第1课时--平均数平均数的分类
大洼县第二中学七年级数学下册 第6章 数据的分析6.1 平均数、中位数、众数6.1.1 平均数第1课
6.1 平均数、中位数、众数6。
1。
1 平均数第1课时平均数【知识与技能】在现实的情景中理解平均数的意义,认识平均数的优、缺点.【过程与方法】通过探究,使学生掌握平均数的概念,利用平均数解决一些实际问题。
【情感态度】培养学生对数学的感悟能力。
【教学重点】平均数的意义及平均数的计算.【教学难点】正确运用平均数处理一些实际问题.一、情景导入,初步认知在小学我们已经学过平均数,你能用平均数的知识解决下面的问题吗?某校有24人参加了“希望杯〞数学课外活动小组,分成三组进行竞争,在一次“希望杯〞初赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98乙:90、83、78、84、82、96、97、80丙:93、82、97、80、88、83、85、83怎样比拟这次考试三个小组的数学成绩呢?解决这个问题我们只需要用到平均数,在小学我们学过平均数,但非常浅显,现在我们继续学习平均数,希望通过这节课的学习,同学们能加深对平均数概念的理解。
【教学说明】通过实际问题的导入,使学生初步感知平均数。
二、思考探究,获取新知1.一个小组10名同学的身高(单位:cm〕如下表所示:(1〕计算10名同学身高的平均数.〔2〕在数轴上标出表示这些同学的身高及其平均数。
〔3〕观察表示平均数的点与其他的点的位置关系,你能得出什么结论?解:(1〕平均数为:x=〔151+156+153+158+154+161+155+157+154+157〕÷10=155。
6(cm〕。
〔2)在数轴上为:(3)这些点都位于x两侧,不会都在平均数的一侧;x可以作为这组同学的身高的代表值,它反映了这组同学的身高的平均水平。
【归纳结论】平均数是一组数据的数值的代表值,它刻画了这组数据整体的平均水平。
2.某农业技术员试种了三个品种的棉花各10株,秋收时他清点了这30株棉花的结桃数并记录在下表,哪个品种更好?分析:平均数可以作为一组数据的数值的代表值,要比拟哪个品种较好,只要确定这三种棉花的平均结桃数就可以了。
平均数的分类
平均数的分类平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。
它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
平均数是统计中的一个重要概念。
小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。
在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。
既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。
用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。
项目分类算术平均数arithmetic mean算术平均数是指在一组数据中所有数据之和再除以数据的个数。
它是反映数据集中趋势的一项指标。
把n个数的总和除以n,所得的商叫做这n个数的算术平均数。
公式:几何平均数geometric meann个观察值连乘积的n次方根就是几何平均数。
根据资料的条件不同,几何平均数分为加权和不加权之分。
公式:调和平均数harmonic mean调和平均数是平均数的一种。
但统计调和平均数,与数学调和平均数不同。
在数学中调和平均数与算术平均数都是独立的自成体系的。
计算结果两者不相同且前者恒小于后者。
因而数学调和平均数定义为:数值倒数的平均数的倒数。
但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。
且计算结果与加权算术平均数完全相等。
主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。
公式:加权平均数weighted average加权平均数是不同比重数据的平均数,加权平均数就是把原始数。
2023四年级数学上册四统计表和条形统计图(一)《平均数》说课稿苏教版
(一)教学特色创新
1. 实践活动丰富:本节课设计了多种实践活动,如小组讨论、绘制统计图等,让学生在实践中掌握平均数的计算方法,提高了学生的动手能力和问题解决能力。
2. 情境教学:通过设置与生活紧密相关的情境,让学生体会数学知识在实际生活中的应用,提高了学生的学习兴趣和积极性。
(二)存在主要问题
增加后平均体重 = (35 + 40 + 45 + 50 + 60) ÷ 5 = 46kg
平均体重增加了1kg。
3. 极端值对平均数的影响:
- 课本第51页练习题11:一个小组有5名学生的成绩分别是80、85、90、95和100。如果最高分和最低分都不计入平均分,那么这个小组的平均成绩是多少?
