历年中考试题

合集下载

历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个实数中,无理数是()A.2 B.C.0 D.﹣1【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C正确;D、﹣1是有理数,故D正确;故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图所示的几何体是由4个小正方体搭成,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层两个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,主视图是从正面看得到的图形.3.(3分)下列运算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式;4F:平方差公式.【分析】直接利用合并同类项法则以及完全平方公式和平方差公式分别判断得出即可.【解答】解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a﹣b)=a2﹣b2,正确.故选:D.【点评】此题主要考查了完全平方公式/合并同类项、平方差公式等知识,正确应用乘法公式是解题关键.4.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.(3分)如图,点A、B、C是⊙O上,∠AOB=80°,则∠ACB的度数为()A.40°B.80°C.120°D.160°【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=80°.∴∠ACB=∠AOB=40°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.(3分)下列说法正确的是()A.哥哥的身高比弟弟高是必然事件B.今年中秋节有雨是不确定事件C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件D.“彩票中奖的概率为”表示买5张彩票肯定会中奖【考点】X1:随机事件;X3:概率的意义.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、哥哥的身高比弟弟高是随机事件,故A错误;B、今年中秋节有雨是不确定事件,故B正确;C、随机抛一枚均匀的硬币两次,都是正面朝上是随机事件,故C错误;D、“彩票中奖的概率为”表示买5张彩票可能中奖,可能不中奖,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S 乙2=12.∴S甲2<S乙2.∴成绩比较稳定的是甲;故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等.∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.9.(3分)一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】F7:一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限.∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.10.(3分)如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】题目中的等量关系为:1、大人数+儿童数=8;2、大人票钱数+儿童票钱数=195,据此求解.【解答】解:设他们中有x个成人,y个儿童,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系并根据等量关系列出方程.二、填空题(共5小题,每小题3分,满分15分)11.(3分)a的相反数是﹣9,则a=9.【考点】14:相反数.【分析】根据相反数定义解答即可.【解答】解:∵a的相反数是﹣9.∴a=9.故答案为:9.【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.12.(3分)如图,直线a∥b,∠1=70°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据两直线平行同位角相等可得∠1=∠2=70°.【解答】解:∵a∥b.∴∠1=∠2.∵∠1=70°.∴∠2=70°.故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.13.(3分)茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为2×103亿元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000=2×103.故答案为:2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB ⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米.在Rt△OAD中,根据勾股定理,OD==2(米).∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.(3分)用边长为1的小正方形摆成如图所示的塔状图形,按此规律,第4次所摆成的周长是16,第n次所摆图形的周长是4n(用关于n的代数式表示)【考点】38:规律型:图形的变化类.【分析】由题意可知:第一次1个小正方形的时候,周长等于1个正方形的周长,是1×4=4;第二次3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8;第三次6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12;…由此得出第几次搭建的图形的周长就相当于几个小正方形的周长是4n,由此规律解决问题.【解答】解:第一次所摆图形周长是1×4=4;第二次所摆图形的周长是2×4=8;第三次所摆图形的周长是3×4=12;…第n次所摆图形的周长是n×4=4n.第4次所摆成的周长是4×4=16.故答案为:16,4n.【点评】此题考查图形的变化规律可,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,解决问题.三、解答题(共10小题,满分75分)16.(7分)计算:|﹣2|﹣()0+(﹣1)2014.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组:.【考点】CB:解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:由①得:x>1.由②得:x<2.不等式组的解集为:1<x<2.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD 重合,旋转中心是点D.【解答】解:(1)∵四边形ABCD是正方形.∴AD=CD,∠A=∠DCB=∠ADC=90°.∴∠A=∠DCF=90°.在△AED和△CFD中..∴△AED≌△CFD(SAS);(2)∵∠ADC=90°.∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,旋转的旋转的运用,解答时证明三角形全等是关键.19.(7分)2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)能答5条的人数除以总人数得出能答5条”人数的百分比;用总人数乘以“仅能答3条”的人数所占的百分比即可求出“仅能答3条”的人数;(2)用该校的总人数乘以能答3条不准以上(含3条)的人数所占的百分比即可.【解答】解:(1)“能答5条”人数的百分比是×100%=20%.“仅能答3条”的人数是200×40%=80(人);(2)根据题意得:2000×(1﹣5%﹣10%)=1700(人).答:该校能答3条不准以上(含3条)的人数是1700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.【考点】X4:概率公式;X6:列表法与树状图法.【分析】(1)由随机作出“石头”、“剪刀”、“布”三种手势,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与妈妈一次获胜的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:爸爸一次出“石头”的概率是:;(2)画树状图得:∵共有9种等可能的结果,妈妈一次获胜的有3种情况.∴妈妈一次获胜的概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度;(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题中两个直角三角形有公共的边,那么可利用这条公共直角边进行求解.(1)求AD长的时候,可在直角三角形ADC内,根据30°的角所对的直角边是斜边的一半求解.(2)在直角三角形ABC中求得AB的长后用AD﹣AB即可求得增加的长度.【解答】解:(1)Rt△ABD中.∵∠ADB=30°,AC=6米.∴AD=2AC=12(m)∴AD的长度为12米;(2)∵Rt△ABC中,AB=AC÷sin60°=4(m).∴AD﹣AB=12﹣4≈5.1(m).∴改善后的滑梯会加长5.1m.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形有公共的直角边求解是解决此类题目的基本出发点.22.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.【考点】G5:反比例函数系数k的几何意义;Q2:平移的性质.【分析】(1)将B(3,2)代入y=,即可求出k1的值;将B1(3,6)代入y=,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y=的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.【解答】解:(1)∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2.∴B(3,2).∵反比例函数y=的图象分别经过点B.∴k1=3×2=6;∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1.∴B1(3,6).∵反比例函数y=的图象经过点B1.∴k2=3×6=18;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6).∵点O2、B2在反比例函数y=的图象上.∴k3=﹣4a=6(3﹣a).解得a=9,k3=﹣36.【点评】本题考查了反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,平移的性质,难度适中.利用数形结合与方程思想是解题的关键.23.(8分)网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.(1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?【考点】HE:二次函数的应用.【分析】(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,根据条件建立方程组求出其解即可;(2)由(1)的结论可以求出今年的产量,就可以求出日销售量,设日销售利润为W元,网上售价为a元,由利润问题的数量关系表示出W与a的数量关系,由二次函数的性质就可以求出结论.【解答】解:(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,由题意,得.解得:.则今年的售价为(1+50%)x=9元.答:去年的售价为6元,则今年的售价为9元;(2)由题意,得今年的产量为:10000+2000=12000千克.则网上日销售量为:12000÷20=600千克.设日销售收入为W元,网上售价为a元,由题意,得W=a(600﹣).W=﹣50a2+1050aW=﹣50(a﹣)2+.∴a=﹣50<0.∴a=时,W=.最大∴网上售价定为10.5元,才能使日销量收入最大为元.【点评】本题考查了列二元二次方程组解实际问题的运用,二元二次方程组的解法的运用,二次函数的运用,二次函数的性质的运用,解答时求出二次函数的解析式是关键.24.(8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.【考点】MR:圆的综合题.【分析】(1)利用段垂直平分线的性质得出OC⊥AB,进而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2,进而得出⊙O的半径;(3)首先得出△HOC∽△COA,进而得出OC2=OH×OA,即可得出⊙O的直径与OH、OB之间的数量关系.【解答】(1)证明:如图所示:连接CO.∵OA=OB,AC=BC.∴OC⊥AB.∵OC为⊙O的半径.∴直线AB与⊙O相切;(2)解:在直角三角形OAC中用勾股定理就可以了.设半径为r,则OC=r,OA=a+r.AC=AB= b.在Rt△AOC中.OC2+AC2=OA2.则r2+b2=(a+r)2.解得:r=﹣;(3)d2=4OH×OB.理由:∵OA⊥CD,OC⊥AC.∴∠OCA=∠OHC.∵∠HOC=∠COA.∴△HOC∽△COA.∴=.即OC2=OH×OA.∵OC垂直平分AB.∴OA=OB.设直径为d,则OC=.∴()2=OH×OB.即d2=4OH×OB.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质,得出△HOC∽△COA是解题关键.25.(8分)如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用待定系数法求出抛物线解析式得出即可;(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2时,当AQ3=AC=2时,分别得出符合题意的答案即可;(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.【解答】解:(1)∵点A的坐标为(﹣3,0),点C坐标为(0,),点B在y 轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C.∴.解得:;(2)在抛物线的对称轴上存在点Q,使得△ACQ为等腰三角形.当AQ=QC,如图1.由(1)得:y=﹣x2﹣x+=﹣(x+1)2+.即抛物线对称轴为:直线x=﹣1,则QO=1,AQ=2.∵CO=,QO=1.∴QC=2.∴AQ=QC.∴Q(﹣1,0);当AC=Q1C时,过点C作CF⊥直线x=﹣1,于一点F.则FC=1.∵AO=3,CO=.∴AC=2.∴Q1C=2.∴FQ1=,故Q1的坐标为:(﹣1,+);当AC=CQ2=2时,由Q1的坐标可得;Q2(﹣1,﹣+);当AQ3=AC=2时,则QQ3=2,故Q3(﹣1,﹣2),根据对称性可知Q4(﹣1,2)(Q4和Q3关于x轴对称)也符合题意.综上所述:符合题意的Q点的坐标为:(﹣1,0);(﹣1,+);(﹣1,﹣+);(﹣1,﹣2),(﹣1,2);(3)如图2所示,当四边形MEBC是平行四边形,则ME=BC.∵AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,).∴B(0,﹣).则BC=2.设直线AB的解析式为:y=kx+e.故.解得:.故直线AB的解析式为:y=﹣x﹣.设E(x,﹣x﹣),M(x,﹣x2﹣x+).故ME=﹣x2﹣x++x+=﹣x2﹣x+2=2.解得:x1=0(不合题意舍去),x2=﹣1.故P点在(﹣1,0),此时四边形MEBC是平行四边形;四边形AECM是梯形.理由:∵四边形MEBC是平行四边形.∴MC∥AB.∵CO=,AO=3.∴∠CAO=30°.∵AC=AB,AO⊥BC.∴∠BAO=30°.∴∠BAC=60°.∴△ABC是等边三角形.∵AC=BC,ME=BC,所以AC=ME.∴四边形AECM是等腰梯形.【点评】此题主要考查了二次函数综合应用以及平行四边形的性质和梯形的判定、等腰三角形的判定等知识,利用分类讨论以及数形结合得出是解题关键.。

