2018届河北省唐山市高三第一次模拟考试(唐山一模)理科数学

合集下载

河北省唐山市—高三第一次模拟考试理科数学

河北省唐山市—高三第一次模拟考试理科数学

河北省唐山市—高三年级第一次模拟考试理科数学试卷试卷类型:A 说明:一、本试卷共4页,包括三道大题,22道小题,共150分.其中第一道大题为选择题. 二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案,四、考试结束后,将本试卷与原答题卡一并交回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式24RS π=)()()(B P A P B A P +=+ 其中R 表示球的半径如果事件A 、B 相互,那么 球的体积公式334R V π=)()()(B P A P B A P ⋅=⋅ 其中R 表示球的半径如果事件A 在一次试验中发生的概率是P ,那么n 次重复试验中恰好发生k 次的概率:kn k kn n P P C k P --⋅⋅=)1()(一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)复数=+-3)2)(1(ii i ( )(A)i +1 (B)i --1 (C)i 31+ (D)i31--(2)已知),0(+∞=U ,}0sin |{>=x x A ,}1)1(log |{4>+=x x B ,则=)(B C A U ( )(A) }0|{π≤<x x (B) }1|{π≤<-x x (C) }30|{≤<x x (D) }31|{≤<-x x (3)球的一个截面是半径为3的圆,球心到这个截面的距离是4,则该球的表面积是( )(A)π100 (B)π50 (C)π3500 (D) π3100(4)圆1)2()1(22=-+-y x 与圆4)1()3(22=-+-y x 的公切线共有( )(A)1条 (B)2条 (C)3条 (D)4条(5)已知实数x ,y 满足不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220201y x y x ,则y x z +=的取值范围是( )(A)[]2,1 (B)[]3,2 (C) []3,0 (D) []3,1(6)函数231+=-xy )1(>x 的反函数为( )(A)1)2(log 3--=x y )32(<<x (B) )2(log 13--=x y )32(<<x (C) 1)2(log 3--=x y )3(>x (D) )2(log 13--=x y )3(>x (7)已知椭圆的中心在原点,离心率22=e ,且它的一个焦点与抛物线x y 42=的焦点重合,则此椭圆方程为( )(A)14822=+y x (B) 12422=+y x (C) 1422=+y x (D) 1222=+y x (8)若函数)(x f 的部分图象如图所示,则该函数可能是( )(A))3sin(π+=x y (B) )3sin(π-=x y(C) )62sin(π+=x y (D) )62sin(π-=x y (9)设α、β、γ为三个不同的平面,m 、n 为两条不同的直线,在①βα⊥,n =βα ,n m ⊥; ②m =γα ,βα⊥,γβ⊥;③βα⊥,γα//,γ//m ; ④α⊥n ,β⊥n ,α⊥m 中,是β⊥m 的充分条件的为( )(A) ①② (B)②④ (C)②③ (D) ③④(10)已知函数|2||2|)(+--=x x x f ,则使得2)(0<<x f 的x 的取值范围是( )(A) )0,2(- (B) )0,1(- (C) )1,0( (D) )1,1(-(11)已知θ2是第一象限的角,且95cos sin44=+θθ,那么=θtan ( )(A)22(B) 22- (C) 2 (D) 2-(10)从5种不同的水果和4种不同的糖果中各选出3种,放入如图所示的6个不同区域(用数字表示)中拼盘,每个区域只放一种,且水果不能放在有公共边的相邻区域内,则不同的放法有( )(A) 2880种 (B) 2160种 (C) 1440种 (D) 720种二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.(13)随机变ξ量服从正态分布),50(2σN ,若3.0)40(=<ξP ,则=<<)6040(ξP 。

唐山市2018-2019学年第一学期高三年级一模考试理科数学含答案

唐山市2018-2019学年第一学期高三年级一模考试理科数学含答案

x y (10)已知双曲线 C: - 2=1(b>0),F1,F2 分别为 C 的左、右焦点,过 F2 的直线 l 交 C 的 16 b 左、右支分别于 A,B,且|AF1|=|BF1|,则|AB|= A.4 B.8 C.16 D.32 (11)设函数 f (x)=aex-2sin x,x∈[0,π]有且仅有一个零点,则实数 a 的值为 A. 2e4 C. 2e2
A
(20) (12 分) 为了保障全国第四次经济普查顺利进行, 国家统计局从东部选择江苏, 从中部选择河北、 湖北, 从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基 层的普查小区. 在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致 入户登记不够顺利, 这为正式普查提供了宝贵的试点经验. 在某普查小区, 共有 50 家企事业单位, 150 家个体经营户,普查情况如下表所示: 普查对象类别 顺利 不顺利 合计 企事业单位 40 10 50 100 50 150 个体经营户 140 60 200 合计 (1)写出选择 5 个国家综合试点地区采用的抽样方法; (2)根据列联表判断是否有 90%的把握认为“此普查小区的入户登记是否顺利与普查对象的 类别有关” ; (3)以频率作为概率,某普查小组从该小区随机选择 1 家企事业单位,3 家个体经营户作为普 查对象,入户登记顺利的对象数记为 X,写出 X 的分布列,并求 X 的期望值. 附:K2= n(ad-bc)2 (a+b)(c+d)(a+c)(b+d)
π π π - 4 - π 2
B. 2e
D. 2e
(12) 一个封闭的棱长为 2 的正方体容器, 当水平放置时, 如图, 水面的高度正好为棱长的一半. 若 将该正方体任意旋转,则容器里水面的最大高度为 A.1 B. 2 2 3 C. 3 D. 3

河北省唐山市2018届高三第一次模拟(一模)考试数学试题(理)

河北省唐山市2018届高三第一次模拟(一模)考试数学试题(理)

