一元一次方程的解法(基础)知识讲解及巩固练习
一元一次方程的概念与解法(复习)
3.3解一元一次方程(去括号)【目标导航】1.掌握有括号的一元一次方程的解法;2.通过列方程解决实际问题,感受到数学的应用价值;3.培养分析问题、解决问题的能力.【预习引领】1. 化简:⑴()()=+-+--33121y y ⑵()()=-+--a a 24523 2.问题 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度? 3.你会用方程解这道题吗?设上半年每月平均用电x 度,则下半年每月平均用电 度;上半年共用电 度,下半年共用电 度. 列方程为 . 4.这个方程与上一课所解方程有何不同点?怎样使这个方程向a x =的形式转化呢?【要点梳理】知识点: 有括号的一元一次方程的解法引例:解方程()15000200066=-+x x 解:注:1.根据 ,先去掉等式两边的小括号,然后再移项、合并、系数化为12.本题用 的思想,将有括号的方程转化为已学的无括号的方程.例1 解方程()()323173+-=--x x x注:运算过程中,特别防止符号的错误. 练习1:解下列方程()()()41232341+-=-+x x x()⎪⎭⎫ ⎝⎛--=+⎪⎭⎫ ⎝⎛-1317242162x x x例2 解方程,并说明每步的依据:()[]{}()1082721324321--=+---x x注:⑴有多重括号,通用方法是由里向外依次去括号.⑵在去括号的过程中,可以同时作合并变形.练习2:解下列方程(1)()[]()21453123+-=---x x(2)()[]()51315.04210+-=----x x例3 已知关于x 方程()542+=-ax x ⑴当a 时,方程有唯一解; ⑵当a 时,方程无解;【课堂操练】 1. 将多项式()()24322+--+x x 去括号得 ,合并得 . 2.方程()()()x x x -=---1914322去括号得 ,这种变形的根据是 . 3.解方程: ⑴()62338=+-y y ⑵()33322+-=+-x x x⑶()()63734--=+x x⑷()()()36411223125+=+-+x x x⑸()()()121212345--=+--x x x⑹()[]()2321432-=+--x x x⑺()[]{}1720815432=----x4.已知关于x 的方程()ax x =-+324无解,求a 的值.【课后盘点】1.若关于x 的方程b x x a 3746-=+的解是1=x ,则a 和b 满足的关系式是 . 2.当=x 时,式子()23-x 和()434-+x 的值相等.3.比方程()472=+x 的解的3倍小5的数是 . 4.已知公式()h b a S +=21中,60=S ,6=a ,6=h ,则=b .5.化简下列各式⑴()()223248y xy y xy +-+---⑵()[]a b a b a +----22⑶()[]()y x y x +----25⑷()[]152322+---x x x x6.方程()113=--x x 的根是( ) A .2=x B .1=x C .0=x D .1-=x 7.下列去括号正确的是( )A .()1123=--x x 得4123=--x xB .()x x =++-314得x x =++-344C .()59172+-=-+x x x 得59772+-=--x x x D .()[]21423=+--x x 得24423=++-x x8.解下列方程 ⑴()212-=--t⑵()()32523-=+x x⑶()()23341+=+-x x⑷()()x x x 3234248--+=+⑸()()()x x x -=---1914322 ⑹()x x 415126556=-⎥⎦⎤⎢⎣⎡++9.已知关于x 的方程()3245-=-x ax 无解,求a 的值.10.若x A 34-=,x B 45+=,且B A 3202+=.求x 的值.【课外拓展】1.已知关于x 的方程()251-=-x x m 有唯一解,求m 的值.2.已知关于x 的方程()()b x a x a 3512+-=-有无数多个解,求a 、b 的值.3.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,求父子两人现在的年龄各是多少岁?(设计人:江云桂)No .4一元一次方程的概念与解法(复习)【目标导航】1.复习一元一次方程的概念、等式的性质、一元一次方程的解法;2.能根据题意列一元一次方程解决实际问题;【预习引领】1. 方程,一元一次方程,方程的解; 2. 等式性质;3. 解一元一次方程的步骤及每一步的依据。
一元一次方程的解法(公开课)资料讲解
如果 a b , 那么 ac bc
如果a b(c 0) ,那么ac cb
知识回顾
什么是解方程?
解方程就是将方程转化为 形如x=a(a为常数)的过 程
x=a(a为常数):1、它仍然是方程. 2、未知数在等号一
边,常数项在等号另一边. 3、x的系数为1.
3) 3(x 1) x 1
5
5
变形名称 去分母
去括号
移项
解一元一次方程的一般步骤:
具体的做法 每一项乘所有的分母的最小公倍数. 依据是等式性质二 先去小括号,再去中括号,最后去大括号 依据是去括号法则和乘法分配律 把含有未知数的项移到一边,常数项移到另 一边.“过桥变号”依据是等式性质一
合并同类项 将未知数的系数相加,常数项相加。 依据是乘法分配律
约公元825年,中亚细亚 数学家阿尔—花拉子米写 了一本代数书,重点论述 怎样解方程。这本书的拉 丁译本为《对消与还原》。 “对消”与“还原”是什 么意思呢?
一元一次方程的解法
执教者:曾杨烨
知识回顾 等式的基本性质
等式的性质1: 等式两边加(或减)同一个 数(或式子),结果仍相等。
如果 a b, 那么 a c b c
程的另一边,对方程进行移项变形。
(1) 2x-3= 6
2x = 6 + 3
(2) 5x=3x-1
5x -3x = -1
(3) 2.4y+2= -2y
2.4y+2y = -2
⑷ 8- 5x=x+2
-5x-x=2-8
你能解以下一元一次方程吗?
1)3x 3 x 1
有括号
【北师大】七年级上册数学 第15讲 一元一次方程的解法 讲义(含答案)
6.解:移项得:x=3+5=8,故填8.
7.解:去括号得:5x-25+2x=-4
移项得:7x=21
系数化为1得:x=3
8.解:原方程可化为:2x=7-1
合并得:2x=6
系数化为1得:x=3
9.解:〔1〕去括号得:8x+12=8-8x-5x+10,
【例8】关于x的方程mx+2=2〔m-x〕的解满足|x-12|-1=0,求m的值.
同步练习
1.|2-23x|=4,那么x的值是〔 〕
A、-3B、9C、-3或9D、以上结论都不对
2.方程|3x|=15的解的情况是〔 〕
A、有一个解,是5B、无解C、有无数个解D、有两个解,是±5
3.使方程3|x+2|+2=0成立的未知数x的值是〔 〕
四、典型例题
〔一〕一元一次方程的解
【例1】3是关于x的方程2x-a=1的解,那么a的值是〔 〕
A、-5B、5C、7D、2
【例2】假设关于x的一元一次方程2x-k/3-x-3k/2=1的解是x=-1,那么k的值是〔 〕
A、27B、1C、-13/11D、0
【例3】请写出一个解为x=2的一元一次方程:
【例4】5是关于x的方程3x-2a=7的解,那么a的值为.
7.解:把x=0代入方程2x+n3+1=1-x2+n得:n3+1=12+n,去分母得:2n+6=3+6n,∴n=34,即当n=34时,关于x的方程2x+n3+1=1-x2+n的解为0.
