初中奥数恒等变形知识点及习题2019
奥数-分式恒等变形师
分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。
例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。
(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。
(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。
初中奥数恒等变形知识点整理
初中奥数恒等变形知识点整理恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.表示两个代数式恒等的等式叫做恒等式.如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.1.如果两个多项式的同次项的'系数都相等,那么这两个多项式是恒等的.如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).2.通过一系列的恒等变形,证明两个多项式是恒等的.如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立.x2+3x+2=(x-1)2+b(x-1)+c ①解一:∵①是恒等式,对x的任意数值,等式都成立设x=1,代入①,得12+3×1+2=(1-1)2+b(1-1)+cc=6再设x=2,代入①,由于已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6b=5∴x2+3x+2=(x-1)2+5(x-1)+6解二:将右边展开x2+3x+2=(x-1)2+b(x-1)+c=x2-2x+1+bx-b+c=x2+(b-2)x+(1-b+c)比较两边同次项的系数,得由②得b=5将b=5代入③得1-5+c=2c=6∴x2+3x+2=(x-1)2+5(x-1)+6这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.【初中奥数恒等变形知识点汇总整理】。
完整版简单三角恒等变换典型例题
简单三角恒等变换复习、公式体系(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos()cos cossin sincoscossin sincos()(3) tan(tan tan去分母得tan tan i tan()(1 tantan )1 tan tantantantan()(1 tantan 、倍角公式的推导及其变形:(1) sin 2sin( ) sin coscos sin2 sin cossin1 .cos— sin 2221 sin 2(sincos(2) cos 2cos() cos cos sin sin cos 2 sin 2cos 2cos 2 sin 2 (cossin )(cossin )cos 22• 2 cos 厶 sin2 2COS (1 cos )把1移项得 1 cos22 cos 2或 -4- GQS -2-c2 cos 212【因为 是-的两倍,所以公式也可以写成2cos2 cos 2一 1 或 1 cos 2 cos 2或 - 1 cos —cos 22222因为4 是2的两倍,所以公式也可以写成cos 42 cos 221 或 1 2Once 厶或nee? O12cos 2 22 cossin(1 sin 2) sin 2把1移项得1cos 22s in 2或 -4-1 2sin 22【因为是—的两倍,所以公式也可以写成2cos1 2 sin 2—或1 cos2 sin 2或 4 ---- eos-sin 22222因为4 是2 的两倍,所以公式也可以写成21、和差公式及其变形: 2) )2sin 2、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如(),(4 (1)已知,都是锐角,sin -,cos(5) , (-4)_5 ,求sin的值13)(—)等等4 5(2)已知COS(—) 1,—,sin( )U,0 —,求sin( )的值4 5 4 4 4 13 4. 3(提不:(——)(—) ,只要求出sin( )即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,sin —,cos5,求角的弧度103、T()公式的应用(2) A ABC 中,角A、B 满足(1 tan A)(l tan B) 2 ,求A+B 的弧度4、弦化切,即已知tan ,求与sin, cos相关的式子的值:化为分式,分子分母同时除以cos 或cos? 等(1)已知tansin2 ,求SmQ 1Q in 9 rnQ 7,3sin 2cos2 的值3sin cos 1 sin 2 cos 25、切化弦,再通分,再弦合一(1)、化简:① sin 50° (13 t#TiO°)sin 35°sin 2x x(2)、证明: ________ (1 tan x tan _) tan x2 cos x 26、综合应用,注意公式的灵活应用与因式分解结合②(tan 10 01) cos-100...化简(2 sin2 2 cos4cos 20° sin 40° 的值等于()3cos cos2 的值等于( )——5 511A .C. 2D ・ 4424、已知0AiL cos A 3 那么卡in 2A 等于()2547-_ 12 24A.B .C ・D ・25252525215已知tan ()——,tan( ),则)的值等升( : )544413313 3A •B.—c.-一D.182222186、sinl65o= ()——1A •B.3C. 62 D. 62 22,4J广 47sinl4ocos 16o+sin76ocos74o 的值是 ()1、sin 20°cos40°A. 1B. 3c.1 D. 342r 244 72、若 tan3 , tan,则 tan()等于()31 1 A. 3B. 3-c.D.33A・3 B . 18、已知2x ( ,0),£,COS X24 一,则tan 2x (A . 7 2B —579、化简242s in (JI—x) —• sin (24n:+x), 其结果是4 4A. sin2x cos2x —10 、sin —3 cos 的值是( )12 12A . 0 £-211 、1 tan 2 75 的值为()ji V tan 753 1c. D.2 J 2)24 24C・ D .7 7( )C .—cos2x D. —sin2x5c. 2 D . 2 sin12A. 2 3。
简单三角恒等变换典型例题