- 答案:不计最高分和最低分,平均成绩 = (85 + 90 + 95) ÷ 3 = 90
- 课本第53页练习题18:一个篮球队有5名队员,他们的平均身高是180cm。如果有一名队员因伤退出,替换他的新队员身高为175cm,那么篮球队的平均身高会发生什么变化?
- 答案:原平均身高 = 180cm
新平均身高 = (4 × 180cm + 175cm) ÷ 5 = 179cm
平均身高降低了1cm。
2. 软件资源:教学PPT、统计表和条形统计图课件、练习题库。
3. 课程平台:学校教学管理系统、课堂互动平台。
4. 信息化资源:电子白板、教学APP(支持数据分析的数学工具)。
5. 教学手段:小组合作、情境教学、互动问答、个别辅导。
教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:通过学校教学管理系统,发布预习资料,包括《平均数》概念介绍PPT和预习问题,要求学生预习平均数的定义和计算方法。
四年级下册数学教案- 第1课时 平均数(一) 西师大版
四年级下册数学教案- 第1课时平均数(一) 西师大版教材版本:西师大版《小学数学》四年级下册课时:第1课时教学目标:1. 理解平均数的概念,掌握求平均数的方法。
2. 能够运用平均数解决实际问题,提高解决问题的能力。
3. 培养学生的合作意识和口头表达能力。
教学重点:平均数的概念和求法。
教学难点:平均数在实际问题中的应用。
教学准备:课件、教具(如计算器、小棒等)教学过程:一、导入(5分钟)1. 教师出示一组数据(如:某小组同学的平均身高、体重等),引导学生观察并思考:这些数据有什么共同特点?2. 学生回答:这些数据都是表示平均水平的。
3. 教师总结:今天我们要学习一种新的统计量——平均数,它可以帮助我们更好地了解一组数据的平均水平。
二、探究新知(15分钟)1. 教师出示教材第1课时平均数(一)的例1,引导学生观察并思考:这组数据的平均数是多少?2. 学生独立思考后,教师组织学生进行小组讨论,共同探究求平均数的方法。
3. 各小组汇报讨论结果,教师总结求平均数的方法:将所有数据相加的和除以数据的个数。
4. 教师出示教材第1课时平均数(一)的例2,引导学生运用求平均数的方法解决实际问题。
5. 学生独立完成例2,教师巡回指导,及时纠正错误。
三、巩固练习(10分钟)1. 教师出示课件,展示一些关于平均数的问题,让学生独立解答。
2. 教师组织学生进行口头汇报,互相交流解题思路。
3. 教师针对学生的解答情况进行点评,强调平均数在实际问题中的应用。
四、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结平均数的概念和求法。
2. 学生分享自己在课堂上的收获和感悟。
3. 教师总结:平均数是表示一组数据集中趋势的统计量,它能帮助我们更好地了解数据的平均水平。
希望大家能够熟练掌握求平均数的方法,并在实际问题中灵活运用。
五、课后作业(布置作业5分钟)1. 教师布置教材第1课时平均数(一)的课后练习题,要求学生独立完成。
人教版四年级数学下册第八单元第1课时 平均数【教学精品课件】
“平均分”与“平均数”的区别
(1)把12块糖平均分给4个孩子,每个孩子分 得3块糖。
这里的3块表示平均分的结果,是每个孩子 实际分得的块数。
(2)4个小孩一共有12块糖,平均每个孩子有 3块糖。
这里的3块就是平均数,它并不代表每个孩 子一定有3块糖。
联系实际,巩固新知
1. 下面是5名同学捐书的情况。
姓名 杨 亮 王 波 刘 飞 张 丽 唐小东
本数
8
6
9
平均每人捐了几本?