历年中考试题集(附答案)

历年中考试题集(附答案)

历年中考试题集06年资阳市初中毕业统考题(单选题)第二部分:英语知识运用(共两节,满分35分)第一节单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

11. It is ____useful book. 1 borrowed it from ____school library.A. an; aB. a; anC. a; theD. an; the12. -Who's your English teacher?--Miss Gao. She teaches ____ English very well.A. ourB. usC. oursD. we13. Mrs. Black is a friend of____.A. Mary's mother'sB. Mary's motherC. mother's of MaryD. Mary mother's14. -Excuse me, could you tell me where the nearest post office is?--The nearest post office? You will have to walk ____.A. 500-metres awayB. 500 metre farC. 500 metres fartherD. 500-metre-faraway15. -Mary, what about going boating if it____ tomorrow?--Good idea!A. not rainB. will rainC. doesn't rainD. won't rain16. She is planning on driving. Let's help her ____ some good ideas.A. come outB. come upC. catch up withD. come up with17. The doctor ____ a ____ boy yesterday.A. had saved, dyingB. saved, deadC. has saved, deadD. saved, dying18.I___ in this small mountain village when I was a child.A. use to liveB. used to livingC. used to liveD. used to life19. We can do the work better with____ money and ____ people.A. less, fewerB. fewer, lessC. less, lessD. fewer, fewer20.1 like exciting trips. I'd love to trek ____ the Amazon jungle next summer, because it'sa good place to explore.A. acrossB. throughC. crossingD. cross21. While I____ with my friend, she came in.A. am talkingB. was talkingC. talkedD. am going to talk22. All of us enjoy playing computer games, ___ we can't spend too muchtime on it.A. andB. orC. butD. so23. Would you please tell me____?A. what was her nameB. what her name wasC. what is her nameD. what her name is24. -We can use QQ to talk with each other on the Internet.— Really? Will you please show me ____ it?A. what to useB. how to useC. how can I useD. what can I use25. 1 think students shouldn't _____ to do too much homework. We'd better ____ them enough time to do sports and have other experiences.A. be allowed; leaveB. allow; leaveC. be allowed; to leaveD. allow; leaving07年重庆毕业会考试题Ⅱ.单项选择(每小题1分。