简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ⇔ )cos(sin sin cos cos βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2cos 2cos 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα2cos 24cos 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2sin 2cos 12αα=-因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα2sin 24cos 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值 (提示:βαπαπβπ++=--+)4()45(,只要求出)sin(βαπ++即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A +B 的弧度4、弦化切,即已知tan,求与sin,c os相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:① )10tan 31(50sin 0+ ② 035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-1、sin 20cos 40cos 20sin 40+的值等于( )A.14 B.2 C .12D .42、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3- B .3 C .13- D.133、c os5πcos 52π的值等于( )A .41 B .21 C .2 D .44、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( )A.425 B .725 C .1225 D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于ﻩ( )A .1813ﻩB.223ﻩC.2213 D.1836、sin165º= ( ) A.21B.23C.426+ D .426- 7、si n14ºc os16º+sin76ºcos 74º的值是( )A.23 B.21 C.23 D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A.247 B.247- C .724 D .724- 9、化简2sin (4π-x )·sin(4π+x ),其结果是( ) A .sin 2x B .cos2x C.-cos 2x D.-sin 2x 10、s in12π—3cos 12π的值是 ( ) A.0 B. —2 C .2 D. 2 s in125π11、)( 75tan 75tan 12的值为︒︒-A .32 B.332 C. 32- D.332-。
初一数学竞赛系列讲座(6)整式的恒等变形
初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:①(a+b) (a-b)=a 2-b2②(a ±b)2=a 2±2ab+b2③(a+b) (a 2-ab+b 2)=a 3+b 3④(a-b) (a 2+ab+b 2)=a 3-b3⑤(a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥(a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦(a ±b)3= a 3±3a 2b+3a b 2±b34、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、余数定理多项式x f 除以(x-a) 所得的余数等于a f 。
特别地a f =0时,多项式x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)19999992199811998是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1 故所求最小的非负数是1。
恒等变形知识点总结
恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。
在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。
首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。
2. 等式的两边加(或减)相等的数(或算式)仍相等。
3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。
4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。
这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。
在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。
接下来,我们来看一些常见的恒等变形的方法和技巧。
1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。
例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。
通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。
2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。
例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。
通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。
3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。
例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。
通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。
4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。
奥数-二次根式-恒等变形师
二次根式恒等变形方法一、分母有理化;因式分解、约分、再分母有理化;裂项;比例性质。
例1. 化简26235++解析:原式=22(22233)5235(23)(5)235(235)(235)235235++-=+++-=+++++-=++=+-例2. 化简:2532306243+--+(提走12,直接分母有理化,乘以有理化因式30(3223)+-,最后答案为612) 例3. 化简:(1)2310141521++++。