〔二〕解一元一次方程
一元一次方程知识点及经典例题
一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
一元一次方程的解法(知识解读+真题演练+课后巩固)(原卷版)
第02讲 一元一次方程的解法1.会通过去分母解一元一次方程;2.归纳一元一次方程解法的一般步骤,体会解方程中化归和程序化的思想方法;3.体会建立方程模型解决问题的一般过程;4.体会方程思想,增强应用意识和应用能力.知识点1 解一元一次方程 解一元一次方程的步骤: 1. 去分母两边同乘最简公分母 2.去括号(1)先去小括号,再去 中括号,最后去大括号 (2)乘法分配律应满足分配到每一项 注意 :特别是去掉括号,符合变化 3.移项(1)定义: 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边; (2)注意: ①移项要变符号 ; ②一般把含有未知数的项移到左边 ,其余项移到右边 . 4. 合并同类项(1)定义: 把方程中的同类项分别合并,化成“ ax = b ”的形式( a ≠ 0 ); (2)注意:合并同类项时,把同类项的系数相加,字母不变. 5. 系数化为 1(1)定义: 方程两边同除以未知数的系数 a ,得 abx =; (2)注意:分子、分母不能颠倒【题型1 解一元一次方程】【典例1】解一元一次方程:5x+3=3x﹣15.【变式1-1】解方程:5x﹣8=2x﹣3.【变式1-2】解方程:2x+2=3x﹣2.【典例2】解下列一元一次方程:(1)3(x+1)﹣2=2(x﹣3);(2).【变式2-1】解方程:(1)4x+5=3(x﹣1);(2)﹣=1.【变式2-2】解方程:(1)3x﹣5(2x﹣4)=7﹣4(x﹣1);(2).【变式2-3】解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=1.【题型2 一元一次方程的整数解问题】【典例3】是否存在整数k,使关于x的方程(k﹣4)x+6=1﹣5x有整数解?并求出解.【变式3-1】当整数k为何值时,方程9x﹣3=kx+14有正整数解?并求出正整数解.【变式3-2】若关于x的方程ax﹣3=0有正整数解,则整数a的值为()A.1或﹣1或3或﹣3B.1或3C.1D.3【题型3 根据两个一元一次方程的解之间的关系求参数】【典例4】若代数式与的值的和为5,则m的值为()A.18B.10C.﹣7D.7【变式4-1】若P=2a﹣2,Q=2a+3,且3P﹣Q=1,则a的值是()A.0.4B.2.5C.﹣0.4D.﹣2.5【变式4-2】若的值与x﹣7互为相反数,则x的值为()A.1B.C.3D.﹣3【变式4-3】若式子﹣2a+1的值比a﹣2的值大6,则a等于()A.1B.2C.﹣1D.﹣2【变式4-4】已知A=2x+1,B=5x﹣4,若A比B小1,则x的值为()A.2B.﹣2C.3D.﹣3【题型4 错解一元一次方程的问题】【典例5】一位同学在解方程5x﹣1=()x+3时,把“()”处的数字看错了,解得,这位同学把“()”处的数字看成了()A.3B.﹣C.﹣8D.8【变式5-1】某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数看成了()A.5B.6C.7D.8【变式5-2】某同学解方程5y﹣1=口y+4时,把“口”处的系数看错了,解得y =﹣5,他把“口”处的系数看成了()A.5B.﹣5C.6D.﹣6【变式5-3】小明同学在解方程5x﹣1=mx+3时,把数字m看错了,解得x=﹣,则该同学把m看成了()A.3B.C.8D.﹣8【变式5-4】某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数a看成了下列哪个数?()A.5B.6C.7D.8【题型5 一元一次方程的解与参数无关】【典例6】定义一种新运算:a⊙b=5a﹣b.(1)计算:(﹣6)⊙8=;(2)若(2x﹣1)⊙(x+1)=12,求x的值;(3)化简:(3xy﹣2x﹣3)⊙(﹣5xy+1),若化简后代数式的值与x的取值无关,求y的值.【变式6-1】(1)先化简,再求值:已知代数式A=(3a2b﹣ab2),B=(﹣ab2+3a2b),求5A﹣4B,并求出当a=﹣2,b=3时5A﹣4B的值.(2)对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).规定:(a,b)★(c,d)=ad﹣bc,如:(1,2)★(3,4)=1×4﹣2×3=﹣2根据上述规定解决下列问题:①有理数对(5,﹣3)★(3,2)=.②若有理数对(﹣3,x)★(2,2x+1)=15,则x=.③若有理数对(2,x﹣1)★(k,2x+k)的值与x的取值无关,求k的值.【变式6-2】(1)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x,y的值无关,求n m+mn的值.(2)解方程=1﹣.【题型6 一元一次方程的解在新定义中运用】【典例7】定义“※”运算为“a※b=ab+2a”,若(3※x)+(x※3)=14,则x等于()A.1B.2C.﹣1D.﹣2【变式7-1】新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.【变式7-2】规定一种新的运算:a*b=2﹣a﹣b,求*=1的解是.【变式7-3】已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,x的值是.1.(2022•百色)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣7 2.(2022•海南)若代数式x+1的值为6,则x等于()A.5B.﹣5C.7D.﹣7 3.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 4.(2023•陇西县校级模拟)定义aⓧb=2a+b,则方程3ⓧx=4ⓧ2的解为()A.x=4B.x=﹣4C.x=2D.x=﹣2 5.(2023•青山区一模)若的值与x﹣7互为相反数,则x的值为()A.1B.C.3D.﹣3 6.(2023•怀远县二模)方程=1去分母正确的是()A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=6 7.(2021•广元)解方程:+=4.8.(2021•桂林)解一元一次方程:4x﹣1=2x+5.9.(2021•西湖区校级自主招生)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.10.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2).1.(2023春•榆树市期末)一元一次方程8x=2x﹣6的解是()A.x=1B.x=0C.x=﹣2D.x=﹣1 2.(2022秋•汾阳市期末)方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=5 3.(2023•乐东县一模)代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算4.(2022秋•宜城市期末)定义“※”运算为“a※b=ab+2a”,若(3※x)+(x※3)=14,则x等于()A.1B.2C.﹣1D.﹣2 5.(2022秋•泸县期末)如果表示ad﹣bc,若=4,则x的值为()A.﹣2B.C.3D.6.(2022秋•潮安区期末)设a⊕b=3a﹣b,且x⊕(2⊕3)=1,则x等于()A.3B.8C.D.7.(2022秋•泰山区期末)王林同学在解关于x的方程3m+2x=4时,不小心将+2x看作了﹣2x,得到方程的解是x=1,那么原方程正确的解是()A.x=2B.x=﹣1C.x=D.x=5 8.(2022秋•碑林区校级期末)小亮在解方程3a+x=7时,由于粗心,错把+x 看成了﹣x,结果解得x=2,则a的值为()A.B.a=3C.a=﹣3D.9.(2022秋•六盘水期末)已知代数式6x﹣12与4+2x的值互为相反数,那么x 的值等于.10.(2022秋•嘉祥县期末)解下列方程:(1)2x﹣3(2x﹣3)=x+4;(2).。
七年级一元一次方程知识点
七年级一元一次方程知识点一、目录1、从问题到方程2、一元一次方程的解法3、用一元一次方程解决实际问题教学目标:(a )了解一元一次方程的定义(b )运用一元一次方程的解法(c )掌握用一元一次方程解决实际问题二、知识点结构梳理及例题一元一次方程1.方程:含有未知数的等式叫做方程。
2.方程的解:使方程左、右两边相等的未知数的值,叫做方程的解。
3.只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
一元一次方程可以化为ax+b=0(a ≠0)的形式,分母中不能含有未知数。
4.求方程的解叫做解方程定义类:1、如果 x 3n-2-6=0是一元一次方程,则n=_____________.2、下面的等式中,是一元一次方程的为( )A .3x +2y =0B .3+m =10C .2+x1=x D .a 2=16 3、如果(n-3)x n -2+5=0是关于x 的一元一次方程,求n 的值.4、如果关于x 的方程(2m+5)x-3=2x,当a 满足什么条件时,该方程是一元一次方程?5、若2x-17的绝对值与18-3x 的绝对值相等,则得到关于x 的方程为6、一个两位数,两个数位上的数字之和是7,把两个数位上的数字对调后得到新的两位数,比原来的两位数大25,求原来的两位数。
(设出未知数,列出方程)练习:等式的性质(解方程的依据)1.等式两边都加上或者减去同一个数(或代数式),所得结果仍是等式。
如果a=b,那么a ±c=b ±c 。
2.等式两边都乘或者除以同一个数(或代数式),所得结果仍是等式。