河北省唐山市2018届高三第一次模拟考试数学试题(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2(1-i)=i() A .-2+2i B .2+2i C .-2-2iD .2-2i2.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则() A .M N ØB .N M ØC .M N =D .R M N =3.已知1tan 2α=-,且(0,π)α∈,则sin 2α=() A .45B .45-C .35D .35-4.两个单位向量a ,b 的夹角为120,则2a b +=()A .2B .3C D5.用两个1,一个2,一个0,可组成不同四位数的个数是()A .18B .16C .12D .9 6.已知233a -=,432b -=,ln3c =,则()A .a c b <<B .a b c <<C .b c a <<D .b a c << 7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A .求135...(21)n ++++-B .求135...(21)n +++++C .求2222123n +++⋅⋅⋅+ D .求2222123(1)n +++⋅⋅⋅++8.为了得到函数5πsin 6y x ⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象() A .向左平移π6个单位长度 B .向右平移π3个单位长度 C .向右平移π6个单位长度D .向左平移π3个单位长度9. 某几何体的三视图如图所示,则该几何体的表面积是()A .5+.9C .6+.5310.已知F 为双曲线C :22221x y a b-=(0,0)a b >>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若OF FB =,则C 的离心率是()A .2B .3C D .2 11. 已知函数2()2cos f x x x x =-,则下列关于()f x 的表述正确的是() A .()f x 的图象关于y 轴对称 B .0R x ∃∈,()f x 的最小值为1- C .()f x 有4个零点 D .()f x 有无数个极值点12.已知P ,A ,B ,C 是半径为2的球面上的点,2PA PB PC ===,90ABC ∠=,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值是()A BC .12D 二、填空题:本题共4小题,每小题5分,共20分.13. 设x ,y 满足约束条件0230210x y x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则23z x y =+的最小值是.14.6(21)x -的展开式中,二项式系数最大的项的系数是.(用数字作答)15. 已知P 为抛物线2y x =上异于原点O 的点,PQ x ⊥轴,垂足为Q ,过PQ 的中点作x 轴的平行线交抛物线于点M ,直线QM 交y 轴于点N ,则PQNO=. 16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,AB 边上的高为h ,若2c h =,则a bb a+的取值范围是. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 为单调递增数列,n S 为其前n 项和,22n n S a n =+.(1)求{}n a 的通项公式; (2)若2112n n n n n a b a a +++=⋅⋅,n T 为数列{}n b 的前n 项和,证明:12nT <.18.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值. (i )求日需求量X 的分布列;(ii )该经销商计划每日进货300公斤或400公斤,以每日利润Y 的数学期望值为决策依据,他应该选择每日进货300公斤还是400公斤?19.如图,在三棱柱111ABC A B C -中,平面11A B C ⊥平面11AAC C ,90BAC ∠=.(1)证明:1AC CA ⊥;(2)若11A B C ∆是正三角形,22AB AC ==,求二面角1A AB C --的大小.20.已知椭圆Γ:22221x y a b+=(0)a b >>的左焦点为F ,上顶点为A ,长轴长为,B为直线l :3x =-上的动点,(,0)M m ,AM BM ⊥.当AB l ⊥时,M 与F 重合. (1)若椭圆Γ的方程;(2)若直线BM 交椭圆Γ于P ,Q 两点,若AP AQ ⊥,求m 的值.21.已知函数1()ex f x -=,()ln g x x a =+.(1)设()()F x xf x =,求()F x 的最小值;(2)证明:当1a <时,总存在两条直线与曲线()y f x =与()y g x =都相切.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆1C :22(1)1x y -+=,圆2C :22(3)9x y -+=.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)设曲线3C :cos sin x t y t αα=⎧⎨=⎩(t 为参数且0t ≠),3C 与圆1C ,2C 分别交于A ,B ,求2ABC S ∆的最大值.23.选修4-5:不等式选讲设函数()1f x x x =+-的最大值为m . (1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.【参考答案】一.选择题: 1-5:DCBDA 6-10:DCCAB11-12:DB二.填空题: 13.-514.-16015.3216.[2,22]三.解答题:17.解:(Ⅰ)当n =1时,2S 1=2a 1=a 21+1,所以(a 1-1)2=0,即a 1=1,又{a n }为单调递增数列,所以a n ≥1.由2S n =a 2n +n 得2S n +1=a 2 n +1+n +1,所以2S n +1-2S n =a 2 n +1-a 2n +1,整理得2a n +1=a 2 n +1-a 2n +1,所以a 2n =(a n +1-1)2.所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n . (Ⅱ)b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=12n ·n -12n +1·(n +1)所以T n =(121·1-122·2)+(122·2-123·3)+…+[12n ·n -12n +1·(n +1)]=121·1-12n +1·(n +1)<12.18.解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192. (Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010×10=0.1;P (X =200)=0.0020×10=0.2; P (X =300)=0.0030×10=0.3;P (X =400)=0.0025×10=0.25; P (X =500)=0.0015×10=0.15; 所以X 的分布列为:(ⅱ)当每日进货1此时Y 1的分布列为:此时利润的期望值E (Y 1)180; 当每日进货400公斤时,利润Y 2可取-400,400,1200,2000, 此时Y 2的分布列为:此时利润的期望值E (Y 20.4=1200; 因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤. 19.解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C ,得B 1O ⊥平面AA 1C 1C , 又AC ⊂平面AA 1C 1C ,得B 1O ⊥AC .由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C .又CA 1⊂平面A 1B 1C ,得AC ⊥CA 1.(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz . 由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). 设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎨⎧n ·AA 1→=0,n ·AB →=0,即⎩⎨⎧-x +2y =0,-y +3z =0.可取n =(23,3,1).设m =(x ,y ,z )是平面ABC 的法向量,则⎩⎨⎧m ·AB →=0,m ·CA →=0,即⎩⎨⎧-y +3z =0,x =0.可取m =(0,3,1). 则cos <n ,m >=n ·m |n ||m |=12.又因为二面角A 1-AB -C 为锐二面角,所以二面角A 1-AB -C 的大小为π3.20.解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ),由AF ⊥BF 得k AF ·k BF =b c · b -3+c=-1,又b 2+c 2=6.解得c =2,b =2. 所以,椭圆Γ的方程为x 26+y 22=1.(Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m, 又AM ⊥BM ,所以k BM =m 2,所以直线BM 的方程为y =m2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m 2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0,x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m 2.|PM |·|QM |=(1+m 22)|(x 1-m )(x 2-m )|=(1+m 22)|x 1x 2-m (x 1+x 2)+m 2|=(1+m 22)·|2m 2-12|2+3m 2=(2+m 2)|m 2-6|2+3m 2,|AM |2=2+m 2,由AP ⊥AQ 得,|AM |2=|PM |·|QM |,所以|m 2-6|2+3m 2=1,解得m =±1.21.解:(Ⅰ)F (x )=(x +1)e x -1,当x <-1时,F (x )<0,F (x )单调递减; 当x >-1时,F(x )>0,F (x )单调递增,故x =-1时,F (x )取得最小值F (-1)=-1e 2.(Ⅱ)因为f (x )=e x -1,所以f (x )=e x-1在点(t ,e t -1)处的切线为y =e t -1x +(1-t )e t -1;因为g (x )=1x,所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y =1mx +ln m +a -1,由题意可得⎩⎪⎨⎪⎧e t -1=1m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0.令h (t )=(t -1)e t -1-t +a ,则ht )=t e t -1-1由(Ⅰ)得t <-1时,h t )单调递减,且h t )<0;当t >-1时,ht )单调递增,又h =0,t <1时,ht )<0,所以,当t <1时,h t )<0,h (t )单调递减;当t >1时,ht )>0,h (t )单调递增.由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥-1e+1>0,又h (3-a )=(2-a )e 2-a +2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0,h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点, 故当a <1时,存在两条直线与曲线f (x )与g (x )都相切. 22.解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-π2<α<π2,C 2(3,0)到直线AB 的距离d =3|sin α|, 所以S △ABC 2=12×d ×|AB |=3|sin 2α|,故当α=±4时,S △ABC 2取得最大值3.23.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13.。

2018年河北省唐山市高考一模数学试卷(理科)【解析版】

2018年河北省唐山市高考一模数学试卷(理科)【解析版】

A.18
B.16
C.12
D.9
6.(5 分)已知 a=3 ,b=2 ,c=ln3,则( )
A.a<c<b
B.a<b<c
C.b<c<a
D.b<a<c
7.(5 分)如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所
能实现的功能是( )
第 1 页(共 22 页)
A.求 1+3+5+…+(2n﹣1) C.求 12+22+32+…+n2 8.(5 分)为了得到函数
12.(5 分)已知 P,A,B,C 是半径为 2 的球面上的点,PA=PB=PC=2,∠ ABC=90°,点 B 在 AC 上的射影为 D,则三棱锥 P﹣ABD 体积的最大值是 ()
A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.(5 分)设 x,y 满足约束条件
17.(12 分)已知数列{an}为单调递增数列,Sn 为其前 n 项和,

(1)求{an}的通项公式;
第 3 页(共 22 页)
(2)若
,Tn 为数列{Βιβλιοθήκη n}的前 n 项和,证明:.
18.(12 分)某水产品经销商销售某种鲜鱼,售价为每公斤 20 元,成本为每公 斤 15 元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部 降价处理完,平均每公斤损失 3 元.根据以往的销售情况,按[50,150),[150, 250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率 分布直方图.
C.
D.
10.(5 分)已知 F 为双曲线 C: ﹣ =1(a>0,b>0)的右焦点.过点 F

2018~2019唐山市高三摸底理科数学试题及答案

2018~2019唐山市高三摸底理科数学试题及答案
开始 a=1,n=1,S=0 S=S+ a n

唐山市 2018—2019 学年度高三年级摸底考试
理科数学
注意事项: 1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2、回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在 本试卷上无效。 3、考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.已知集合 A={x|x -5x-6<0},B={x|0≤x≤8},则 A∩B= A.[0,6) B.[0,1) D.(-1,8] C.(0,6) i(1-2i) 2.设 z= ,则|z|= 2-i A. 5 41 C. 5
π 在极坐标系中,曲线 C 方程为 ρ2-2 2ρsin θ+ -4=0.以极点 O 为原点,极轴为 x 轴正半 4 x=tБайду номын сангаасos α, (t 为参数,0≤α<) . 轴建立直角坐标系 xOy,直线 l: y=tsin α (1)求曲线 C 的直角坐标方程; (2)设直线 l 与曲线 C 相交于 A,B 两点,求 |OA|-|OB| 的取值范围.
a=a×(-1) n=n+2 n>19 是 输出 S 结束 否
B.2 D.1
3.等差数列{an}的前 n 项和为 Sn,若 a3+a11=4,则 S13= A.13 B.26 C.39 D.52 4.随机变量 ξ 服从正态分布 N(μ,σ2),若 P(ξ<2)=0.2,P(2<ξ<6)=0.6,则 μ= A.6 B.5 C.4 D.3 5.cos 105° -cos 15° = 2 A. 2 6 C. 2 2 2 6 D.- 2 B.-

[2018-2019年河北省一模:河北省唐山市2018届高三第一次模拟考试理科综合试题-附答案精品

[2018-2019年河北省一模:河北省唐山市2018届高三第一次模拟考试理科综合试题-附答案精品
(3)加快反应速率,同时防止PCl3气化(2分)
(4)缺少尾气处理和干燥装置(2分)
(5)①c(2分)
②×100%[或% ](2分)(其它合理答案也给分)
③偏小(2分)
27.本题共14分
(1)加热或粉碎矿石或适当增大NaOH溶液浓度(2分)
(2)2Al2O3 4Al+ 3O2↑(2分)
(3)坩埚和泥三角(2分)
(2分)
可得:M=2kg(1分)
其它方法正确同样得分。
34.(1)(5分) BCE
(2)(i) (2分), (1分)
i1=r1+r2(1分)
r1=r2=30°
可得: (1分)
(ii)光在介质中传播速度 (2分)
光在介质中传播距离 (1分)
L=vt(1分)
可得: (1分)
其它方法正确同样得分。
(3)
(4)5(2分), (各1分)
(5) (3分)(其它合理答案也给分)
物理部分
A卷:14.D 15.C16.D17.A 18.B 19.AD20.BC21.BD
B卷:14.C 15.D16.D17.B 18.A 19.AD20.BC21.BD
22.(1)左(1分) (4) A1(2分),11.8(2分)
(4)O2(2分)
(5)4NaH+AlCl3=NaAlH4+3NaCl(2分),氯化钠(2分)(其它合理答案也给分)
(6)4 (2分)
28.(本题共14分,除注明外其余每空2分)
(1)ΔH2-3ΔH12NH3-6e-+6OH-=N2+6H2O
(2)①0.3 mol/(L·min)0.12
②温度(1分)从图像变化趋势看,B比A反应速率加快,达平衡时NH3浓度小,所以只可能是升高温度。(1分)(其它合理答案也给分)

