第四章概率教案
初中数学概率的教案
初中数学概率的教案
教学目标:
1. 了解概率的基本概念,掌握概率的计算方法。
2. 能够运用概率解决实际问题,提高解决问题的能力。
教学重点:
1. 概率的基本概念和计算方法。
2. 运用概率解决实际问题。
教学难点:
1. 概率的计算方法。
2. 运用概率解决实际问题。
教学准备:
1. 课件或黑板。
2. 练习题。
教学过程:
一、导入(5分钟)
1. 引入概率的概念,让学生思考日常生活中遇到的一些概率问题。
2. 举例说明概率的运用,如抽奖活动、彩票等。
二、新课(20分钟)
1. 讲解概率的基本概念,包括试验、样本空间、事件等。
2. 介绍概率的计算方法,包括古典概率、条件概率和联合概率等。
3. 通过例题讲解如何运用概率计算方法解决问题。
三、练习(15分钟)
1. 让学生独立完成练习题,巩固所学的概率计算方法。
2. 引导学生思考如何将概率运用到实际问题中。
四、总结(5分钟)
1. 让学生回顾本节课所学的内容,总结概率的基本概念和计算方法。
2. 强调概率在实际生活中的运用,激发学生学习概率的兴趣。
教学反思:
本节课通过导入、新课讲解、练习和总结环节,让学生掌握了概率的基本概念和计算方法,并能够运用概率解决实际问题。
在教学过程中,要注意引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。
同时,要加强课堂练习,让学生巩固所学知识。
高中新教材概率教案
高中新教材概率教案本次教案设计的核心目标是引导学生通过具体案例学习概率的基本概念、计算方法以及应用技巧。
通过一系列的教学活动,学生将能够理解概率的含义,学会计算简单事件的概率,并能够在实际情境中运用概率知识解决问题。
一、引入与激发兴趣通过一个贴近学生生活的实例来引入概率的概念。
例如,可以提出一个问题:“如果你每天上学的路上有50%的几率会遇到你喜欢的歌在广播中播放,那么一周内(假设七天)你至少有一天遇到这首歌播放的概率是多少?”这个问题旨在激发学生的好奇心,让他们意识到概率与日常生活紧密相关。
二、概念讲解在学生的兴趣被激发之后,教师将系统地介绍概率的基础概念。
包括随机事件、样本空间、频率、概率等基本术语的定义和含义。
通过举例和对比,帮助学生形成清晰的概念认识。
三、计算方法教师将重点讲解如何计算事件的概率。
包括加法原理、乘法原理以及条件概率等。
通过具体的例题,如抛硬币、掷骰子等经典概率问题,让学生动手计算,从而加深对公式和原理的理解。
四、实际应用理论知识讲解完毕后,教师将引导学生进入实际应用阶段。
设计一些与现实生活相结合的问题,如预测某场足球比赛的胜负、分析彩票中奖的可能性等。
这些问题不仅能够让学生运用所学知识,还能培养他们分析和解决问题的能力。
五、巩固练习为了让学生更好地掌握概率知识,教案还包括了大量的练习题。
这些题目覆盖了从基础到提高各个层次,既有选择题也有解答题,确保学生能够从不同角度巩固和应用所学内容。
六、总结反馈教师将对本次课程进行总结,回顾重要知识点,并对学生在课堂上的表现给予反馈。
同时,鼓励学生提问和讨论,以促进他们对概率知识的深入理解。
九年级数学苏科版上册 第四单元《4.3等可能条件下的概率(二)》教学设计 教案
等可能条件下的概率(二)教学设计一、教学内容概述本节课为九年级上册,第4章等可能条件下的概率第3小节第2课时教学内容,本节课的主要任务是理解能转化为古典概型的几何概型概率的求法。
结合实际生活中的转盘模型及抽奖等生活实际,进一步理解概率在生活中的应用。
二、教学目标设计知识目标:1.在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型.2.进一步理解等可能事件的意义,会解决能转化为古典概型的几何概型概率问题,会把事件分解成等可能的结果(基本事件).能力目标:通过学生动手操作、实验、探索的过程,培养学生观察能力、动手能力、合作讨论的能力和转化思想解决问题的能力;情感目标:通过观察、实验、理解几何概型概率的求法,探索能转化为古典概型的几何概型概率的求解思想,掌握这类事件概率在实际生活的应用。
三、教学重难点设计1.教学重点:学会求一类事件的概率(能转化为古典概型的几何概型)的概率,理解概率的大小和面积大小有关,掌握这类问题在实际生活的应用,会用列举法(包括列表、画树状图)计算一些随机事件所含的可能结果(基本事件)数及事件发生的概率.2.教学难点:会将能转化为古典概型的几何概型概率转化成古典概型,理解这类事件概率的大小和面积大小有关,并利用概率公式并解决实际问题,并会灵活运用列举法(包括列表、画树状图)计算几何概型这类事件概率.四、学生学情分析学生在学习过程中,古典概型由于有八年级学习的基础和上节课学习的准备,易于理解,但要真正理解能转化为古典概型的几何概型的这一类问题中概率的大小与面积的大小有关,并能转化成古典概型利用概率公式解决实际问题,还有一定难度,让学生边学习边体会这些区别和变化。
五、教学策略设计说明本课题设计的基本理念是通过实验、观察、操作,主要采用的小组合作、讨论、研究和探索等策略,重点是探索和发现,几何概型概率求法和古典概型之间的关系,难点是理解几何概型问题中概率的大小和面积大小有关,并利用概率公式并解决实际问题,并由浅入深,逐渐深入研究本节课在实际问题的应用,采用探究、合作、交流、讨论法等教学方法。
九年级数学概率教案
数学教案:九年级概率教学目标:1.了解概率的概念并能够用自己的语言解释概率的意义;2.能够计算事件发生的概率;3.能够利用概率进行实际问题的解决。
教学重点:1.概率的概念;2.概率的计算方法;3.利用概率解决实际问题。
教学难点:1.概率计算方法的应用;2.实际问题的解决。
教学准备:1.教师准备投掷硬币、骰子等实物;2.准备一些有关概率的实际问题的素材;3.提前复习一下九年级概率相关的知识点,如事件的概念、计算概率的方法等。
教学过程:Step 1:导入新知教师可使用一些实物来引入概率的概念,比如投掷硬币、掷骰子等。
教师可以问学生在掷硬币时,出现正面和反面的概率是多少?掷骰子时出现一些数字的概率是多少?通过这个导入,让学生了解到概率与随机事件有关。
Step 2:引入概率的概念教师通过上述导入,引出概率的概念。
概率是指一些事件发生的可能性大小,在数学中用一个介于0和1之间的数字表示。
教师可以用数学符号来表示概率,如P(A),其中A表示一些事件。
Step 3:概率的计算方法3.1频率法:通过实验得到事件发生的频率,即事件发生的次数除以实验总数。
3.2几何概型法:对于随机试验的结果可以通过几何图形来表示,通过计算几何图形中其中一区域的面积来计算概率。
3.3等可能性原则:如果一个试验中所有可能的结果都是等可能发生的,那么事件A发生的概率等于事件A所包含的基本事件数与所有基本事件总数的比值。
Step 4:实际问题解决通过一些实际问题的解决来巩固学生对概率计算方法的应用。
Step 5:概率的应用学生通过学习概率的计算方法和解决实际问题后,了解到概率在现实生活中的应用,如信封问题、球桌问题、生日问题等。
教师可以引导学生思考更多的应用场景,并让学生自主分析和解决实际问题。
Step 6:小结对本节课的知识点进行小结和梳理。
教学延伸:通过让学生完成一些概率相关的练习题、实际问题的解决,巩固和拓展学生对概率的理解和应用能力。
求概率教案初中数学
求概率教案初中数学教学目标:1. 了解概率的概念,理解概率与可能性的联系;2. 学会用实验的方法收集数据,了解随机事件的概念;3. 学会用概率描述随机事件发生的可能性,求简单事件的概率。
教学重点:1. 概率的概念及概率与可能性的联系;2. 实验方法收集数据,求简单事件的概率。
教学难点:1. 概率公式的应用;2. 理解随机事件的概念。
教学准备:1. 教师准备相关实验材料;2. 学生准备笔记本、笔。
教学过程:一、导入(5分钟)1. 教师通过抛硬币、抽签等实例,引导学生思考:这些现象中,哪些是随机事件?2. 学生分享生活中遇到的随机事件,引发对概率的兴趣。
二、新课(20分钟)1. 教师介绍概率的概念:概率是描述随机事件发生可能性的数学量。
2. 解释概率与可能性的关系:概率范围在0到1之间,概率越大,事件发生的可能性越大。
3. 教师引导学生进行实验,如抛硬币、掷骰子等,收集数据,计算事件的概率。
4. 学生分组讨论,分享实验结果,总结求概率的方法。
三、巩固练习(15分钟)1. 教师给出一些简单事件的概率问题,如抛硬币两次正面朝上的概率。
2. 学生独立解答,教师巡回指导。
3. 全班交流解题过程,讨论解题方法。
四、拓展与应用(10分钟)1. 教师引导学生思考:概率在实际生活中的应用,如彩票、天气预报等。
2. 学生举例说明概率在生活中的应用,分享自己的看法。
五、总结(5分钟)1. 教师引导学生回顾本节课所学内容,总结概率的概念、求概率的方法等。
2. 学生谈收获,提出疑问。
教学反思:本节课通过实例引入概率的概念,让学生感受概率与现实生活的联系。
通过实验活动,学生掌握了求简单事件概率的方法,理解了概率与可能性的关系。