(历年中考)辽宁省大连市中考数学试题含答案

(历年中考)辽宁省大连市中考数学试题含答案

2016 年辽宁省大连市中考数学试卷一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.﹣ 3 的相反数是( ) A . B .C .3D .﹣ 32.在平面直角坐标系中,点( 1, 5)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.方程 2x+3=7 的解是( ) A .x=5 B .x=4 C . x=3.5 D .x=2A .x>﹣ 2B .x<1C .﹣ 1<x<2D .﹣2<x<1 6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4 随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于 4的概率是( )A .B .C .D .7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 8.如图,按照三AB ∥CD ,AE 平分∠CAB .AE 与 CD 相交于点 E , ∠ACD=40°,则 ∠BAE 5.不等式组 的解集是4.如图,直线140视图确定该几何体的全面积是(图中尺寸单位:cm)()二、填空题:本大题共 8小题,每小题 3 分,共 24分29.因式分解: x ﹣ 3x= .10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为 .11.如图,将△ ABC 绕点 A 逆时针旋转的到 △ADE ,点 C 和点 E 是对应点, 若∠CAE=90°,12.下表是某校女子排球队队员的年龄分布 年龄 /岁13 14 15 16 频数1173则该校女子排球队队员的平均年龄是 岁.15.如图,一艘渔船位于灯塔 P 的北偏东 30°方向,距离灯塔 18 海里的 A 处,它沿正南方 向航行一段时间后, 到达位于灯塔 P 的南偏东 55°方向上的 B 处,此时A .40π cm 2B . 65π cm 2C . 80π cm 2D . 105π cm 213.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是a 的取值范是渔船与灯塔 P的距离约为海里(结果取整数)(参考数据: sin55 °≈ 0,.8cos55°≈ 0,.6tan55 °≈1).4.20.为了解某小区某月家庭用水量的情况, 从该小区随机抽取部分家庭进行调查,据调查数据绘制的统计图表的一部分 分组 家庭用水量 x/ 吨 家庭数 /户A 0≤x ≤ 4.0 4B 4.0<x ≤ 6.513C 6.5<x ≤ 9.0D 9.0<x ≤ 11.5E11.5< x ≤ 14.06 F x>4.03根据以上信息,解答下列问题216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B ( m+2, 0)与 y 轴相交于点 在该抛物线上,坐标为( m , c ),则点 A 的坐标是 .C ,点 D三、解答题:本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分17.计算:( +1)( ﹣ 1)+(﹣2)0﹣.18.先化简,再求值:( 2a+b )2﹣a ( 4a+3b ),其中 a=1, b= . 19.如图, BD 是? ABCD 的对角线, AE ⊥BD ,CF ⊥BD ,垂足分别为 E 、F ,AE=CF .以下是根1)家庭用水量在 4.0< x ≤6.5范围内的家庭有 户,在 6.5< x ≤9.0范围内的家庭数占被调查家庭数的百分比是 %; ( 2)本次调查的家庭数为 户,家庭用水量在 9.0< x ≤11.5范围内的家庭数占被 调查家庭数的百分比是 %;3)家庭用水量的中位数落在组;四、解答题:本大题共 3小题, 21、22各 9分 23题 10分,共 28分21.A 、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速 开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶 30 千米,求甲、乙 两车的速度.222.如图,抛物线 y=x 2﹣3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,点 D 是直线BC 下方抛物线上一点,过点 D 作 y 轴的平行线,与直线 BC 相交于点 E ( 1)求直线 BC 的解析式; (2)当线段 DE 的长度最大时,求点 D 的坐标.23.如图, AB 是⊙O 的直径,点 C 、D 在⊙O 上, ∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上, ∠AED= ∠ABC ( 1)求证: DE 与⊙O 相切; (2)若 BF=2,DF= ,求⊙O 的半径.200 户家庭,请估计该月用水量不超过9.0 吨的家庭数. 4)若该小区共五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图 1,△ABC 中,∠ C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m< x ≤3时,函数的解析式不同)( 1)填空: BC 的长是;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D在BC 边上,∠DAB= ∠ABD, BE⊥AD ,垂足为 E,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠ BEA ,从而可证△ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL中”的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3,△ ABC 中, AB=AC ,∠BAC=90° ,D为BC的中点, E为 DC的中点,点 F 在 AC 的延长线上,且∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长;3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D、E分别在 AB、AC 边上,且AD=kDB其中 0<k< ),∠AED= ∠BCD ,求的值(用含 k 的式子表示).26.如图,在平面直角坐标系xOy 中,抛物线 y=x2+ 与 y 轴相交于点 A,点 B 与点 O关于点 A 对称1)填空:点 B 的坐标是2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l 平行于 y轴,P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点P是否在抛物线上,说明理由;3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求2016 年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.﹣ 3 的相反数是()A. B.C.3 D.﹣ 3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣ 3)+3=0 .故选 C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点( 1, 5)所在的象限是()A .第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点( 1, 5)所在的象限是第一象限.故选 A .【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣, +);第三象限(﹣,﹣);第四象限( +,﹣).3.方程 2x+3=7 的解是() A.x=5 B.x=4 C . x=3.5 D .x=2 【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把 x 系数化为1,即可求出解.【解答】解: 2x+3=7 ,移项合并得: 2x=4 ,解得: x=2,故选 D点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线 AB ∥CD, AE 平分∠CAB.AE 与 CD 相交于点 E,∠ACD=40°,则∠BAE【考点】平行线的性质.【分析】先由平行线性质得出∠ACD 与∠BAC 互补,并根据已知∠ACD=4°0 计算出∠ BAC 的度数,再根据角平分线性质求出∠ BAE 的度数.【解答】解:∵AB ∥CD,∴∠ ACD+ ∠ BAC=18°0 ,∵∠ ACD=4°0 ,∴∠ BAC=18°0 ﹣ 40°=140°,∵AE 平分∠CAB ,∴∠ BAE= ∠ BAC= ×140°=70°,故选 B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③ 同旁内角互补;并会书写角平分线定义的三种表达式:若 AP 平分∠BAC ,则①∠ BAP= ∠PAC,②∠ BAP= ∠ BAC ,③∠ BAC=2 ∠BAP .5.不等式组的解集是A.x>﹣ 2 B.x<1 C.﹣ 1<x<2 D.﹣2<x<1考点】解一元一次不等式组.分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解答】解: 解① 得 x>﹣2, 解② 得 x<1, 则不等式组的解集是:﹣ 2< x<1. 故选 D .【点评】 本题考查了一元一次不等式组的解法: 解一元一次不等式组时, 一般先求出其中各 不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大 中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1,2,3,4 随机摸出个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于考点】列表法与树状图法.【分析】 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与两次摸出的小球 标号的积小于 4 的情况,再利用概率公式求解即可求得答案. 解答】解:画树状图得:故选 C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为: 概率 =所求情况数与总情况数之比.4 的概率是( )A .B .C .D .∵共有 12 种等可能的结果,两次摸出的小球标号的积小于 4 的有 4 种情况, ∴ 两次摸出的小球标号的积小于 4 的概率是: =.7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 【考点】由实际问题抽象出一元二次方程. 【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是 100( 1+x ),五月份的产量是 100(1+x )2,据此列方程即可. 【解答】解:若月平均增长率为x ,则该文具店五月份销售铅笔的支数是: 100(1+x ) 2, 故选: B .【点评】 本题考查数量平均变化率问题, 解题的关键是正确列出一元二次方程. 原来的数量 为 a ,平均每次增长或降低的百分率为 x 的话,经过第一次调整,就调整到a ×( 1±x ),再经过第二次调整就是 a ×(1±x )( 1±x )=a (1±x )2.增长用 “+”,下降用 “﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆 锥的母线长和底面半径,从而确定其表面积.【解答】 解: 由主视图和左视图为三角形判断出是锥体, 由俯视图是圆形可判断出cm )( )A .40π cm 2B . 65π cm 2C .80π cm 2D .105π cm 2这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为 10÷2=5cm ,2 2 2故表面积 =π rl+ π=rπ× 5× 8+ π=6×55π cm.故选: B.【点评】考查学生对三视图掌握程度和灵活运用同时也体现了对空间想象能力方面的能力,考查.二、填空题:本大题共8小题,每小题 3 分,共24分29.因式分解: x2﹣3x= x( x﹣3).【考点】因式分解 -提公因式法.【专题】因式分解.【分析】确定公因式是 x ,然后提取公因式即可.【解答】解: x 2﹣ 3x=x (x﹣3).故答案为: x(x﹣ 3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为﹣6 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点( 1,﹣ 6)代入反比例函数 y= ,求出 k 的值即可.【解答】解:∵反比例函数 y= 的图象经过点( 1,﹣ 6),∴ k=1×(﹣ 6) =﹣6.故答案为:﹣ 6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ ABC 绕点 A 逆时针旋转的到△ADE ,点 C和点 E是对应点,若∠ CAE=90°,【分析】由旋转的性质得: AB=AD=1 ,∠BAD= ∠CAE=90° ,再根据勾股定理即可求出 BD .【解答】解:∵将△ABC 绕点 A 逆时针旋转的到△ADE ,点C和点 E 是对应点,∴ AB=AD=1 ,∠BAD= ∠CAE=90° ,∴ BD= = = .故答案为.【点评】本题考查了旋转的性质:① 对应点到旋转中心的距离相等;② 对应点与旋转中心所连线段的夹角等于旋转角;③ 旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄 /岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是 15 岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得: (13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15 岁.故答案为: 15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是 24【分析】直接利用菱形的性质结合勾股定理得出 BD 的长,再利用菱形面积求法得出答案.【解答】解:连接 BD ,交 AC 于点 O,考点】旋转的性∵ 四边形 ABCD 是菱形,∴AC ⊥BD ,AO=CO=4 ,∴ BO= =3,故 BD=6 ,则菱形的面积是:×6×8=24 .点评】此题主要考查了菱形的性质以及勾股定理,正确求出214.若关于 x 的方程 2x 2+x ﹣a=0 有两个不相等的实数根,则实数 a的取值范围是 a>﹣【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于 a 的一元一次不等式,解不等式即可得出结论.【解答】解:2∵关于 x 的方程 2x2+x﹣a=0 有两个不相等的实数根,2∴△ =12﹣ 4×2×(﹣ a)=1+8a>0,解得: a>﹣.故答案为: a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a> 0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔 P的北偏东 30°方向,距离灯塔 18海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P的南偏东 55°方向上的 B 处,此时渔船与灯塔 P的距离约为 11 海里(结果取整数)(参考数据:BD 的长是解题关键.sin55 °≈0,.8cos55°≈0,.6tan55°≈1).4.考点】解直角三角形的应用 - 方向角问题.分析】作 PC⊥AB 于 C,先解 Rt△ PAC ,得出 PC= PA=9 ,再解 Rt△PBC,得出PB= ≈ 11.解答】解:如图,作 PC⊥ AB 于 C,在 Rt△PAC 中,∵PA=18 ,∠A=30°,∴PC= PA= ×18=9,在 Rt△PBC中,∵ PC=9,∠ B=55°,∴ PB= ≈≈11,答:此时渔船与灯塔 P 的距离约为 11海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B( m+2, 0)与 y 轴相交于点 C,点 D 在该抛物线上,坐标为( m, c),则点 A 的坐标是(﹣ 2,0).【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据 A 、B 关于对称轴对称,可得 A 点坐标.【解答】解:由 C ( 0, c ), D ( m , c ),得函数图象的对称轴是 x= , 设 A 点坐标为( x ,0),由 A 、 B 关于对称轴 x= ,得=,解得 x= ﹣2,即 A 点坐标为(﹣ 2, 0), 故答案为:(﹣ 2,0).【点评】本题考查了抛物线与 x 轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题: 本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分 17.