河北省唐山市高三上学期第一次摸底考试数学(理)试题+扫描版含答案 - 副本精编版

河北省唐山市高三上学期第一次摸底考试数学(理)试题+扫描版含答案 - 副本精编版

唐山市2018—2019学年度高三年级摸底考试理科数学参考答案一.选择题:A 卷:ADBCD DACCB CB B 卷:ADBBD DACABCB二.填空题: (13)2(14)12(15)2 6 (16)(1,3)三.解答题: 17.解:(1)由已知可得,2S n =3a n -1, ① 所以2S n -1=3a n -1-1 (n ≥2), ② ①-②得,2(S n -S n -1)=3a n -3a n -1,化简为a n =3a n -1(n ≥2),即a na n -1=3(n ≥2), …3分在①中,令n =1可得,a 1=1, …4分 所以数列{a n }是以1为首项,3为公比的等比数列,从而有a n =3n -1. …6分(2)b n =(n -1)·3n -1,T n =0·30+1·31+2·32+…+(n -1)·3n -1, ③则3T n =0·31+1·32+2·33+…+(n -1)·3n. ④③-④得,-2T n =31+32+33+…+3n -1-(n -1)·3n , …8分=3-3n 1-3-(n -1)·3n=(3-2n )·3n -32. …10分 所以,T n =(2n -3)·3n +34. …12分 18.解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品, 所以,抽取的2个零件等级互不相同的概率 P =4×5+6×510×10=12. …5分(2)X 可取0,1,2,3. …6分P (X =0)=C 04C 36C 310=16; P (X =1)=C 14C 26C 310=12;P (X =2)=C 24C 16C 310=310; P (X =3)=C 34C 06C 310=130; …10分X 的分布列为∴随机变量X 的期望E (X )=0×16+1×12+2×310+3×130=65. …12分 19.解:(1)∵直角三角形ABC 中,AB =BC =2,D 为AC 的中点, ∴BD ⊥CD ,又∵PB ⊥CD ,BD ∩PB =B , ∴CD ⊥平面PBD , ∴CD ⊥PD , 又∵AD ⊥BD , ∴PD ⊥BD .又因为BD ∩CD =D , ∴PD ⊥平面BCD . …5分(2)以D 为坐标原点,DA ,DB ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz ,则A (2,0,0),B (0,2,0),C (-2,0,0),P (0,0,2),PA →=(2,0,-2),PB →=(0,2,-2),CB →=(2,2,0)设平面PBC 的法向量n =(x ,y ,z ),由PB →·n =0,CB →·n =0得⎩⎪⎨⎪⎧2y -2z =0,2x +2y =0,取n =(1,-1,-1).…9分cos 〈PA →,n 〉=PA →·n |PA →||n |=63,∴直线PA 与平面PBC 所成角的正弦值为63. …12分20.解:(1)由已知可得,y 1=x 21,y 2=x 22,所以y 1-y 2=x 21-x 22=(x 1+x 2)(x 1-x 2)=2(x 1-x 2),此时,直线l 的斜率k =y 1-y 2x 1-x 2=2.…4分(2)因为OB ⊥l ,所以k OB =-1k ,又因为k OB =y 2x 2=x 22x 2=x 2,所以,x 2=-1k ,…6分又由(1)可知,x 1+x 2=y 1-y 2x 1-x 2=k ,从而有,x 1=k -x 2=k +1k ,所以|AB |=1+k 2|x 1-x 2|=1+k 2|k + 2k |,|OB |=x 22+y 22=x 22+x 42=1k 2+1k 4=1+k 2k 2,…9分因为|AB |=3|OB |,所以1+k 2|k +2k |=31+k 2k 2,化简得,|k 3+2k |=3, 解得,k =±1,所以,|AB |=1+k 2|k + 2k |=32.…12分21.解:(1)当a =e 时,f (x )=ln x +1x ,所以f '(x )=1x -1x 2.…1分设切点为(x 0,f (x 0)),曲线y =f (x )与y =m 相切,得f '(x 0)=0, 解得x 0=1,所以切点为(1,1). …3分 所以m =1. …4分 (2)依题意得f (1)≥ea ,所以1≥ ea ,从而a ≥e .…5分因为f '(x )=x -ln ax 2ln a ,a ≥e ,所以当0<x <ln a 时,f '(x )<0,f (x )单调递减; 当x >ln a 时,f '(x )>0,f (x )单调递增,所以当x =ln a 时,f (x )取得最小值log a (ln a )+1ln a .…7分设g (x )=eln x -x ,x ≥e , 则g '(x )=ex -1=e -x x ≤0,所以g (x )在[e ,+∞)单调递减, 从而g (x )≤g (e)=0,所以eln x ≤x .…10分又a ≥e ,所以eln a ≤a ,从而1ln a ≥ea ,当且仅当a =e 时等号成立.因为ln a ≥1,所以log a (ln a )≥0, 即log a (ln a )+1ln a ≥ea .综上,满足题设的a 的取值范围为[e ,+∞). …12分22.解:(1)由ρ2-22ρsin (θ+ π4)-4=0得, ρ2-2ρcos θ-2ρsin θ-4=0. 所以x 2+y 2-2x -2y -4=0.曲线C 的直角坐标方程为(x -1)2+(y -1)2=6. …5分(2)将直线l 的参数方程代入x 2+y 2-2x -2y -4=0并整理得, t 2-2(sin α+cos α)t -4=0,t 1+t 2=2(sin α+cos α),t 1t 2=-4<0.||OA |-|OB ||=||t 1|-|t 2||=|t 1+t 2|=|2(sin α+cos α)|=|22sin (α+ π4)|因为0≤α<π,所以π4≤α+π4<5π4,从而有-2<22sin (α+ π4)≤22.所以||OA |-|OB ||的取值范围是[0,22]. …10分23.解:(1)由题意得|x +1|>|2x -1|, 所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2, 故原不等式的解集为{x |0<x <2}. …5分(2)由已知可得,a ≥f (x )-x 恒成立,设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2, x <-1,2x ,-1≤x ≤ 12,-2x +2, x > 12,由g (x )的单调性可知,x =12时,g (x )取得最大值1, 所以a 的取值范围是[1,+∞).…10分。

唐山市2018届高三年级一模数学理科试卷及答案解析

唐山市2018届高三年级一模数学理科试卷及答案解析

唐山市2017-2018学年度高三年级一模数学理科试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.2. 设集合,,则()A. B. C. D.3. 已知,且,则()A. B. C. D.4. 两个单位向量,的夹角为,则()A. B. C. D.5. 用两个,一个,一个,可组成不同四位数的个数是()A. B. C. D.6. 已知,,,则()A. B. C. D.7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A. 求B. 求C. 求D. 求8. 为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度9. 某几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.10. 已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A. B. C. D.11. 已知函数,则下列关于的表述正确的是()A. 的图象关于轴对称B. ,的最小值为C. 有个零点D. 有无数个极值点12. 已知,,,是半径为的球面上的点,,,点在上的射影为,则三棱锥体积的最大值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分.13. 设,满足约束条件,则的最小值是__________.14. 的展开式中,二项式系数最大的项的系数是__________.(用数字作答)15. 已知为抛物线上异于原点的点,轴,垂足为,过的中点作轴的平行线交抛物线于点,直线交轴于点,则__________.16. 在中,角,,的对边分别为,,,边上的高为,若,则的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.18. 某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按,,,,进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i)求日需求量的分布列;(ii)该经销商计划每日进货公斤或公斤,以每日利润的数学期望值为决策依据,他应该选择每日进货公斤还是公斤?19. 如图,在三棱柱中,平面平面,.(1)证明:;(2)若是正三角形,,求二面角的大小.20. 已知椭圆:的左焦点为,上顶点为,长轴长为,为直线:上的动点,,.当时,与重合.(1)若椭圆的方程;(2)若直线交椭圆于,两点,若,求的值.21. 已知函数,.(1)设,求的最小值;(2)证明:当时,总存在两条直线与曲线与都相切.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.试卷答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B.C. D.【答案】A【解析】,故答案为:A.2. 设集合,,则()A. B. C. D.【解析】集合,,故两个集合相等.故答案为:C.3. 已知,且,则()A. B. C. D.【答案】B【解析】已知,,将代入得到. 故答案为:B.4. 两个单位向量,的夹角为,则()A. B. C. D.【答案】D【解析】两个单位向量,的夹角为,则代入得到.故答案为:.5. 用两个,一个,一个,可组成不同四位数的个数是()A. B. C. D.【答案】D【解析】根据题意得到有两个1是相同的,故可以组成不同的四个数字为故答案为:D.6. 已知,,,则()A. B. C. D.【答案】D【解析】根据题意得到,,故,,故得到.故答案为:D.7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是A. 求B. 求C. 求D. 求【答案】C【解析】根据题意得到:a=0,s=0,i=1,A=1,s=1,i=2,A=4,s=1+4,i=3,A=9,s=1+4+9,i=4,A=16,s=1+4+9+16,i=5,依次写出s的表达式,发现规律,满足C.故答案为:C.8. 为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【答案】A【解析】函数,将函数的图象向做平移个单位长度即可.故答案为:A.9. 某几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】A【解析】根据题意得到该几何体是一个三棱柱切下了一个三棱锥,剩下的部分的表面积由一个等腰三角形,两个直角梯形,一个等腰直角三角形,一个长方形构成.面积和为故答案为:A.10. 已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A. B. C. D.【答案】B【解析】根据题意画出图像,得到由结论焦点到对应渐近线的距离为b得到:AF=b,故OA=a,OF=c,而角AOF 等于角FOB ,又因为三角形AOB为直角三角形,由二倍角公式得到化简得到c=2b,故得到离心率为.故答案为:B.11. 已知函数,则下列关于的表述正确的是()A. 的图象关于轴对称B. ,的最小值为C. 有个零点D. 有无数个极值点【答案】D【解析】A因为函数,故函数不是偶函数,图像也不关于y轴对称;A不正确;B. 假设,使得的最小值为,即有解,在同一坐标系中画出图像,得到的最大值为2,最小值为2,且不是在同一个x处取得的,故得到两个图像无交点,故B是错误的;C ,其中一个零点为0,另外的零点就是两个图像的交点,两者的图像只有一个交点,故选项不正确;D,化一得到,,此时满足的x值有无数个;或者根据排除法也可得到D.故答案为:D.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现。