(因式分解、裂项752-)(2)52733535377+++++。
(拆项、因式分解、裂项)(3)22710421310(710)(72)(1013)(134)+++++++++(拆项、因式分解、裂项2/3) (4)1014152110141521+--+++(因式分解、裂项265-)(5)926214212237+++++(配方法 22372++)(6)8215106532+--+- (部分配方,分母有化 53+)(7)525232251++---+(前一项设为x ,平方等x ²=2,于是x=2,后一项配方,最后答案为1。
)作业:化简:其结果是( )。
(A ) (B ) (C ) (D )解 答:(C )。
例4. (1)化简32163223-+--+;(2)化简3216323-+--+解答:(1)原式=21+;(2)原式2321-+=例5. (第19届全苏奥林匹克)解方程1222112=++++++xx x xx x(该方程中有2006个2)解答:分母有理化,原方程很容易化成:111=-+x ,所以21=+x ,3=x作业: 化简___________。
解例6.求证:44344532551532551-++=+--证设,由合分比性质得:∴再由合分比性质:∴A=B。
即原式成立。
例7.计算:11111 1223341991199219921993 ++++++++++_________。
简单三角恒等变换典型例题
简单三角恒等变换一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=±⇔)sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =±⇔)cos(sin sin cos cos βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=±⇔ 去分母得)tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2c o s 2c o s 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2s i n 24c o s 12=- 或 αα2s i n 24c o s 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:①)10tan 31(50sin 0+②035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-7、 a,b 型化简8、降幂公式1. 已知函数1cos sin 2cos 2)(2++-=x x x x f ,(R x ∈).(1)求函数 ()f x 的最小正周期;(2)求函数 ()f x 的最大值,并求此时自变量x 的集合.2. 已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.3.已知函数2()1cos 2cos f x x x x =-++(1)求函数()f x 的最小正周期;(2)求函数()f x 的单调减区间.4.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.5.设函数.cos cos sin 3)(2m x x x x f ++=(1)写出函数的最小正周期及单调递增区间; (2)若]3,6[ππ-∈x 时,函数()f x 的最小值为72,求此时()f x 的最大值,并指出x 为何值时,()f x 取得最大值.6.已知函数).,(2cos )62sin()62sin()(为常数a R a a x x x x f ∈++-++=ππ(1)求函数的最小正周期;(2)若.,2)(,]2,0[的值求的最小值为时a x f x -∈π7.已知函数x x x x f cos sin sin 3)(2+-=(1)求函数)(x f 的最小正周期;(2)求函数⎥⎦⎤⎢⎣⎡∈32,245)(ππx x f 在的值域.(3)对称轴和对称点巩固练习1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3-B .3C .13-D .133、cos5πcos52π的值等于( )A .41 B .21 C .2 D .44、已知02A π<<,且3cos 5A =,那么sin 2A 等于( ) A .425B .725C .1225D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813 B.223 C.2213 D.1836、sin165º=() A .21B .23C .426+ D .426-7、sin14ºcos16º+sin76ºcos74º的值是()A .23B .21C .23D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan () A .247B .247-C .724D .724- 9、化简2sin (4π-x )·sin (4π+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin12π—3cos 12π的值是() A .0 B . —2 C .2D . 2 sin125π11、)( 75tan 75tan 12的值为︒︒-A .32B .332C .32-D .332-。
(完整word版)三角恒等变换-知识点+例题+练习,推荐文档
两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).3.已知sin α=23,则cos(π-2α)等于( ).4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ).5.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[审题视点] 切化弦,合理使用倍角公式.三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】化简:sin α+cos α-1sin α-cos α+1sin 2α.考向二三角函数式的求值【例2】►已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x . (1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)求f (x )的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.【课后训练】A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15 B.14 C.13 D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( ) A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于________. 