如果a=b,那么ac=bc,c a =c b (c ≠0) 拓展:①对称性:如果a=b,那么b=a,即等式的左右互换位置,所得的结果仍是等式;②传递性:如果a=b,b=c,那么a=c (等量代换)练习:1.等式的两边都加上(或减去) 或 ,结果仍相等.2.等式的两边都乘以 ,或除以 的数,结果仍相等.3.下列说法错误的是( )A .若则B .若,则C .若则D .若则4.下列等式变形错误的是( )A.由a=b 得a+5=b+5;B.由a=b 得99a b =--; C.由x+2=y+2得x=y; D.由-3x=-3y 得x=-y5.运用等式性质进行的变形,正确的是( )A.如果a=b,那么a+c=b-c;B.如果a b c c =,那么a=b;C.如果a=b,那么a b c c =;D.如果a 2=3a,那么a=3 6.如果方程2x+a=x-1的解是x=-4,求3a-2的值是________.7.已知2x=3y (x ≠0),则下列比例式成立的是( )A B C D4.在下列式子中变形正确的是( )A . 如果a=b,那么a+c=b ﹣cB . 如果a=b,那么C . 如果,那么a=2D . 如果a ﹣b+c=0,那么a=b+c8.下列说法正确的是( ) A .如果ab=ac,那么b=c B . 如果2x=2a ﹣b,那么x=a ﹣b C . 如果a=b,那么 D . 等式两边同时除以a,可得b=c 9.下列叙述错误的是( )A .等式两边加(或减)同一个数(或式子),结果仍相等B .等式两边乘以(或除以)同一个数(或式子),结果仍相等C .锐角的补角一定是钝角D .如果两个角是同一个角的余角,那么它们相等10.下列各式中,变形正确的是( )A .若a=b,则a ﹣c=b ﹣cB .若2x=a,则x=a ﹣2C .若6a=2b,则a=3bD .若a=b+2,则3a=3b+29.如果a=b,则下列等式不一定成立的是( )A a ﹣c=b ﹣cB a+c=b+cC cb c a D ac=bc11.下列等式变形错误的是( )A .若a+3=b ﹣1,则a+9=3b ﹣3B .若2x ﹣6=4y ﹣2,则x ﹣3=2y ﹣1C .若x 2﹣5=y 2+1,则x 2﹣y 2=6D .若,则2x=3y12.下列方程变形正确的是( )A .由方程,得3x ﹣2x ﹣2=6 B .由方程,得3(x ﹣1)+2x=1 C .由方程,得2x ﹣1=3﹣6x+3 D .由方程,得4x ﹣x+1=4 A a+m=b+m B ﹣a=﹣b C ﹣a+1=b ﹣1 D14.下列说法正确的是()A在等式ax=bx两边都除以x,可得a=bB在等式两边都乘以x,可得a=bC在等式3a=9b两边都除以3,可得a=3D在等式两边都乘以2,可得x=y﹣115.(2013•东阳市模拟)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A a<c<bB a<b<cC c<b<aD b<a<c16.已知mx=my,下列结论错误的是()A. x=y B. a+mx=a+my C. mx﹣y=my﹣y D. amx=amy17.下列变形正确的是()A.若x2=y2,则x=y B.若axy=a,则xy=1C.若﹣x=8,则x=﹣12 D.若=,则x=y18.如果,那么= _________ .19.已知2y=5x,则x:y= _________ .20.已知3a=2b(b≠0),那么= _________ .三、解答题:21.利用等式的性质解下列方程并检验:(1)x+3=2 (2)-12x-2=3 (3)9x=8x-6(4)8y=4y+1 (5)7x-6=-5x (6)-35x-1=4;一元一次方程的解法1.移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
5.2一元一次方程的解法(第二课时+移项解一元一次方程)2024-2025学年北师大版七年级数学上册
对消:合并同类项; 还原:移项
5.2 一元一次方程的解法
知识.巩固
列方程并将过程补充完整
x的5倍与2的和等于x的三倍 与4的差,求x的值.
5x+2=3x-4,
列方程为:________________________________
5x-3x=-2-4,
解方程移项得 ________________________________
5x-2+2=8+2,
5x=8+2. ②
即5x=10,方程两边同时除以5 得x=2
问题一:观察上面求解过程,②这个方程和①相比较那一项发生变化?
发生那些变化?
原方程相比,-2这一项发生变化
-2从方程左边位置移动到右边变
成+2,位置和符号发生了变化.
5.2 一元一次方程的解法
情景导入
5x–2=8
5x = 8 + 2
问这个变形相当于把原方程中的-2改变符号后,从方程一边移到另一边,
这种变形称为移项
注意:移项要变号,正项变负项,负数变正项
5.2 一元一次方程的解法
思考.交流
解方程:5x-2=8①.
方程两边同时加2,得
5x-2+2=8+2,
也就是
5x=8+2. ②
即5x=10,方程两边同时除以5 得x=2
问题二:由①到 ②移项的依据是什么?
(1)8+7x=5x-2
(2) − = −
解:移项,得7x - 5x=-2 - 8.
解:移项,得 − = − + 合
合并同类项,得2x=-10.
一元一次不等式知识要点及典型题目讲解-
一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。
2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。
3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。
三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。
2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。
3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。
五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。
对于等式(例如a=b)的性质,我们比较熟悉。
不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。
这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。
等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。
(即两边仍然相等)。
2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。
专题3.2 一元一次方程的解法【十大题型】(举一反三)(人教版)(原卷版)2
专题3.2 一元一次方程的解法【十大题型】【人教版】【题型1 一元一次方程的整数解问题】 ............................................................................................................... 1 【题型2 换元法解一元一次方程】 ....................................................................................................................... 2 【题型3 根据两个一元一次方程的解之间的关系求参数】 ................................................................................ 2 【题型4 错解一元一次方程问题】 ....................................................................................................................... 2 【题型5 解一元一次方程】 ................................................................................................................................... 3 【题型6 探究一元一次方程解的情况】 ............................................................................................................... 3 【题型7 同解问题】 ............................................................................................................................................... 4 【题型8 一元一次方程的解与参数无关】............................................................................................................ 4 【题型9 一元一次方程的解法在新定义中的运用】 ............................................................................................ 5 【题型10 含绝对值的一元一次方程】 . (5)【题型1 一元一次方程的整数解问题】【例1】(2022·北京·首都师范大学附属中学七年级期中)若关于x 的方程(k −2019)x −2017=6−2019(x +1)的解是整数,则整数k 的取值个数是( ) A .5B .3C .6D .2【变式1-1】(2022·全国·课时练习)当整数k 为何值时,方程9x −3=kx +15有正整数解.求出这些解. 【变式1-2】(2022·内蒙古通辽·七年级期末)若关于x 的方程mx =3−x 的解为整数,则正整数m 的值为______.【变式1-3】(2022·北京石景山·七年级期末)设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=. (1)当2m =时,求方程的解;(2)若该方程有整数..解,求m的值.