2018届河北省唐山一中高三上学期调研考试理科数学试题及答案

2018届河北省唐山一中高三上学期调研考试理科数学试题及答案

2018届高三调研考试理科数学试卷(满分:150分,测试时间:120分钟)第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N = ( )A .1[0,)2B .1(,1]2- C .1[1,)2- D .1(,0]2-2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( )A .2i -B .2i +C .4i -D .4i +3.设向量11(1,0),(,)22a b == ,则下列结论中正确的是( )A .||||a b =B.2a b = C .//a b D .()a b b -⊥4.下列关于命题的说法错误的是( )A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”;B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题p :,21000n n N ∃∈>,则p ⌝:,21000n n N ∀∈≤;D .命题“(,0),23x x x ∃∈-∞< ”是真命题.5.右图是一容量为100则由图可估计样本的重量的中位数为( ) A .11 B .11.5 C .12 D .12.56.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2x y x =⋅的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④③②B .①④②③C .④①②③D .③④②①7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ== 则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα8.点)2,4(-P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )xA .22(2)(1)1x y -++=B .22(2)(1)4x y -++=C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-= 9.已知函数00x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A .()0,-∞B .()()001,,-∞C .()01,D .()()011,,+∞ 10.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π2511.已知b 为如图所示的程序框图输出的结果,则二项式6的展开式中的常数项是( ) A .-20 B .20 C .-540 D .54012.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-.若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .74,63ππ⎛⎫⎪⎝⎭B .43,32ππ⎛⎫⎪⎝⎭C .74,63ππ⎡⎤⎢⎥⎣⎦D .43,32ππ⎡⎤⎢⎥⎣⎦第II 卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。

唐山市2018—2019学年度高三年级第一次模拟考试理科数学试卷与参考答案

唐山市2018—2019学年度高三年级第一次模拟考试理科数学试卷与参考答案

…6 分

…9 分
…12 分
…4 分
…10 分
高三理科数学参考答案第 4 页
当且仅当 a=b=1 时,取“=” . 2 2 (2)∵a +b ≥2ab, ∴2(a2+b2)≥a2+b2+2ab=(a+b) 2=4, ∴a2+b2≥2, ∴(a+b3)(a3+b)=a4+b4+a3b3+ab≥a4+b4+2a2b2=(a2+b2) 2≥4, 当且仅当 a=b=1 时,取“=” .
唐山市 2018—2019 学年度高三年级第一次模拟考试
理科数学参考答案
一.选择题: A 卷:CDBAA B 卷: 二.填空题: (13)-4 (14)7 (15)2π 3 3 (16) 2 CDBAC BC
三.解答题: (17)解: (1)令 n=1,得 a1+ a1=2,( a1+2)( a1-1)=0,得 a1=1, 所以 Sn=n,即 Sn=n2. 当 n≥2 时,an=Sn-Sn-1=2n-1, 当 n=1 时,a1=1 适合上式, 所以 an=2n-1. an+1 2n+1 1 1 - - - (2)bn=(-1)n 1• =(-1)n 1• 2 =(-1)n 1• + n n+1 Sn+n n +n 当 n 为偶数时,Tn=b1+b2+…+bn 1 1 1 1 1 1 1 1 1 1 = + - + + + - + +…- + 1 2 2 3 3 4 4 5 n n+1 1 n =1- = , n+1 n+1 当 n 为奇数时,Tn=b1+b2+…+bn 1 1 1 1 1 1 1 1 1 1 = + - + + + - + +…+ + 1 2 2 3 3 4 4 5 n n+1 n+2 1 =1+ = , n+1 n+1 n ,(n为偶数), n+1 综上所述,Tn= n+2 ,(n为奇数). n+1 另解: Tn=b1+b2+…+bn 1 1 1 1 1 1 1 1 1 1 - = + - + + + - + +…+(-1)n 1• + 1 2 2 3 3 4 4 5 n n+ 1 1 - =1+(-1)n 1• n+1 - n+1+(-1)n 1 = . n+1 (18)解:

(全优试卷)河北省唐山市高三年级第一次模拟考试数学(理)试题Word版含答案

(全优试卷)河北省唐山市高三年级第一次模拟考试数学(理)试题Word版含答案

唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)AC2.)A3.)A4.b=)A5.)A6.)A7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()ABCD8.)ABCD9. 某几何体的三视图如图所示,则该几何体的表面积是()A10.)A11. )A BC D12.)AC二、填空题:本题共4小题,每小题5分,共20分.13.的最小值是 .的展开式中,二项式系数最大的项的系数是 .(用数字作答)15.16.的取值范围是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.(1(218..销售宗旨是当天进货当天销售..根据组,得到如图所示的频率分布直方图.(1(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i(ii)19.(1(2.20..(1(2.21.(1(2.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程以坐标原点为.(1(2.23.选修4-5:不等式选讲(1(2.唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A卷:DCBDA DCCAB DBB卷:ACBDD DCAAB DB二.填空题:(13)-5 (14)-160 (15)32(16)[2,22]三.解答题:(17)解:(Ⅰ)当n=1时,2S1=2a1=a21+1,所以(a1-1)2=0,即a1=1,又{a n}为单调递增数列,所以a n≥1.…2分由2S n=a2n+n得2S n+1=a2 n+1+n+1,所以2S n+1-2S n=a2 n+1-a2n+1,整理得2a n +1=a 2 n +1-a 2n +1,所以a 2n =(a n +1-1)2. 所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n .…6分(Ⅱ)b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=12n ·n -12n +1·(n +1)…9分所以T n =(121·1-122·2)+(122·2-123·3)+…+[12n ·n -12n +1·(n +1)]=121·1-12n +1·(n +1)< 12. …12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192. …3分(Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010×10=0.1; P (X =200)=0.0020×10=0.2; P (X =300)=0.0030×10=0.3; P (X =400)=0.0025×10=0.25; P (X =500)=0.0015×10=0.15;所以X 的分布列为:…6分(ⅱ)当每日进货300公斤时,利润Y 1可取-100,700,1500, 此时Y 1的分布列为:此时利润的期望值E (Y 1=1180; …8分 当每日进货400公斤时,利润Y 2可取-400,400,1200,2000, 此时Y 2的分布列为:此时利润的期望值22000×0.4 =1200;…10分因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C , 得B 1O ⊥平面AA 1C 1C ,又AC 平面AA 1C 1C ,得B 1O ⊥AC . 由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C . 又CA 1平面A 1B 1C ,得AC ⊥CA 1.…4分(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz .由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). …6分全优试卷设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎨⎧n ·AA 1→=0,n ·AB →=0,即⎩⎨⎧-x +2y =0,-y +3z =0. 可取n =(23,3,1). …8分 设m =(x ,y ,z )是平面ABC 的法向 量,则⎩⎨⎧m ·AB →=0,m ·CA →=0,即⎩⎨⎧-y +3z =0,x =0. 可取m =(0,3,1).…10分则cos n ,m =n ·m |n ||m |= 12.又因为二面角A 1-AB -C 为锐二面角,所以二面角A 1-AB -C 的大小为3. …12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ), 由AF ⊥BF 得k AF ·k BF = b c · b -3+c =-1,又b 2+c 2=6.解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1.…4分(Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m,又AM ⊥BM ,所以k BM =m2,所以直线BM 的方程为y =m2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0,x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m2.…7分|PM |·|QM |=(1+m 22)|(x 1-m )(x 2-m )|=(1+m 22)|x 1x 2-m (x 1+x 2)+m 2|=(1+m 22)·|2m 2-12|2+3m 2=(2+m 2)|m 2-6|2+3m2, |AM |2=2+m 2,…9分由AP ⊥AQ 得,|AM |2=|PM |·|QM |, 所以|m 2-6|2+3m 2=1,解得m =±1.…12分(21)解:(Ⅰ)F(x )=(x +1)ex -1,当x <-1时,F (x )<0,F (x )单调递减; 当x >-1时,F(x )>0,F (x )单调递增,故x =-1时,F (x )取得最小值F (-1)=-1e 2.…4分(Ⅱ)因为f (x )=ex -1,所以f (x )=ex -1在点(t ,e t -1)处的切线为y =et -1x +(1-t )e t -1;…5分因为g(x )= 1 x,所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y =1mx +ln m +a -1, …6分由题意可得⎩⎪⎨⎪⎧e t -1= 1 m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0.…7分令h (t )=(t -1)et -1-t +a ,则h (t )=t et -1-1 由(Ⅰ)得t <-1时,h (t )单调递减,且h(t )<0;当t >-1时,h(t )单调递增,又h (1)=0,t <1时,h(t )<0,所以,当t <1时,h (t )<0,h (t )单调递减;当t >1时,h(t )>0,h (t )单调递增.…9分由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥-1e+1>0, …10分又h (3-a )=(2-a )e2-a+2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0, …11分h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点,故当a <1时,存在两条直线与曲线f (x )与g (x )都相切.…12分(22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-2<α<2,C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2=12×d ×|AB |=3|sin 2α|, 故当α=±4时,S △ABC 2取得最大值3. …10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1. 所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1= 13(a 2b +1+b 2a +1)[(b +1)+(a +1)] = 13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1] ≥ 1 3(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13. 当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为 13. …10分。