计算:(+1)( ﹣ 1)+(﹣2)0﹣ . 【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简 3 个考点.在计算时,需要针对每 个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:( +1)(﹣ 1) +(﹣ 2)0﹣=5﹣ 1+1﹣3 =2.【点评】 本题主要考查了实数的综合运算能力, 是各地中考题中常见的计算题型. 解决此类 题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:( 2a+b)2﹣ a( 4a+3b),其中 a=1, b= .考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 a与 b的值代入计算即可求出值.【解答】解:原式 =4a2+4ab+b2﹣4a2﹣ 3ab=ab+b2,当 a=1, b= 时,原式 = +2 .【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图, BD 是? ABCD 的对角线, AE⊥BD,CF⊥BD,垂足分别为 E、F,求证:AE=CF .【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD,根据平行线的性质得出∠ABE= ∠CDF ,求出∠AEB=∠CFD=90°,根据 AAS 推出△ ABE ≌△ CDF,得出对应边相等即可.【解答】证明:∵ 四边形 ABCD 是平行四边形,∴ AB=CD ,AB ∥CD,∴∠ ABE= ∠CDF,∵AE ⊥BD ,CF⊥BD ,∴∠ AEB= ∠ CFD=90° ,在△ ABE 和△CDF 中,,∴△ ABE ≌△ CDF( AAS ),∴AE=CF .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ ABE ≌△ CDF 是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在 4.0<x≤6.5范围内的家庭有13 户,在 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比是 30 %;( 2)本次调查的家庭数为50 户,家庭用水量在 9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 18 %;( 3)家庭用水量的中位数落在 C 组;(4)若该小区共有 200 户家庭,请估计该月用水量不超过 9.0 吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】( 1)观察表格和扇形统计图就可以得出结果;(2)利用 C 组所占百分比及户数可算出调查家庭的总数,从而算出 D 组的百分比;( 3)从第二问知道调查户数为50,则中位数为第 25、26 户的平均数,由表格可得知落在 C组;( 4)计算调查户中用水量不超过 9.0 吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:( 1)观察表格可得 4.0< x≤6.5的家庭有 13 户, 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比为 30%;(2)调查的家庭数为: 13÷26%=50 ,6.5<x≤ 9.0的家庭数为: 50×30%=15 ,D 组 9.0<x≤ 11.5的家庭数为: 50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤ 11.5 的百分比是: 9÷50×100%=18%;(3)调查的家庭数为 50 户,则中位数为第 25、26 户的平均数,从表格观察都落在C组;故答案为:( 1)13,30;(2)50,18;( 3)C;( 4)调查家庭中不超过 9.0吨的户数有: 4+13+15=32 ,=128(户),答:该月用水量不超过 9.0 吨的家庭数为 128 户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是 x 千米 /时,乙车的速度为( x+30 )千米 /时,解得, x=60,则 x+30=90 ,即甲车的速度是 60千米/时,乙车的速度是 90 千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.考点】抛物线与 x 轴的交点;二次函数的性质.分析】( 1)利用坐标轴上点的特点求出 A 、B 、C 点的坐标,再用待定系数法求得直线BC 的解析式;2)设点 D 的横坐标为 m ,则纵坐标为 (m , ),E 点的坐标为 ( m , ),解答】解:( 1)∵抛物线 y=x 2﹣ 3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C , ∴ 令 y=0,可得 x= 或 x= , ∴A ( ,0), B ( ,令 x=0 ,则 y= , ∴ C 点坐标为( 0, )设 DE 的长度为 d ,可得两点间的距离为 d=,利用二次函数的最值可得 m ,可得点 D 的坐标.0);设直线 BC 的解析式为: y=kx+b ,则有,解得:∴ 直线 BC 的解析式为: y= x ;2)设点 D 的横坐标为 m ,则纵坐标为( m , ),∴ E 点的坐∵ 点 D 是直线 BC 下方抛物线上一点,整理得, d=﹣m2+ m,a=﹣1<0,∴ 当 m= = 时, d= 时, d 最大= = = ,∴ D 点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出 D 的坐标,利用二次函数最值得 D 点坐标是解答此题的关键.23.如图, AB 是⊙O 的直径,点 C、D 在⊙O 上,∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上,∠AED= ∠ABC( 1)求证: DE 与⊙O 相切;(2)若 BF=2,DF= ,求⊙O 的半径.【考点】切线的判定.【分析】( 1)连接 OD,由 AB 是⊙O的直径,得到∠ACB=90° ,求得∠A+∠ABC=90°,等量代换得到∠ BOD= ∠A ,推出∠ODE=9°0 ,即可得到结论;(2)连接 BD,过 D 作 DH⊥BF 于 H,由弦且角动量得到∠BDE= ∠BCD,推出△ACF 与△ FDB 都是等腰三角形,根据等腰直角三角形的性质得到 FH=BH= BF=1,则FH=1,根据勾股定理得到 HD= =3,然后根据勾股定理列方程即可得到结论.【解答】( 1)证明:连接 OD,∵ AB 是⊙O 的直径,∴∠ ACB=90° ,∴∠ A+ ∠ABC=90° ,∵∠ BOD=2 ∠BCD ,∠A=2∠BCD , ∴∠ BOD= ∠A , ∵∠ AED= ∠ABC , ∴∠ BOD+ ∠ AED=90° , ∴∠ ODE=9°0 , 即 OD ⊥DE ,∴DE 与⊙O 相切; (2)解:连接 BD ,过 D 作 DH ⊥BF 于 H , ∵DE 与⊙O 相切, ∴∠ BDE=∠ BCD , ∵∠ AED= ∠ABC , ∴∠ AFC=∠ DBF ,∵∠ AFC=∠ DFB , ∴△ ACF 与 △FDB 都是等腰三角形, ∴ FH=BH= BF=1,则 FH=1 ,∴ HD==3, 在 Rt △ ODH 中, OH 2+DH 2=OD 2,2 2 2 即( OD ﹣ 1)2+32=OD 2,∴ OD=5 ,五、解答题:本大题共 3小题, 24题 11 分, 25、26 各 12分,共 35分【点评】 本题考查了切线的判定和性质, 正确的作出辅助线是解题的等腰三角形的判定, 直角三角形的性质, 勾股定理, ∴⊙ O 的半径是24.如图 1,△ABC 中,∠C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m<x≤3时,函数的解析式不同)( 1)填空: BC 的长是 3 ;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.【考点】四边形综合题.【分析】( 1)由图象即可解决问题.(2)分三种情形①如图 1中,当 0≤x≤1时,作 DM ⊥AB 于 M,根据 S=S△ABC﹣S△BDF﹣S 四边形ECAG 即可解决.②如图 2中,作AN∥DF 交 BC 于 N,设 BN=AN=x ,在RT△ANC 中,利用勾股定理求出 x,再根据 S=S△ABC﹣S△BDF﹣S四边形ECAG 即可解决.③如图 3 中,根据 S= CD?CM ,求出 CM 即可解决问题.【解答】解;( 1)由图象可知 BC=3 .故答案为 3.(2)①如图 1中,当 0≤x≤1时,作 DM⊥AB 于 M,由题意 BC=3 , AC=2 ,∠C=90°,∴ AB= = ,∵∠ B=∠B,∠DMB= ∠ C=90°,∴△ BMD ∽△ BCA ,====∴DM= ∵BM=BD=DF ,DM⊥BF,∴ BM=MF ,∴ S △BDF = x 2 ∵EG ∥AC ,∴EG= (x+2 ),∴S四边形 ECAG = [2+ (x+2)]?(1﹣ x ),22∴ S=S△ ABC﹣ S △BDF ﹣ S 四边形 ECAG =3﹣x ﹣ [2+ (x+2)]?(1﹣x )=﹣ x + x+ .作 AN ∥DF 交 BC 于 N ,设 BN=AN=x ,③如图 3 中,当 <x ≤3时, ∵DM ∥AN ,∴ = ,∴ CM= (3﹣x ),综上所述 S=② 如图 ②中,在 RT △ ANC 中, ∵AN 2=CN 2+AC 2, ∴x 2=22+(3﹣x ) 2,∴ x= ,∴当 1< x ≤ 时,2S=S △ABC ﹣S△BDF =3﹣ x ,∴S= CD?CM= (3﹣x ) 2,【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D 在 BC 边上,∠DAB= ∠ABD, BE ⊥ AD ,垂足为 E ,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠BEA ,从而可证△ABF ≌△ BAE (如图 2),使问题得到解决.( 1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3, △ ABC 中, AB=AC ,∠BAC=90°,D 为 BC 的中点, E 为 DC 的中点,点 F 在 AC 的延长线上,且 ∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长; (3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D 、E 分别在 AB 、AC 边上,且 AD=kDB(其中 0<k< ), ∠AED= ∠BCD ,求 的值(用含 k 的式子表示).【考点】相似形综合题.【分析】( 1)作 AF ⊥ BC ,判断出 △ABF ≌△ BAE ( AAS ),得出 BF=AE ,即可;( 2)先求出 tan ∠DAE= ,再由 tan ∠ F=tan ∠ DAE ,求出 CG ,最后用 △DCG ∽△ ACE 求 出 AC ;( 3)构造含 30°角的直角三角形,设出 DG ,在 Rt △ABH ,Rt △ ADN ,Rt △ABH 中分别用 a ,k 表示出 AB=2a ( k+1 ),BH= a (k+1),BC=2BH=2 a ( k+1),CG= a (2k+1 ),DN= ka ,最后用 △NDE ∽△ GDC ,求出 AE ,EC 即可. 【解答】证明:( 1)如图 2,∵BE ⊥AD ,∴∠AFB= ∠BEA , 在△ ABF 和△BAE 中,作 AF ⊥BC ,,∴△ ABF≌△ BAE (AAS ),∴ BF=AE∵ AB=AC ,AF ⊥BC,∴BF= BC ,∴ BC=2AE ,故答案为 AAS( 2)如图 3,在 Rt△ABC 中, AB=AC ,点 D 是 BC 中点,∴ AD=CD ,∵点 E是 DC 中点,∴DE= CD= AD ,∴ tan ∠ DAE= ∵ AB=AC ,∠BAC=90° ,点 D 为 BC 中点,∴∠ ADC=9°0 ,∠ ACB= ∠DAC=4°5 ,∴∠ F+∠CDF=∠ACB=45° ,∵∠ CDF=∠ EAC ,∴∠ F+∠ EAC=45° ,∵∠ DAE+ ∠EAC=45° ,∴∠ F=∠DAE ,∴ tan∠ F=tan ∠ DAE= ,,∴,∴,∴ CG= ×2=1,∵∠ ACG=9°0 ,∠ ACB=45° ,∴∠ DCG=4°5 ,∵∠ CDF=∠ EAC ,∴△ DCG∽△ ACE,∴,∴ AC=4 ; ∴ AB=4 ; 3)如图 4,过点 D 作 DG ⊥BC ,设 DG=a , 在 Rt △BGD 中, ∠B=30°, ∴ BD=2a , BG= a , ∵ AD=kDB ,∴ AD=2ka , AB=BD+AD=2a+2ka=2a ( k+1 ), 过点 A 作 AH ⊥BC , 在 Rt △ABH 中, ∠B=30°. ∴ BH= a (k+1), ∵ AB=AC ,AH ⊥BC , ∴ BC=2BH=2 a ( k+1), ∴ CG=BC ﹣BG= a ( 2k+1), 过 D 作 DN ⊥ AC 交 CA 延长线与 N , ∵∠ BAC=12°0 , ∴∠ DAN=6°0 ,∴ AN=ka , DN= ka , ∵∠ DGC= ∠ AND=9°0 ,∠AED= ∠BCD , ∴△ NDE ∽△ GDC .∴∠∴,∴,∴ NE=3ak (2k+1),∴ EC=AC ﹣ AE=AB ﹣AE=2a ( k+1)﹣ 2ak( 3k+1) =2a(1﹣ 3k2),【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.226.如图,在平面直角坐标系 xOy中,抛物线 y=x2+ 与y轴相交于点 A,点B与点 O 关于点 A 对称( 1)填空:点 B 的坐标是( 0,);(2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l平行于 y轴, P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;( 3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求此时点 P 的坐标.考点】二次函数综合题.分析】( 1)由抛物线解析式可求得 A 点坐标,再利用对称可求得 B 点坐标; 2)可先用 k 表示出 C 点坐标,过 B 作 BD ⊥l 于点 D ,条件可知 P 点在 x 轴上方,设 P 点纵坐标为 y ,可表示出 PD 、PB 的长,在 Rt △PBD 中,利用勾股定理可求得 y ,则可求出PB 的长,此时可得出 P 点坐标,代入抛物线解析式可判断 P 点在抛物线上; ∠ OBC=∠ CBP= ∠C ′BP=60°,则可求得OC 的长, 代入抛物线解析式可求得 P 点坐标. 解答】解:∴A (0, ), ∵点 B 与点 O 关于点 A 对称, ∴BA=OA= ,∴OB= ,即 B 点坐标为( 0, ), 故答案为:( 0, ); (2)∵B 点坐标为( 0, ),∴ 直线解析式为 y=kx+ ,令 y=0 可得 ∴OC= ﹣ , ∵ PB=PC , ∴点 P 只能在 x 轴上方, 如图 1,过 B 作 BD ⊥l 于点 D ,设 PB=PC=m ,3)利用平行线和轴对称的性质可得到 1)∵抛物线 y=x 2+ 与 y 轴相交于点 A ,kx+ =0,解得 x=﹣ ,∵l ∥y 轴, ∴∠ OBC= ∠PCB , 又 PB=PC , ∴∠ PCB=∠ PBC , ∴∠ PBC=∠OBC ,又 C 、C ′关于 BP 对称,且 C ′在抛物线的对称轴上,即在 ∴∠ PBC=∠ PBC ′,∴∠ OBC= ∠CBP=∠C ′BP=60°, 在 Rt △OBC 中, OB= ,则 BC=1则 BD=OC= ﹣ , CD=OB= , ∴PD=PC ﹣CD=m ﹣ ,在 Rt △PBD 中,由勾股定理可得 PB 2=PD 2+BD 2,即 m 2=(m ﹣ )(﹣)∴ PB + , 2+( )2,解得 m= + ,∴P 点坐标为(﹣),当 x= ﹣ 时,代入抛物线解析式可得 y= + , ∴点 P 在抛物线上; y 轴上, 3)如图 2,连接CC ′,∴OC= ,即 P 点的横坐标为,代入抛物线解析式可得 y=()2+ =1,∴P 点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于 PC 的长的方程是解题的关键,在( 3)中求得∠OBC= ∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.222.如图,抛物线 y=x2﹣3x+ 与 x轴相交于 A、B 两点,与 y 轴相交于点 C,点 D 是直线BC 下方抛物线上一点,过点 D 作 y轴的平行线,与直线 BC 相交于点 E( 1)求直线 BC 的解析式;( 2)当线段 DE 的长度最大时,求点 D 的坐标.。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题1. 以下哪个选项是正确的整数比例?A. 3:5B. 0.6:0.4C. 1.2:2.4D. 5:02. 已知一个等差数列的前三项分别是 2x-1,3x+1,4x+3,求 x 的值。