8
14
(8+6+9+8+14)÷5 =45÷5 =9(本)
答:平均每人捐了9本。
2.某小组6名同学的身高和体重情况如下表。
姓名
刘华 李明 高风 陈莉 王兵 张丽
身高∕cm
139
140
135
138
139
137
体重∕kg
34
38
35
身高∕cm
139
140
135
138
体重∕kg
34
38
35
34
(34+38+35+34+36+33)÷6
=210÷6
=35(kg)
王兵 139 36
张丽 137 33
答:他们的平均体重是35kg。
3. 右 面 是 李 红 同 学 记 录 的 一周气温情况,根据记录 填写下表并计算。
最高气温/℃ 最低气温/℃
34
36
33
请你算出这些同学的平均身高和平均体重
各是多少。
姓名
刘华 李明 高风 陈莉 王兵 张丽
身高∕cm
139
140
135
138
《平均数的再认识》教学设计
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 《平均数的再认识》教学设计北师大版五年级第十册第八单元《平均数的再认识》第一课时教学设计一、教学内容北师大版小学五年级第十册第八单元《平均数的再认识》,教材第 87-88 页二、设计理念随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。
大到科学研究,小到学生的日常生活,统计无处不在。
新《数学课程标准》中也将统计与概率安排为一个重要的学习领域,强调发展学生的统计观念。
本单元正是在此基础上,向学生介绍统计的初步知识的。
本课则是在学生初步认识统计后进行教学的。
求平均数作为一类应用题,若教学内容脱离学生的生活,会使学生感到枯燥乏味。
因此要以学生发展为本,以活动为主线,以创新为主旨,积极创设真实的、源于生活的问题情境。
而在本课中,本人从学生的生活出发,利用学生熟悉的国家学生体质健康测试为导入,使学生通过思考如何计算一年级学生的平均身高,进而回顾有关平均数的求法。
并紧扣本校近期举办的汉子规范书写活动,进行合理有效的加工使之与新知相融合,成为行之有效的教学资源。
另外,本人采用多媒体教学等有效手段,以引导法为主,并联系1 / 7生活实践经验,给予学生充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、教学目标 1.结合解决问题的过程,进一步认识平均数,体会平均数的实际应用。
2.在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展数据分析观念。
3.感受数学与生活的密切联系,激发学生学习数学的兴趣。
四、学情分析本节内容是在学生认识平均数,能用自己的语言解释其实际意义的基础上进行的。
八年级数学上册第6章数据的分析1平均数第1课时平均数预学课件新版北师大版
这6名同学比赛平均成绩的是(
C
)
A. (90+90+84+75+69+66)÷6
B. (90×2+84+75+69+66)÷6
C. (90+84+75+69+66)÷5
D. (10+10+4-5-11-14)÷6+80
1
2
3
4
5
6
5. 【新考法 逆向思维法】样本数据2, a ,3,4的平均数是
第六章
1
数据的分析
平均数
第1课时
平均数
CONTENTS
目
录
01
复习回顾
02
预习效果检测
03
课堂导学
1. 把几个不完全相等的数加在一起计算出总数,然后按原来
的份数平均分,那么所得到的每一份数,就是原先那几个
数的
平均数
.
1
2
3
2. 平均数的计算
平均数的求法大家一定都知道最基础的算法,我们把它叫
做直接求法:
书面测试
知识抢答
演讲比赛
小文
89分
81分
85分
小玉
81分
83分
88分
如果根据三项成绩的平均分计算最终成绩,请说明小文、小
玉谁的成绩高.
解:小文的最终成绩为 ×(89+81+85)=85(分),小玉的最
终成绩为 ×(81+83+88)=84(分).
因为85>84,所以小文的成绩高.
知识点2 加权平均数
(1)直接求法: 总数
÷总个数=平均数.