唐山市2018—2019学年度高三年级第一次模拟考试(一模)数学(理)试题.

唐山市2018—2019学年度高三年级第一次模拟考试(一模)数学(理)试题.
π π - π 4 π 2
B. 2e
D. 2e

(12) 一个封闭的棱长为 2 的正方体容器, 当水平放置时, 如图, 水面的高度正好为棱长的一半. 若 将该正方体任意旋转,则容器里水面的最大高度为 A.1 B. 2 2 3 C. 3 D. 3
唐山市高中数学教师群:244569647 二、填空题:本题共 4 小题,每小题 5 分,共 20 分. (13)已知向量 a=(1,-3),b=(m,2),若 a⊥(a+b),则 m=_____. 3x-y-3≤0, (14)若 x,y 满足约束条件x+y-1≥0, 则 z=2x+y 的最大值为_____. x-y+1≥0, (15)在四面体 ABCD 中,AB=BC=1,AC= 2,且 AD⊥CD,该四面体外接球的表面积为_____. (16)已知 O 为坐标原点,圆 M:(x+1)2+y2=1,圆 N:(x-2)2+y2=4.A,B 分别为圆 M 和圆 N 上的动点,则 S△OAB 的最大值为_____. 三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个 试题考生都必须作答.第(22),(23)题为选考题,考生根据要求作答. (一)必考题:共 60 分. (17) (12 分) 已知数列{an}的前 n 项和为 Sn,且 a1+ Sn=n+1. (1)求 Sn,an; 2 an+1 - 0.010 0.001 (2)若 bn=(-1)n 1• ,{bn}的前 P(K ≥k0) 0.10 n 项和为 Tn, Sn+n k0 2.706 6.635 10.828 求 Tn. (18) (12 分) 如图,△ABC 中,AB=BC=4,∠ABC=90° ,E,F 分别为 AB,AC 边的中点,以 EF 为折痕 把△AEF 折起,使点 A 到达点 P 的位置,且 PB=BE.

唐山市2018-2019学年度高三年级摸底考试理数学文数学试卷及答案

唐山市2018-2019学年度高三年级摸底考试理数学文数学试卷及答案

唐山市2018—2019学年度高三年级摸底考试理科数学参考答案一.选择题:A 卷:ADBCDDACCB CB B 卷:ADBBD DACABCB 二.填空题:(13)2 (14)12 (15)2 6 (16)(1,3)三.解答题:17.解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1 (n ≥2), ②①-②得,2(S n -S n -1)=3a n -3a n -1,化简为a n =3a n -1(n ≥2),即a n a n -1=3(n ≥2), …3分 在①中,令n =1可得,a 1=1,…4分 所以数列{a n }是以1为首项,3为公比的等比数列,从而有a n =3n -1.…6分 (2)b n =(n -1)·3n -1,T n =0·30+1·31+2·32+…+(n -1)·3n -1, ③则3T n =0·31+1·32+2·33+…+(n -1)·3n . ④③-④得,-2T n =31+32+33+…+3n -1-(n -1)·3n ,…8分 =3-3n1-3-(n -1)·3n =(3-2n )·3n -32.…10分 所以,T n =(2n -3)·3n +34. …12分 18.解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品, 所以,抽取的2个零件等级互不相同的概率P =4×5+6×510×10=12.…5分 (2)X 可取0,1,2,3.…6分 P (X =0)=C 04C 36C 310=16;P (X =1)=C 14C 26C 310=12; P (X =2)=C 24C 16C 310=310; P (X =3)=C 34C 06C 310=130; …10分X 的分布列为∴随机变量X 的期望E (X )=0×16+1×12+2×310+3×130=65. …12分19.解:(1)∵直角三角形ABC 中,AB =BC =2,D 为AC 的中点,∴BD ⊥CD , 又∵PB ⊥CD ,BD ∩PB =B ,∴CD ⊥平面PBD ,∴CD ⊥PD ,又∵AD ⊥BD ,∴PD ⊥BD .又因为BD ∩CD =D ,∴PD ⊥平面BCD . …5分(2)以D 为坐标原点,DA ,DB ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz , 则A (2,0,0),B (0,2,0),C (-2,0,0),P (0,0,2),PA →=(2,0,-2),PB →=(0,2,-2),CB →=(2,2,0)设平面PBC 的法向量n =(x ,y ,z ),由PB →·n =0,CB →·n =0得⎩⎪⎨⎪⎧2y -2z =0,2x +2y =0, 取n =(1,-1,-1).…9分cos PA →,n =PA →·n |PA →||n |=63, ∴直线PA 与平面PBC 所成角的正弦值为63.…12分 20.解:(1)由已知可得,y 1=x 21,y 2=x 22,所以y 1-y 2=x 21-x 22=(x 1+x 2)(x 1-x 2)=2(x 1-x 2),此时,直线l 的斜率k =y 1-y 2x 1-x 2=2.…4分 (2)因为OB ⊥l ,所以k OB =-1k ,又因为k OB =y 2x 2=x 22x 2=x 2,所以,x 2=-1k ,…6分 又由(1)可知,x 1+x 2=y 1-y 2x 1-x 2=k ,从而有,x 1=k -x 2=k +1k ,所以|AB |=1+k 2|x 1-x 2|=1+k 2|k +2k |,|OB |=x 22+y 22=x 22+x 42=1k 2+1k 4=1+k 2k 2,…9分 因为|AB |=3|OB |,所以1+k 2|k +2k |=31+k 2k 2,化简得,|k 3+2k |=3,解得,k =±1,所以,|AB |=1+k 2|k +2k |=32.…12分 21.解:(1)当a =e 时,f (x )=ln x +1x ,所以f (x )=1x -1x 2. …1分设切点为(x 0,f (x 0)),曲线y =f (x )与y =m 相切,得f(x 0)=0, 解得x 0=1,所以切点为(1,1).…3分 所以m =1.…4分 (2)依题意得f (1)≥e a ,所以1≥e a,从而a ≥e . …5分 因为f (x )=x -ln ax 2ln a ,a ≥e ,所以当0<x <ln a 时,f (x )<0,f (x )单调递减; 当x >ln a 时,f (x )>0,f (x )单调递增,所以当x =ln a 时,f (x )取得最小值log a (ln a )+1ln a .…7分 设g (x )=eln x -x ,x ≥e ,则g (x )=e x -1=e -x x ≤0,所以g (x )在[e ,+∞)单调递减,从而g (x )≤g (e)=0,所以eln x ≤x .…10分 又a ≥e ,所以eln a ≤a ,从而1ln a ≥e a ,当且仅当a =e 时等号成立.因为ln a ≥1,所以log a (ln a )≥0,即log a (ln a )+1ln a ≥e a .综上,满足题设的a 的取值范围为[e ,+∞).…12分 22.解:(1)由ρ2-22ρsin (θ+π4)-4=0得,ρ2-2ρcos θ-2ρsin θ-4=0.所以x 2+y 2-2x -2y -4=0.曲线C 的直角坐标方程为(x -1)2+(y -1)2=6.…5分(2)将直线l 的参数方程代入x 2+y 2-2x -2y -4=0并整理得,t 2-2(sin α+cos α)t -4=0,t 1+t 2=2(sin α+cos α),t 1t 2=-4<0.||OA |-|OB ||=||t 1|-|t 2||=|t 1+t 2|=|2(sin α+cos α)|=|22sin (α+π4)|因为0≤α<,所以π4≤α+π4<5π4,从而有-2<22sin (α+π4)≤22.所以||OA |-|OB ||的取值范围是[0,22].…10分 23.解:(1)由题意得|x +1|>|2x -1|,所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2,故原不等式的解集为{x |0<x <2}.…5分 (2)由已知可得,a ≥f (x )-x 恒成立,设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2, x <-1,2x ,-1≤x ≤12,-2x +2, x >12,由g (x )的单调性可知,x =12时,g (x )取得最大值1,所以a 的取值范围是[1,+∞). …10分唐山市2018—2019学年度高三年级摸底考试文科数学参考答案一.选择题:A卷:ACDBD CBCDA ACB卷:ACDCD CBCDA AB二.填空题:(13)12(14)2 (15)1 (16)(3,2]三.解答题:17.解:(1)设数列{a n}的首项为a1,公差为d(d≠0),则a n=a1+(n-1)d.因为a2,a3,a5成等比数列,所以(a1+2d)2=(a1+d)(a1+4d),化简得,a1d=0,又因为d≠0,所以a1=0,…3分又因为a 4=a 1+3d =3,所以d =1.所以a n =n -1.…6分 (2)b n =n ·2n -1,…7分 T n =1·20+2·21+3·22+…+n ·2n -1, ①则2T n =1·21+2·22+3·23+…+n ·2n. ② ①-②得,-T n =1+21+22+…+2n -1-n ·2n ,…8分 =1-2n1-2-n ·2n …10分 =(1-n )·2n -1.所以,T n =(n -1)·2n +1.…12分18.解: (1)-x 甲=110(217+218+222+225+226+227+228+231+233+234)=226.1; -x 乙=110(218+219+221+224+224+225+226+228+230+232)=224.7; …4分 (2)由抽取的样本可知,应用甲工艺生产的产品为一等品的概率为25,二等品的概率为35,故采用甲工艺生产该零件每天取得的利润: w 甲=300×25×30+300×35×20=7200元; …7分应用乙工艺生产的产品为一等品、二等品的概率均为12,故采用乙工艺生产该零件每天取得的利润:w 乙=280×12×30+280×12×20=7000元. …10分因为w 甲>w 乙,所以采用甲工艺生产该零件每天取得的利润更高.…12分 19.解:(1)∵直角三角形ABC 中,AB =BC =2,D 为AC 的中点,∴BD ⊥CD ,又∵PB ⊥CD ,BD ∩PB =B ,∴CD ⊥平面PBD ,又因为PD 平面PBD ,∴PD ⊥CD . …5分(2)∵AD ⊥BD ,∴PD ⊥BD .又∵PD ⊥CD ,BD ∩CD =D ,∴PD ⊥平面BCD .…8分 在直角三角形ABC 中,AB =BC =2,所以PD =AD =2,PB =PC =BC =2.S △ABC =2,S △PBC =3,设A 点到平面PBC 的距离为d ,由V P -ABC =V A -PBC 得,13S △ABC ×PD =13S △PBC ×d ,∴d =S △ABC ×PD S △PBC=263.即A 点到平面PBC 的距离为263.…12分 20.解:(1)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧y =kx +m ,x 2=2y 得,x 2-2kx -2m =0,=4k 2+8m ,x 1+x 2=2k ,x 1x 2=-2m ,…2分 因为AB 的中点在x =1上,所以x 1+x 2=2.即2k =2,所以k =1.…4分 (2)O 到直线l 的距离d =|m |2,|CD |=212-m 22,…5分 所以|AB |=1+k 2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=22·1+2m ,…6分因为|AB |=|CD |,所以22·1+2m =212-m 22, 化简得m 2+8m -20=0, 所以m =-10或m =2. …10分 由⎩⎨⎧>0,d <23得-12<m <26.所以m =2,直线l 的方程为y =x +2.…12分 21.解:(1)f (x )=2(ln x +1).…1分 所以当x ∈(0,1e )时,f (x )<0,f (x )单调递减;当x ∈(1e ,+∞)时,f (x )>0,f (x )单调递增.所以x =1e 时,f (x )取得最小值f (1e )=1-2e .…5分 (2)x 2-x +1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x=(x -1)(x -1x -2ln x ),…7分 令g (x )=x -1x -2ln x ,则g (x )=1+1x 2-2x =(x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又因为g (1)=0,所以当0<x <1时,g (x )<0;当x >1时,g (x )>0,…10分 所以(x -1)(x -1x -2ln x )≥0,即f (x )≤x 2-x +1x +2ln x .…12分22.解:(1)由ρ2-22ρsin (θ+π4)-4=0得,ρ2-2ρcos θ-2ρsin θ-4=0.所以x 2+y 2-2x -2y -4=0.曲线C 的直角坐标方程为(x -1)2+(y -1)2=6. …5分(2)将直线l 的参数方程代入x 2+y 2-2x -2y -4=0并整理得,t 2-2(sin α+cos α)t -4=0,t 1+t 2=2(sin α+cos α),t 1t 2=-4<0.||OA |-|OB ||=||t 1|-|t 2||=|t 1+t 2|=|2(sin α+cos α)|=|22sin (α+π4)|因为0≤α<,所以π4≤α+π4<5π4,从而有-2<22sin (α+π4)≤22.所以||OA |-|OB ||的取值范围是[0,22]. …10分23.解:(1)由题意得|x +1|>|2x -1|,所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2,故原不等式的解集为{x |0<x <2}. …5分(2)由已知可得,a ≥f (x )-x 恒成立,设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2, x <-1,2x ,-1≤x ≤12,-2x +2, x >12,由g (x )的单调性可知,x =12时,g (x )取得最大值1,所以a 的取值范围是[1,+∞). …10分。