【题型2 换元法解一元一次方程】【例2】(2022·江苏·南通市八一中学七年级阶段练习)已知关于x的一元一次方程x2019+5=2019x+m的解为x=2018,那么关于y的一元一次方程5−y2019−5=2019(5−y)−m的解为()A.2013B.−2013C.2023D.−2023【变式2-1】(2022·河南·南阳市宛城区官庄镇第一初级中学七年级阶段练习)如果关于x的方程12022x+2021=2x+m的解是x=2023,则关于y的方程12022(y+1)+2021=2(y+1)+m的解是y=___.【变式2-2】(2022·江西景德镇·七年级期末)若x=−4是关于x的方程ax−b=1(a≠0)的解,则关于x的方程a(2x−3)−b−1=0(a≠0)的解为______.【变式2-3】(2022·山西临汾·七年级阶段练习)如果关于x的一元一次方程ax+b=0的解是x=−2,则关于y的一元一次方程a(y−1)+b=0的解是______.【题型3 根据两个一元一次方程的解之间的关系求参数】【例3】(2022·全国·七年级单元测试)关于x的方程4x−2m=3x−1的解是x=2x−3m的解的2倍,则m的值为()A.12B.14C.−14D.−12【变式3-1】(2022·山东菏泽·七年级期末)若方程12(x+1)=1的解与关于x的方程1−k2=x+1的解互为倒数,则k的值是_________.【变式3-2】(2022·全国·七年级课时练习)若关于x的方程3x+6=0与关于y的方程5y+2m=18的解互为相反数,则m=____.【变式3-3】(2022·江苏·南通市八一中学七年级阶段练习)已知方程2−3(x+1)=0的解与关于x的方程k+x2−2=2x的解互为倒数,求k的值.【题型4 错解一元一次方程问题】【例4】(2022·全国·七年级专题练习)在解关于x的方程x+23=x+a5−2时,小颖在去分母的过程中,右边的“−2”漏乘了公分母15,因而求得方程的解为x=4,则方程正确的解是()A.x=−10B.x=16C.x=203D.x=4【变式4-1】(2022·河南·上蔡县第一初级中学七年级阶段练习)将方程x+12−2x−36=1去分母,得到3x+3-2x-3=6,错在( ) A .最简公分母找错B .去分母时,漏掉乘不含分母的项C .去分母时,分子部分没有加括号D .去分母时,各项所乘的数不同【变式4-2】(2022·江苏·兴化市周庄初级中学七年级期中)小王在解关于x 的方程2﹣243x -=3a ﹣2x 时,误将﹣2x 看作+2x ,得方程的解x =1. (1)求a 的值; (2)求此方程正确的解.【变式4-3】(2022·四川·威远县凤翔中学七年级期中)小李在解方程3a −x =13(x 为未知数)时,误将−x 看作+x ,解得方程的解x =−2,则a =________,原方程的解为________. 【题型5 解一元一次方程】【例5】(2022·全国·七年级课时练习)方程11111[(1)]3261224x ------=-的解是x=( )A .112B .-112C .1112D .-1112【变式5-1】(2022·山东威海·期末)解方程: (1)4−2(x +4)=2(x −1); (2)13(x +7)=25−12(x −5);(3)0.3x−0.40.2+2=0.5x−0.20.3.【变式5-2】(2022·全国·七年级单元测试)解方程: (1)3(2−x )=4−x . (2)x+12−1=3x−23.(3)9−3y =5y +5. (4)3x−14−1=5x−76.【变式5-3】(2022·全国·七年级课时练习)方程2019121231220182019x x x x +++⋅⋅⋅+=+++++⋅⋅⋅++的解是x =____.【题型6 探究一元一次方程解的情况】【例6】(2022·全国·七年级课时练习)若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解【变式6-1】(2022·全国·七年级专题练习)阅读:关于x 方程ax =b 在不同的条件下解的情况如下:(1)当a ≠0时,有唯一解x =ba;(2)当a =0,b =0时有无数解;(3)当a =0,b ≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a = 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a ≠1【变式6-2】(2022·全国·八年级课时练习)关于x 的方程43mx x n +=-,分别求,m n 为何值时,原方程: (1)有唯一解 (2)有无数多解 (3)无解【变式6-3】(2022·全国·七年级单元测试)已知关于x 的方程4+3ax=2a ﹣7有唯一解,关于y 的方程2+y=(b+1)y 无解,判断关于z 的方程az=b 的解的情况. 【题型7 同解问题】【例7】(2022·全国·七年级课时练习)已知关于x 的方程:2(x −1)+1=x 与3(x +m )=m −1有相同的解,求关于y 的方程3−my 3=m−3y 2的解.【变式7-1】(2022·四川·仁寿县文宫镇古佛九年制学校七年级期中)若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.【变式7-2】(2022·全国·七年级课时练习)关于x 的方程4x −5=3(x −1)的解与x+a 2=2x+a 3+1的解相同,则a 的值为______.【变式7-3】(2022·黑龙江·哈尔滨美加外国语学校七年级阶段练习)若关于x 的方程3x −7=2x +a 的解与方程4x +3=7的解相同,求a 2+2a +1的值. 【题型8 一元一次方程的解与参数无关】【例8】(2022·北京·首都师范大学附属中学七年级期中)若关于x 的方程2kx+a 3=1−x−bk 6,无论k 为何值,它的解总是x =1,则代数式2a +b =_________.【变式8-1】(2022·全国·七年级课时练习)已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk的解总是x =2,则ab =_________.【变式8-2】(2022·全国·七年级单元测试)若a ,b 为常数,无论k 为何值时,关于x 的一元一次方程(b +1)x =12−4ka,它的解总是1,则a,b的值分别是_______.【变式8-3】(2022·山东滨州·七年级期末)若关于x的方程2kx+m3=2+x−nk6,无论k为任何数时,它的解总是x=2,那么m+n=_____.【题型9 一元一次方程的解法在新定义中的运用】【例9】(2022·全国·七年级专题练习)已知关于x的一元一次方程ax+b=0(其中a≠0,a、b为常数),若这个方程的解恰好为x=a﹣b,则称这个方程为“恰解方程”,例如:方程2x+4=0的解为x=﹣2,恰好为x =2﹣4,则方程2x+4=0为“恰解方程”.(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.【变式9-1】(2022·吉林·长春外国语学校七年级期末)新定义:如果两个一元一次方程的解互为相反数,就称这两个方程为“友好方程”,如:方程2x=6和3x+9=0为“友好方程”.(1)若关于x的方程3x+m=0与方程2x−6=4是“友好方程”,求m的值.(2)若某“友好方程”的两个解的差为6,其中一个解为n,求n的解.【变式9-2】(2022·全国·七年级专题练习)我们规定:若关于x的一元一次方程a+x=b(a≠0)的解为x=ba,则称该方程为“商解方程”.例如:2+x=4的解为x=2且2=42,则方程2+x=4是“商解方程”.请回答下列问题:(1)判断3+x=5是不是“商解方程”.(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.【变式9-3】(2022·四川成都·七年级期末)一般情况下m2−n3=m−n2−3不成立,但有些数可以使得它成立,例如:m=n=0.我们称使得m2−n3=m−n2−3成立的一对数m,n为“神奇数对”,记为(m,n).若(8,n)是“神奇数对”,且关于x的方程3x﹣6=n与2x﹣1=3k的解相等,则k的值为_____.【题型10 含绝对值的一元一次方程】【例10】(2022·全国·七年级课时练习)根据绝对值定义,若有|x|=4,则x=4或﹣4,若|y|=a,则y=±a,我们可以根据这样的结论,解一些简单的绝对值方程,例如:|2x+4|=5解:方程|2x+4|=5可化为:2x+4=5或2x+4=﹣5当2x+4=5时,则有:2x=1,所以x=12当2x +4=﹣5时,则有:2x =﹣9;所以x =﹣92故,方程|2x +4|=5的解为x =12或x =﹣92(1)解方程:|3x ﹣2|=4;(2)已知|a +b +4|=16,求|a +b |的值;(3)在(2)的条件下,若a ,b 都是整数,则a •b 的最大值是 (直接写出结果). 【变式10-1】(2022·广东广州·七年级期末)解关于x 的方程:||x +3|-k |=2.【变式10-2】(2022·河北·武邑宏达实验学校八年级阶段练习)先阅读下列的解题过程,然后回答下列问题. 例:解绝对值方程:21=x .解:讨论:①当0x ≥时,原方程可化为21x =,它的解是12x =; ②当0x <时,原方程可化为21x -=,它的解是12x =-. 原方程的解为12x =或12x =-.(1)依例题的解法,方程算132x =的解是_______; (2)尝试解绝对值方程:2|2|6x -=;(3)在理解绝对值方程解法的基础上,解方程:|2||1|3x x -+-=.【变式10-3】(2022·河南周口·七年级期中)先阅读下列解题过程,然后解答后面两个问题. 解方程:|x -3|=2.解:当x -3≥0时,原方程可化为x -3=2,解得x=5; 当x -3<0时,原方程可化为x -3=-2,解得x=1. 所以原方程的解是x=5或x=1. (1)解方程:|3x -2|-4=0. (2)解关于x 的方程:|x -2|=b+1。
5.2一元一次方程的解法(去括号解一元一次方程))2024-2025学年北师大版七年级数学上
移项,得
4x+x=17-2
合并同类项,得 5x=15
方程两边同除以5,得 x=3
问题六:你能总结出解含有括号的一元一次方程的一般步骤吗?
说一说你的看法.