6.3tan 12°-34cos 212°-2sin 12°=________.7.sin α=35,cos β=35,其中α,β∈⎝ ⎛⎭⎪⎫0,π2,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若s in(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.=-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. (2012·山东)若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ等于( ) A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝ ⎛⎭⎪⎫α+π4等于( ) A.1318 B.1322 C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分) 4.已知锐角α满足cos 2α=cos ⎝⎛⎭⎪⎫π4-α,则sin 2α=_______.5.已知cos ⎝ ⎛⎭⎪⎫π4-α=1213,α∈⎝ ⎛⎭⎪⎫0,π4,则cos 2αsin ⎝ ⎛⎭⎪⎫π4+α=_________.6. 设x ∈⎝ ⎛⎭⎪⎫0,π2,则函数y =2sin 2x +1sin 2x 的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π实用标准文档文案大全 =1617,求cos(α+β)的值.。
初二奥数精讲——第11讲恒等式的证明(二)
初二奥数精讲——第11讲恒等式的证明(二)一、知识点解析1. 基本知识如果一个等式,对其中所含有的字母取使所有代数式有意义的任何值都成立,则此等式称为恒等式。
如果一个等式,对其中所含有的字母取符合限定条件且使所有代数式有意义的任何值都成立,则此等式称为条件恒等式。
2. 基本方法2. 基本问题与方法证明恒等式,常可“从左边证到右边,也可从右边证到左边,还可证明两边与同一个式子相等”,其选择上述方法的原则是“从繁的一边证到简单的一边”。
如果等式两边都较繁,则证明两边与同一个式子相等。
特别地,证明两个多项式恒等,还可以从“次数”上考虑。
如果多项是k次的,则只要证明这两个多项式在k+1处的值相等,则这两个多项式恒等。
证明条件恒等式,常可从条件入手,逐步推出结论;也可从目标入手,在目标中构造条件式中的结构,进而利用条件证明结论;还可将条件和结论同时改变,以创造运用条件的机会。
选择上述方法的原则是“从容易构造出其他式子相同的结构的式子入手”。
如果任何一个式子都不容易构造另一个式子,则应将两个式子同时改变。
这部分主要考察学生的对恒等式的证明的了解及掌握。
是代数式部分的综合应用,这部分题型种类繁多,要在扎实的基础知识基础上,认真学习,多加练习,让我们在例题和解答中一起学习吧。
二、例题例1分析:题设的条件难于直接利用,应先将它们化简。
可将mn+nq=0化为比值,但要注意分母不为0,从而要分类讨论。
解答:例2分析:连等式,比例值等式参数求解。
解答:例3例4例5设a、b是互异的自然数,且a,b中至少有一个是偶数。
求证:一定可以表示成4个自然数的平方和。
如果你能够在不看答案的情况下就很顺利解决这些问题,那么说明你对恒等式的证明的掌握已经很透彻,这样的话可以加微信号miaomiao-asd,有更多有意思有深度的题目和讲解可以提供,还可享受一对一线上咨询辅导。
关注抖音号“数学奥数思维拓展”-1059021292,观看更新的相关视频讲解。
(完整版)三角恒等变换知识总结及基础训练
第四讲 三角恒等变形一、三角恒等变形知识点总结1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。
2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。
(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
代数式与恒等变形
第5讲 爹代数式与恒等变形在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形.恒等变形,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简洁,一般可以把恒等变形分为两类:一类是无附加条件的,需要在式子默认的范围中运算;另一类 是有附加条件的,要善于利用条件,简化运算.恒等式变形的基本思路:由繁到简(即由等式较繁的一边向另一边推导)和相向趋进(即将等式两边同时转化为同一形式).恒等式证明的一般方法:1.单向证明,即从左边证到右边或从右边证到左边,其原则是化繁为简,变形的过程中要不断注意结论的形式,调整证明的方向.2.双向证明,即把左、右两边分别化简,使它们都等于第三个代数式.3.运用“比差法”或“比商法”,证明“左边一右边=0"或1=右边左边(右边≠O)”,可得左边d 右边. 4.运用分析法,由结论出发,执果索因,探求思路,本节结合实例对代数式的基本变形(如配方、因式分解、换元、设参、拆项与逐步合并等)方法作初步介绍,题1 求证 :=-+⨯+-+++n n n n 23522322n 2).235(1011-+-+n n n对同底数幂进行合并整理,解 方法一:左边)222()33(55221n n n n n -+-+++⨯⨯=++)22(2)13(35103121+-++⨯=-+n n n11210310510-+⨯-⨯+⨯=n n n)235(1011-+-+=n n n=右边,方法二:左边)12(2)13(352222+-++⨯=+n n n.25310522n n n ⨯-⨯+⨯=+右边11210310510-+⨯-⨯+⨯=n n n.25310522n n n ⨯-⨯+⨯=+故 左边=右边.方法一中受右边”、、“11235-+n n n 的提示,对左边式子进行合并时,以n n 351、+与12-n 为主元合并,迅速便捷.读一题,练3题,练就解题高手 1-1.已知,0=++c b a 求证:.3333abc c b a =++1-2.已知,xyz z y x =++证明:-+--1()1)(1(22y z y x .4)1)(1()1)(2222xyz y x z z x =--+- 1-3.证明:.32232++⋅+.13222.3222=++-+++题2 ?100321=++++ 经研究,这个问题的一般结论是),1(21321+=++++ n n n 其中,n 为整数,现在我们来研究一个类似的问题: ?