在巩固练习环节,学生独立解答概率问题,提高了运算能力。
在拓展与应用环节,学生了解了概率在实际生活中的应用,培养了应用意识。
总体来说,本节课达到了预期的教学目标。
但在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。
概率初步全章教案
概率初步全章教案第一章:概率的基本概念1.1 概率的定义引入概率的概念,让学生理解概率是衡量事件发生可能性大小的数学量。
解释概率的取值范围,即0到1之间。
1.2 必然事件和不可能事件讲解必然事件的概率为1,不可能事件的概率为0。
通过实例让学生区分必然事件和不可能事件。
1.3 随机事件介绍随机事件的定义,让学生理解随机事件是既不是必然事件也不是不可能事件的事件。
解释随机事件的概率大于0且小于1。
第二章:概率的计算方法2.1 古典概型讲解古典概型的定义,即试验结果有限且等可能发生。
介绍古典概型的概率计算公式:P(A) = n(A) / n(S),其中n(A)为事件A的发生次数,n(S)为样本空间的大小。
2.2 列举法讲解列举法的概念,即通过列举所有可能的结果来计算概率。
示范使用列举法计算概率的步骤。
第三章:条件概率和独立事件3.1 条件概率引入条件概率的概念,解释条件概率是在已知事件B发生的条件下事件A发生的概率。
讲解条件概率的计算公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)为事件A和B 发生的概率,P(B)为事件B发生的概率。
3.2 独立事件解释独立事件的定义,即两个事件的发生互不影响。
讲解独立事件的概率计算公式:P(A∩B) = P(A)P(B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率。
第四章:全概率公式和贝叶斯公式4.1 全概率公式讲解全概率公式的概念,即在多个互斥事件的情况下,事件A发生的概率可以通过各事件发生的概率乘以对应事件的条件概率之和来计算。
解释全概率公式的计算步骤。
4.2 贝叶斯公式引入贝叶斯公式的概念,解释贝叶斯公式是通过已知条件来推算事件发生的概率。
讲解贝叶斯公式的计算步骤。
第五章:随机变量及其分布5.1 随机变量的定义讲解随机变量的概念,即随机试验结果的量化描述。
解释随机变量的取值可以是具体的数值,也可以是其他类型的值。
5.2 离散型随机变量讲解离散型随机变量的定义,即随机变量取值有限或可数。
第四章概率的初步认识单元备课
第四章概率的初步认识单元备课
概率的初步认识(最佳教案)
一、教学目标:
1知识与能力:
了解必然事件,不可能事件和不确定事件发生的可能性大小,了解事件发生的可能性及游戏规则的公平性,了解概率的意义,体会概率是描叙不确定现象得数学模型,发展随机观念。
能对两类事件发生的概率进行简单的记算,并能设计符合要求的简单概率模型。
2过程与方法:
经历“猜测——实验并收集实验数据——分析实验结果”的活动过程,通过实验提高学生对概率的理解。
3情感态度价值观:
进一步体会“数学就在我们身边”,发展学生有数学的意识和能力二、教材分析:
在本单元中,学生将在“猜测——试验并收集试验数据——分析试验结果”的活动过程中进一步了解不确定现象的特点,通过具体情境体会概率的意义,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型,同时学习一些计算概率的方法,并通过概率帮助自己作出合理的决策。
三、教学重点:
体会“猜测——实验并收集实验数据——分析实验结果”的活动过程。
通过具体情境,体会概率的意义。
了解几种事件的可能性。
四、教学难点:
概率的意义。
五、突破措施:
动手操作,大量实验。
六、课时按排:
1.可能性的大小1课时2.认识概率1课时3.简单的概率计算
1课时回顾与思考1课时练习课1课时讲评课1课时。
概率的教案7篇
概率的教案7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!概率的教案7篇教师可以通过不同的教学策略和方法来增加教案的适切性,教案的有效性可以通过学生成绩、学生反馈和教师自我评估来评估,下面是本店铺为您分享的概率的教案7篇,感谢您的参阅。
优质课教学设计《概率》公开课教案
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的. 例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明. 这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A 区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13. 五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
《统计与概率》教案
《统计与概率》教案《统计与概率》教案1一、教学目标1.知识与技能目标:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。
2.过程与方法目标:通过体验探索扇形统计图的特点和应用,发展学生推理能力,提升学生的抽象思维能力。
3.情感态度与价值观目标:在活动中体会数学的特点,了解数学的价值。
二、教学重难点重点:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。
难点:在活动中体会数学的特点,了解数学的价值。
三、教学过程(一)创设情境,激趣导入通过案例呈现扇形统计图运用的情境,导入课题。
(二)探究体验,构建新知1.学生动手实践:分析一个扇形统计图,说明从中可以获取什么信息。
2.引导抽象概括:设置小组讨论,探讨扇形统计图的特点和应用。
3.知识拓展延伸:通过进一步讨论不同扇形统计图的信息表现方式(三)课末总结,梳理提升1.学生自主总结,教师启发点拨重难点。
2.同学们今天有什么收获呢?3.扇形统计图的特点是什么呢?四、布置作业运用扇形统计图分析生活中的事件。
《统计与概率》教案2一、山东高考体验(10山东))在某项体育比赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)92,2(B)92,2.8(C)93,2(D)93,2.8(09山东)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值.(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.(10山东)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.二、抢分演练1.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是.2.(广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。
概率论与数理统计教案 第4章 随机变量的数字特征
第4章 随机变量的数字特征教学要求1.理解随机变量的数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,掌握用数字特征的定义、常用计算公式及基本性质计算具体分布的数字特征.2.掌握利用随机变量X 的概率分布求其函数)(X g 的数字期望[])(X g E ,掌握利用随机变量X 和Y 的联合分布求其函数),(Y X g 的数学期望[]),(Y X g E .3.理解X 与Y 不相关的概念,掌握X 与Y 独立和不相关的关系与判定方法.4.掌握六个常用分布的数学期望和方差,理解二维正态分布中5个参数的意义.5.了解原点矩、中心矩、协方差矩阵的概念.6.了解n 维正态随机变量的四个性质.教学重点数学期望、方差的概念与性质及其应用,用数字特征(数学期望、方差、标准差、协方差、相关系数)的定义、常用计算公式及性质计算具体分布的数字特征.教学难点协方差、相关系数概念的理解.课时安排本章安排6课时.教学内容和要点一、 数学期望1.离散型随机变量数学期望2.连续型随机变量数学期望3.随机变量的函数数学期望4.常用分布的数学期望5.数学期望的性质二、 方差1.方差的概念2.方差的计算3.常用分布的方差4.方差的性质5.随机变量的标准化三、协方差和相关系数1.协方差的定义与性质2.相关系数的定义与性质四、矩与协方差矩阵1.矩与协方差矩阵的概念2. n 维正态分布主要概念1.数学期望(离散型随机变量的数学期望、连续型随机变量的数学期望、随机变量函数的数学期望)2.方差 、标准差3.标准化随机变量4.协方差5.相关系数X Y不相关6.,7.矩8.协方差矩阵。
湘教版初中九年级数学下册第4章《概率》教案
4.1 随机事件与可能性
1.理解必然事件,不可能事件和随机事 件的概念,并会识别;(重点)
2.理解随机事件发生的可能性是有大 小的.