唐山市2018-2019学年度高三年级第一次模拟考试理科数学答案

唐山市2018-2019学年度高三年级第一次模拟考试理科数学答案

唐山市2018—2019学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A 卷:CDBAA CDBAC BCB 卷:CDCAA CDBABBC二.填空题: (13)-4(14)7(15)2π(16)332三.解答题: (17)解:(1)令n =1,得a 1+a 1=2,(a 1+2)(a 1-1)=0,得a 1=1, 所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=1适合上式, 所以a n =2n -1. …6分(2)b n =(-1)n -1•a n +1S n +n =(-1)n -1•2n +1n 2+n=(-1)n -1•(1n +1n +1)…8分当n 为偶数时,T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…-(1n +1n +1)=1-1n +1=nn +1当n 为奇数时,T n =b 1+b 2+…+b n=(1 1+ 1 2)-( 1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…+(1n +1n +1)=1+1n +1=n +2n +1综上所述,T n =错误! …12分 另解:T n =b 1+b 2+…+b n=(1 1+ 1 2)-(1 2+ 1 3)+( 1 3+ 1 4)-( 1 4+ 1 5)+…+(-1)n -1•(1n +1n +1)=1+(-1)n -1•1n +1=n +1+(-1)n -1n +1…12分(18)解:(1)因为E ,F 分别为AB ,AC 边的中点, 所以EF ∥BC , 因为∠ABC =90°,所以EF ⊥BE ,EF ⊥PE , 又因为BE ∩PE =E , 所以EF ⊥平面PBE , 所以BC ⊥平面PBE . …5分 (2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE , 所以平面PBE ⊥平面BCFE ,因为PB =BE =PE ,所以PO ⊥BE ,又因为PO ⊂平面PBE ,平面PBE ∩平面BCFE =BE , 所以PO ⊥平面BCFE . …7分 分别以OB ,OP 所在直线为x ,z 轴,过O 且平行BC 的直线为y 轴建立空间直角坐标系,则P (0,0,3) ,C (1,4,0), F (-1,2,0).PC →=(1,4,-3),PF →=(-1,2,-3)设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎪⎨⎪⎧x +4y -3z =0,-x +2y -3z =0,则m =(-1,1,3),易知n =(0,1,0)为平面PBE 的一个法向量, cos 〈m ,n 〉=-1⨯0+1⨯1+3⨯0(-1)2+12+(3) 2=1 5=55, 所以平面PBE 与平面PCF 所成锐二面角的余弦值55.…12分(19)解:(1)当k =1 2时,直线l :y = 12(x +4)即x -2y +4=0.此时,直线l 与抛物线C 相切,由⎩⎨⎧x -2y +4=0y 2=2px得y 2-4py +8p =0,由∆=0即16p 2-32p =0,得p =2, 所以C 的方程为y 2=4x . …5分(2)直线l :y =k (x +4),其中k ≠0,设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =k (x +4)y 2=4x得:ky 2-4y +16k =0,由∆=16-64k 2>0知:k 2<14.根据韦达定理得:⎩⎪⎨⎪⎧y 1+y 2=4 k ,y 1y 2=16, …① 又A 为PB 的中点,得:y 1=12y 2,…②由①②得:k 2=29,符合∆>0,所以|AB |=(1+1k 2)[(y 1+y 2)2-4y 1y 2]=4(1+k 2)(1-4k 2)k 2=211. …12分 (20)解:(1)分层抽样.…2分 (2)将列联表中的数据代入公式计算得K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=200(40×50-100×10)2140×60×50×150≈3.175>2.706,所以有90%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”. …6分 (3)以频率作为概率,从该小区随机选择1家企事业单位作为普查对象,入户登记顺利的概率为 4 5,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为 23.X 可取0,1,2,3,4.P (X =0)=1 5×(1 3)3= 1135,P (X =1)=4 5×(1 3)3+1 5×C 13×2 3×(1 3)2= 10135, P (X =2)=4 5×C 13× 2 3×(1 3)2+1 5×C 23×(2 3)2×1 3= 36 135, P (X =3)=4 5×C 23×( 2 3)2×1 3+1 5×(2 3)3= 56 135, P (X =4)=4 5×( 2 3)3= 32 135.X E (X )=0× 1 135+1× 10 135+2× 36 135+3× 56 135+4× 32 135=145.…12分(21)解:(1)由f (x )≥0得ax -ln xx≥0,从而ax ≥ln x x ,即a ≥ln xx2.…2分设g (x )=ln xx 2,则g '(x )=1-2ln x x 3,(x >0)所以0<x <e 时,g '(x )>0,g (x )单调递增; x >e 时,g '(x )<0,g (x )单调递减,所以当x =e 时,g (x )取得最大值g (e)=12e,故a 的取值范围是a ≥12e.…6分(2)设y =f (x )的图像与y =a 相切于点(t ,a ),依题意可得⎩⎨⎧f (t )=a ,f '(t )=0.因为f '(x )=a -1-ln xx 2,所以⎩⎨⎧at -ln tt=a ,a -1-ln tt2=0,消去a 可得t -1-(2t -1)ln t =0. …9分令h (t )=t -1-(2t -1)ln t ,则h '(t )=1-(2t -1)·1t -2ln t =1t-2ln t -1,显然h '(t )在(0,+∞)上单调递减,且h '(1)=0, 所以0<t <1时,h '(t )>0,h (t )单调递增; t >1时,h '(t )<0,h (t )单调递减, 所以当且仅当t =1时h (t )=0. 故a =1. …12分(22)解:(1)当α= π2时,l :x =1;当α≠ π2时,l :y =tan α(x -1).由ρsin 2θ=4cos θ得,ρ2sin 2θ=4ρcos θ, 因为x =ρcos θ,y =ρsin θ,所以曲线C 的直角坐标方程y 2=4x . …5分(2)将直线l 的参数方程代入曲线C 的直角坐标方程得: (sin 2α)t 2-(4cos α)t -4=0,则t 1+t 2=4cos αsin 2α,t 1t 2=-4sin 2α,因为|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α=8,所以sin α=22或-22,因为0<α<π,所以sin α=22,故α= π4或3π4.…10分(23)解:(1)∵a ,b 是正实数,∴a +b ≥2ab , ∴ab ≤1,∴(a +b )2=a +b +2ab ≤4, ∴a +b ≤2,当且仅当a =b =1时,取“=”. …5分(2)∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b ) 2=4, ∴a 2+b 2≥2,∴(a +b 3)(a 3+b )=a 4+b 4+a 3b 3+ab ≥a 4+b 4+2a 2b 2=(a 2+b 2) 2≥4,当且仅当⎩⎨⎧ a =b ,a 2b 2=1,即a =b =1时,取“=”.…10分。