除此以外,还要介绍一种基准数求法:
(2)基准数求法: 基准数
第1课时 平均数(一)教案
第二十章 数据的分析20.1 数据的集中趋势第1课时 平均数(一)●学习目标1.理解加权平均数的统计意义.2.会用加权平均数分一组数据的集中趋势,发展数据分析能力.●学习重点对权及加权平均数的概念的理解.●学习难点运用加权平均数描述数据的集中趋势.教学过程设计一、创设情景 明确目标 郊县 人数/万 人均耕地面积/公顷A 15 0.15B 7 0.21C 10 0.18问题:小明同学求得这个市郊县的人均耕地面积为:x =0.15+0.21+0.183=0.18(公顷) 你认为小明的解法对不对?为什么?学生思考回答:答:不对.因为人均耕地面积是用总面积除以总人数.而不是三个人均面积的平均数. 归纳导入:小明的回答不正确,如何计算人均耕地面积呢?二、自主学习 指向目标自学教材第111至112页的内容,学习至此,请完成学生用书.(1)加权平均数__一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数__. (2)在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分.则这5名同学的平均成绩是__8.6分__.(3)某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩是__8.3环__.(4)从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤__10.4__元.三、合作探究 达成目标探究点一 加权平均数的有关概念活动1:教材中问题三个郊县的人数(单位:万)15、7、10在计算人均耕地面积时作用重要不重要?展示点评:这三个人数分别叫0.15公顷、0.21公顷、0.18公顷三个数据的__权__. 上面的平均数0.17称为0.15、0.21、0.18的__加权平均数__.小组讨论:n 个数的加权平均数.若n 个数x 1,x 2,…x n 的权分别是w 1,w 2…w n ,则这n 个数的加权平均数是多少?反思小结:x =x 1w 2+x 2w 2+…+x n w n w 1+w 2+…+w n,数据的权能够反映数据的相对__重要程度__. 针对训练1.若1,3,x ,5,6五个数的平均数为4,则x 的值为( D )A .3B .4C .4.5D .52.若m 个数的平均数是a ,n 个数的平均数是b ,则这m +n 个数的平均数是__ma +nb m +n__.3.某校几名学生参加今年全国初中数学竞赛,其中8名男同学的平均成绩为85分,4名女同学的平均成绩为76分,则该校12名同学的平均成绩为__82__.探究点二 加权平均数的运用活动2:一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?展示点评:学生独立完成计算过程,得到结论同样的一组数据,如果规定的权变化,则加权平均数随之改变.小组讨论:(1)问和(2)问有什么区别?计算一般平均分时各项成绩的权分别是多少?在权重不同的情况下,我们如何计算加权平均数?反思小结:上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权.针对训练4.某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是( D )A .84B .86C .88D .905.某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验.小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分.(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少? 解:(1)98×50%+80×20%+90×30%=92分答:这学期小明的数学总评成绩是92分.(2)(98×5+80×2+90×3)÷10=92分6.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比选手 演讲内容 演讲能力 演讲效果A 85 95 95B 95 85 95请决出两人的名次.解:A :85×50%+95×40%+95×10%=90B :95×50%+85×40%×95×10%=91所以B 的名次比A 好.四、总结梳理 内化目标1.什么是加权平均数?什么是权?解:根据实际需要对不同类型的数据赋予与其重要程度相应的比重,这些比重叫做权,相应的平均数叫做加权平均数.2.如何求加权平均数?解:x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n(注意:加权平均数和平时所求的平均数有区别)五、达标检测 反思目标1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为__3.5__.2.某人打靶,有a 次打中8环,b 次打中9环,则这个人平均每次中靶__8a +9b a +b__环. 3.如果数据2,3,x ,4的平均数是3,那么x 等于__3__.4.已知1,2,3,a ,b ,c 的平均数是8,那么a ,b ,c 的平均数是__14__.5.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分.已知该班平均成绩为80分,问该班有多少人?答:26人6.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示: 应聘者 笔试 面试 实习甲 85 83 90乙 80 85 92试判断谁会被公司录取,为什么?答:乙被公司录取.因为乙的评分为87.5,而甲的评分为86.9.作业练习 深化目标上交作业:教材第121至122页练习第1、3、4题;课后作业:见学生用书部分.●教学反思平均数是统计中的一个重要概念,在教学中突出让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.。
北师大版八年级上册数学《平均数》数据的分析PPT课件(第1课时)
解: 因为笔试、面试、技能操作得分权重比例为2∶3∶5 所以笔试、面试、技能操作得分权重分别为0.2,0.3,0.5 小王的成绩=85 × 0.2+80 × 0.3+90 × 0.5=86 答:小王的最后成绩为86分。
平均数 第2课时
知识回顾
算术平均数 加权平均数
算术平均数
定义:一般地,对于n个数x1,x2,…,xn,我们 把 1 (x1+x2+…+xn)叫做这n个数的算术平均数;
A
85
B
95
演讲能力 95 85
演讲效果 95 95
请决出两人的名次.