一、情境导入 在一些成语中也蕴含着事件类型,例如 瓮中捉鳖、拔苗助长、守株待兔、水中捞月 所描述的事件分别属于什么类型事件呢?
A.12
B.
1 4
C.16
D.112
解析:用树状图或列表法列举出所有可
小明赢,若摸出两张牌面图形都是中心对称 图形小亮赢,这个游戏公平吗?请说明理由.
解析:(1)首先根据题意画出树状图,然 后由树状图求得所有等可能的结果;
(2)首先根据(1)求得摸出两张牌面图形
能情况,然后由概率公式计算求得.画树状 都是轴对称图形的有 16 种情况,摸出两张
1.理解试验次数较大时试验频率趋于 稳定这一规律;(重点)
2.结合具体情境掌握如何用频率估计 概率;(重点)
3.通过概率计算进一步比较概率与频 率之间的关系.
一、情境导入
一个箱子中放有红、黄、黑三个小球, 三个人先后去摸球,一人摸一次,一次摸出 一个小球,摸出后放回,摸出黑色小球为赢, 这个游戏是否公平.
二、合作探究 探究点:简单随机事件的概率 【类型一】 概率的简单计算
小玲在一次班会中参与知识抢答 活动,现有语文题 6 个,数学题 5 个,综合 题 9 个,她从中随机抽取 1 个,抽中数学题 的概率是( )
求情况数与总情况数之比.
变式训练:见《学练优》本课时练习“课 堂达标训练”第 4 题
【类型二】 游戏问题 (2015·兰州模拟)如图,有 5 张背
面相同的纸牌 A,B,C,D,E,其正面分别 画有五个不同的几何图形,将这 5 张纸牌背 面朝上洗匀后,小明随机摸出一张,记下图 形后放回洗匀,小亮随机再摸出一张.
高中数学教案 第4讲 随机事件与概率
第4讲随机事件与概率1.了解随机事件发生的不确定性和频率的稳定性,理解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E 的每个可能的□1基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E 的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n 个可能结果ω1,ω2,…,ωn ,则称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.(2)随机事件①定义:将样本空间Ω的□2子集称为随机事件,简称事件.②表示:大写字母A ,B ,C ,….③随机事件的极端情形:必然事件、不可能事件.2.事件的关系定义表示法图示包含关系若事件A 发生,事件B □3一定发生,称事件B 包含事件A (或事件A 包含于事件B )□4B ⊇A (或A □5⊆B )互斥事件如果事件A 与事件B □6不能同时发生,称事件A 与事件B 互斥(或互不相容)若A ∩B =∅,则A 与B 互斥对立事件如果事件A 和事件B 在任何一次试验中□7有且仅有一个发生,称事件A 与事件B 互为对立,事件A 的对立事件记为A -若A ∩B =∅,且A ∪B =Ω,则A 与B 对立3.事件的运算定义表示法图示并事件事件A 与事件B 至少有一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)□8A ∪B (或A +B )交事件事件A 与事件B 同时发生,称这样一个事件为事件A 与事件B 的交事件(或积事件)□9A ∩B (或AB )4.概率与频率(1)频率的稳定性:一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率f n (A )会逐渐稳定于事件A 发生的□10概率P (A ).我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用:可以用频率f n (A )估计□11概率P (A ).常用结论1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).1.思考辨析(在括号内打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复试验中,概率是频率的稳定值.()(3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案:(1)×(2)√(3)√(4)×2.回源教材(1)某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是()A.至多一次中靶B.两次都中靶C.只有一次中靶D.两次都没有中靶解析:D连续射击两次中靶的情况如下:①两次都中靶;②只有一次中靶;③两次都没有中靶,故选D.(2)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:B射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.(3)把一枚质地均匀的硬币连续抛掷1000次,其中有496次正面朝上,504次反面朝上,则掷一次硬币正面朝上的概率为.解析:掷一次硬币正面朝上的概率是0.5.答案:0.5随机事件的关系运算例1(1)若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”解析:A根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件.故选A.(2)(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则下列说法正确的是()A.A∪B=CB.B∪D是必然事件C.A∩B=CD.A∩D=C解析:AB根据已知条件以及利用和事件、积事件的定义进行判断.事件A∪B 指至少有一件次品,即事件C,故A正确;事件B∪D指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B正确;事件A和B 不可能同时发生,即事件A∩B=∅,故C错误;事件A∩D指恰有一件次品,即事件A,而事件A和C不同,故D错误.反思感悟1.事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析,也可类比集合的关系和运用Venn图分析事件.2.辨析互斥事件与对立事件的思路(1)在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能同时发生.(2)两个对立事件必有一个发生,但不可能同时发生.即两事件对立,必定互斥,但两事件互斥,未必对立.对立事件是互斥事件的一个特例.(3)互斥的概念适用于两个或多个事件,但对立的概念只适用于两个事件.训练1(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件解析:C事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件,但由于这两个事件的和事件不是必然事件,故这两个事件不对立.(2)(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是()A.A与D为对立事件B.B与C是互斥事件C.C与E是对立事件D.P(C∪E)=1解析:AD当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.互斥事件与对立事件的概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解:(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=1 20 .(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵事件A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为61 1000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-(11000+1100)=9891000,故1张奖券不中特等奖且不中一等奖的概率为989 1000.反思感悟当所求概率的事件较为复杂时,可考虑把其分解为几个互斥的事件,利用互斥事件的概率公式求解,或求其对立事件的概率,利用对立事件的概率求解.训练2经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.随机事件的频率与概率例3(经典高考题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为65×40+25×20-5×20-75×20100=15(元).由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34-70×21100=10(元).比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.反思感悟1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.利用概率的统计意义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.