5.2 一元一次方程的解法
知识.归纳
去括号解方程的步骤:
①去括号;乘法对加法的分配律
去括号法则
②移项;移项要变号
等式的基本性质1
那么可列出方程:y-0.5+4y=20-3
5.2 一元一次方程的解法
尝试.思考
问题四:x+4(x+0.5)=20-3这个方程和之前解的方程有什么不同?
方程出现了括号
问题五:怎样解所列的方程?说一说你的看法.
方程有括号先去括号,利用乘法对加法的分配律
5.2 一元一次方程的解法
尝试.思考
解方程:x+4(x+0.5)=20-3
③合并同类项;
合并同类项法则
④系数化为1:方程两边同时除以未知数的系数. 等式的基本性质2
问题七:步骤中每一步的依据是什么?
5.2 一元一次方程的解法
知识.巩固
解方程:1+6x=2(3-x).
解:去括号,得
移项,得
1+6x=6-2x.
6x+2x-=6-1.
合并同类项,得 8x=5.
方程两边都除以8,得 x=
去括号解方程
的步骤
去括号解一
元一次方程
去括号注意
去括号→移项→合并同类项→系数化为1
括号外的因数是负数,那么去括号后原括号内
各项的符号都要改变;
当乘数与一个多项式相乘时,乘数应乘多项式
3.1一元一次方程及其解法例题与讲解
一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解.(3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G .2x 2+2x +1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解.A .-5(x -1)=-4(x -2)B .4x +2=1C .13x +5=5 D .-3x -1=0 解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =b c(c ≠0). ③性质3:如果a =b ,那么b =a .(对称性)如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性)如:若∠1=60°,∠2=∠1,则∠2=60°.(2)等量代换 在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x 6-1=1,则x -6=1 解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57. 答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20.方程的两边同时除以5,得x =4.(2)方程的两边同时减去2x ,得2x -2=0.方程的两边同时加上2,得2x =2.方程的两边同时除以2,得x =1.(3)方程两边都同时减去1,得x +1-1=6-1,∴x =6-1.∴x =5.(4)方程两边都加上x ,得3-x +x =7+x ,3=7+x ,方程两边都减去7,得3-7=7+x -7,∴-4=x ,即x =-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边. ③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x =7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x =7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x =1,把3从方程的左边移到右边要变号,得5x =1-3,是属于移项;而把5x -15x +11x =11变成5x +11x -15x =11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区 移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体见下表:变形名称 具体做法 变形依据 注意事项去分母 方程左右两边的每一项都乘以各分母的最小公倍数 等式的基本性质2 不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号 可由小到大,或由大到小去括号 分配律;去括号的法则 不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项 移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1 移项要变号合并同类项 将方程化为ax =b 的最简形式 合并同类项的法则 只将系数相加,字母及其指数不变化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒解技巧 巧解一元一次方程值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ).A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14. 分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12,得4(2-x )-60=3(x -1).去括号,得8-4x -60=3x -3.移项,得-4x -3x =-3-8+60.合并同类项,得-7x =49.两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x 0.03. 分析:由于0.4x -90.5和0.03+0.02x 0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x 0.03的分子、分母中都乘以100,变为3+2x 3,然后去分母,再按解一元一次方程的步骤求解. 解:分母整数化,得4x -905-x -52=3+2x 3. 去分母,得6(4x -90)-15(x -5)=10(3+2x ).去括号,得24x -540-15x +75=30+20x .移项,得24x -15x -20x =540-75+30.合并同类项,得-11x =495.两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53. 将x =-53代入方程3x +3k =1, 得-5+3k =1,解得k =2,故应选C.答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________.解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8.答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧. (1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法. (2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快. 有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎡⎦⎤43⎝⎛⎭⎫12x -14-4=32x +1. 分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝⎛⎭⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1. 移项,合并同类项,得-x =174. 两边同除以-1,得x =-174. 【例6-2】 解方程x +37-x +25=x +16-x +44. 分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5(x +3)-7(x +2)35=2(x +1)-3(x +4)12,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10).去括号,得-24x +12=-35x -350.移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数.(2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116. 答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k 2的解,求k 的值. 分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得-2-k 3+3k +26-(-2)=-2+k 2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ).去括号,得-4-2k +3k +2+12=-6+3k .移项、合并同类项,得-2k =-16.方程两边同除以-2,得k =8.。
3.1一元一次方程及其解法(1)
3.1一元一次方程及其解法(1)
教材分析
本节课是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用等式性质解一些简单的方程。
本节课在描述一元一次方程的概念后,继续学习用等式基本性质解一元一次方程,从而引出用移项法则解一元一次方程,为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
教学目标
(一)知识教学点
1.由实际问题得到的方程抽象出一元一次方程的概念。
2. 理解等式基本性质,并利用等式基本性质解一元一次方程,并学会检验。
3. 理解移项法则,会用移项法则解一元一次方程。
(二)能力训练点
1.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
2.由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.(三)德育渗透点