A. 1B. 2C. 3D. 43. 一个圆的半径是 5 厘米,求这个圆的面积(圆周率取 3.14)。

A. 78.5 平方厘米B. 157 平方厘米C. 78.5 平方米D. 157 平方米4. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)5. 一个三角形的三个内角分别是 45 度、60 度和 75 度,这个三角形是什么三角形?A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形二、填空题6. 若 a:b = 2:3,b:c = 5:7,则 a:b:c = _______。

7. 一个等比数列的前三项分别是 2,6,18,这三项的和是 _______。

8. 一个正方形的边长是 6 厘米,求这个正方形的周长和面积。

周长 = _______ 厘米面积 = _______ 平方厘米9. 一个圆的直径是 10 厘米,求这个圆的半径、周长和面积。

半径 = _______ 厘米周长 = _______ 厘米面积 = _______ 平方厘米10. 已知一个三角形的两边长分别是 5 厘米和 7 厘米,夹角是 60 度,求这个三角形的面积。

面积 = _______ 平方厘米三、解答题11. 一个等差数列的前五项和是 35,首项是 3,求这个数列的公差和第五项。

12. 一个圆的半径是 8 厘米,求这个圆的周长和面积,并将结果表示为分数形式。

13. 一个三角形的三个顶点分别是 A(2,3),B(5,7),C(8,3),求这个三角形的周长和面积。

14. 一个等比数列的前三项分别是 a, ar, ar^2,其中 r 不为 1,如果这个数列的前五项的和是 31,求 a 和 r 的值。

物理历年中考试题及答案

物理历年中考试题及答案

物理历年中考试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^4 km/hD. 3×10^3 km/h答案:A2. 以下哪种力不是物体间的相互作用力()A. 重力B. 弹力C. 摩擦力D. 浮力答案:D3. 以下哪种现象不能说明分子在永不停息地做无规则运动()A. 扩散现象B. 布朗运动C. 蒸发现象D. 沸腾现象答案:D4. 以下哪种方法不能改变物体的内能()A. 做功B. 热传递C. 摩擦生热D. 压缩气体答案:C5. 以下哪种现象属于光的折射()A. 影子的形成B. 镜子中的虚像C. 彩虹的形成D. 手影戏答案:C6. 以下哪种现象属于光的反射()A. 镜子中的虚像B. 彩虹的形成C. 影子的形成D. 手影戏答案:A7. 以下哪种现象属于光的直线传播()A. 镜子中的虚像B. 彩虹的形成C. 影子的形成D. 手影戏答案:C8. 以下哪种现象属于光的色散()A. 镜子中的虚像B. 彩虹的形成C. 影子的形成D. 手影戏答案:B9. 以下哪种现象不属于电磁波()A. 无线电波B. 微波C. 红外线D. 超声波答案:D10. 以下哪种现象不属于物体的惯性()A. 汽车突然启动时乘客向后仰B. 汽车突然刹车时乘客向前倾C. 汽车匀速行驶时乘客保持静止D. 汽车转弯时乘客向外侧倾斜答案:C二、填空题(每题3分,共30分)1. 牛顿第一定律也被称为______定律。

答案:惯性2. 物体在平衡力作用下,其运动状态将______。

答案:保持不变3. 物体的内能与物体的温度、质量、状态有关,温度越高,内能______。

答案:越大4. 光在真空中的传播速度是______。

答案:3×10^8 m/s5. 声音的传播需要______。

答案:介质6. 光的三原色是红、绿、______。

历届中考英语试题及答案

历届中考英语试题及答案

历届中考英语试题及答案一、单项选择题(每题2分,共20分)1. Which of the following is NOT a verb?A. runB. danceC. eatD. quickly答案:D2. Fill in the blank with the correct preposition: The teacher came _______ the classroom with a smile on his face.A. inB. intoC. atD. with答案:B3. Choose the correct answer to complete the sentence: Idon't like _______ when people talk loudly.A. thatB. itC. thisD. those答案:B4. Select the option that best completes the dialogue:- What did you do last weekend?- I _______ to the museum.A. wentB. goC. goesD. am going答案:A5. Identify the correct usage of the past continuous tense: While I _______ my homework, my brother called me.A. didB. was doingC. doD. am doing答案:B6. Rewrite the sentence using the future simple tense: Theywill go to the park tomorrow.A. They go to the park tomorrow.B. They are going to the park tomorrow.C. They went to the park yesterday.D. They will be going to the park tomorrow.答案:B7. Determine the correct comparative form: Of the two sisters, Lucy is _______.A. tallerB. the tallerC. more tallD. the most tall答案:B8. Fill in the blank with the correct modal verb: You _______ wait outside if you don't want to come in.A. canB. mayC. mustD. might答案:A9. Choose the correct passive voice construction: The letter was written by him last night.A. The letter was written by him last night.B. He was written the letter last night.C. The letter was written to him last night.D. He wrote the letter last night.答案:A10. Select the correct answer to complete the sentence:_______ the bad weather, we decided to stay at home.A. Because ofB. In spite ofC. Due toD. Owing to答案:A二、阅读理解(每题3分,共30分)阅读下面的短文,然后回答11-15题。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 如果a > b,那么下列哪个不等式是正确的?A. a + 3 > b + 3B. a - 3 > b - 3C. a × 3 > b × 3D. a ÷ 3 > b ÷ 3答案:A3. 一个圆的直径是14厘米,那么它的半径是多少?A. 7厘米B. 14厘米C. 28厘米D. 21厘米答案:A4. 计算下列表达式的结果:(2x - 3) + (x + 4)A. 3x + 1B. 3x - 1C. 2x + 1D. 2x - 1答案:A5. 下列哪个选项是方程3x - 5 = 11的解?A. x = 4B. x = -2C. x = 2D. x = 1答案:A6. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B7. 下列哪个选项是不等式2x + 3 > 7的解?A. x > 1B. x > 2C. x < 1D. x < 2答案:B8. 计算下列表达式的结果:\(\frac{3}{4} \times \frac{2}{3}\)A. \(\frac{1}{2}\)B. \(\frac{3}{2}\)C. \(\frac{1}{4}\)D. \(\frac{3}{4}\)答案:C9. 下列哪个选项是方程x² - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A10. 下列哪个选项是二次函数y = ax² + bx + c的对称轴?A. x = aB. x = bC. x = -b/2aD. x = -a/b答案:C二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

中考试题及答案详解

中考试题及答案详解

中考试题及答案详解一、选择题1. 下列哪个选项是正确的?A. 地球是平的B. 太阳从西边升起C. 四季更替是由地球自转引起的D. 地球绕着太阳转答案:D2. 以下哪个历史事件标志着中国封建社会的开始?A. 秦始皇统一六国B. 周朝建立C. 汉朝建立D. 唐朝建立答案:A二、填空题1. 请填写下列成语的后半部分:______,后人乘凉。

答案:前人栽树2. 请写出中国四大名著的名称:答案:《红楼梦》、《西游记》、《三国演义》、《水浒传》三、简答题1. 请简述牛顿三大定律。

答案:牛顿三大定律是经典力学的基础,包括:- 第一定律(惯性定律):物体会保持静止或匀速直线运动状态,直到受到外力作用。

- 第二定律(动力定律):物体的加速度与作用在其上的净外力成正比,与物体的质量成反比。

- 第三定律(作用与反作用定律):对于每一个作用力,总有一个大小相等、方向相反的反作用力。

2. 请解释“可持续发展”的概念。

答案:可持续发展是指在满足当代人需求的同时,不损害后代人满足其需求的能力,即在经济、社会、环境三方面实现协调发展。

四、论述题1. 论述中国改革开放以来取得的主要成就。

答案:改革开放是中国在1978年以后实施的一系列经济和政治改革政策,其主要成就包括:- 经济快速增长,成为世界第二大经济体。

- 人民生活水平显著提高,贫困率大幅下降。

- 对外开放扩大,吸引了大量外资,促进了技术引进和国际交流。

- 社会结构和治理体系逐步现代化,提高了国家治理能力。

2. 论述信息技术在现代社会中的重要性。

答案:信息技术在现代社会中的重要性体现在:- 提高了信息传递的效率和准确性,促进了全球化进程。

- 改变了人们的工作方式,如远程办公、在线教育等。

- 推动了科技创新,如人工智能、大数据等新兴技术的发展。

- 增强了社会管理和服务能力,如电子政务、智慧城市等。

五、作文题1. 题目:《我的梦想》要求:写一篇不少于600字的作文,描述你的梦想是什么,以及你打算如何实现它。

历年中考物理试题及答案

历年中考物理试题及答案

历年中考物理试题及答案一、选择题(每题3分,共45分)1. 关于光的反射,下列说法正确的是:A. 镜面反射和漫反射都属于光的反射现象B. 镜面反射是光的折射现象C. 漫反射是光的折射现象D. 镜面反射和漫反射都是光的折射现象答案:A2. 以下哪种物质是导体?A. 橡胶B. 玻璃C. 塑料D. 铁答案:D3. 一个物体受到两个力的作用,如果这两个力的方向相反,且大小相等,则物体将:A. 静止B. 匀速直线运动C. 做曲线运动D. 做加速运动答案:A4. 下列现象中,属于光的折射的是:A. 雨后的彩虹B. 影子的形成C. 镜子中的倒影D. 阳光下物体的影子答案:A5. 以下哪种情况下,物体的重力不会改变?A. 物体从地面上升到空中B. 物体从赤道移动到两极C. 物体从地球移动到月球D. 物体从静止变为运动答案:D6. 电流通过导体时,导体发热,这种现象称为:A. 电流的热效应B. 电流的磁效应C. 电流的化学效应D. 电流的光效应答案:A7. 以下哪种物质是绝缘体?A. 铁B. 铜C. 铝D. 陶瓷答案:D8. 以下哪种情况下,物体的机械能守恒?A. 物体在水平面上无摩擦地滚动B. 物体在斜面上下滑C. 物体在竖直方向上自由落体D. 所有选项答案:D9. 以下哪种情况不属于能量的转化?A. 摩擦生热B. 电能转化为光能C. 光能转化为化学能D. 机械能转化为电能答案:C10. 以下哪种物质是半导体?A. 橡胶B. 玻璃C. 塑料D. 硅答案:D11. 以下哪种情况不属于光的直线传播?A. 激光束B. 影子的形成C. 太阳光线D. 透镜成像答案:D12. 以下哪种情况下,物体的动能会增加?A. 物体的质量增加,速度不变B. 物体的速度增加,质量不变C. 物体的质量减少,速度不变D. 物体的质量增加,速度减少答案:B13. 以下哪种情况下,物体的重力势能会增加?A. 物体的质量增加,高度不变B. 物体的高度增加,质量不变C. 物体的质量减少,高度不变D. 物体的质量增加,高度减少答案:B14. 以下哪种情况下,物体的内能会增加?A. 物体的温度升高B. 物体的质量增加C. 物体的体积增加D. 物体的内能与这些因素无关答案:A15. 以下哪种情况下,物体的机械能不守恒?A. 物体在水平面上无摩擦地滚动B. 物体在斜面上下滑C. 物体在竖直方向上自由落体D. 物体在水平面上受到摩擦力的作用答案:D二、填空题(每题3分,共30分)1. 光在真空中的传播速度是_______m/s。