训练3某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;若最高气温不低于25,则Y=450×(6-4)=900,所以,利润Y的所有可能值为-100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y大于零的概率的估计值为0.8.限时规范训练(七十六)A级基础落实练1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均有可能解析:A从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,∴事件“这三个数字的和大于5”一定会发生,∴由必然事件的定义可以得知该事件是必然事件.2.同时抛掷两枚完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是()A.3B.4C.5D.6解析:D事件A包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.3.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:C不可能事件的概率为0,必然事件的概率为1,故A错误;频率是由试验的次数决定的,故B错误;概率是频率的稳定值,故C正确,D错误.4.(2024·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,-)=()则P(AA.0.5B.0.1C.0.7D.0.8解析:A∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P(A-)=1-P(A)=1-0.5=0.5.5.掷一枚质地均匀的骰子,“向上的点数是1或3”为事件A,“向上的点数是1或5”为事件B,则()A.A∪B表示向上的点数是1或3或5B.A=BC.A∪B表示向上的点数是1或3D.A∩B表示向上的点数是1或5解析:A设A={1,3},B={1,5},则A∩B={1},A∪B={1,3,5},∴A≠B,A∩B表示向上的点数是1,A∪B表示向上的点数为1或3或5.6.(多选)下列说法中正确的有()A.若事件A与事件B是互斥事件,则P(AB)=0B.若事件A与事件B是对立事件,则P(A+B)=1C.某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件解析:ABC事件A与事件B互斥,则A,B不可能同时发生,所以P(AB)=0,故A正确;事件A与事件B是对立事件,则事件B即为事件A-,所以P(A+B)=1,故B 正确;事件“至少有两次中靶”与“至多有一次中靶”不可能同时发生,且二者必有一个发生,所以为对立事件,故C正确;事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D错误.7.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为双.解析:∵第1,2,4组的频数分别为6,7,9,∴第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225.∵第3组的频率为0.25,∴第5组的频率是1-0.25-0.15-0.175-0.225=0.2,∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).答案:608.(2024·天津调研)某射击运动员平时100次训练成绩的统计结果如下:命中环数12345678910频数24569101826128如果这名运动员只射击一次,估计射击成绩是6环的概率为;不少于9环的概率为.解析:由题表得,如果这名运动员只射击一次,估计射击成绩是6环的概率为10100=110,不少于9环的概率为12+8100=15.答案:110159.我国西部一个地区的年降水量在下列区间内的概率如表所示:年降水量(mm)(100,150)(150,200)(200,250)(250,300)概率0.210.160.130.12则年降水量在(200,300)(mm)范围内的概率是.解析:设年降水量在(200,300),(200,250),(250,300)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.2510.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为200 1000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200 1000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.11.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.B级能力提升练12.(多选)(2023·枣庄调研)一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地随机摸出2个球,每次摸出一个球.设事件R1=“第一次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两球颜色相同”,N=“两球颜色不同”,则()A.R1⊆RB.R∩G=∅C.R∪G=MD.M=N-解析:BCD样本空间为{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)},R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)},R={(1,2),(2,1)},G={(3,4),(4,3)},M={(1,2),(2,1),(3,4),(4,3)},N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)},由集合的包含关系可知B,C,D正确.13.如果事件A,B互斥,记A-,B-分别为事件A,B的对立事件,那么()A.A∪B是必然事件B.A-∪B-是必然事件C.A-与B-一定互斥D.A-与B-一定不互斥-∪B-是必然事件,A-与B-不解析:B如图①所示,A∪B不是必然事件,A互斥;如图②所示,A∪B是必然事件,A-∪B-是必然事件,A-与B-互斥.图①图②14.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦·时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,降雨量为160毫米的有7个,降雨量为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量70110140160200220频率120320420720320220(2)根据题意,Y=460+X-7010×5=X2+425,故P(“发电量低于490万千瓦·时或超过530万千瓦·时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率为310 .。
初中数学概率问题教案
初中数学概率问题教案一、教学目标1. 知识与技能目标:学生能够理解随机事件的定义,掌握概率的基本计算方法,能够运用概率知识解决实际问题。
2. 过程与方法目标:通过观察、实验、分析等方法,培养学生对概率问题的探究能力,提高学生的逻辑思维能力。
3. 情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的合作意识。
二、教学重难点1. 重点:随机事件的定义,概率的基本计算方法。
2. 难点:如何运用概率知识解决实际问题。
三、教学过程1. 导入:教师通过抛硬币、掷骰子等实验,引导学生观察和思考随机事件的发生,从而引出概率的概念。
2. 新课导入:教师介绍随机事件的定义,并通过实例解释随机事件的概念。
同时,教师讲解概率的基本计算方法,如计算一个事件的概率、计算两个事件的联合概率等。
3. 案例分析:教师给出几个实际问题,如抛硬币实验中出现正面的概率、掷骰子实验中出现点的概率等,引导学生运用概率知识解决问题。
4. 课堂练习:教师布置几道有关概率的练习题,让学生独立完成,巩固所学知识。
5. 总结:教师引导学生总结本节课所学内容,巩固随机事件和概率的基本概念及计算方法。
6. 拓展延伸:教师给出一些有关概率的拓展问题,如如何计算多个事件的概率、如何求事件的补事件等,引导学生进行思考和探究。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生完成练习题的情况,评估学生对概率知识的掌握程度。
3. 拓展延伸:评估学生在拓展延伸环节的表现,了解学生的探究能力和逻辑思维能力。
五、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对不足之处进行改进,以提高教学效果。
六、教学资源1. 教学课件:教师制作课件,展示随机事件和概率的基本概念及计算方法。
2. 练习题:教师准备一些有关概率的练习题,帮助学生巩固所学知识。
3. 拓展问题:教师提供一些有关概率的拓展问题,激发学生的思考和探究。
数学教案:概率的基本性质
一、教学目标1. 让学生理解概率的定义和基本性质。