2017~2018学年唐山市一模理科数学试题答案

2017~2018学年唐山市一模理科数学试题答案

2

4
(7)右图是根据南宋数学家杨辉的“垛积术”设计的程序 框图,该程序所能实现的功能是 (A)求 1+3+5+…+(2n-1) (B)求 1+3+5+…+(2n+1) (C)求 12+22+32+…+n2 (D)求 12+22+32+…+(n+1)2 5π (8)为了得到函数 y=sin -x 的图象,可以将函数 y= 6 sin x 的图象 π (A)向右平移 个单位长度 6 π (B)向右平移 个单位长度 3 π (C)向左平移 个单位长度 6 π (D)向左平移 个单位长度 3

(1)
(B)2+2i (D)-2+2i
(2)设集合 M={x|x2-x>0},N= x
N (A)M≠ (C)M=N
{ |1 <1},则 x
M (B)N≠ (D)M∪N=R
1 (3)已知 tan α=- ,且 α∈ (0,π) ,则 sin 2α= 2 4 4 (A) (B)- 5 5 3 3 (C) (D)- 5 5 (4)两个单位向量 a,b 的夹角为 120° ,则|2a+b|= (A)2 (B)3 (C) 2 (D) 3 (5)现有两个 1,一个 2,一个 0,则可组成不同四位数的个数是 (A)9 (B)12 (C)16 (D)18 (6)已知 a=3 3,b=2 3 ,c=ln 3,则 (A)a<c<b (B)a<b<c (C)b<c<a (D)b<a<c 高三理科数学 A 卷第 1 页(共 4 页)
试卷类型:
A
唐山市 2017—2018 学年度高三年级第一次模拟考试
理科数学试卷
注意事项: 1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2、回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号 涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写 在答题卡上,写在本试卷上无效. 3、考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的. (1-i)3 = i (A)2-2i (C)-2-2i

河北省唐山市高三数学第一次模拟考试试题理(2021学年)

河北省唐山市高三数学第一次模拟考试试题理(2021学年)

河北省唐山市2018届高三数学第一次模拟考试试题理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省唐山市2018届高三数学第一次模拟考试试题理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省唐山市2018届高三数学第一次模拟考试试题理的全部内容。

河北省唐山市2018届高三数学第一次模拟考试试题理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1。

2(1)ii-=()A.22i-+ B.22i+ C.22i-- D.22i-2。

设集合2{|0}M x x x=->,1|1N xx⎧⎫=<⎨⎬⎩⎭,则( )A.M N B.N MC.M N= D.M N R=3。

已知1tan2α=-,且(0,)απ∈,则sin2α=( )A.45B.45-C.35D.35-4。

两个单位向量a,b的夹角为120,则2a b+=()A.2 B.3C.2 D.3 5。

用两个1,一个2,一个0,可组成不同四位数的个数是( )A.18B.16C.12D.96.已知233a-=,432b-=,ln3c=,则( )A.a c b<< B.a b c<<C.b c a<<D.b a c<<7. 如图是根据南宋数学家杨辉的“垛积术"设计的程序框图,该程序所能实现的功能是( )A.求135...(21)n ++++- B .求135...(21)n +++++ C.求2222123n +++⋅⋅⋅+ D.求2222123(1)n +++⋅⋅⋅++8。