历年全国中考数学试题及答案(完整详细版)

历年全国中考数学试题及答案(完整详细版)

班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。

初中中考试题及答案

初中中考试题及答案

初中中考试题及答案一、选择题(每题2分,共20分)1. 下列哪项不是中国四大发明之一?A. 造纸术B. 指南针C. 火药D. 印刷术答案:D2. 地球自转一周的时间是:A. 24小时B. 12小时C. 48小时D. 72小时答案:A3. 以下哪个国家不是联合国安理会常任理事国?A. 中国B. 法国C. 德国D. 俄罗斯答案:C4. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺5. 光年是指:A. 光一年内行走的距离B. 光一年内行走的时间C. 光一年内行走的速度D. 光一年内行走的路程答案:A6. 世界上最长的河流是:A. 尼罗河B. 亚马逊河C. 长江D. 密西西比河答案:A7. 以下哪个选项是正确的化学方程式?A. 2H2 + O2 → 2H2OB. 2H + O2 → H2OC. 2H2O + O2 → 2H2 + O2D. H2 + O2 → H2O2答案:A8. 以下哪个选项是正确的物理公式?A. 速度 = 距离 / 时间B. 距离 = 速度× 时间C. 速度 = 时间 / 距离D. 时间 = 距离 / 速度答案:B9. 以下哪种植物是被子植物?B. 蕨类C. 苔藓D. 玉米答案:D10. 以下哪个选项是正确的数学公式?A. 圆的面积= π × 半径²B. 圆的周长= π × 直径C. 圆的面积= π × 直径D. 圆的周长= π × 半径²答案:A二、填空题(每题2分,共20分)1. 中国的首都是________。

答案:北京2. 地球的赤道周长大约是________公里。

答案:400003. 世界上最大的沙漠是________。

答案:撒哈拉沙漠4. 元素周期表中,氧元素的原子序数是________。

答案:85. 人体正常体温的平均温度是________摄氏度。

答案:376. 光速在真空中的速度是每秒________公里。

历年英语中考试题及答案

历年英语中考试题及答案

历年英语中考试题及答案一、听力部分(共20分)1. 听句子,选择最佳答案。

(每题1分,共5分)(1) A. Good morning. B. Good afternoon. C. Good evening.(2) A. He is a doctor. B. He is a teacher. C. He is a student.(3) A. It's windy. B. It's rainy. C. It's sunny.(4) A. She is reading a book. B. She is watching TV. C. She is listening to music.(5) A. I'm thirteen. B. I'm fourteen. C. I'm fifteen.2. 听对话,选择最佳答案。

(每题2分,共10分)(6) What is the boy doing?A. Playing football.B. Playing basketball.C. Playing table tennis.(7) What does the girl want to buy?A. A pen.B. A pencil.C. A notebook.(8) Where are they going?A. To the library.B. To the zoo.C. To the park.(9) What time is it now?A. 8:00.B. 9:00.C. 10:00.(10) What's the weather like tomorrow?A. Sunny.B. Rainy.C. Cloudy.3. 听短文,回答问题。

(每题2分,共5分)(11) What is the main topic of the passage?A. Traveling.B. Hobbies.C. School life.(12) How many people are there in the speaker's family?A. Three.B. Four.C. Five.(13) What does the speaker's father do?A. A teacher.B. A doctor.C. A farmer.(14) What is the speaker's favorite subject?A. English.B. Math.C. Science.(15) What does the speaker usually do after school?A. Play sports.B. Watch TV.C. Do homework.二、单项选择(共15分)4. ( ) - What's this in English?- It's an ______.A. orangeB. orangesC. orangerD. oranges5. ( ) - What does your father do?- He ______ a teacher.A. amB. isC. areD. be6. ( ) - ______ is your mother?- She is a nurse.A. WhatB. WhoC. WhereD. Why7. ( ) - Can you play the guitar?- Yes, I ______.A. canB. doC. amD. have8. ( ) - What's the weather like today?- ______. It's very hot.A. SunnyB. RainyC. WindyD. Cloudy9. ( ) - When is your birthday?- It's ______.A. in JanuaryB. on JanuaryC. at JanuaryD. January10. ( ) - What are you doing?- I ______ my homework.A. am doingB. doC. didD. have done三、完形填空(共20分)11. Once upon a time, there was a rich man who had a lot of money. He was very ( ) but he was not happy.A. poorB. tallC. shortD. kind12. He had a beautiful daughter. She was very ( ) and clever.A. kindB. youngC. oldD. beautiful13. One day, the rich man decided to ( ) his daughter to a rich man.A. marryB. sellC. giveD. show14. But his daughter didn't want to ( ) a rich man. She wanted to marry someone she loved.A. marryB. meetC. talkD. know15. She ran away from home and met a young man. He was very ( ) and poor.A. handsomeB. uglyC. oldD. tall16. They fell in love with each other and decided to ( ) together.A. liveB. workC. studyD. play17. The rich man found them and was very ( ). He didn't allowthem to be together.A. happyB. sadC. angryD. excited18. The young man and the girl ran away to a ( ) place.A. farB. nearC. bigD. small19. They lived a happy life and had many ( ) children.A. happyB. sadC. poorD. rich。

历年中考试题及答案解析

历年中考试题及答案解析

历年中考试题及答案解析一、选择题1. 下列哪个选项是正确的?A. 地球是平的B. 太阳从西方升起C. 一年有13个月D. 地球围绕太阳转答案:D2. 以下哪个历史事件发生在唐朝?A. 秦始皇统一六国B. 汉武帝开疆拓土C. 贞观之治D. 郑和下西洋答案:C二、填空题1. 请填写下列诗句的下一句。

“床前明月光,__________。

”答案:疑是地上霜2. 请写出牛顿的三大定律中的第一定律。

答案:惯性定律三、简答题1. 请简述什么是光合作用?答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为有机物,并释放氧气的过程。

2. 请解释“可持续发展”的含义。

答案:可持续发展是指在满足当代人需求的同时,不损害后代人满足其需求的能力的发展方式。

四、阅读理解题阅读以下短文,回答问题。

短文内容:[此处为一段关于某个主题的短文]问题:1. 短文中提到的主要观点是什么?答案:[根据短文内容给出的答案]2. 作者为什么提出这个观点?答案:[根据短文内容给出的答案]五、作文题1. 题目:请以“我的梦想”为题,写一篇不少于600字的作文。