2. 培养学生运用概率知识解决实际问题的能力。
3. 引导学生通过合作交流,提高分析和解决问题的能力。
二、教学内容1. 概率的定义:随机事件A发生的可能性。
2. 概率的基本性质:a. 概率的范围:0 ≤P(A) ≤1b. 必然事件的概率:P(必然事件) = 1c. 不可能事件的概率:P(不可能事件) = 0d. 独立事件的概率:P(A∩B) = P(A) ×P(B)(A、B相互独立)三、教学重点与难点1. 教学重点:概率的定义及其基本性质。
2. 教学难点:概率的基本性质的应用。
四、教学方法1. 采用讲授法讲解概率的基本性质。
2. 运用案例分析法引导学生运用概率知识解决实际问题。
3. 组织小组讨论法,让学生合作交流,提高分析和解决问题的能力。
五、教学过程1. 导入新课:通过抛硬币、抽签等实例,引导学生认识概率的概念。
2. 讲解概率的定义:随机事件A发生的可能性称为事件A的概率,记作P(A)。
a. 概率的范围:0 ≤P(A) ≤1b. 必然事件的概率:P(必然事件) = 1c. 不可能事件的概率:P(不可能事件) = 0d. 独立事件的概率:P(A∩B) = P(A) ×P(B)(A、B相互独立)4. 案例分析:运用概率的基本性质解决实际问题,如计算彩票中奖概率、判断考试成绩等。
5. 小组讨论:让学生运用概率的基本性质,分析现实生活中遇到的概率问题,并进行交流分享。
6. 课堂小结:总结概率的基本性质及其应用。
7. 课后作业:布置相关练习题,巩固概率的基本性质。
六、教学评估1. 课堂提问:通过提问了解学生对概率基本性质的理解程度。
2. 练习题:布置针对性的练习题,检查学生掌握概率基本性质的情况。
3. 小组讨论:评估学生在小组讨论中的表现,了解他们运用概率知识解决实际问题的能力。
七、教学拓展1. 概率的运算规则:介绍概率的加法规则、乘法规则等。
第四章教案等可能条件下的概率
4.1 等可能性(教案)班级姓名【教学目标】1、知道事件发生的可能性是有大小区别的,会列出一些随机试验的所有可能结果,理解等可能的意义;2、能够依据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性;3、体验由试验、讨论、交流、猜想、体会的数学学习过程,培养和谐的合作精神.【教学重点】能列出一些随机试验的所有可能结果.【教学难点】会根据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性.【教学过程】一、问题情境:小明和小华在一次数学测验中,,怎么办呢?有学生提议:抛硬币!(两位学生商定自己选什么面,一人为裁判抛硬币一次,确定奖给谁)你们认为这样公平吗?说出自己的想法.在这里,抛硬币是一个随机事件,它是不是公平不是看结果,,出现正面和反面的可能性是一样的,那么这两个事件的发生是等可能的.二、探索活动:活动一:一只不透明的袋子中装有10个小球,分别标有0、1、2、3……9这个10个号码,这些球除号码外都相同,搅匀后从袋中任意取出一个球.讨论:(1)每次取出有多少种可能的结果?它们都是随机事件吗?(2)每次试验有几个结果出现?(3)每次结果出现的机会均等吗?为什么?(要求:只能摸一次)由此,我们设一个试验的所有可能发生的结果有n个,它们都是,每次试验有且只有其中的,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性.我们发现等可能性是随机事件发生的特殊情形.活动二:生活中有关等可能性的例子很多,你能列举一些吗?当然,生活中特殊的随机事件往往是一种假设,一种理想状态,:种子的发芽,一般发芽率为95﹪,机会不均等.活动三:1、在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个盒子中搅匀,从中任意抽出一支签,会出现哪些可能的结果?这些结果是等可能的吗?2、一只不透明的袋子中装有1 个白球和2 个红球,这些球除颜色外都相同,搅匀后从中任意摸出 1 个球.摸到白球与摸到红球是等可能的?小明认为摸出的球不是白球就是红球,所以摸出白球和摸出红球这两个事件是等可能的.小丽认为红球有2 个,如果把它们编号为红球1、红球2,那么摸出白球,摸出红球1 ,摸出红球2这3个事件是等可能的.你认为谁的说法哪一个正确?3、一个质地均匀的正十二面体,12个面上分别标有1-12这12个整数,抛掷这个正十二面体1次.讨论:(1)会出现哪些可能的结果?这些结果的出现发生是等可能的吗?(2)出现朝上一面的数是奇数与出现朝上一面的数是偶数是等可能的吗?为什么?(3)出现朝上一面的数是4的倍数与出现朝上一面的数是6的倍数是等可能的吗?为什么?三、典型例题:例1、A、B两地之间的电缆有一处断点,断点出现在电缆的各个位置的可能性相同吗?例2、把C、H、I、N、A这5个字母分别写在5张相同的小纸条上,放在一个盒子中,搅匀后从中任意摸出1张纸条,会出现哪些可能的结果?这些结果的出现是等可能的吗?例3、小明利用一副扑克做摸牌游戏,下列事件中,不属于等可能事件的是( )A.小明随机摸1张牌,摸到大王或小王;B.小明随机摸1张牌,摸到红桃或黑桃;C.小明随机摸1张牌,摸到的是5或6;D.小明随机摸1张牌,摸到的是5或大王.例4、小璐和小丽都想去参加一项重要的比赛,但只有一个名额.于是他们决定抓阄,一张写着yes,一张写着no,抓到yes的就去,抓到no的就不去.这对双方公平吗?例5、抛掷一枚均匀的骰子1次,落地后:(1)朝上的点数会有哪些?它们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生是等可能的吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生是等可能的吗?哪一个可能性大一些?例6、一只不透明的袋子中装有7个红球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,会出现哪些可能的结果?这些结果的出现是等可能的吗?例7、老师给小姗和小颖一张用来参观“科普知识图画展览”的门票,小姗和小颖身边只有一颗均匀的正六面体的骰子(骰子的六个面分别刻有1,2,3,4,5,6)你能为小姗和小颖设计一个公平获得门票的游戏吗?例8、国家公务员考试要做选择题,已知4个选项中只有一个是正确的,规定:如果答对得2分,答错倒扣2分,不答不得分也不扣分,那么在不知道答案的情况下,请你为某考生分析一下,作答可能性好还是不作答的可能性好?4.2等可能条件下的概率(一)(1)(教案)班级姓名【教学目标】1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型;2、进一步理解等可能事件的意义,会列出一些类型的随机实验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件);3、理解等可能条件下的概率(一)即古典概型的两个基本特征,能借助概率的计算判断事件发生可35 6 0 能性的大小.【教学重、难点】能利用定义进行简单的概率计算和判断事件发生的可能性的大小.【教学过程】一、问题情境:抛掷一枚均匀的骰子一次.问题:(1)点数朝上的试验结果是有限的吗?如果是有限的共有几种?(2)哪一个点数朝上的可能性较大?(3)点数大于4与点数不大于4这两个事件中,哪个事件发生的可能性大呢?二、探索新知:等可能条件下的概率的计算方法:()m P A n其中m 表示 ,n 表示 .注:我们所研究的事件大都是随机事件,所以其概率在0和1之间.三、典型例题:例1、某班级有21名男生和19名女生,名字彼此不同,现在相同的40张小纸条,每位同学分别将自己的名字写在上面,放入一个盒子中搅匀,如果老师闭上眼睛随意地从中取出一张小纸条,那么抽到男同学的名字的可能性大还是抽到女同学的名字的可能性大?例2、一只不透明的袋子中装有3个白球和2个红球.这些球除颜色外都相同,拌匀后从中任意摸出1个球,问:(1)会出现哪些等可能的结果?(2)摸出白球、红球的概率各是多少?(3)要使摸出的红球概率是21,则还需增加几个红球?思考:刚才试验的结果有哪些特点?“古典概型”.古典概型的两个基本特征:① ;② .讨论:一射手射击打靶,“中靶”与“脱靶”这两个事件是等可能的吗?注:判断一个试验是否为古典概型,关键在于这个试验是否具备古典概型的两个特征.例3、在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图所示的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是多少?例4、一道选择题有A 、B 、C 、DA 、B 、C 、D中随意选择一个选项,所选选项恰好正确的概率是多少?例5、从一副扑克牌中,任意抽一张.问:(1)抽到大王的概率是多少?(2)抽到8的概率是多少?(3)抽到红桃的概率是多少?(4)抽到红桃8的概率是多少?例6、甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球.这些球除颜色外都相同.把球搅匀,分别从两只袋子中任意摸出1个球.比较从甲、乙两只袋子中摸到红球的概率的大小,并说明理由.