=+⨯++⨯+⨯)1(...3221n n 观察下面三个特殊的等式:);210321(3121⨯⨯-⨯⨯=⨯ );321432(3132⨯⨯-⨯⨯=⨯ );432543(3143⨯⨯-⨯⨯=⨯ 将这三个式子两边相加(累加),可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完这段材料,请您思考回答:=⨯++⨯+⨯m 1003221)1(=+++⨯+⨯)1(3221)2(n n)2)(1(.432321)3(++++⨯⨯+⨯⋅⨯n n n =(只写出结果,不必写出中间的过程) 分析此题可得到如下信息:⨯⨯-⨯⨯=⨯10099102101100(31101100)1();101 +--++=+n n n n n n n n ()1()2)(1([31)1()2()];1 解 321(3110100]3221)1(⨯⨯=⨯++⨯+⨯ 210101100321432210⨯⨯++⨯⨯-⨯⨯+⨯⨯- ;34340010210110031)10110099=⨯⨯⨯=⨯⨯- (2)由类比思想知).2)(1(31)1(3221++=+++⨯+⨯n n n n n ),32104321(41321)3(⨯⨯⨯-⨯⨯⨯=⨯⨯),43215432(41432.⨯⨯⨯-⨯⨯⨯=⨯⨯ …… )]2)(1()1()3)(2)(1([41)2)(1(++--+++=++n n n n n n n n n n n 则 )2)(1(432321++++⨯⨯+⨯⨯n n n).3)(2)(1(41+++=n n n n 在解题时要善于利用类比推理思想,理解并记住一些常用的一般性结论,如++⨯+⨯ 321211 11321211,1)1(1++++++++=+n n n n n n .)12(531,112n n n =-++++-+= 读一题,练3题,练就解题高手2-1.已知n 是正整数,),(n n n y x P 是反比例函数xk y =图象上的一列点,其中.,,2,121n x x x n === 记⋅===1099322211,,,y x T y x T y x T 若=1T ,1则921T T T 的值是2-2.我们把分子为1的分数叫做单位分数,如,31,21,,41 任何一个单位分数都可以写成两个不同的单位分数的和,如,1214131,613121+=+⋅= ,2015141+= (1)根据对上述式子的观察,你会发现+=口151,1O请写出O ,口所表示的数; (2)进一步思考,单位分数n 1(n 是不小于2的正整数)=*+∆11请写出,*∆所表示的代数式,并加以验证.2-3.已知200921,,a a a 都是正数,+++= 21(a a M ),)(2009322008a a a a +++ +++=< 21a a N).)(2008322009a a a a +++试比较M 与N 的大小.题3 已知c b a a c a c c b c b b a b a ,,,)(3)(2-+=-+=-+互不相等,求证.0598⋅=++c b α 本题可设,)(3)(2k a c a C c b c h b a b a =-+=-+=-+然后求解. 解 设,)(3)(2k a c a c c b c b b a b a =-+=-⋅+=-+ 则).(3),(2),.(a c k a c c b k c b a k b a -=+-=-=+故 )(2),()(3),(6)(6a c c b c b b a k b a +-=+-=+α).(6a c k -=以上三式相加,得=+++++)(2)(3)(6a c c b b a ).(6a c c b a k -+--即 .0598=++c b a本题运用了连比等式设参数k 的方法,这种引入参数的方法是恒等式证明中的常用技巧,读 一题,练1题,决出能力高下3-1.已知,26223823122523=-++-=-+++=---+a c a c c b c b bk a b a 则=++--++734232c b a c b a题4 证明 333)2()2()2(z y x y x z x z y -++-++-+).2)(2()2(3z y x x z x z y -+-+⋅-+=γ本题看似复杂,但是仔细分析各项特征,可尝试使用多变量换元法.解 令①,2a x z y =-+②,2b y x z =-+③,2c z y x =-+ 则原待证恒等式转化为.3333abc c b a =++联想到公式 --++++=-++ab c b a c b a abc c b a 222333)((3).ca bc - 由①+②+③,得 )2()2()2(z y x y x z x z y c b a -++-++⋅-+=++.0=故,03333=-++abc c b a即.3333abc c b a =++原式得证.换元法的使用可以使题目条件更趋简洁,更易把握题目特点.读一题,练3题,冲刺奥数金牌4-1试用x+l 的各项幂表示.13.223-+-x x x4-2.已知z y x z y x ,0,0,200920072005222>>==0>且.1111=++zy x 求证:20072005200920072005+=++z y x .2009+ 4-3.解方程:,23322332⋅---=---x x x x 题5 设x,y,z 互为不相等的非零实数,且x z z y y x 111+=+=+求证: 1222=z y x由于结论为”“1222=z y x 的形式,可以从题设 式中导出x ,y ,z 乘积的形式xy ,yz ,zx 解 由,11xy y x +=+变形可得 ⋅-=-=-yzz y y z y x 11 则①⋅--=y x z y yz 同理可得②,zy x z zx --= ③xz y x xy --= 由①×②×③,得.1222=z y x本题中x ,y ,z 具有轮换对称的特点,也可从二元情形中得到启示:即令x ,y 为互不相等的非零实数,且,11x y y x +=+易推出,11y x y x -=-故有,1-=--=y x x y xy 所以,122=y x 三元与二元情形类似.读一题,练3题,冲刺奥数金牌5-1若实数x ,y ,z 满足x z z y y x 1,11,41+=+=+ ,37=则xyz= 5-2.已知),35(21),35(21-=+=y x 求226y xy x ++的值. 5-3.已知实数a ,b ,c ,d 互不相等,且=+=+c b b a 11,11x a d d c =+=+试求x 的值, 题6 已知 za a x y a z x a a y 222,,-==-=求证: 由待证式z a a x 2-=知要从题设条件中消去y .解 由已知,得.,22z a y a x a a y -=-=两式相乘,得),)((22z a x a a a -⋅⋅-= 即⋅+--=x z a az x a a a 2322 所以 ⋅-=x a xaz z 2故 ⋅-=z a a x 2综合考查条件结论,充分挖掘隐含信息,常会成为解题的关键,如本题中由-=-=a z x a a y ,2,,2y a 到,,,2z a a x -=发现要消去y 这一信息.读一题,练3题,冲刺奥数金牌6-1.已知,1=ab 求11+++b b a a 的值. 6-2.设⋅+-=+-=+-=,,,a c a c r c b c b q b a b a P 其中a c c b b a +++,,不为零.求证: ).1()1)(1()1)(1)(1(r q P r q P -⋅--=+++6-3.已知a ,b ,c ,d 满足3,0,,a d c b a d c b a =/+=+≤≤.333d c b ⋅+=+ 求证:.,d b c a ==参考答案与提示。