选手
演讲内容 (50%)
演讲能力 (40%)
A
85
95
演讲效果 (10%)
95
B
95
是
选手B的最后得分是
85×50%+95×40%+95×10% 95×50%+85×40%+95×10%
50%+40%+10%
(1)(2)的结果不一样说明了什么?
实际问题中,一组数据的各个数据的“重要程度”未必相 同。因此,在计算这组数据的平均数时,往往给每个数据一 个“权”,如上例中的4就是创新的权、3是综合知识的权、1 是语言的权 ,而称
72 4 50 3 881 65.75 4 3 1
为A的三项测试成绩的加权平均数。
1、一组数据由2、3、4、5、6构成,其中2的权数
为0.2,3的权数为0.4,4的权数为0.1,5的权数为
0.2,则这组数据的平均数是( C)
A.3
B.3.2
C.3.6
D.3.8
2.汽车从甲地到乙地,先以60千米/时的速度行驶15分, 再以70千米/时的速度行驶25分,又以80千米/时的速度 行驶15分,那么,该车行驶这段路程的平均速度约为 ( B )(精确到1千米/时)
北师大版八年级数学上册《平均数》第1课时示范公开课教学课件
你能说说小明这样做的道理吗?
解:(1)抽考学生的平均成绩为:
该班学生的平均成绩约为90.4分.
分析:根据算术平均数定义,先计算抽考学生分数的和=分数1×分数1学生数+分数2×分数2学生数+…,得出分数和后再除以抽考学生人数即可计算出抽考学生平均成绩.
分析:(1)求六个分数的平均分即求六个分数的算术平均数,根据算术平均数的定义:将n=6,及其它六个分数代入即可计算出结果.
解:(1)根据题意,这六个分数的平均分为:
这六个分数的平均分为为9.35分.
(分)
1.某次体操比赛,六位评委对某位选手的打分(单位:分)如下:9.5,9.3,9.1,9.5,9.4,9.3.(1)求这六个分数的平均分;(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是多少?
一般地,若有n个数x1,x2,···.xn,若x1出现f1次,x2出现f2次,……,xn出现fn次,那么f1,f2 ,···..fn就是x1,x2,…,xn的权. 叫做这n个数的加权平均数.
教科书 第138页习题6.1 第1,2题
分析:(2)按照题意,先去掉一个最高分9.5、再去掉一个最低分9.1,根据计算平均数的定义,计算出剩下4个有效分数的平均成绩即可.
1.某次体操比赛,六位评委对某位选手的打分(单位:分)如下:9.5,9.3,9.1,9.5,9.4,9.3.(1)求这六个分数的平均分;(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是多少?
某班对部分同学进行数学抽考,成绩统计如下:95分2人,92分1人,90分3人,88分4人.(3)两次计算的结果说明了什么?