例7、在一只不透明的口袋中放入若干个小球,这些球除颜色外都相同,要使从袋中任意摸出1个球恰好是红球的概率为32,可以怎样向袋中放球?4.2 等可能条件下的概率(一)(2)(教案)班级 姓名【教学目标】1、会用列举法(即列表或画树状图)计算一些随机事件所含的可能结果(基本事件)数及事件发生的概率;2、经历克服困难和取得成功的过程,获得一些研究问题的经验和方法.【教学重、难点】用列举法(即列表或画树状图)计算概率.【教学过程】一、创设情境:某项比赛在我市举行,现只有一张入场券,小明和小红都想去,他们决定用抛掷硬币的方法决定谁去.小明说:“抛掷硬币两次,两次正面朝上的小红去,否则我去.”小明的说法公平吗?第一掷二、探索新知:抛掷一枚均匀的硬币2次,记录2次的结果作为一次试验,重复这样的试验十次,并在小组内交流试验的结果.问题1 你能只通过一次试验,列出所有可能的结果吗?问题2 回答创设情境中小明的说法是否公平吗?为什么? 应怎样更正游戏规则才公平?由于硬币是均匀的,所以正面朝上和反面朝上是等可能的,由此,我们可以画出下图:上图中,从左到右每一条路径就是一种可能的结果,并且每种结果出现的可能性相同.像这样的图,我们称之为 ,它可以帮助我们不重复、不遗漏地列出所有可能出现的结果.我们还可以利用 列出所有可能出现的结果.正 反 正(正,正) (正,反) 反 (反,正) (反,反)三、典型例题:例1、小明有3件上衣,分别为红色、黄色、蓝色,有2条裤子分别为蓝色和棕色.小明任意拿出1件上衣和1条裤子穿上,恰好是蓝色上衣和蓝色裤子的概率是多少?(画树状图或列表格)例2、以壹角、伍角、壹圆3枚硬币中任取2枚,其面值和大于一元,这个事件发生的概率是多少?请画出树状图?例3、一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-1、3、-4,搅匀后先从中摸出1个球(不放回),再从余下的3个球中摸出1个球.(1)用树状图列出所有可能的结果;(2)求两次摸出的乒乓球球面上数字的积为偶数的概率.结果第二掷 开始(正,正) (正,反) (反,正) (反,反) 第一掷 第二掷 所有可能出现的结果拓展与延伸:抛掷一枚质地均匀的硬币3次,3次抛掷的结果都是正面朝上的概率有多大?例4、一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.求两次都摸到红球的概率.例5、北京2008年奥运会吉祥物“福娃”是“贝贝、晶晶、欢欢、迎迎、妮妮”.将5张分别印有5个“福娃”图案的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中取出1张卡片,记录后放回、搅匀,再从中取出1张卡片,求下列事件发生的概率:(1)取出的2张卡片相同;(2)取出的2张卡片中,1张为“欢欢”,1张为“贝贝”;(3)取出的2张卡片中,至少有一张为“欢欢”.4.3 等可能条件下的概率(二)(教案)班级姓名【教学目标】1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型;2、能把等可能条件下的概率(二)(几何概型)转化为等可能条件下的概率(一)(古典概型),并进行简单的计算;3、在具体情境中感受一类事件发生的概率(能转化为古典概型的几何概型)的大小与面积大小有关.【教学重点】会求等可能条件下的几何概型(转盘、方格)的概率.【教学难点】把等可能条件下,实验结果无限个的几何概型通过等积分割转化为古典概型.【教学过程】一、问题情境:(1) 出示一个带指针的转盘,任意转动这个转盘,在某个时刻观察指针的位置.问题1:这时所有可能结果有多少个?为什么?问题2:每次观察有几个结果?有无第二个结果?问题3:每个结果出现的机会是均等的吗?如果一个试验的所有可能发生的结果有无穷多个,每次只出现其中的某个结果,而且每个结红 红 红 红 红 红 蓝 蓝 果出现的机会都一样,那么我们可称这个试验的结果具有等可能性.例如,我们随机地看一下走着的手表的秒针的位置,它可能指向任何一个时刻,这时所有的结果有无穷多个,但是每个结果出现的机会均等.(2)将转盘分成8个相等的扇形,并涂上不同的颜色,如图所示,转盘除颜色外都相同.转动该转盘.问题1:转一周时,试验结果有几个,其中有几个结果指向红色区域?概率是多少?问题2:若把转盘变成正方形其余不变,结果是一样吗?若每个转盘中红色扇形的个数不变,但位置变化一下,结果还是一样吗?问题3:你认为概率大小与什么因素有直接关系? 小结:(1)“几何概型”具有的特点:① ;② . (2)“几何概型”发生的概率大小与区域形状、位置无关,只与区域面积大小有关.二、典型例题:例1、(1)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,求下列事件发生的概率.①P (指针指向6)= ;②P (指针指向偶数)= ;③P (指针指向小于4的数)= ;④P (指针指向不大于4的数)= ; ⑤P (指针指向大于0的数)= ;(2)如图,向正三角形区域投掷飞镖,假设飞镖击中图中每一个小三角形区域是等可能的,投掷飞镖1次,击中图中阴影部分的概率是 .(3)小明向如图所示的正方形木板投掷1支飞镖,若飞镖击中图中每一个小正方形是等可能的,则击中阴影部分的概率是 .例2、某商场为了吸引顾客,开展有奖销售活动,设立了一个可以自由转动的转盘(如图),转盘等分为16份,其中红色1份、蓝色2份、黄色4份、白色9份.商场规定:顾客每购满1000元的商品,就可获得一次转动转盘的机会.转盘停止时,指针指向红、蓝、黄区域,顾客可分别获得1000元、200元、100元的礼品.某顾客购物1400元,他获得礼品的概率是多少?他分别获得1000元、200元、100元礼品的概率是多少?延伸:如果去掉转盘上的指针,改为向转动中的转盘投掷一枚飞镖,投到不同区域获得相应的礼品(假设飞镖击中转盘上的每一点是等可能的),刚才计算得到的一系列概率值会不会变化呢?数学理论:一般地,设试验结果落在某个区域S 中每一点的机会均等,用A 表示事件“试验结果落在S 中的一个小区域M 中”,那么事件A 发生的概率P (A )=的面积的面积S M r =10 cm ,8环的半径R 1 =20 cm ,6环的半径R 2=40 cm .(1) 射击1次击中8环的概率是多少?6 1 2 3 45 例1 (1) 例1(2) 例1(3) 例2(2) 射击1次击中10环、8环、6环的概率哪个最大?哪个最小?例4、如图,A 转盘的4个扇形的面积相等,B 转盘的6个扇形的面积相等.有人设计了如下游戏规则:甲、乙两人分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字相乘,如果所得的积是偶数,那么甲获胜;如果所得的积是奇数,那么乙获胜.(1)你认为这样的规则公平吗?为什么?(2)如果不公平,请设计一个你认为公平的规则,并说明理由.练习: 如图,A 、B 两个转盘分别被平均分成三个、四个扇形,分别转动A 盘、B 盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率.第四章 认识概率小结与思考 (教案) 班级 姓名【教学目标】1.回顾、思考本章所学的知识及思想方法,能用自己喜欢的方式进行梳理,使所学知识系统化;2.进一步丰富对概率的认识,能有条理地、清晰地阐明自己的观点;3.通过“小结与思考”的教学,感受归纳的思想方法,养成反思的习惯.【教学重点】进一步丰富对概率的认识,能有条理地、清晰地阐明自己的观点.【教学难点】通过“小结与思考”的教学,感受归纳的思想方法,养成反思的习惯.【教学过程】一、知识回顾:1、 等可能性2、等可能性条件下的概率:P (A )=nm 3、用树状图、列表等方法求等可能条件下的概率4、几何概型二、例题讲解:1.下列说法正确的是( )A .掷一枚骰子,掷出的是大于3的点的可能性和掷出的是小于3的点的可能性相同;B .掷一枚骰子,掷出的是大于3的点的可能性和掷出的是不大于3的点的可能性相同;C .袋中有红、黄两种颜色的球,从中摸出1球,摸到红球与摸到黄球的可能性相同;D .从写有字母A 、B 、A 、C 的4张纸牌中,摸出1张,摸到字母A 与摸到字母B •的可能性相同.2.小明用一枚均匀的硬币试验,前7次掷得的结果都是反面向上,如果将第8次掷得反面向上的概率记为P ,则( )4 1 2 3 A 1 2 3 456 B 0 12 3 4 5 6 A BA . P = 21B . P <21C . P >21 D . 无法确定 3.甲、乙、丙三人任意排位按从左到右的顺序坐在同一条长凳上,恰好是“甲、乙、丙”或“丙、乙、甲”次序的概率是( )A . 61B .41C . 31D . 21 4.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD .BD 上的点,EF ∥AB ,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )A .B .C .D .5.小明心里想了一个数(9以内的自然数),让小芳来猜,一次就猜中的概率是_______.6.口袋中有3个黄球,2个绿球,1个红球,他们除颜色外都相同.任意摸出1球,摸到红球的概率是____,摸到黄球的概率是____,摸到的不是绿球的概率是_____,摸到白球的概率是_____.7.在一副扑克牌中任意抽取1张,抽到梅花的概率是_____,抽到5的概率是_____,抽到方块3的概率是______.8.