初中数学竞赛 知识点和真题 第14讲 有理式的恒等变形
第15讲 有理式的恒等变形可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。
——麦克斯韦知识方法扫描有理式的恒等变形可以分为无条件限制等式和有条件限制等式两大类. 无条件等式的证明方法很多,常用的有:直接从左到右或从右到左的变形(常常是从较复杂的一边向较简单的一边变形),还有比较法、分析法等. 条件等式的证明实质上是有根据,有目标的有理式的恒等变形,条件等式证明的基本方法是对约束条件或待证等式进行适当变形,运用有理式的对称,轮换性质,有关非负数的性质及比较法,消元法和换元法等.在证明过程中,不但要注意已知条件的变换,使之有利于应用,同时也要研究结论的需求,结论部分复杂的也要进行比较变换,使之有利于已知条件的沟通.经典例题解析例1.求证:⋅++-=++-+++-))(())((.))((222b c a c c ab a b c b ca b c a b a bc a 分析 要证A=B , 可先证A-B=0,这种方法称为求差法。
左–右 = ⋅++-+++-+++-))(())(())((222b c a c ab c a b c b ca b c a b a bc a 这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a ,c 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证明 因为))(())((22c a b a bc ac ac a c a b a bc a ++--+=++-,.))(()()(ca cb a ac a b a b a c c a a +-+=+++-+= 同理 ,))((2a b a c b b a b c b ca b +-+=++- ⋅+-+=++-cb b ac c b c a c ab c ))((2所以 左–右 = ⋅++-+++-+++-))(())(())((222b c a c ab c a b c b ca b c a b a bc a .0=+-+++-+++-+=cb b ac c a b a c b b c a c b a a 评注 本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.例2 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z). 证明 用换元法.令y+z-2x=a ,①z+x-2y=b ,②x+y-2z=c ,③则要证的等式变为a 3+b 3+c 3=3abc .注意到因式分解公式:a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca),将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a 3+b 3+c 3-3abc=0,故 (y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).评注 换元是恒等变形的常用技巧.例3.(1957年武汉市中学生数学竞赛试题)已知x+y+z=xyz ,证明:x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .分析 将左边展开,利用条件x+y+z=xyz ,将等式左边化简成右边.证明 因为x+y+z=xyz ,所以左边=x(1-z 2-y 2-y 2z 2)+y(1-z 2-x 2+x 2z 2)+(1-y 2-x 2+x 2y 2)=(x+y+z)-xz 2-xy 2+xy 2z 2-yz 2+yx 2+yx 2z 2-zy 2-zx 2+zx 2y 2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.故结论成立。
方法技巧专题19 三角恒等变换(解析版)
方法技巧专题19 三角恒等变换解析版一、三角恒等变换问题知识框架【一】公式顺用、逆用及其变形用1.例题 【例1】计算:(1)cos(-15°); (2)cos 15°cos 105°+sin 15°sin 105°. 【解析】(1)方法一 原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. (2)原式=cos(15°-105°)=cos(-90°)=cos 90°=0. 【例2】(1)计算:cos 2π12-sin 2π12; 【解析】原式=cos π6=32.(2)计算:1-tan 275°tan 75°;【解析】 1-tan 275°tan 75°=2·1-tan 275°2tan 75°=2·1tan 150°=-2 3.(3)计算:cos 20°cos 40°cos 80°.【解析】原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80°=123sin 20°·sin 160°=sin 20°23sin 20°=18.【例3】(1)1+tan 15°1-tan 15°=________.【解析】3 原式=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.(2)化简:tan 23°+tan 37°+3tan 23°tan 37°. 【解析】方法一 tan 23°+tan 37°+3tan 23°tan 37° =tan(23°+37°)(1-tan 23°tan 37°)+3tan 23°tan 37° =tan 60°(1-tan 23°tan 37°)+3tan 23°tan 37°= 3. 方法二 ∵tan(23°+37°)=tan 23°+tan 37°1-tan 23°tan 37°,∴3=tan 23°+tan 37°1-tan 23°tan 37°,∴3-3tan 23°tan 37°=tan 23°+tan 37°, ∴tan 23°+tan 37°+3tan 23°tan 37°= 3. (3)已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.【解析】 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos 2θ2=1+cos θ2=15.∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.2.