五年级奥数第01讲-平均数(教)
学科教师辅导讲义知识梳理一、基本公式平均数×总份数=总数量总数量÷总份数=平均数总数量÷平均数=总份数二、平均数问题日常生活中我们会遇到这样的问题:几个杯子中的水有多有少,为了使每个杯子中的水一样多,就将水多的杯子里的水倒进水少的杯子里,反复几次,直到几个杯子里的水一样多。
这就是我们所讲的“移多补少”,通常称之为平均数问题。
求平均数问题的基本数量关系是:总数量÷总份数=平均数。
解答平均数问题的关键是要求出总数量和总份数的,然后根据基本总量关系式来解答。
也可采用假设平均数的方法,即找一个基数,用“基数+各数与基数的差之和÷份数=平均数”公式求平均数。
典例分析考点一:用基本关系式求平均数例1、用4个同样的杯子装水,水面的高度分别是8厘米、5厘米、4厘米、3厘米。
这4个杯子里水面的平均高度是多少厘米?【解析】利用平均数问题的基本数量关系是:总数量÷总份数=平均数。
根据已知条件,求出4个杯子里水的总高度,然后除以杯子的个数,即可求出平均数。
(8+5+4+3)÷4=5(厘米)答:这4个杯子里水面的平均高度是5厘米。
解:(800+150)÷19=50(秒)答:全车通过长800米的大桥,需要50秒。
例2、数学测试中,一组学生中的最高分为98分,最低分为86分,其余5名学生的平均分为92分。
这一组学生的平均分是多少分?【解析】利用平均数问题的基本数量关系是:总数量÷总份数=平均数。
总数量=98+86+92×5=644(分),总份数=1+5+1=7(人),平均数=644÷7=92(分),故这一组学生的平均分是92分。
例3、明明期中考试语文、数学、科学的平均分数是91分,英语成绩公布后,他的平均分提高了2分。
明明英语考了多少分?【解析】利用基本式:三门课总分数=91×3=273,四门课总分数=(91+2)×4=372。
2024年新人教版四年级数学下册《第8单元第1课时 平均数》教学课件
肯定都是2m。
(×)
(2)某小学排球队队员的平均身高是160cm,有的队员身
高可能超过160cm,有的队员身高可能不到160cm。( √ )
(3)小东所在小组同学的平均体重是36kg,小刚所在小组
同学的平均体重是34kg,小东一定比小刚重。
( ×)
(教材P90 T4)
2. 两个小组做仰卧起坐。
第一小组4人, 一共做了132个。
就是使4个人收集 的空水瓶的数量同 样多。
合作探究
想一想,试着解决平均每组收集多少个 空水瓶。可以动手写一写,画一画。
姓名
小红 小兰
通过移多补少可
以看出平均每人 收集了13个。
小亮
小明 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 数量 / 个
还有其他方法吗?
要使每人收集的空水瓶数量 同样多,可以先把该小队收 集的瓶子总数量求出来。
2 下面是第4小组男生队和女生队踢毽比赛的成绩。
男生队
女生队
姓名 王小飞 刘东 李雷 谢明明 孙奇
踢毽个数 19 15 16 20 15
姓名 杨羽 曾诗涵 李玲 张倩
踢毽个数 18 20 19 19
哪个队的成绩更好?
比较两队踢毽 的总数。
这样比较不公平,
因为两队的人数 不一样啊!
男生:19+15+16+20+15=85(个) ×
做一做
(教材P88 做一做)
下面是5名学生捐书的情况。
姓名 杨亮 王 波 刘飞 张 丽 唐小东
本数 8
6
9
8
14
平均每人捐了几本?
