2.(2)要使y 1>y 2,即函数y 1的图象总在函数y 2的图象上方,如图所示:当x <﹣2 或0<x <1时y 1>y 2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC 的面积S △ABC =AC ×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP ≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。

广西河池市2019年中考数学试卷(解析版)

广西河池市2019年中考数学试卷(解析版)

广西河池市2019年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B铅笔将答题卡上对应题目的答案标号涂黑.)1.(3分)计算3﹣4,结果是()A.﹣1B.﹣7C.1D.7【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.【解答】解:3﹣4=﹣1.故选:A.【点评】考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.(3分)如图,∠1=120°,要使a∥b,则∠2的大小是()A.60°B.80°C.100°D.120°【分析】根据同位角相等,两直线平行即可求解.【解答】解:如果∠2=∠1=120°,那么a∥b.所以要使a∥b,则∠2的大小是120°.故选:D.【点评】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.(3分)下列式子中,为最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、原式=,不符合题意;B、是最简二次根式,符合题意;C、原式=2,不符合题意;D、原式=2,不符合题意;故选:B.【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4.(3分)某几何体的三视图如图所示,该几何体是()A.圆锥B.圆柱C.三棱锥D.球【分析】由已知三视图得到几何体是圆锥.【解答】解:由已知三视图得到几何体是以圆锥;故选:A.【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.(3分)不等式组的解集是()A.x≥2B.x<1C.1≤x<2D.1<x≤2【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A.53,53B.53,56C.56,53D.56,56【分析】根据众数和中位数的定义求解可得.【解答】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.【点评】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF【分析】利用三角形中位线定理得到DE AC,结合平行四边形的判定定理进行选择.【解答】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE AC.A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.【点评】本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.(3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【解答】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.【点评】本题考查了一次函数的性质,对于一次函数y=kx+b,k>0,函数经过第一、三象限,k<0,函数经过第二、四象限.9.(3分)如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A.1B.2C.3D.4【分析】根据正方形的性质,利用SAS即可证明△ABE≌△BCF,再根据全等三角形的性质可得∠BFC=∠AEB,进一步得到∠BFC=∠ABF,从而求解.【解答】证明:∵四边形ABCD是正方形,∴AB∥BC,AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BFC=∠AEB,∴∠BFC=∠ABF,故图中与∠AEB相等的角的个数是2.故选:B.【点评】本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,在正六边形ABCDEF中,AC=2,则它的边长是()A.1B.C.D.2【分析】过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,即∠ABC=120°,∠BAC=∠BCA=30°,于是AG=AC=,AB=2,【解答】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,∴∠ABC=120°,∠BAC=∠BCA=30°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.【点评】本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.11.(3分)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A.ac<0B.b2﹣4ac>0C.2a﹣b=0D.a﹣b+c=0【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项正确,不符合题意;C、由对称轴为x=﹣=1,得2a=﹣b,即2a+b=0,故本选项错误,符合题意;D、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(﹣1,0),所以a﹣b+c=0,故本选项正确,不符合题意.故选:C.【点评】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.(3分)如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A.B.C.D.【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【解答】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A 时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.(3分)分式方程的解为x=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(3分)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则=.【分析】直接利用位似图形的性质进而分析得出答案.【解答】解:∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴===.故答案为:.【点评】此题主要考查了位似变换,正确得出对应边的比值是解题关键.15.(3分)掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是.【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.【解答】解:掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的计算方法.16.(3分)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P =76°.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP =90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.17.(3分)如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣4.【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【解答】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x﹣4.故答案为:y=2x﹣4.【点评】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.18.(3分)a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是6.【分析】由任意三个相邻数之和都是15,可知a1、a4、a7、…a3n+1相等,a2、a5、a8、…a3n+2相等,a3、a6、a9、…a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15得4+5+a3=15,求得a3,进而按循环规律求得结果.【解答】解:由任意三个相邻数之和都是15可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵2019÷3=673,因此a2017=a3=6.故答案为:6.【点评】此题主要考查了规律型:数字的变化类,关键是找出第1、4、7…个数之间的关系,第2、5、8…个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.(6分)计算:30+﹣()﹣2+|﹣3|.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.【解答】解:原式=1+2﹣4+3=2【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)分解因式:(x﹣1)2+2(x﹣5).【分析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.21.(8分)如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.【解答】解:(1)如图所示;(2)OE∥AC,OE=AC.理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC,∵∠BAD=∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE=AC.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.22.(8分)如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东60°方向上,向东前进120m到达C点,测得A在北偏东30°方向上,求河的宽度(精确到0.1m).参考数据:≈1.414,≈1.732.【分析】过点A作AD⊥直线BC,垂足为点D,在Rt△ABD和Rt△ACD中,通过解直角三角形可求出BD,CD的长,结合BC=BD﹣CD=120,即可求出AD的长.【解答】解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan60°=AD;在Rt△ACD中,tan∠CAD=,∴CD=AD•tan30°=AD.∴BC=BD﹣CD=AD=120,∴AD=103.9.∴河的宽度为103.9米.【点评】本题考查了解直角三角形的应用﹣方向角问题,利用解直角三角形结合BC=BD﹣CD=120,找出关于AD的长的一元一次方程是解题的关键.23.(8分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:兴趣班人数百分比美术1010%书法30a体育b40%音乐20c根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?【分析】(1)本次调查的样本容量10÷10%=100(人),b=100﹣10﹣30﹣20=40(人),a=30÷100=30%,c=20÷100=20%;(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生2000×20%=400(人).【解答】解:(1)本次调查的样本容量10÷10%=100(人),b=100﹣10﹣30﹣20=40(人),a=30÷100=30%,c=20÷100=20%;(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生2000×20%=400(人)答:估计该校参加音乐兴趣班的学生400人.【点评】本题考查统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.(8分)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【分析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【解答】解:(1)设跳绳的单价为x元/条,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x折销售,可得:(100×16+100×4)×=1800,解得:x=9,答:该店的商品按原价的9折销售.【点评】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.25.(10分)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB 延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.【分析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等边三角形的性质得出∠OBH=30°,由直角三角形的性质得出OH=OB=1,OG=,即可得出答案.【解答】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F=45°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD=60°,∴∠OBH=30°,∴OH=OB=1,∴OG=,∴CF=CG=OC+OG=2+.【点评】本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.26.(12分)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN 的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E 的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【分析】(1)利用中点坐标公式求出点E坐标即可.(2)由点M,N在反比例函数的图象上,推出DN•AD=BM•AB,因为BC=AD,AB=CD,推出DN•BC=BM•CD,推出=,可得MN∥BD,由此即可解决问题.(3)分两种情形:①当AP=AE时.②当EP=AE时,分别构建方程求解即可.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于BD对称,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.综上所述,满足条件的m的值为3或12.【点评】本题属于反比例函数综合题,考查了中点坐标公式,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17. 已知在△ABC中,∠A、∠B为锐角,且sinA= ,cosB= ,∠C=________.
18. 如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B,C不重合),连结AP,作PE⊥AP交∠BCD的外 角平分线于E,设BP=x,△PCE面积为y,则y与x的函数关系式是________.
广西壮族自治区河池市广西2019届数学中考二模试卷
一、单选题
1. 的相反数是( )
A.
B. C.
D.2
2. 一组数据0、﹣1、2、3的极差是( ) A.2B.3C.4D.5 3. 如图,∠1=40°,如果CD∥BE,那么∠B的度数为( )
A . 160° B . 140° C . 60° D . 50° 4. 如图是一个几何体的三视图,则此几何体是( )
(1) 求证:PA是⊙O的切线; (2) 若sinE= ,PA=6,求AC的长. 26. 如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).
(1) 求该抛物线的解析式; (2) 若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标; (3) 若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的 坐标;若不存在,请说明理由. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
A . CB=CD B . ∠BAC=∠DAC C . ∠BCA=∠DCA D . ∠B=∠D=90°
7. 如图,线段 是 的直径,弦