巩固提升综合练习【练习1】化简cos 15°cos 45°+cos 75°sin 45°的值为( )A.12B.32 C .-12 D .-32【解析】Bcos 15°cos 45°+cos 75°sin 45°=cos 15°cos 45°+sin 15°sin 45°=cos(15°-45°)=cos(-30°)=32.【练习2】1-3tan 75°3+tan 75°=________.【解析】-1原式=33-tan 75°1+33tan 75°=tan 30°-tan 75°1+tan 30°tan 75°=tan(30°-75°)=-tan 45°=-1.【练习3】在△ABC 中,A +B ≠π2,且tan A +tan B +3=3tan A tan B ,则角C 的值为( )A.π3B.2π3C.π6D.π4 【解析】A∵tan A +tan B +3=3tan A tan B ⇔tan(A +B )·(1-tan A tan B )=3(tan A tan B -1).(*) 若1-tan A tan B =0,则cos A cos B -s in A sin B =0,即cos(A +B )=0. ∵0<A +B <π,∴A +B =π2与题设矛盾.∴由(*)得tan(A +B )=-3,即tan C = 3.又∵0<C <π,∴C =π3.【练习4】若sin α+cos α=13,则sin 2α= .【解析】由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.1.例题【例1】已知31)3sin(=-πα,则)6cos(πα+ 的值为( ) A .-13 B.13 C.223 D .-223【答案】A 【解析】∵sin )3(πα-=13,∴cos )6(πα+=cos )]3(2[παπ-+=-sin )3(πα-=-13.【例2】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点⎪⎭⎫⎝⎛--54,53P . 若角β满足sin(α+β)=513,则cos β的值为________.【答案】 -5665或1665【解析】 由角α的终边过点⎪⎭⎫⎝⎛--54,53P ,得sin α=-45,cos α=-35. 由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.【例3】若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭( ) A .13 B .13-C .79D .79-【答案】D 【解析】222πππcos 22cos 12cos 13326πααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π272sin 11699α⎛⎫=--=-=- ⎪⎝⎭2.巩固提升综合练习 【练习1】已知33)6tan(=-απ,则=+)65tan(απ________. 【答案】-33【解析】tan )65(απ+=tan )6(αππ+-=tan )]6([αππ--=-tan )6(απ-=-33. 【练习2】若1027)4sin(=+πA ,A ∈),4(ππ,则sin A 的值为( ) A.35 B.45C.35或45D.34【答案】B 【解析】∵A ∈),4(ππ,∴A +π4∈)45,2(ππ, ∴cos (A +π4)=-1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin[(A +π4)- π4]=sin (A +π4)cos π4-cos (A +π4)sin π4=45.【练习3】已知sin(α−3π10)=35,则cos(α+π5)=( ) A.−45 B.45C.−35D.35【答案】C【解析】因为sin(α−3π10)=35,则cos(α+π5)=cos[π2+(α−3π10)]=−sin(α−3π10)=−35.故应选C . 【练习4】若sin (3x π-)=23,则cos (23x π+)=( )A .79B .19C .19-D .79-【答案】C 【解析】令3x πθ=-,则223x ππθ+=-,所以()21cos 2cos 2cos 22sin 139x ππθθθ⎛⎫+=-=-=-=- ⎪⎝⎭,故选C .【练习5】已知3sin 245x π⎛⎫-= ⎪⎝⎭,则sin 4x 的值为( ) A .1825B .1825±C .725D .725±【答案】C【解析】由题意得:297cos 412sin 212242525x x ππ⎛⎫⎛⎫-=--=-⨯=⎪ ⎪⎝⎭⎝⎭7sin 4cos 4225x x π⎛⎫∴=-= ⎪⎝⎭本题正确选项:C1.例题【例1】已知02απ<<,cos()4απ+= (1)求tan()4απ+的值; (2)求sin(2)3απ+的值.【解析】(1)∵02απ<<,cos()4απ+= ∴sin()4απ+==, ∴sin()4tan()24cos()4αααπ+π+==π+. (2)∵tan 1tan()241tan αααπ++==-,∴1tan 3α=, ∴2222sin cos 2tan 3sin 2sin cos tan 15ααααααα===++,2222cos sin cos 2sin cos ααααα-=+221tan 4tan 15αα-==+,3sin(2)sin 2cos cos 2sin 33310αααπππ++=+=.【例2】已知△ABC 中,137cos sin -=+A A ,则tanA= . 【解析】解法一:列出方程组⎪⎩⎪⎨⎧=+-=+1cos sin 137cos sin 22A A A A由第一个方程得,A A sin 137cos --=,代入第二个方程得1)sin 137(sin 22=--+A A , 即016960sin 137sin 2=-+A A , 解得135sin =A 或1312sin -=A , 因为△ABC 中0<A<π, 所以sinA>0,135sin =A ,1312cos -=A ,所以125tan -=A . 答案:125-. 解法二:由已知得sinA>0, cosA<0, |sin A|<|cos A|, tanA>-1, 由137cos sin -=+A A 两边平方,整理得16960cos sin -=⋅A A ,即16960cos sin cos sin 22-=+⋅A A A A , 分子分母同除以A 2cos 得169601tan tan 2-=+A A , 解得125tan -=A .2.巩固提升综合练习【练习1】已知a ∈R ,sina +2cosa =√102,则tan2a =( )A .−34或−35 B .−34C .34D .−35【答案】B 【解析】因为sina +2cosa =√102,所以(sina +2cosa )2=52,所以sin 2a +4cos 2a +4sinacosa =52, 所以sin 2a+4cos 2a+4sin acosasin 2a+cos 2a=52,即tan 2a+4+4tanatan 2a+1=52,解得tana =3或者tana =−13,当tana =3时,tan2a =2tana1−tan 2a =−34,当tana =−13时,tan2a =2tana 1−tan 2a =−34, 综上所述,tan2a =−34,故选B 。