任意掷一枚骰子,5点朝上的概率是______,偶数点朝上的概率是______,大于2的点朝上的概率是______,小于7的点朝上的概率是______.9.胜利广场上铺满了正方形地砖(如图),它们除颜色外其余都相同,一只小鸽子从空中随机地落在广场上,它落在白色地砖上的概率是_____,它落在黑色地砖上的概率是______.10.两个口袋A 、B 中均有3个分别标有数字1、2、3的相同的球,甲、乙两人进行玩球游戏. 游戏规则是:甲从A 袋中随机摸一个球,乙从B 袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?11.如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字和的所有结果.(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.12.袋中有5颗珠子,3颗红色,2颗绿色,除颜色外,其余特征都相同.(1)从中任取一颗,放回搅匀再任取一颗,两颗珠子颜色相同的概率有多大?(2)从中任取一颗,不放回搅匀再任取一颗,两颗珠子颜色相同的概率有多大?1 3 6 (第4题)13.有5根细木棒,它们的长度分别是1cm、3cm、5cm、7cm、9cm.从中任取3根恰好能搭成一个三角形的概率是多少?14.一只不透明的袋子中装有1个白球、1个篮球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,像这样有放回地先后摸球3次,求下列事件发生的概率:(1)3次都摸到红球;(2)至少有1次摸到红球;(3)至少有2次摸到红球;(4)3次摸到的球的颜色都不相同.。
概率教案教案
概率教案教案一、教学目标:1. 了解概率的基本概念和原理;2. 掌握计算概率的方法和技巧;3. 能够运用概率进行实际问题的解决。
二、教学内容:1. 概率的基本概念概率是描述事件发生可能性的一种数学工具。
本节课将学习概率的基本概念,如样本空间、事件、概率等。
2. 概率的计算方法通过本节课的学习,学生将了解如何计算概率。
具体包括:古典概率、相对频率概率和主观概率等。
3. 概率的应用本节课将介绍概率的常见应用场景,如生日问题、扑克牌问题等。
通过这些实际问题的讲解,学生可以更好地理解概率的应用。
三、教学步骤:1. 导入教师可以提出一个概率问题,如抛掷一枚硬币的结果是正面的概率是多少?通过这个问题引入概率的概念,并激发学生的兴趣。
2. 基本概念的讲解教师详细介绍概率的基本概念,如样本空间、事件、概率等。
可以通过实际例子进行说明,帮助学生更好地理解。
3. 概率的计算方法教师向学生介绍概率的计算方法,包括古典概率、相对频率概率和主观概率等。
通过多个例子的讲解和练习,让学生熟练掌握计算概率的方法和技巧。
4. 概率的应用教师通过生日问题、扑克牌问题等实际案例,向学生展示概率的应用。
通过分析这些问题,学生可以更好地理解概率的实际应用,并培养解决问题的能力。
5. 练习与讨论教师组织学生进行概率计算的练习,并在课堂上进行讨论。
通过互动讨论,加深学生对概率的理解,并帮助他们发现概率计算中可能存在的问题。
6. 总结与展望教师对本节课的重点知识进行总结,并展望下节课的内容。
可以布置课后作业,让学生进一步巩固所学知识。
四、教学资源:1. 课本教材2. 录制的概率教学视频3. 概率计算练习题五、教学评估:1. 课堂讨论:通过课堂上的互动讨论,评估学生对概率概念的理解程度和运算技巧的掌握程度。
2. 课后作业:布置适量的概率计算作业,通过批改作业来评估学生的学习成果。
六、教学拓展:1. 概率的进一步应用:可以介绍更复杂的概率问题,如多个事件的概率、条件概率等。
概率的基本性质教案
概率的基本性质教案一、教学目标1. 让学生理解概率的定义和基本性质。
2. 培养学生运用概率知识解决实际问题的能力。
3. 引导学生通过合作、探究的方式,发现概率的基本性质,培养学生的团队合作意识和解决问题的能力。
二、教学内容1. 概率的定义:随机事件A发生的可能性。
2. 概率的基本性质:a. 概率的取值范围:0≤P(A)≤1b. 概率的和性:P(A∪B)=P(A)+P(B)-P(A∩B)(A、B互斥)c. 概率的乘性:P(A∩B)=P(A)×P(B|A)三、教学重点与难点1. 教学重点:概率的定义,概率的基本性质。
2. 教学难点:概率的和性、乘性原理的理解与应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生发现概率的基本性质。
2. 运用案例分析,让学生体会概率在实际生活中的应用。
3. 组织小组讨论,培养学生的团队合作意识和解决问题的能力。
五、教学步骤1. 引入:通过抛硬币、抽签等实例,让学生感受概率的在生活中无处不在。
2. 讲解概率的定义:随机事件A发生的可能性,用0到1之间的数表示。
3. 探究概率的基本性质:a. 引导学生发现概率的取值范围:0≤P(A)≤1b. 讲解概率的和性:P(A∪B)=P(A)+P(B)-P(A∩B)(A、B互斥)c. 讲解概率的乘性:P(A∩B)=P(A)×P(B|A)4. 运用案例分析,让学生体会概率的基本性质在实际生活中的应用。
5. 组织小组讨论,让学生发现生活中存在的概率现象,并运用概率的基本性质进行分析。
教案结束。
六、教学活动1. 课堂练习:让学生运用概率的基本性质,解决一些简单的实际问题,如:抛硬币、抽签等。
2. 课后作业:布置一些有关概率的基本性质的应用题,让学生巩固所学知识。
七、教学反思1. 教师应反思教学过程中的得失,及时调整教学方法,以便更有效地引导学生掌握概率的基本性质。
2. 关注学生在学习过程中的反馈,针对学生的实际情况进行辅导,提高学生的学习效果。
概率的教案
概率的教案概率的教案一、教学目标:1. 知识目标:学习概率的定义与性质,了解事件的基本概念。
掌握概率的计算方法:古典概率、几何概率、条件概率等。
运用概率计算问题。
2. 能力目标:培养学生分析问题、解决问题的能力。
提高学生的逻辑思维能力和抽象思维能力。
3. 情感目标:培养学生的数学兴趣和探究精神。
培养学生的合作意识和创新意识。
二、教学重点与难点:1. 教学重点:掌握概率的计算方法。
运用概率解决实际问题。
2. 教学难点:运用条件概率解决实际问题。
三、教学方法:1. 归纳法:通过观察和归纳,总结概率的定义与性质。
2. 实验法:通过实际操作,了解几何概率的计算方法。
3. 讨论法:引导学生通过讨论和解答问题,加深对概率的理解和应用。
四、教学过程:1. 导入(5分钟)向学生提问:“你们平时对概率有什么了解?概率在生活中有何应用?”引导学生回忆与概率相关的经验和问题。
2. 概率的定义与性质(10分钟)分析学生回答的问题和经验,引导他们总结概率的定义和基本性质,并通过例题加深理解。
3. 古典概率的计算方法(15分钟)介绍古典概率的概念和计算方法,并通过一些实例让学生掌握古典概率的计算方法。
4. 几何概率的计算方法(20分钟)利用实验方法进行几何概率的计算。
首先给出一个具体的问题,然后引导学生设计实验,并观察结果,最后根据实验结果计算几何概率。
5. 条件概率的计算方法(20分钟)通过解决实际问题,引导学生理解条件概率的概念,并掌握条件概率的计算方法。
6. 运用概率解决问题(15分钟)给出一些实际问题,引导学生运用所学的概率计算方法解决问题,并讨论解决问题的思路和方法。
7. 总结与拓展(15分钟)对本节课学到的知识进行总结,并提出拓展问题,引导学生进一步思考与概率相关的问题和应用。
五、教学手段和资源:1. 多媒体教学:使用多媒体展示概率的定义、计算方法、实例和实际问题的解决过程,生动形象地呈现知识内容。
2. 实验器材:提供实验所需的纸牌、骰子等器材,供学生进行实验和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章概率一教学目标1.经历猜测、试验、收集与分析试验结果的活动过程.2.初步了解必然事件、不可能事件和不确定事件发生的可能必大小,了解事件发生的等可能性游戏规则的公平性.3.了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念.4.能对两类事件(古典概率和几何概率)发生的概率进行简单的计算,并能设计符合要求的简单概率模型.5.在概率的学习中进一步体会“数学就在我们的身边”发展“用数学”的意识和能力.二教材分析概率中“随机”观念的培养需要一个长期的过程.在七年级(上)《可能性》一章中学生已经接触过不确定事件的有关事例(如在“一定能摸到红球吗”中已初步体验了有些事件的发生是不确定的,知道事件发生的可能性有大小;在“转盘游戏”中又体验了不确定事件发生的可能性大小;在“谁转出的四位数大”中进一步体会到不确定事件的特点及事件发生的可能性).在本单元的学习中,学生将在经历猜测、试验、收集与分析试验结果的活动过程中,进一步了解不确定现象的特点,通过具体情景体会概率的意义,在丰富的实际问题中认识概率是刻画不确定现象的数学模型,同时学习一些简单的计算概率的方法,并通过对概率的进一步认识帮助自己作出合理的决策.教材首先呈现给学生的是一个转盘游戏,意在通过实验与分析,使学生体会必然事件、不可能事件和不确定事件发生的可能性;然后通过掷硬币游戏,让学生初步了解事件发生的等可能性及游戏规则的公平性,在做大量试验的过程中感悟概率的意义,初步体会可以通过做试验来估计事件发生的可能性.教材在第二节中,通过对摸到红球的概率展开了讨论,使学生初步学习定量刻划一类事件(古典概型)的方法,进一步体会概率的意义;在第三节中,通过小猫停留在黑砖上的概率问题,使学生直观体验另一类事件(几何概型),了解此类事件发生概率的基本计算方法,并能进行简单计算.三教学建议1.引导学生认真阅读“主题图”,帮助他们初步了解本章要学习的内容。