增强学生用数学的意识,激发学生学数学的热情。
(四)美育渗透点
用移项法解方程明显比用等式性质方法解方程方便,体现了数学的方法美.
教学重点:利用移项法则解一元一次方程
教学难点:移项法则的理解和运用
教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。
教学准备:多媒体辅助
教学流程:
1.用猜谜引出学生身边的问题,从而引出一元一次方程的概念。
2.复习等式的基本性质。
3.利用等式基本性质解一元一次方程,同时给出检验的过程。
4.通过学生的观察、交流、归纳得到移项法则。
5.用移项法则解一元一次方程。
教学过程:
教学反思:。
第4章 一元一次方程(基础、典型、易错、压轴)分类专项训练(解析版)
第4章 一元一次方程(基础、典型、易错、压轴)分类专项训练【基础】一、单选题 1.(2022·江苏·宿迁市洋河新区初级中学七年级期中)下列方程中,是一元一次方程的是( ) A .210x y −+= B .121x+= C .210x −= D .4xy =【答案】C【分析】根据一元一次方程的定义进行逐一判断即可.【详解】解:A 、210x y −+=,含有两个未知数,不是一元一次方程,不符合题意; B 、121x+=,不是整式方程,不是一元一次方程,不符合题意; C 、210x −=,是一元一次方程,符合题意;D 、4xy =,含有两个未知数,不是一元一次方程,不符合题意; 故选C .【点睛】本题主要考查了一元一次方程的定义,熟知一元一次方程的定义是解题的关键:含有一个未知数且未知数的次数为1的整式方程叫做一元一次方程.则a 的值为( ) A .1− B .1C .3−D .3【答案】B【分析】直接将1x =代入230ax x +−=中即可得出a 的值. 【详解】解:∵1x =是关于x 的方程230ax x +−=的解, ∴230a +−=, 解得:1a =, 故选:B .【点睛】本题考查了一元一次方程的解的定义,熟知一元一次方程的解即为能使方程成立的未知数的值是解本题的关键.3.(2022·江苏·泰州中学附属初中七年级期中)运用等式性质进行的变形,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么ac bc = C .如果22a b =,那么a b = D .如果23a a =,那么3a =【答案】B【分析】根据等式的性质进行逐一判断即可.【详解】解:A 、如果a b =,那么22a b +=+,变形错误,不符合题意;B 、如果a b =,那么ac bc =,变形正确,符合题意;C 、如果22a b =,那么a b =±,变形错误,不符合题意;D 、如果23a a =,那么3a =或0a =,变形错误,不符合题意; 故选B .【点睛】本题主要考查了等式的性质,等式两边同时加上或减去一个数或式子等式仍然成立,等式两边乘以乘以一个数或式子等式仍然成立,等式两边同时除以一个不为零的数,等式仍然成立.4.(2022·江苏·七年级专题练习)宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数,解题先要“立天元为某某”,相当于“设x 为某某”.“天元术”是中国数学史上的一项杰出创造,它指的是我们所学的( )A .绝对值B .有理数C .代数式D .方程【答案】D【分析】根据数学发展常识作答.【详解】解:中国古代列方程的方法被称为天元术, 故选:D .【点睛】本题主要考查了方程,代数式,数学常识,方程是刻画现实世界的一个有效的数学模型的数学模型.5.(2022·江苏·七年级单元测试)解一元一次方程()112132x x −=−时,去分母正确的是( )A .()3212x x -=-B .()2263x x -=-C .()2213x x -=-D .()3262x x +=-【答案】B【分析】方程两边同时乘以6即可. 【详解】解:去分母,得()2263x x -=-, 故选:B .【点睛】本题考查了解一元一次方程,熟练掌握去分母的方法是解题的关键. 6.(2022·江苏·七年级专题练习)根据等式的性质,下列各式变形正确的是( ) A .若a bc c=,则a =b B .若ac =bc ,则a =bC.若a2=b2,则a=b D.若13−x=6,则x=﹣2【答案】A【分析】根据等式的性质逐项判断即可.【详解】解:A、若a bc c=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、13−x=6,则x=﹣18,故D不符合题意;故选:A.【点睛】此题考查了等式的性质,解题的关键是熟练掌握等式的性质.等式的性质:1、等式两边同时加上或减去相等的数或式子,等式两边依然相等.2、等式两边同时乘或除相等且不为零的数或式子,等式两边依然相等.3、等式两边同时乘方或开方,等式两边依然相等.7.(2022·江苏·七年级专题练习)若代数式4x﹣5与2x﹣1的值相等,则x的值是()A.1 B.32C.23D.2【答案】D【分析】根据题意列出一元一次方程,然后解方程求解即可.【详解】解:根据题意得:4x﹣5=2x﹣1,移项得:4x﹣2x=﹣1+5,合并得:2x=4,系数化为1得:x=2.故选:D.【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.8.(2022·江苏·七年级专题练习)下列方程的变形中,正确的是()A.由﹣2x=9,得29 x=−B.由13x=0,得x=3C.由7=﹣2x﹣5,得2x=5﹣7D.由112+x=﹣3x,得x+6x=﹣2【答案】D【分析】A 、方程x 系数化为1,求出解,即可作出判断;B 、方程x 系数化为1,求出解,即可作出判断;C 、方程移项得到结果,即可作出判断;D 、方程去分母得到结果,即可作出判断.【详解】解:A 、由﹣2x =9,得:x 92=−,不符合题意;B 、由13x =0,得:x =0,不符合题意;C 、由7=﹣2x ﹣5,得2x =﹣5﹣7,不符合题意;D 、由112+x =﹣3x ,得2+x =﹣6x ,即x +6x =﹣2,符合题意.故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.A .2x ﹣1=1B .2x =1C .3x ﹣4=xD .3x +6=0【答案】A【分析】将x =1分别代入四个选项中逐个判断即可.【详解】解:A 、把x =1代入方程得:左边=2×1﹣1=1,左边=右边,故本选项符合题意; B 、把x =1代入方程得:左边=2×1=2,左边≠右边,故本选项不符合题意;C 、把x =1代入方程得:左边=3×1﹣4=﹣1,右边=1,左边≠右边,故本选项不符合题意;D 、把x =1代入方程得:左边=3×1+6=9,左边≠右边,故本选项不符合题意. 故选:A .【点睛】此题考查了方程的解的含义,解题的关键是熟练掌握方程的解的含义.10.(2022·江苏·七年级单元测试)在方程①10x +=;②210x −=;③130x−=;④6−=x y 中,为一元一次方程的有( ) A .4个 B .3个 C .2个 D .1个【答案】D【分析】只含有一个未知数(元)并且未知数的指数是1 (次)的方程叫做一元一次方程,它的一般形式是ax +b =0 (a , b 是常数且a ≠0),根据此定义判断即可. 【详解】①10x +=;是一元一次方程,故①正确; ②210x −=;不是一元一次方程,故②错误; ③130x−=;不是一元一次方程,故③错误; ④6−=x y 不是一元一次方程,故④错误; 为一元一次方程的有1个;【点睛】本题主要考查了一元一次方程的识别,注意三个要点:只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11.(2022·江苏盐城·七年级期末)为了对学生进行爱国主义教育,某初中组织七年级学生参观位于建湖县九龙口镇的车桥战役指挥所纪念馆.若租用35座客车x 辆,则有6人没座位;若租用45座客车,则可少租1辆,且有1辆车空9个座位,问有多少名学生参加这次活动?根据题意列出方程,其中正确的是( ) A .35x ﹣6=45x +9 B .35x ﹣6=45(x ﹣1)+9 C .35x +6=45x ﹣9 D .35x +6=45(x ﹣1)﹣9【答案】D【分析】根据参加活动的学生人数不变即可列出方程. 【详解】解:∵租用35座客车x 辆, ∴租用45座客车(x ﹣1)辆,根据参加活动的学生人数不变,得:35x +6=45(x ﹣1)﹣9. 故选:D .【点睛】本题考查一元一次方程的实际应用,熟练掌握该知识点是解题关键.二、填空题12.(2022·江苏·兴化市楚水实验学校七年级阶段练习)若()a −+−=2022310,则=a ___________.【答案】2035a =##2009【分析】讨论绝对值内符号为正和负两种情况,绝对值内的数大于0时取其本身,绝对值内的数小于0时,在绝对值内整式前加一个负号,利用去绝对值的方法分别求解即可得到答案. 【详解】解:当2022a >时,原式a =−−=2022310,得2035a =; 当2022a <时,原式()a =−−−=2022310,得2009a =;∴ 2035a =或2009.【点睛】此题考查去绝对值的方法,同时涉及去括号的知识,正确去绝对值和去括号是本题的关键.13.(2022·江苏·沭阳县怀文中学七年级阶段练习)若+1a 与5−互为相反数,则a =______. 【答案】4【分析】根据互为相反数的两个数的性质,可列方程求出a 的值. 【详解】解:∵+1a 与5−互为相反数, ∴1(5)0a ++−=,故答案为:4.【点睛】本题主要考查相反数:互为相反数的两个数相加等于0.14.(2022·江苏·七年级专题练习)已知方程(k ﹣1)x 3m +1+12=0是关于x 的一元一次方程,则m =__,k ≠__. 【答案】 0 1【分析】根据一元一次方程的定义列式求解即可.【详解】解:∵方程(k ﹣1)x 3m +1+12=0是关于x 的一元一次方程, ∴k ﹣1≠0,3m +1=1, ∴k ≠1,m =0, 故答案为:0,1.