答案:[此处为一篇符合题目要求的作文范文]六、答案解析1. 对于选择题第1题,正确答案是D,因为地球是绕太阳转的,这是基本的天文常识。

2. 对于填空题第1题,“床前明月光,疑是地上霜”是李白的《静夜思》中的名句,表达了诗人对故乡的思念之情。

3. 对于简答题第1题,光合作用是植物生长的基础,也是地球生态系统中能量转换的重要过程。

4. 对于阅读理解题,答案需要根据短文的具体内容来确定,通常涉及到对文章主旨、作者观点、写作手法等方面的理解。

5. 作文题的答案需要根据学生的个人经历和想象力来创作,但必须符合题目要求,语言流畅,结构清晰。

2024年山东省潍坊市中考真题试题

2024年山东省潍坊市中考真题试题

2024年山东省潍坊市中考真题试题一、单选题1.下列著名曲线中,既是轴对称图形也是中心对称图形的是( )A .B .C .D .2.2024年3月份,低空经济首次被写入《政府工作投告》.截止2023年底,全国注册通航企业690家、无人机126.7万架,运营无人机的企业达1.9万家.将126.7万用科学记数法表示为( ) A .51.26710⨯B .61.26710⨯C .71.26710⨯D .4126.710⨯3.某厂家生产的海上浮漂的形状是中间穿孔的球体,如图1所示.该浮漂的俯视图是图2,那么它的主视图是( )A .B .C .D .4.中国中医科学院教授屠呦呦因其在青蒿素抗疟方面的研究获2015年诺贝尔生理学或医学奖.某科研小组用石油醚做溶剂进行提取青蒿素的实验,控制其他实验条件不变,分别研究提取时间和提取温度对青蒿素提取率的影响,其结果如图所示:由图可知,最佳的提取时间和提取温度分别为( ) A .100min,50℃ B .120min,50℃C .100min,55℃D .120min,55℃5.一种路灯的示意图如图所示,其底部支架AB 与吊线FG 平行,灯杆CD 与底部支架AB 所成锐角15α=︒.顶部支架EF 与灯杆CD 所成锐角45β=︒,则EF 与FG 所成锐角的度数为( )A .60︒B .55︒C .50︒D .45︒6.已知关于x 的一元二次方程2210x mx n mn --++=,其中,m n 满足23m n -=,关于该方程根的情况,下列判断正确的是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定二、多选题7.下列命题是真命题的有( ) A .若a b =,则ac bc = B .若a b >,则ac bc > C .两个有理数的积仍为有理数 D .两个无理数的积仍为无理数81,下列关于该圆柱的结论正确的有( )A .体积为πB .母线长为1C .侧面积为D .侧面展开图的周长为2+9.如图,已知抛物线2y ax bx c =++的对称轴是直线1x =,且抛物线与x 轴的一个交点坐标是()4,0.下列结论正确的有( )A .0a b c -+>B .该抛物线与x 轴的另一个交点坐标是()3,0-C .若点()11,y -和()22,y 在该抛物线上,则12y y <D .对任意实数n ,不等式2an bn a b +≤+总成立10.如图,O e 是ABC V 的外接圆,AO BC ∥,连接CO 并延长交O e 于点D .分别以点,A C 为圆心,以大于12AC 的长为半径作弧,并使两弧交于圆外一点M .直线OM 交BC 于点E ,连接AE ,下列结论一定正确的是( )A .»»AB AD = B .AB OE =C .AOD BAC ∠=∠D .四边形AOCE 为菱形三、填空题11.请写出同时满足以下两个条件的一个函数:.①y 随着x 的增大而减小;②函数图象与y 轴正半轴相交.12.如图,在直角坐标系中,等边三角形ABC 的顶点A 的坐标为()0,4,点,B C 均在x 轴上.将ABC V 绕顶点A 逆时针旋转30︒得到AB C ''△,则点C '的坐标为.13.小莹在做手抄报时,用到了红色、黄色、蓝色三支彩笔,这三支彩笔的笔帽和笔芯颜色分别一致.完成手抄报后,她随机地将三个笔帽分别盖在三支彩笔上,每个笔帽和笔芯的颜色都不匹配的概率是.14.将连续的正整数排成如图所示的数表.记(),i j a 为数表中第i 行第j 列位置的数字,如()1,24a =,()3,28a =,()5,422a =.若(),2024m n a =,则m =,n =.四、解答题15.(12132-⎛⎫-- ⎪⎝⎭;(2)先化简,再求值:32111a a a a +⎛⎫+-÷⎪--⎝⎭,其中2a =. 16.如图,在矩形ABCD 中,2AB AD >,点E F ,分别在边AB CD ,上.将ADF △沿AF 折叠,点D 的对应点G 恰好落在对角线AC 上;将CBE △沿CE 折叠,点B 的对应点H 恰好也落在对角线AC 上.连接GE FH ,.求证:(1)AEH CFG△≌△;(2)四边形EGFH为平行四边形.17.如图,正比例函数y=的图象与反比例函数kyx=的图象的一个交点是(A m.点()P n在直线y x=上,过点P作y轴的平行线,交kyx=的图象于点Q.(1)求这个反比例函数的表达式;(2)求OPQ△的面积.18.在某购物电商平台上,客户购买商家的商品后,可从“产品质量”“商家服务”“发货速度”“快递服务”等方面给予商家分值评价(分值为1分、2分、3分、4分和5分).该平台上甲、乙两个商家以相同价格分别销售同款T恤衫,平台为了了解他们的客户对其“商家服务”的评价情况,从甲、乙两个商家各随机抽取了一部分“商家服务”的评价分值进行统计分析.【数据描述】下图是根据样本数据制作的不完整的统计图,请回答问题(1)(2).(1)平台从甲、乙两个商家分别抽取了多少个评价分值?请补全条形统计图; (2)求甲商家的“商家服务”评价分值的扇形统计图中圆心角α的度数. 【分析与应用】样本数据的统计量如下表,请回答问题(3)(4).(3)直接写出表中a 和b 的值,并求x 的值;(4)小亮打算从甲、乙两个商家中选择“商家服务”好的一家购买此款T 恤衫.你认为小亮应该选择哪一家?说明你的观点.19.2024年6月,某商场为了减少夏季降温和冬季供暖的能源消耗,计划在商场的屋顶和外墙建造隔热层,其建造成本P (万元)与隔热层厚度()cm x 满足函数表达式:10P x =.预计该商场每年的能源消耗费用T (万元)与隔热层厚度()cm x 满足函数表达式:()()24218x x T ++=-,其中09x ≤≤.设该商场的隔热层建造费用与未来8年能源消耗费用之和为y (万元).(1)若148y =万元,求该商场建造的隔热层厚度;(2)已知该商场未来8年的相关规划费用为t (万元),且2t y x =+,当172192t ≤≤时,求隔热层厚度()cm x 的取值范围.20.如图,已知ABC V 内接于O e ,AB 是O e 的直径,BAC ∠的平分线交O e 于点D ,过点D 作DE AC ⊥,交AC 的延长线于点E ,连接BD CD ,.(1)求证:DE 是O e 的切线;(2)若1CE =,1sin 3BAD ∠=,求O e 的直径.21.在光伏发电系统运行时,太阳能板(如图1)与水平地面的夹角会对太阳辐射的接收产生直接影响.某地区工作人员对日平均太阳辐射量y (单位:121kW h 10m d ---⋅⋅⋅⋅)和太阳能板与水平地面的夹角()090x x ︒≤≤进行统计,绘制了如图2所示的散点图,已知该散点图可用二次函数刻画.(1)求y 关于x 的函数表达式;(2)该地区太阳能板与水平地面的夹角为多少度时,日平均太阳辐射量最大?(3)图3是该地区太阳能板安装后的示意图(此时,太阳能板与水平地面的夹角使得日平均太阳辐射量最大),AGD ∠为太阳能板AB 与水平地面GD 的夹角,CD 为支撑杆.已知2m AB =,C 是AB 的中点,CD GD ⊥.在GD 延长线上选取一点M ,在,D M 两点间选取一点E ,测得4m EM =,在,M E 两点处分别用测角仪测得太阳能板顶端A 的仰角为30︒,45︒,该测角仪支架的高为1m .求支撑杆CD 的长.(精确到0.1m ,1.414≈,1.732)22.【问题提出】在绿化公园时,需要安装一定数量的自动喷洒装置,定时喷水养护,某公司准备在一块边长为18m 的正方形草坪(如图1)中安装自动喷洒装置,为了既节约安装成本,又尽可能提高喷洒覆盖率,需要设计合适的安装方案.说明:一个自动喷洒装置的喷洒范围是半径为()m r 的圆面.喷洒覆盖率k sρ=,s为待喷洒区域面积,k 为待喷洒区域中的实际喷洒面积.【数学建模】这个问题可以转化为用圆面覆盖正方形面积的数学问题. 【探索发现】(1)如图2,在该草坪中心位置设计安装1个喷洒半径为9m 的自动喷洒装置,该方案的喷洒覆盖率ρ=______.(2)如图3,在该草坪内设计安装4个喷洒半径均为9m 2的自动喷洒装置;如图4,设计安装9个喷洒半径均为3m 的自动喷洒装置;⋅⋅⋅⋅⋅⋅,以此类推,如图5,设计安装2n 个喷洒半径均为9m n的自动喷洒装置.与(1)中的方案相比,采用这种增加装置个数且减小喷洒半径的方案,能否提高喷洒覆盖率?请判断并给出理由.(3)如图6所示,该公司设计了用4个相同的自动喷洒装置喷洒的方案,且使得该草坪的喷洒覆盖率1ρ=.已知AE BF CG DH ===,设()m A E x =,1O e 的面积为()2m y ,求y 关于x 的函数表达式,并求当y 取得最小值时r 的值.【问题解决】(4)该公司现有喷洒半径为的自动喷洒装置若干个,至少安装几个这样的喷洒装置可使该草坪的喷洒覆盖率1ρ=?(直接写出结果即可)。

历年中考数学试题及答案

历年中考数学试题及答案

历年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 一个数的平方根是3,那么这个数是:A. 3B. 9C. -3D. -9答案:B3. 已知一个三角形的两边长分别为3和4,第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 6答案:C4. 计算下列哪个表达式的结果是正数?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-3) × 2答案:A5. 一个圆的半径是5厘米,那么它的周长是:A. 10π cmB. 20π cmC. 30π cmD. 40π cm答案:B6. 一个等腰三角形的两个底角都是45度,那么顶角的度数是:A. 45°B. 90°C. 135°D. 180°答案:B7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C8. 计算下列哪个表达式的结果大于0?A. 3 - 2B. 3 + (-2)C. -3 - 2D. -3 + (-2)答案:A9. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14答案:A10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的立方根是2,那么这个数是________。

答案:82. 一个数的倒数是2/3,那么这个数是________。

答案:3/23. 一个数的绝对值是6,那么这个数可能是________或________。

答案:6,-64. 一个三角形的内角和是________度。

答案:1805. 一个圆的直径是10厘米,那么它的半径是________厘米。

中考各地试题及答案

中考各地试题及答案

中考各地试题及答案1. 语文试题(1)请解释“蒹葭苍苍,白露为霜”中的“蒹葭”是什么意思?答案:蒹葭指的是芦苇。

(2)《岳阳楼记》的作者是谁?答案:范仲淹。

2. 数学试题(1)已知等腰三角形的底边长为10cm,两腰长为13cm,求三角形的高。

答案:高为12cm。

(2)若一个数的平方根是4,那么这个数是多少?答案:这个数是16。

3. 英语试题(1)Translate the following sentence into Chinese: "The teacher asked the students to read the text aloud."答案:老师要求学生们大声朗读课文。

(2)Complete the sentence with the correct form of the verb: "She _______ (study) English since she was five years old."答案:has studied4. 物理试题(1)一个物体的质量为2kg,受到的重力是多少?答案:受到的重力为19.6N。

(2)光在真空中的传播速度是多少?答案:光在真空中的传播速度是3×10^8 m/s。

5. 化学试题(1)写出水的化学式。

答案:H2O。

(2)什么是元素周期表?答案:元素周期表是一种按照原子序数排列的表格,展示了所有已知元素的化学性质和物理性质。

6. 历史试题(1)请列举中国历史上的四大发明。

答案:造纸术、火药、印刷术、指南针。

(2)秦始皇统一中国的时间是?答案:公元前221年。

7. 地理试题(1)请描述地球自转和公转的区别。

答案:地球自转是地球绕自己的轴线旋转,周期约24小时,导致昼夜交替;地球公转是地球绕太阳旋转,周期约365.25天,导致季节变化。

(2)世界上最大的洋是什么?答案:太平洋。

8. 生物试题(1)细胞的基本结构包括哪些?答案:细胞的基本结构包括细胞膜、细胞质和细胞核。

初中中考全套试题及答案

初中中考全套试题及答案

初中中考全套试题及答案一、选择题(每题2分,共20分)1. 下列词语中,加点字的读音全部正确的一项是()A. 矜持(jīn)箴言(zhēn)蹊跷(qī)踌躇(chú)B. 瞠目(chēng)恣意(zì)舷窗(xián)缜密(zhěn)C. 踯躅(zhí)缱绻(quǎn)剽悍(piāo)翩跹(xiān)D. 绮丽(qǐ)旖旎(yǐ)翳障(yì)蹊径(qī)2. 下列句子中,没有语病的一项是()A. 通过这次活动,使我们认识到保护环境的重要性。