,则
等于( )
A . 160° B . 150° C . 140° D . 120° 8. 下列事件属于必然事件的是( ) A . 明天我市最高气温为56℃ B . 下雨后有彩虹 C . 在1个标准大气压下,水加热到100℃沸腾 D . 中秋节晚上能看到月亮 9. 下列各曲线中表示y是x的函数的是( )
12. 13. 14. 15. 16. 17. 18. 19. 20.
21.
22.
23. 24. 25.
26.
A . P>Q B . P<Q C . P=Q D . 无法确定 12. 如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿 矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分 )的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为( )

24. 某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都 相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.
(1) 每个气排球和每个篮球的价格各是多少元? (2) 该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个 数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元? 25. 如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点P,OP交AB于点D,BC、PA 的延长线交于点E.
A.
B.
C.
D.
二、填空题
13. 化简:
=_x+a),则a=________.
15. 小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.
16. 将一副含30°角和含45°角的三角板如图放置,则∠1的度数为________度.
抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:
(1) 宣传小组抽取的捐款人数为多少人,请补全条形统计图; (2) 统计的捐款金额的中位数是多少元; (3) 在扇形统计图中,求100元所对应扇形的圆心角的度数; (4) 已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元? 23. 如图,在教学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶 端D的仰角为32°,AC=22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62
三、解答题
19. 计算:﹣(﹣2)﹣ ﹣2﹣1﹣4cos60°
20. 先化简,再求值:
,其中x= ﹣2.
21. 如图,在图中求作⊙O,使⊙O满足以线段DE为弦,且圆心O到∠ABC两边的距离相等(要求:尺规作图,不写作
法,保留作图痕迹)
22. 企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机
A . 圆柱 B . 棱柱 C . 圆锥 D . 棱台 5. 如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是( )
A . 6 B . 12 C . 18 D . 24 6. 如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.
B.
C.
D.
10. 如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在A C上时,∠CAE的度数是( )
A . 30° B . 40° C . 50° D . 60° 11. 如图,扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分的面积,那 么P和Q的大小关系是( )
相关文档
最新文档