【点睛】本题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.15.(2022·江苏·七年级专题练习)已知x =2022是关于x 的方程x ﹣2m =2的解,则m =___. 【答案】1010【分析】将x =2022代入方程x ﹣2m =2得到关于m 的方程,然后解方程求解即可. 【详解】解:把x =2022代入方程得:2022﹣2m =2, 解得:m =1010, 故答案为:1010.【点睛】此题考查了方程的解的概念以及解一元一次方程,解题的关键是将x =2022代入方程x ﹣2m =2得到关于m 的方程.16.(2022·江苏·七年级专题练习)下列四个方程x -1=0 ,a +b =0, 2x =0 ,ly =1中,是一元一次方程的有_______和_______. 【答案】 x -1=0 2x =0【分析】根据一元一次方程的定义:只含有一个未知数,并且含未知数的项的次数是一次的整式方程进行判断即可.【详解】解:a +b =0, ly =1,不是一元一次方程,x -1=0,2x =0符合一元一次方程的定义. 故答案为:x -1=0;2x =0.【点睛】此题考查了一元一次方程,熟练掌握一元一次方程的定义是解题的关键. 17.(2022·江苏·七年级单元测试)若3x =是关于x 的方程2510−−=x m 的解,则m 的值等于____. 【答案】1【分析】将方程的解代入方程可得关于m 的一元一次方程,从而可求出m 的值. 【详解】解:根据题意得:23510⨯−−=m ,故答案为:1【点睛】本题考查了方程的解的概念,熟知方程的解能够使方程左右两边相等是解决此题的关键.18.(2022·江苏·七年级单元测试)已知关于x 的方程25x a +=的解是1x =,则a 的值是____________. 【答案】3【分析】根据方程的解的意义,把x =1代入原方程,得关于a 的方程,解方程即可. 【详解】解:把x =1代入方程2x +a =5, 得:2+a =5, 解得:a =3. 故答案为:3.【点睛】本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.19.(2022·江苏·七年级专题练习)方程1224x x+−=的解是______. 【答案】0【分析】根据解方程的步骤解方程即可; 【详解】解:去分母得:2(x +1)=2-x 去括号得:2x +2=2-x 移项合并得:3x =0 系数化1得:x =0 故答案为: 0;【点睛】本题考查了一元一次方程的解,掌握解方程步骤是解题关键.三、解答题20.(2022·江苏·常州外国语学校七年级期中)解方程: (1)214x −= (2)4312x x −=− 【答案】(1) 2.5x = (2)x = 3【分析】(1)先移项,再合并同类项,最后把未知数的系数化为“1”,从而可得答案; (2)先移项,再合并同类项,最后把未知数的系数化为“1”,从而可得答案.【详解】(1)解:∵214x −=, ∴25,x = 解得: 2.5.x =(2)∵4312x x −=−, ∴515,x = 解得: 3.x =【点睛】本题考查的是一元一次方程的解法,掌握“一元一次方程的解法与步骤”是解本题的关键.21.(2022·江苏·射阳县第六中学七年级期末)解方程: (1)2﹣3x =5﹣2x ; (2)3(3x ﹣2)=4(1+x ). 【答案】(1)3x =− (2)2x =【解析】(1) 2﹣3x =5﹣2x2352x x −=− 3x −=解得3x =− (2)3(3x ﹣2)=4(1+x )9644x x −=+ 9446x x −=+510x =2x =【点睛】本题考查了解一元一次方程,正确的计算是解题的关键. 22.(2022·江苏·七年级专题练习)判断2x =是不是方程211x x −=+的解. 【答案】见解析【分析】将2x =代入方程两边判断求解即可.【详解】将2x =代入方程的左边,得方程左边2213=⨯−=, 将2x =代入方程的右边,得方程右边123=+=, ∵左边=右边,∴2x =是方程211x x −=+的解.【点睛】此题考查了一元一次方程的解的概念,解题的关键是熟练掌握一元一次方程的解的概念.23.(2022·江苏盐城·七年级期末)我们知道在一定条件下,弹簧的伸长量跟所挂物体质量成正比,根据图中给出的信息,解答下列问题:(1)挂一个小砝码弹簧伸长_____cm ,挂一个大砝码弹簧伸长______cm . (2)如果要使弹簧长度为10cm ,应挂大砝码、小砝码各多少个? 【答案】(1)1,2(2)应挂大砝码2个,小砝码3个【分析】(1)根据图中信息,即可分别求出结论;(2)设挂大砝码x 个,则挂小砝码(5-x )个,根据题意列出方程,解方程即可得出结论. (1)根据图中信息可知:弹簧原长3cm ,挂一个小砝码弹簧伸长(6-3)÷3=1cm 挂一个大砝码弹簧伸长(7-3)÷2=2cm 故答案为:1,2; (2)设应挂大砝码x 个,则小砝码(5-x )个 根据题意得:()251103x x +−⨯=−, 解得:2x =, 则53x −=,即:应挂大砝码2个,小砝码3个.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键. 24.(2022·江苏淮安·七年级期末)现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?【答案】面值为5元得人民币由12张,面值为2元得人民币由20张.【分析】设面值为5元得人民币由x 张,面值为2元得人民币由(32)x −张,然后由面值共100元,列出方程,解方程即可.【详解】解答:解:设面值为5元得人民币由x 张,面值为2元得人民币由(32)x −张, 根据题意得:()5232100x x +−=, 解得:12x =(张),3220x ∴−=(张).答:面值为5元得人民币由12张,面值为2元得人民币由20张. 【点睛】此题属于一元一次方程的应用题,关键是由题意列出方程.25.(2022·江苏镇江·七年级期末)某机械加工厂计划在规定期限内完成一批零件的生产任务,如果每天生产零件25个,那么到期将比原计划少生产100个;如果每天生产零件30个,那么到期将比原计划多生产80个,求原计划几天完成任务? 【答案】原计划36天完成任务.【分析】设原计划x 天完成任务,根据两种生产方式下,这批零件原计划的产量相等建立方程,解方程即可得.【详解】解:设原计划x 天完成任务, 由题意得:251003080x x +=−, 解得36x =,答:原计划36天完成任务.【点睛】本题考查了一元一次方程的应用,正确建立方程是解题关键.【典型】一、单选题 1.(2021·江苏盐城·七年级阶段练习)方程x ﹣5=3x+7移项后正确的是( ) A .x+3x=7+5 B .x ﹣3x=﹣5+7C .x ﹣3x=7﹣5D .x ﹣3x=7+5【答案】D【分析】方程利用等式的性质移项得到结果,即可做出判断. 【详解】解:方程x-5=3x+7, 移项得:x-3x=7+5, 所以D 选项是正确的.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.(2020·江苏·灌南县新知双语学校七年级阶段练习)已知关于 x 的方程 2x ﹣a ﹣5=0 的解是 x=b ,则关于 x 的方程 3x ﹣a+2b=﹣1的解为( ) A .x=﹣1 B .x=1C .x=2D .x=﹣2【答案】D【分析】将x=b 代入方程计算可求出a 与b 的关系,代入3x ﹣a+2b=﹣1可得x 的值. 【详解】解: 将x=b 代入方程得: 2x ﹣a ﹣5=0,可得: 2b-a-5=0,2b-a=5, 将2b-a=5代入3x ﹣a+2b=﹣1,可得3x+5=-1,3x=-6,x=-2, 故选D.【点睛】此题考查了一元一次方程的解, 方程的解即为能使方程左右两边相等的未知数的值,注意整体替换思想的运用.3.(2020·江苏省新海高级中学七年级期中)受疫情影响,某景区2020年上半年游客人数比2019年下半年下降了40%,2020年下半年又比上半年下降了50%,随着国内疫情逐步得到控制,预计2021年上半年游客人数将比2019年下半年翻一番,设2021年上半年与2020年下半年相比游客人数的增长率为x .则下列关系正确的是( ) A .(1-40%-50%)(1+x )=2 B .(1-40%-50%)(1+x ))2=2 C .(1-40%)(1-50%)(1+x )2=2 D .(1-40%)(1-50%)(1+x )=2【答案】D【分析】设2019下半年游客人数为a ,则2020年上半年游客人数为(140%)a −,则2020年下半年游客人数为(140%)(150%)a −−,则2021年上半年游客人数为2a .然后根据题意列方程.【详解】解:设2019下半年游客人数为a ,则2020年上半年游客人数为(140%)a −,则2020年下半年游客人数为(140%)(150%)a −−,则2021年上半年游客人数为2a . 若设2021年上半年与2020年下半年相比游客人数的增长率为x , 则有(140%)(150%)(1)2a x a −−+=即(140%)(150%)(1)2x −−+=. 故答案选D.【点睛】本题主要考查一元一次方程的实际应用,找出数量关系是解题的关键.二、填空题4.(2020·江苏连云港·七年级阶段练习)为支持武汉抗击疫情,全国各地加班加点为前线医护人员提供防护面罩和防护服.某车间有30名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x 名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是__. 【答案】160x =240(30﹣x )【分析】根据一件防护服和一个面罩配成一套,可知防护服的数量等于面罩的数量,列出方程即可得到结果.【详解】解:设分配x 名工人生产防护服,则分配(30-x )名工人生产防护面罩, 根据题意得,160x=240(30-x ), 故答案为:160x=240(30-x )【点睛】本题考查一元二次方程与实际问题的配套问题,找到等量关系列方程是解题的关键.5.