(8+6+9+8+14)÷5 =45÷5
=9(本) 答:平均每人捐了9本。
第1课时 平均数和加权平均数教案
20.1.1 平均数第1课时 平均数和加权平均数教学目标1、理解并掌握数据的权和加权平均数的概念。
2、掌握加权平均数的计算方法。
过程与方法在本节课的学习过程中,使学生理解平均数在数据统计中的意义和作用。
情感、态度与价值观 通过本节课的学习,渗透数学公式的简单美和结构的严谨美,展示寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美。
重点难点 重点会求加权平均数。
难点对“权”的理解。
教学过程 一、新课导入在一次演讲比赛中,评委要从仪表、普通话、题材内容三个方面给选手打分,某同学仪表82分,普通话84分,题材内容86分,那么他的平均得分应为多少分?如果按2∶3∶5的比来确定他的成绩,那么他的平均成绩怎么计算呢?二、讲授新课问题 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩如下表:(1)如果这家公司想招聘一名综合能力较强的翻译,根据他们的平均成绩(百分制)录取,应该录取谁?25.80473857885=+++甲的平均成绩为5.79483828073=+++乙的平均成绩为79.580.25∵>应该录取甲∴归纳:一般地,对于n 个数n x x x ,,,...21 ,我们把 nx x x x n+++=...21叫做这n 个数的算术平均数,简称平均数,记作“ x ”,读作“x 拔”。
我们常用平均数表示一组数据的“平均水平”。
(2)如果这家公司想招一名笔试能力较强的翻译,听、说、读、写成绩按2:1:3:4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应录取谁?5.794312473385178285=+++⨯+⨯+⨯+⨯甲的平均成绩为4.804312483382180273=+++⨯+⨯+⨯+⨯乙的平均成绩为79.580.4∵>应该录取乙∴归纳:一般地,对于n 个数n x x x ,,,...21的权分别是n ωωω,,,...21 ,我们把 nnn x x x x ωωωωωω++++++=......212211叫做这n 个数的加权平均数。
西师大版四年级下册数学《平均数》课件(27张PPT)
答:前3天共读书66页。
3. 小田同学第1天读故事书21页,以后每天比 前一天多读1页。 (2)小田这3天平均每天读书多少页?
66÷3=22(页)
答:平均每天读书22页。
4. 农资公司第1天卖了210袋化肥,第2天卖了140 袋化肥,第3天与第4天共卖了330袋化肥。平均 每天卖了多少袋化肥?
汽车厂上半年生产消防车的情况统计表
月份
123456
辆数(辆) 16 21 18 17 19 17
16+21+18+17+19+17=108(辆) 108÷6=18(辆)
答:汽车厂上半年平均每月生产消防车18辆。
3 (2)汽车厂全年应生产消防车234辆,下半年平均 每月生产多少辆,才能完成全年的生产任务?
(3)讨论用什么数据来代表本组同学的体重,自己的体重
在本组的什么位置。
2.小明3分踢毽52下,接着再踢2分,每分各踢18 下、15下。选择不同方法说一说,小明平均每 分踢毽数。最有可能是下列数据中的( )。 6下 10下 14下 17下 29下
方法1:求平均数的方法 52+18+15=85(下) 85÷5=17(下)
(210+140+330)÷4=170(袋) 答:平均每天卖170袋化肥。
5.大巴车第1时行驶94km,第2时行驶86km,平均 每时行驶多少千米?照这样的平均速度行驶3时, 可以行驶多少千米?
(94+86)÷2=90(km/h)
90×3=270(km)
答:平均每时行驶90km,行驶3时,可以行驶270km。
(2)乙4天中每天生产零件数记录如下: 14个 9个 17个 20个
初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案
初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。
四年级数学下册第8单元平均数与条形统计图1平均数第1课时平均数的意义和求法习题课件新人教版
点拨:根据题意可知,如果算典典,平均分提高了86- 84=2(分),是因为典典的分数比平均分高,高于平均分 的分数为96-84=12(分),这12分平均分给了小队的每 一个人,所以平均分提高了2分,说明小队一共有12÷ 2=6(人)。
60×12=720(米) 720÷90=8(分钟) 720×2÷(12+8)=72(米) 答: 同同平均每分钟行72米。
5.在科技节中学校开展科学知识竞赛,四(1)班派出 数名学生组成科技小队参加比赛,典典也是其中 的一名,小队的最终平均分是86分,典典得了96 分,该小队不算典典平均分是84分,这个小队一 共有多少人? (96-84)÷(86-84)=6(人) 答:这个小队一共有6人。
提 升 点 2 解答稍复杂的平均数问题
4.(易错题)同同以每分钟60米的速度从新城东路走 到新城西路,用了12分钟,然后以每分钟90米的 速度沿原路返回。这次往返中,同同平均每分钟 行多少米?