恒等变换专题
三角恒等变换专题一、知识精讲1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ; ⑹()tan tan tan 1tan tan αβαβαβ++=- 2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=⑵2222cos2cossin 2cos 112sin ααααα=-=-=- (3)22tan tan 21tan ααα=-3、4、(1)升幂公式;22cos 1cos ;22cos 1sin ;2sin 21cos sin 22ααααααα+=-== (2)辅助角公式;cos ,cos )sin(cos sin 222222b a b b a ax b a x b x a +=+=++=+ϕϕϕ其中5、(1)三角函数的计算,化简,证明的恒等变形的基本思路:一角二名三结构。
即首先观察两角之间的关系,注意角的一些常用变式,角的变换是三角变换的核心;第二看三角函数名之间的关系,通常切化弦;第三观察代数式的结构特点。
(2)常用方法:直接应用公式将次消项;切割化弦,异名化同名,异角化同角,三角公式的逆用等(3)化简要求:能求值的要求出值;使用三角函数种数尽量少;使用项数尽量少;尽量使分母不含三角函数;尽量使被开方数不含三角函数。
ααααααααααα半角公式sin cos 1cos 1sin cos 1cos 12t an 2cos 12sin ;2cos 12cos :-=+=+-±=-±=+±=二、典例解析题型1、公式直接应用1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( ) 4、cos 5πcos 52π的值等于( ) 题型二、巧变角._____cos ,32)2sin(,91)2cos(,20)2(._____)4(tan ,41)4tan(,52)tan()1(5)的值(求且已知求已知、βαβαβαπαπβπαπββα+=--=-<<<<=+=-=+题型三、三角函数名互化(切化弦));2(tan ,32)tan(,12cos 1cos sin )2();10tan 31(50sin 16αββαααα--=-=-︒+︒求已知)求值、(.___,43cos sin ,tan tan 33tanB tanA ABC (2)_____.B)cos(A 1,tanB tanA tanAtanB ,1.7)tan tan 1)(tan(tan tan )tan tan 1)(tan(tan tan :三角形此三角形是则中,设三角形则为锐角,且满足)已知(公式变形应用题型四==++=+++=-+=+-+=+A A B A B A βαβαβαβαβαβα题型五、常值变换主要指1的变换(1cos sin 22=+αα)ααααπθπθ4466cos sin 1)cos sin 1)2().2(2sin 118----<<+)化简、(题型六、αtan 的构造;cos 3cos sin sin )3(;sin 2cos sin cos 2)2(;sin 2cos s c 1,2tan 9222222ααααααααααααα-+-+-+=in os )(求、已知题型七、知一求二ααααααcos sin ,cos sin ,cos sin -+;,求),,()已知(;,求)已知(;,求已知、ααααπαααααααααcos sin 21cos sin 02cos sin 83cos sin 2cos sin 21cos sin )1(10=+∈-==+题型八、求角的范围(先确定角的范围).2,1010sin ,71tan 2.065tan ,tan 0)1.(112βαβαβαβαβαπβα+==+=+-∈求为锐角,,)已知(的两根,求是方程),且,(,若x x题型九、三角函数次数升降和辅助角公式 12、若32(,)αππ∈,化简111122222cos α++为_____. 13.若方程sin 3cos x x c -=有实数解,则c 的取值范围是___________.14.函数2553f (x )sin xcos x cos x =-532(x R )+∈求: .)(2)()1(的单调增区间)求(对称轴;的最小正周期和图像的x f x f15、已知:向量(3,1)a =- ,(sin 2,b x =cos 2)x ,函数()f x a b =⋅(1)若()0f x =且0x π<<,求x 的值;(2)求函数()f x 取得最大值时,向量a 与b 的夹角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中奥数恒等变形知识点及习题2019
恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.
表示两个代数式恒等的等式叫做恒等式.
如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.
将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).
以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.
如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.
1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.
如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.
反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).
2.通过一系列的恒等变形,证明两个多项式是恒等的.
如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r
例:求b、c的值,使下面的恒等成立.
x2+3x+2=(x-1)2+b(x-1)+c ①
解一:∵①是恒等式,对x的任意数值,等式都成立
设x=1,代入①,得
12+3×1+2=(1-1)2+b(1-1)+c
c=6
再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6
b=5
∴x2+3x+2=(x-1)2+5(x-1)+6
解二:将右边展开
x2+3x+2=(x-1)2+b(x-1)+c
=x2-2x+1+bx-b+c
=x2+(b-2)x+(1-b+c)
比较两边同次项的系数,得出。