B. 他虽然学习成绩优秀,但是经常帮助同学,从不骄傲。

C. 为了防止这类事故不再发生,我们必须采取有效措施。

D. 他不但学习成绩优异,而且乐于助人,深受同学们的喜爱。

3. 下列句子中,加点词语使用正确的一项是()A. 他虽然年轻,但已经是一位经验丰富的老教师了。

B. 他因为生病,所以没能参加这次重要的会议。

C. 他虽然学习成绩优异,但是从不骄傲自满。

D. 他不仅学习成绩优秀,而且乐于助人,深受同学们的喜爱。

4. 下列句子中,加点成语使用恰当的一项是()A. 他虽然年轻,但已经是一位经验丰富的老教师了。

B. 他因为生病,所以没能参加这次重要的会议。

C. 他虽然学习成绩优异,但是从不骄傲自满。

D. 他不仅学习成绩优秀,而且乐于助人,深受同学们的喜爱。

5. 下列句子中,加点词语使用正确的一项是()A. 他虽然年轻,但已经是一位经验丰富的老教师了。

B. 他因为生病,所以没能参加这次重要的会议。

C. 他虽然学习成绩优异,但是从不骄傲自满。

D. 他不仅学习成绩优秀,而且乐于助人,深受同学们的喜爱。

6. 下列句子中,加点成语使用恰当的一项是()A. 他虽然年轻,但已经是一位经验丰富的老教师了。

B. 他因为生病,所以没能参加这次重要的会议。

C. 他虽然学习成绩优异,但是从不骄傲自满。

D. 他不仅学习成绩优秀,而且乐于助人,深受同学们的喜爱。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的周长公式?A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B2. 已知直角三角形的两直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = \frac{1}{x}D. y = x^3 - 2x答案:B5. 一个数的绝对值等于它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 计算下列哪个表达式的结果为0?A. 2x + 3 - (2x + 3)B. 4x^2 - 4x^2C. 5x - 5x + 1D. 3x^2 - 2x + 1答案:B7. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bc(c > 0)C. 如果a > b,那么a/c > b/c(c > 0)D. 以上都是答案:D8. 一个等腰三角形的底角为70°,那么顶角的度数是多少?A. 40°B. 70°C. 80°D. 100°答案:A9. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 不规则多边形答案:B10. 计算下列哪个表达式的结果是负数?A. (-2)^3B. (-2)^2C. (-2)^1D. (-2)^0答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个数的立方根是2,那么这个数是________。

答案:813. 一个等差数列的首项是3,公差是2,那么第5项是________。

历年云南数学中考试卷真题

历年云南数学中考试卷真题

历年云南数学中考试卷真题【2018年云南省数学中考试卷真题】一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -5B. 0C. 2D. -32. 如果一个角的度数是30°,那么它的补角是多少?A. 60°B. 90°C. 120°D. 150°3. 一个圆的半径是5cm,那么它的直径是多少?A. 10cmB. 15cmC. 20cmD. 25cm4. 以下哪个方程的解是x=1?A. x + 1 = 2B. x - 1 = 0C. 2x = 4D. 3x = 65. 一个数的平方是16,这个数可能是:A. 2B. 4C. -4D. -26. 一个三角形的内角和是多少?A. 90°B. 180°C. 270°D. 360°7. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 08. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少?A. 24cm³B. 12cm³C. 6cm³D. 36cm³9. 以下哪个是二次根式?A. √16B. 4√2C. -√4D. √-910. 如果一个数列的前三项是1, 3, 6,那么第四项可能是:A. 10B. 12C. 15D. 20二、填空题(每题3分,共15分)11. 一个数的立方根是3,这个数是______。

12. 如果一个直角三角形的两条直角边分别是3cm和4cm,那么它的斜边长是______。

13. 一个数的相反数是-5,那么这个数是______。

14. 一个数的平方是25,这个数可能是______或______。

15. 如果一个数的绝对值是8,那么这个数可能是______或______。

三、解答题(共55分)16. (10分)计算下列表达式的值:(1)(-2)³ + |-3| - √4(2)(-3)² - 2 × 4 + 517. (15分)解下列方程:(1)2x + 5 = 11(2)3x - 4 = 2x + 618. (15分)证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年中考试题
历年中考试题 2014.01.08 (5)探究凸透镜成像规律:
1.回顾实验和探究:(将下列实验报告中的空缺部分填写完整) 器材凸透镜、
_________ 、蜡烛、光具座、火柴 (1)探究影响音调高低的因素: 方法 1、实验前,在光具座上从左向右依次放置蜡烛、 _________ 、 _________ ,并过程通过不断调节尺子伸出桌面的长度,是探究音调与 _________ 的关系(将一把刻调节他们的中心在 _________ ,这样做的目的是 _________ ( 步骤度尺按在桌面上,一段伸出桌面(拨动钢尺,听它发出的声音,同时注意钢尺振动2、固定凸透镜,将蜡烛放在较远的地方,使物距u,2f,调节 _________ 到凸透镜
的 _________ ,改变钢尺伸出桌面的长度,再次拨动,注意两次钢尺的的距离,直到烛焰在光屏上成清晰的像,观察其性质(
_________ 大致相同( 3、改变蜡烛到透镜的距离,使物距在 _________ ,重复上述操作,观察成像情况( 方法本实验使用的物理学研究方法是 _________ ( 4、改变蜡烛到透镜的距离,使物距u,f,移动光屏,发现在光屏上 _________ (能(2)探究平面镜成像特点: 或不能)观察到像(从 _________ 一侧向透镜中看,观察成像的情况( 器两只相同的蜡烛a和b、刻度尺、 _________ ( 5、归纳总结,得出以下结论,请你将表格填写完整材
方1、如图所示,在桌面上铺上一张大纸,纸上立着一块 _________ 物距U 像的性质
法代替平面镜,这样做的目 _________ ,使用的方法是放大或缩小倒立或正立虚像或实像应用
_________ ( U,2f 缩小倒立 _________ _________
2、把一只点燃的蜡烛A,立在玻璃板前面,可以看到它在玻璃板后倒立实像
_________ _________ _________
面的像(再拿一只蜡烛B,放在玻璃板的后面移动,知道看上去它U,f 放大虚像
_________ _________ 跟前面那只蜡烛的像 _________ ,这个位置就是前面蜡烛A的(6)构建密度的概念:
像( 表 3、用 _________ 把实验中蜡烛A和它的像连接起来,观察连线33格实验次数物体 ) m/V/(g/cmm/g V/cm 与平面镜是否 _________ (并用 _________ 测量出他们分别铝块1 1 54 20 2.7 到 _________ 的距离铝块2 2 108 40 2.7 现移走蜡烛b,在此位置换上光屏,发现不能在光屏上得到像,这说明平面镜成 _________ 松木1 3 108 216 0.5 象像(像和物大小 _________ ,他们对应点的连线与平面镜_________ ,他们到镜松木2 4 10 20 _________ 结面的距离 _________ ( 结?请将空格中的数据填写完整; 论论 ?比较1、2两次实验数据,可得出结论:同种物质质量与体积的比值是 _________ 的 (4)探究光的反射定律: ?比较2、3两次实验数据,可得出的结论:不同物质的质量与体积的比值一般是 r/? 如图实验说明,在光的反射F _________ 的( N 60 E N F E 过程中,反射光线、入射光线和法线40 ?由此实验可初步认为 _________ 能反映物质一种属性,我们把结论在。

由图像得出,在光20 它叫做 _________ (其定义是: _________ 某种物质的 _________ ( O O 的反射中,反射角入射角。

平面镜平面镜可见,密度是物质本身的一种特性,与物体的质量和体积 _________ (填“无关”或“有i/? 0 40 20 60
关”) 方法研究光的反射时,将一束光看成一条光线,这里运用的科学方法是法。

(7)探究光的反射定律:
t/? 器材量角器、激光手电筒、如图纸板、,,,,。

温物固体海波、蜡烛熔化时温度的变化规律图像甲 50 过程如图装置,其中NO为法线。

光沿AO入射,沿OB 射出。

若把法线左边的纸质如图所示,其中是蜡烛( a b 乙步骤板向后或向前折,则在纸板上将,,,,看到反射光线(填“能”或“不能”)。

结海波的熔点是 ?,它在第6min是 t/min 时实验次数入射光线入射角i/? 反射角r/? 40 论状态( 0 2 4 6 8 10 12 1 AO 70 (10)探究物质的质量和体积的关系: 数据 2 CO 45 45 ?用分别测出2个铝块的质量,用刻度尺分别测量并计算铝块表格实验步骤 3 EO 30 30 体积,计入表格(?换用松木块,重复步骤?(
请你将表格内容补充完整
m(8)探究物质的熔化和凝固过程: 33/,g/cm, 实验次数物体 m/g V/cm V物质这种物质是一种晶体,熔点是,,,,?。

表格铝块1 1 54 20 2.7
铝块2 2 108 10 2.7 过程该物质在BC段需要吸热,但温度保持,,,,。

松木1 3 108 216 0.5
物质吸收的热量无法直接测得。

可通过过加热时松木2 4 10 方法间的长短来说明。

这里运用的是,,,,法。

比较发现:同种物质的的比值是一定的;物质不同,其比值结论一般不同,由此我们引入了的概念(
(11)探究影响音调高低的因素: (9)探究“平面镜成像”:
过过由于平面镜成,无法用光屏承接。

小明用在各次实验中,要注意使钢尺上下振动的幅度。

程程玻璃板代替平面镜,将一只点燃的蜡烛放在玻璃前,将装
结与另一只未点燃的同样蜡烛放在玻璃后面,使它与点燃的置由实验得出:物体振动得越快,音调就越。

论方蜡烛的像的位置。

这在物理学中称图
法作 (
通过多次实验,得到规律,请填表如下: t/? 温(10)探究音调的影响因素: c 90 固体相同点不同点 b a 80 过如图,压住刻度尺桌面内的部分,按下其外端后规律晶体温度不变有熔点 70 松手,观察尺子的振动情况;改变尺子伸出桌面的长程60 非晶体温度升高无熔点 t/min 时0 2 4 6 8 10 度,将外端按下相同的程度,重做上述实验。

***********步 2(运用知识解决问题: 实验发现,尺子振动得越快,音调越 ( 0 骤 (1)筷子在水中的部分反射的光,从水射向空气。

在水面发生折射时,折射光线法线,方人逆着折射光线会看到筷子的虚像在真实筷子的方,所以筷子看起来向上“弯将尺子按下相同的程度,运用了法( 法
(9)探究固体熔化时温度的变化规律:。

相关文档
最新文档