点拨:首先根据“路程=速度×时间”,求出新城东路到 新城西路的路程,再根据“时间=路程÷速度”,求出同 同返回时的时间。往返一次,总路程为全程的两倍,根据 “平均速度=总路程÷总时间”,代入数据计算即可。
知 识 点 2 平均数的求法
2.如图是四(1)班上课积极动脑的几位同学获得点赞 卡的情况,平均每人获得了多少张点赞卡?
(1)通过( 移多补少)的方法 可以看出平均每人获得 了( 6 )张点赞卡。
(2)列式解答: (7+4+5+8)÷4=6(张) 答:平均每人获得了6张点赞卡。
点拨:求平均数的方法有移多补少法和公式法,求平均 数的公式为“平均数=总数量÷总份数”。
提 升 点 1 逆用平均数关系式解决问题
3.下表是天天期末考试部分学科的成绩(单位:分), 天天数学期末成绩是多少分?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数的分类
平均数是表示一组数据的量数,是指在一组数据中所有数据之和再除以这组数据的个数。
它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数()和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
平均数是统计中的一个重要概念。
小学数学里所讲的平均数一般是指,也就是一组数据的和除以这组数据的个数所得的商。
在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。
既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。
用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。
项目分类
算术平均数
arithmetic mean
是指在一组数据中所有数据之和再除以数据的个数。
它是反映数据集中趋势的一项指标。
把n个数的总和除以n,所得的商叫做这n个数的算术平均数。
公式:
几何平均数
geometric mean
n个观察值连乘积的n次方根就是。
根据资料的条件不同,几何平均数分为和不加权之分。
公式:
调和平均数
harmonic mean
是平均数的一种。
但统计调和平均数,与数学调和平均数不同。
在数学中调和平均数与算术平均数都是独立的自成体系的。
计算结果两者不相同且前者恒小于后者。
因而数学调和平均数定义为:数值倒数的平均数的倒数。
但统计则与之不同,它是的变形,附属于算术平均数,不能单独成立体系。
且计算结果与加权算术平均数完全相等。
主要是用来解决在无法掌握数()的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。
公式:
加权平均数
weighted average
是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若 n个数中,x1出现f1次,x2出现f2次,…,x k出现f k次,那么
叫做x1、x2、…、x k的加权平均数。
f1、f2、…、f k是x1、x2、…、x k 的权。
公式:
,其中。
f1、f2、…、f k叫做权(weight)。
平均数是加权平均数的一种特殊情况,即各项的权相等时,加权平均数就是算术平均数。
平方平均数
是n个数据的平方的算术平均数的算术平方根。
公式:
指数平均数
指标概述
[EXPMA],其构造原理是对股票收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势得变动趋势。
是一种趋向类指标,与平滑异同移动平均线[MACD]、平行线差指标[DMA]相比,EXPMA指标由于其计算公式中着重考虑了价格当天 [当期]行情得权重,因此在使用中可克服其他指标信对于价格走势得滞后性。
同时也在一定程度中消除了在某些时候对于价格走势所产生得信提前性,是一个非常有效得分析指标。
中位数
中位数(median)
是刻划平均水平的统计量,设
是来自总体的样本,将其从小到大排序为
则中位数定义为:
n为奇数时,
n为偶数时,。