唐山市2018-2019学年度高三年级摸底考试理数学文数学试卷及答案【范本模板】

唐山市2018-2019学年度高三年级摸底考试理数学文数学试卷及答案【范本模板】

唐山市2018—2019学年度高三年级摸底考试理科数学参考答案一.选择题:A卷:ADBCD DACCB CBB卷:ADBBD DACAB CB二.填空题:(13)2 (14)错误!(15)2错误!(16)(1,错误!)三.解答题:17.解:(1)由已知可得,2S n=3a n-1,①所以2S n-1=3a n-1-1(n≥2),②①-②得,2(S n-S n-1)=3a n-3a n-1,化简为a n=3a n-1(n≥2),即错误!=3(n≥2),…3分在①中,令n=1可得,a1=1, …4分所以数列{a n}是以1为首项,3为公比的等比数列,从而有a n=3n-1.…6分(2)b n=(n-1)·3n-1,T n=0·30+1·31+2·32+…+(n-1)·3n-1,③则3T n=0·31+1·32+2·33+…+(n-1)·3n.④③-④得,-2T n=31+32+33+…+3n-1-(n-1)·3n,…8分=错误!-(n-1)·3n=错误!.…10分所以,T n=错误!.…12分18.解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品,所以,抽取的2个零件等级互不相同的概率P=错误!=错误!.…5分(2)X可取0,1,2,3.…6分P(X=0)=错误!=错误!; P(X=1)=错误!=错误!;P(X=2)=错误!=错误!;P(X=3)=错误!=错误!;…10分X的分布列为∴随机变量X的期望E(X)=0×错误!+1×错误!+2×错误!+3×错误!19.解:(1)∵直角三角形ABC中,AB=BC=2,D为AC的中点,∴BD⊥CD,又∵PB⊥CD,BD∩PB=B,∴CD⊥平面PBD,∴CD⊥PD,又∵AD⊥BD,∴PD⊥BD.又因为BD∩CD=D,∴PD⊥平面BCD.…5分(2)以D为坐标原点,DA,DB,DP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz,则A(错误!,0,0),B(0,错误!,0),C(-错误!,0,0),P(0,0,错误!),错误!=(错误!,0,-错误!),错误!=(0,错误!,-错误!),错误!=(错误!,错误!,0)设平面PBC 的法向量n =(x ,y ,z ),由错误!·n =0,错误!·n =0得错误!取n =(1,-1,-1). …9分cos 〈错误!,n 〉=错误!=错误!,∴直线P A 与平面PBC 所成角的正弦值为错误!. …12分20.解:(1)由已知可得,y 1=x 错误!,y 2=x 错误!,所以y 1-y 2=x 错误!-x 错误!=(x 1+x 2)(x 1-x 2)=2(x 1-x 2),此时,直线l 的斜率k =错误!=2. …4分(2)因为OB ⊥l ,所以k OB =-错误!,又因为k OB =错误!=错误!=x 2,所以,x 2=-错误!, …6分又由(1)可知,x 1+x 2=y 1-y 2x 1-x 2=k , 从而有,x 1=k -x 2=k +错误!,所以|AB |=错误!|x 1-x 2|=错误!|k +错误!|,|OB |=错误!=错误!=错误!=错误!, …9分因为|AB |=3|OB |,所以1+k 2|k +错误!|=错误!,化简得,|k 3+2k |=3,解得,k =±1,所以,|AB |=错误!|k +错误!|=3错误!. …12分21.解:(1)当a =e 时,f (x )=ln x +错误!,所以f '(x )=错误!-错误!. …1分设切点为(x 0,f (x 0)),曲线y =f (x )与y =m 相切,得f '(x 0)=0,解得x 0=1,所以切点为(1,1). …3分所以m =1. …4分(2)依题意得f (1)≥错误!,所以1≥错误!,从而a ≥e . …5分因为f '(x )=错误!,a ≥e,所以当0<x <ln a 时,f '(x )<0,f (x )单调递减;当x >ln a 时,f '(x )>0,f (x )单调递增,所以当x =ln a 时,f (x )取得最小值log a (ln a )+错误!. …7分设g (x )=eln x -x ,x ≥e ,则g '(x )=错误!-1=错误!≤0,所以g (x )在[e,+∞)单调递减,从而g (x )≤g (e)=0,所以eln x ≤x . …10分又a ≥e ,所以eln a ≤a ,从而错误!≥错误!,当且仅当a =e 时等号成立.因为ln a ≥1,所以log a (ln a )≥0,即log a (ln a )+错误!≥错误!.综上,满足题设的a 的取值范围为[e ,+∞). …12分22.解:(1)由ρ2-22ρsin (θ+错误!)-4=0得,ρ2-2ρcosθ-2ρsinθ-4=0.所以x2+y2-2x-2y-4=0.曲线C的直角坐标方程为(x-1)2+(y-1)2=6.…5分(2)将直线l的参数方程代入x2+y2-2x-2y-4=0并整理得,t2-2(sinα+cosα)t-4=0,t1+t2=2(sinα+cosα),t1t2=-4<0.||OA|-|OB||=||t1|-|t2||=|t1+t2|=|2(sinα+cosα)|=|2错误!sin(α+错误!)|因为0≤α< ,所以错误!≤α+错误!<错误!,从而有-2<2,2sin(α+错误!)≤2错误!.所以||OA|-|OB||的取值范围是[0,2错误!].…10分23.解:(1)由题意得|x+1|>|2x-1|,所以|x+1|2>|2x-1|2,整理可得x2-2x<0,解得0<x<2,故原不等式的解集为{x|0<x<2}.…5分(2)由已知可得,a≥f(x)-x恒成立,设g(x)=f(x)-x,则g(x)=错误!由g(x)的单调性可知,x=错误!时,g(x)取得最大值1,所以a的取值范围是[1,+∞).…10分唐山市2018—2019学年度高三年级摸底考试文科数学参考答案一.选择题:A卷:ACDBD CBCDA ACB卷:ACDCD CBCDA AB二.填空题:(13)错误!(14)2 (15)1 (16)(错误!,2]三.解答题:17.解:(1)设数列{a n}的首项为a1,公差为d(d≠0),则a n=a1+(n-1)d.因为a2,a3,a5成等比数列,所以(a1+2d)2=(a1+d)(a1+4d),化简得,a1d=0,又因为d≠0,所以a1=0,…3分又因为a4=a1+3d=3,所以d=1.所以a n=n-1.…6分(2)b n=n·2n-1,…7分T n=1·20+2·21+3·22+…+n·2n-1,①则2T n=1·21+2·22+3·23+…+n·2n.②①-②得,-T n=1+21+22+…+2n-1-n·2n,…8分=错误!-n·2n …10分=(1-n)·2n-1.所以,T n=(n-1)·2n+1.…12分18.解:(1)错误!甲=错误!(217+218+222+225+226+227+228+231+233+234)=226。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山市2017-2018学年度高三年级第一次模拟考试
理科数学试卷
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的•
A . -2 2i
C. -2-2i
.MUN 二 R
1
3.已知 tan
,且亡:•; (0,二),则 sin 2 =(
2
.二
2
4
6.已知 a = 3 3, b=23, c = ln3,则(
7.如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()
A .求 1 3 5 ... (2n -1)
.2 2i .2-2i
2.设集合M
-x 0},N = x |1 < 1 ,则
、x
4.两个单位向量a ,
b 的夹角为120,则 2a +b =
5.用两个 一个2, 一个0,可组成不同四位数的个数是
A . 18
.16
.12
A . a :: c :: b
.a :: b :: c C .b : c ::
a
B .求 1 3 5 ... (2 n 1)
2
2
2
2
C. 求 12 2 2 32
- -- n 2
D.
求 12 22 32

--(n 1)2
8.为了得到函数y =sin - x 的图象,可以将函数 y =sinx 的图象(
)
16丿 A. 向左平移二个单位长度
6
TT
B. 向右平移—个单位长度
3
TT
C. 向右平移一个单位长度
6
■JT
D. 向左平移—个单位长度
3
9.某几何体的三视图如图所示,则该几何体的表面积是(
)
A . 5 4,2
B . 9
2 2
务去 =1 (a - 0,b 0)的右焦点,过点
a b
垂线,垂足为 A ,交另一条渐近线于点
B .若OF = FB ,则
C 的离心率是(
)
A .七
B .
3
C . . 2
D . 2 2
3
11.已知函数f(x)二x -2xcosx ,则下列关于f (x)的表述正确的是( ) A . f (x)的图象关于y 轴对称 B
. X 。

- R , f (x)的最小值为-1 C. f (x)有4个零点
D
. f (x)
有无数个极值点
10.已知F 为双曲线C :
F 向C 的一条渐近线引
12.已知P , A , B , C 是半径为2的球面上的点,PA = PB = PC =2 , . ABC =90 ,
x - y _ 0
I y
设x , y 满足约束条件 x • 2y -3乞0,贝U z =2x • 3y 的最小值是
x -2y -1_ 0
占 八
B 在A
C 上的射影为
D ,则三棱锥P _ ABD 体积的最大值是(

A .
3;3
4
3/3 8 C.
.3 4
、填空题:本题共 4小题,每小题5分,共20分.
13. 14. (2x -1)6的展开式中, 二项式系数最大的项的系数是
•(用数字作答)
15. 已知P 为抛物线y 2 -x 上异于原点O 的点,PQ _ x 轴,垂足为Q ,过PQ 的中点作x
轴的平行线交抛物线于点
M ,直线QM 交y 轴于点N ,则
PQ NO
16.在ABC 中,角A , B ,C 的对边分别为a ,b ,c ,AB 边上的高为h ,若c = 2h ,
a b

的取值范围是 ____________ •
b a
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17〜21 题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据 要求作答.
(一)必考题:共60分.
2
17.已知数列{a n }为单调递增数列,S n 为其前n 项和,2&
' n .
(1 )求的通项公式;
(2)若 b
a n 2 苗 ,T n 为数列{
b n }的前n 项和,证明:T n J .
2 -a n a n 1
2
18.某水产品经销商销售某种鲜鱼, 售价为每公斤20元,成本为每公斤15元.销售宗旨是当 天进货当天销售•如果当天卖不出去,未售出的全部降价处理完, 平均每公斤损失3元•根据
以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分
(1) 求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于 350公斤,而另
一天日销售量低于 350公斤的概率;
(2) 在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值 (i )求日需求量X 的分布列;
(ii )该经销商计划每日进货 300公斤或400公斤,以每日利润 Y 的数学期望值为决策依 据,他应该选择每日进货 300公斤还是400公斤?
19.如图,在三棱柱 ABC - AB 1C 1 中,平面 ABQ _ 平面 AA 1C 1C ,■ BAC =90;.
AB = 2AC = 2,求二面角 A , - AB - C 的大小
.
(2)若=A 1B 1C 是正三角形, 组,得到如图所示的频率分布直方图
2 2
20. 已知椭圆丨:笃•爲=1 (a b ■ 0)的左焦点为F ,上顶点为A ,长轴长为2、、6 , B
a b
为直线I : x 二-3上的动点,M (m,0) , AM _ BM •当AB _ I 时,M 与F 重合• (1) 若椭圆-的方程;
(2) 若直线BM 交椭圆丨于P ,Q 两点,若AP _ AQ ,求m 的值. 21. 已知函数 f(x)二e x 」,g(x)=lnx a . (1 )设 F(x)=xf(x),求 F(x)的最小值;
(2)证明:当a ::: 1时,总存在两条直线与曲线 y = f (x)与y = g(x)都相切.
(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做, 则按所做的第一题记分.
22. 选修4-4 :坐标系与参数方程
在直角坐标系xOy 中,圆C 1 : (x-1)2,y 2=1,圆C 2 : (x - 3)2 • y 2 = 9 .以坐标原点为 极点,x 轴的正半轴为极轴建立极坐标系 . (1 )求C 1,C 2的极坐标方程;
l x =tcos :
(2)设曲线C 3:
( t 为参数且t=0), C 3与圆C 1, C 2分别交于A ,B ,求S ABC 2
y =tsi n 。

的最大值.
23. 选修4-5 :不等式选讲
设函数f (x) = x +1 — x 的最大值为m . (1 )求m 的值;
a 2
b 2
(2 )若正实数a , b 满足a ■ b = m ,求
的最小值.
b+1 a+1。

相关文档
最新文档