课文给出学生十分感兴趣的两个问题,希望引发学生的学习兴趣。
同时简要介绍本章主要内容,并指出概率存在于日常生活之中,与人们的生产、生活密切相关。
2.注重引导学生积极参与试验过程,亲自动手试验收集相关数据,通过对数据的分析处理,培养学生的随机观念.学生往往存在着一些生活“经验”,这些经验是进一步学习的基础,但其中的一部分是错误的.逐步消除错误的经验,建立正确的随机观念是学习概率的一个重要目标.要实现这一目标,必须让学生经历对随机现象的探索过程,引导学生亲自从事“试验→收集试验数据→分析试验结果”的过程,从而获得事件发生的概率.3.注意培养学生的随机观念,理解现实世界中不确定事件的现象与特点,树立一定的随机观念是教学中的重点和难点所在.教学时,教师要引导学生主动参与对事件发生的感受和探索,通过对现实世界中学生熟悉和感兴趣的问题,丰富对概率背景的认识,积累大量的活动经验.在教学中,必须让学生亲自经历对随机现象的探索过程,引导学生亲自尝试试验,以获得事件发生的概率,消除一些错误的经验,体会不确定事件现象的特点.4.1 游戏公平吗一、教材分析:在七年级上学期中,学生已经接触了不确定事件,初步体会了不确定事件的特点及事件发生可能性的意义。
在本节中,学生将在“猜测——试验并收集试验数据——分析试验结果”的活动过程中进一步了解不确定现象的特点,初步体会可以通过做试验来大致估计事件发生的可能性。
二、教学目标:1、经历“猜测——试验并收集试验数据——分析试验结果”的活动过程。
2、了解必然事件,不可能事件和不确定事件发生的可能性大小。
3、倡导“探究性学习”方式,使学生自己在教师指导下自主地发现问题、探究问题,获得结论。
4、了解事件发生的等可能性及游戏规则的公平性。
三、教学设计在本节教学设计上,以小组活动为主要课堂学习方式,特别注重过程性目标与知识、技能目标;独立思考与合作交流的和谐、统一。
在小组实验中,进一步教会学生分工与合作,如每个小组都配有组长、记录员等,在组与组的交流中,让学生学会倾听与反思,在对知识的系统归纳中,发展学生的数学感悟能力。
四、教学建议1、本节倡导“探究性学习”,注重学生的经历、感受和体验,而不是以老师的已知感受代替学生的自身经历,教学时,可以先让学生猜测游戏是否公平,再进行试验,然后分析试验数据,验证自己的猜测。
例如,对于“掷一枚均匀的硬币”的游戏,教师一定要让学生亲自做试验收集数据。
学生在试验过程中发现,每一次试验的结果事件是无法预料的,每一个小组收集到的试验数据都带有随机性,但大量试验后,两种情况出现的频率都稳定在同一个数值上,因此这两种情况发生的可能性是一样的。
总之,我们要让学生在感受中成长,在体验中发展能力,注重学生在探究学习中的情感态度。
2、针对书本中的不同实验和游戏,每次都应明确探究任务,并分层次提出所要探究的问题,正确指导小组活动,让学生明确探究的是什么,应如何探究。
在探究过程中,强调独立思考与合作交流的相互统一,对探究结果给学生以充分的表述意见的时间,对不同的意见给予充分的交流时间。
3、教材只是作为一种教学素材,教学中教师应加以挖掘与拓展,比方针对书本P103的做一做(2)“你能利用上节课的做一做中的均匀小立方体设计一个游戏,使游戏对小明、小丽都公平吗”,这是一道开放题,答案不唯一,应鼓励学生开展思考与讨论,只要能设计出一种合理的方案即可。
除了利用好教材,教学中老师可适当补充一些内容(比如可利用摸球、扑克牌、电脑随机抽样等设计出对双方公平的游戏),学生的主动学习和参与会给老师带来许多学习和研究的内容。
4、本节内容安排两课时。
4.2摸到红球的概率1、本课在全章中的地位与作用“摸到红球的概率”在本章中有承上启下的作用。
随着社会的不断发展,统计与概率的思想方法将越来越重要。
统计与概率所提供的“运用数据进行推断”的思考方法已经成为现代社会一种普遍适用并且强有力的思维方式。
本章前一节内容通过对学生活动数据的统计,让学生亲身体验某一事件发生的可能性,以及可能性的不相等所带来的某些游戏的不公平性。
学生在学习本节内容之前已经经历了多次活动的亲身体验。
本节课中,学生将再次通过摸球游戏活动,了解计算一类事件发生可能性的方法,体会概率的意义。
为下一节课概率的“数学模型论”建立扎实的基础。
2、关于教学目标的设定本课的教学目标比较明确,通过摸球游戏,了解计算一类事件发生可能性的方法,体会概率的意义。
其实全章的教学中,突出学生自我“体会”的重要性,概率是无法靠教师教的,而是让学生自己去体验领会的。
通过学生亲身经历动手操作、数据统计、类比观察、分析归纳、合作交流等一系列探究活动,寻找问题解决的意义,过程和方法;体验在有意义的数学活动中如何建构自己的数学知识,获取对概率计算的理解,发展数学能力,形成学习数学的积极态度以及良好的与人合作精神。
3、关于本节课的重点和难点本节课的重点是了解计算一类事件发生可能性的方法。
本节课的难点是理解概率的计算方法、体会概率的意义。
4、关于教学过程的设计和教学方法的运用教师课前要准备好教具:在不透明的盒子(或布袋)里放人三个橙色的乒乓球和一个白色的乒乓球(这些球除颜色外完全相同);四人一组。
在展开教科书中的游戏时,首先可以组织学生讨论摸到何种颜色球的可能性大,并猜测摸到红球的概率。
活动安排:四人一组进行活动(一人负责记录)活动一:将球编上号码,1~ 4 号(其中4号白色),每组摸球的基础次数为20 次,通过活动思考摸到每个球的可能性是否一样。
活动二:在活动一(摸到每个球的可能性一样)基础上,请学生再对照数据,看所有可能出现的结果有几种?(四种:1号球,2号球,3号球,4号球)。
是红球的可能结果有几种?(三种:1号球,2号球,3号球)。
教师引导计算摸到红球的概率方法:P(摸到红球)=3/4。
分子表示摸到红球的可能结果,分母表示摸到的所有可能结果。
必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0 ,记作P(不可能事件)=0;如果A为不确定事件,那么对于不确定事件来说:0<P(A)<1 活动三:想一想这个过程中摸到白球的概率。
活动四:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),“6”朝上的概率是多少?教师引导学生考虑两个方面,一是所有可能出现的结果有几种,二是“6”朝上的结果有几种。
学生不难找到答案。
活动五:接下来是学生练习《做一做》,本题是具有挑战性的活动,学生要根据要求设计游戏,这体现了概率模型的思想。
可先让学生独立思考,再四人小组讨论(准备好乒乓球让学生使用,增加直观性)。
随堂练习可放在活动三内完成。
活动六:《概率小史》介绍,让学生了解概率与人们实际生活有着紧密的联系,这门学科有着强大的生命力和广阔的发展前景。
活动七:学生自我活动完成习题4.2,巩固新知。
本节课教材的安排较为合理,所以无须作改动,教学中要尽量让学生多动脑,多发现问题。
本课的教具准备也较为容易,课中,教师也可设计与生活较为贴近的例子来增强学生的学习兴趣。
本课切忌套用公式机械性的计算概率。
不能让学生等待知识的传递,而要激发学生积极主动地参与到学习活动中来,成为学习的主体。
5、关于评价方式教师在教学中要关注学生对待学习的态度是否积极,关注学生想了没有,参与了没有,关注学生能否从数学的角度思考问题。
在课堂上,要给学生充分展示自我的机会,教师要适时地鼓励和表扬,培养学生的自信心,让教师的评价发挥最大的教育功能。
4.3停留在黑色砖上的概率一.教学目标:1.通过对生活素材的挖掘,进一步了解概率的意义,体验概率是描述不确定现象的一种数学模型;2.借助具体情景,了解一类事件发生的概率,并能计算单间事件发生的概率;3.能设计符合要求的简单概率的模型;4.继续渗透合作学习理念,培养学生的创新精神。
二.教学建议:1.由于教材通过探究小猫停留在黑砖块上概率的大小问题,让学生直观体验生活中概率的另一种模型——几何概率。
所以,教学时应引导学生感悟以下两点:①方砖除颜色不同外,其余完全相同,小猫在方砖地走动方式是随意的,停留在哪一块方砖上是一个随机问题;②几何概率的大小与面积有关,即“事件发生的概率等于此事件...所有可能发生的结果所组成的图形面积除以所有可能发生的结果所组成的图形面积”。
2.想一想(1)“小猫停留在白色砖块上的概率”其实质是“小猫停留在黑色砖块上的概率”的余事件,即43411=-;但教学时不必深究,也不必让学生掌握。
如果有同学提出,教师可引导这部分同学作进一步探究。
想一想(2)的目的主要是通过两个事件发生概率相同的结果,让学生初步建立概率的模型思想,教师应保证时间鼓励学生举出一些不确定事件的概率为“43”的例子。
3.本节教材所涉及的例子都是从日常生活中的某个情景出发,它充分体现了概率与人们的日常生活密切相关,概率存在于日常生活之中,教学时务必引导学生独立思考与合作学习相结合,充分理解“事件发生可能性结果”的真正含义;如例1中获奖券的可能性结果是“7”,获100元购物券的可能性结果是“1”,获50元购物券的可能性结果是“2”,获50元购物券的可能性结果是“3”。