(2020·江苏省新海高级中学七年级期中)用符号※定义一种新运算a ※2()b ab a b =+−,若3※0x =,则x 的值为________. 【答案】-6【分析】正确理解新的运算法则,套用公式列出方程,直接解答即可. 【详解】解:由题意得:3※x =3x +2(3-x )=0, 整理得:3x +6-2x =0, 解得:x =-6. 故答案为-6.【点睛】本题考查了在新定义下列一元一次方程,此题比较新颖.6.(2020·江苏省新海高级中学七年级期中)方程2x+1=3与方程()20a x −−=的解相同,则a=________. 【答案】3【分析】先解方程213x +=求出x 的值,再代入方程()20a x −−=可得一个关于a 的一元一次方程,然后解方程即可得. 【详解】213x +=,移项、合并同类项得:22x =, 系数化为1得:1x =,由题意,将1x =代入方程()20a x −−=得:30a −=, 移项得:3a =, 故答案为:3.【点睛】本题考查了解一元一次方程、以及方程同解问题,熟练掌握方程的解法是解题关键. 7.(2020·江苏·无锡外国语学校七年级期中)将数轴按如图所示从点A 开始折出一等边△ABC ,设A 表示的数为x -3, B 表示的数为2x -5,C 表示的数为5-x ,则x=_______.将△ABC 向右滚动,则点2016与点_____重合.(填A .B .C )【答案】 3 A .【分析】根据等边三角形的边长相等得出(5﹣x )﹣(2x ﹣5)=2x ﹣5﹣(x ﹣3),求出x 即可,再利用点2016对应的点与A 的距离,进一步利用3次一循环的规律求得答案即可. 【详解】∵△ABC 为等边三角形,设A 表示的数为x ﹣3,B 表示的数为2x ﹣5,C 表示的数为5﹣x ,∴(5﹣x )﹣(2x ﹣5)=2x ﹣5﹣(x ﹣3),解得:x =3; ∴点A 是3﹣3=0原点.∵2016÷3=672,∴点2016与点A重合.故答案为3,A.【点睛】本题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,将数与式的考查融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等是解题的关键.三、解答题8.(2021·江苏·七年级专题练习)列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士,现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调来多少名武警部队战士?【答案】应往甲处调去140名,往乙处调去60名武警部队战士【分析】设应往甲处调来x名武警部队战士, 则向乙处调来(200-x) 个武警部队战士, 根据调派后甲处的人数比乙处人数的2倍多10人, 即可得出关于ェ的一元一次方程, 解之即可得出结论.【详解】设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,解得x=140,∴200-x=60.答:应往甲处调去140名,往乙处调去60名武警部队战士.【点睛】本题主要考查一元一次方程的应用,根据已知条件列出方程式解题的关键. 9.(2021·江苏·七年级专题练习)某中学七年一班、二班共有90名学生,如果从一班转出4名同学到二班,那么一班的学生人数是二班的80%,问两班原来各有多少名学生?【答案】一班原来有44名学生,二班原来有46名学生.【分析】设一班原来有x名学生, 则二班原来有(90-x) 名学生, 由从一班转出4名同学到二班则一班的学生人数是二班的80%, 即可得出关于x的一元一次方程, 解之即可得出结论. 【详解】设一班原来有x名学生,则二班原来有(90﹣x)名学生,根据题意得:x﹣4=(90﹣x+4)×80%,解得:x=44,∴90﹣x=46.答:一班原来有44名学生,二班原来有46名学生.【点睛】本题主要考查一元一次方程的实际应用,需正确根据已知条件列方程. 10.(2020·江苏省新海高级中学七年级期末)解方程:(1)13142x xx −−−=− (2)131142x x x +−+=− (3)11[3(1)]125x x x −+−=(4)212110114312x x x +−+−=− 【答案】(1)-3;(2)-3;(3)114;(4)12. 【分析】利用解一元一次方程的步骤求解即可. 【详解】(1)去分母得:()()41423x x x −−=−−, 去括号得:41462x x x −+=−+, 移项得:42461x x x −−=−−, 合并同类项得:3x =−;(2) 去分母得:()413421x x x ++=−−, 去括号得:413422x x x ++=−+, 移项得:342241x x x −+=−−, 合并同类项得:3x =−; (3)去分母得:()131225x x x −+−=, ()1511010x x x −+−=,去括号得:1511010x x x −−−=, 移项得:1510110x x x −−=+, 合并同类项得:411x =, 把系数化为1:114x =; (4)去分母得:()()()32112421101x x x +−=−−+, 去括号得:631284101x x x +−=−−−, 移项得:681041312x x x −+=−−−+, 合并同类项得: 84x =, 把系数化为1:12x =; 【点睛】解分式方程式, 方程先去分母,然后去括号,再移项合并,最后将x 系数化为1即可求出解.A 1−B A 且到点A 的距离是6;点C 在点A 与点B 之间,且到点B 的距离是到点A 距离的2倍.(1)点B 表示的数是__________;点C 表示的数是________;(2)若点P 从点A 出发,沿数轴以每秒2个单位长度的速度向右匀速运动;同时,点Q 从点B 出发,沿数轴以每秒1个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为2?(3)在(2)的条件下,若点P 与点C 之间的距离表示为PC ,点Q 与点B 之间的距离表示为QB ,在运动过程中,是否存在某一时刻使得1PC QB −=?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【答案】(1)5,1;(2)43或83;(3)存在,13−或5.【分析】(1)根据两点间的距离公式可求点B 表示的数是;根据线段的倍分关系可求点C 表示的数;(2)分点P 与点Q 相遇前,点P 与点Q 相遇后两种情况讨论即可求解; (3)分点P 在点C 左侧时,点P 在点C 右侧时两种情况讨论即可求解. 【详解】解:(1)点B 表示的数是165−+=;点C 表示的数是11613−+⨯=. 故答案为:5,1; (2)点P 与点Q 相遇前,262t t +=−,解得43t =; 点P 与点Q 相遇后,262t t +=+,解得83t =. 故当t 为43或83时,点P 与点Q 之间的距离为2;(3)当点P 在点C 左侧时,22PC t =−,QB t =,1PC QB −=Q , 221t t ∴−−=,解得13t =.此时点P 表示的数是21133−+=−;当点P 在点C 右侧时,22PC t =−,QB t =,1PC QB −=Q , 221t t ∴−−=,解得3t =.此时点P 表示的数是165−+=.综上所述,在运动过程中,存在某一时刻使得1PC QB −=,此时点P 表示的数为13−或5.【点睛】考查了一元一次方程的应用,数轴、两点间的距离,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.【易错】一.填空题(共1小题)1.(2022秋•南岗区校级月考)x = ﹣3 时,代数式的值比的值大1.【分析】根据题意列方程=+1,解答即可.【解答】解:去分母得:4(2x +1)=2(5x ﹣1)+12, 去括号得:8x +4=10x ﹣2+12, 移项、合并得:﹣2x =6, 方程两边都除以﹣2得:x =﹣3. 故当x =﹣3时,代数式的值比的值大1.【点评】本题的关键在于根据题意列出等式,有一定的难度,同学们要注意读准题意. 二.解答题(共8小题)2.(2022秋•锡山区期中)阅读下面的材料:如图①,若线段AB 在数轴上,A ,B 点表示的数分别为a ,b (b >a ),则线段AB 的长(点A 到点B 的距离)可表示为AB =b ﹣a .请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm 到达A 点,再向左移动2cm 到达B 点,然后向右移动7cm 到达C 点,用1个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置,并直接写出线段AC 的长度; (2)若将点A 向右移动xcm ,请用代数式表示移动后的点表示的数?(3)若点B 以每秒2cm 的速度向左移动至点P 1,同时点A ,点C 分别以每秒1cm 和4cm 的速度向右移动至点P 2,点P 3,设移动时间为t 秒,试探索:P 3P 2﹣P 1P 2的值是否会随着t的变化而变化?请说明理由.【分析】(1)根据题目中点的运动可直接得出点A,B,C的位置,进而可得出CA的长度;(2)根据“数轴上的点,越往右越大”可得出点A移动后所表示的数;(3)先分别表示P1,点P2,点P3所对应的数,再表达两点间的距离,进而可表示P3P2﹣P1P2,最后判断它的值是否变化即可.【解答】解:(1)如图所示:.CA=4﹣(﹣1)=4+1=5(cm);(2)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(3)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:由题意可知,P1,点P2,点P3所对应的数分别为:﹣3﹣2t,﹣1+t,4+4t,由点的运动可知,点P3在点P2的右侧,点P2在点P1的右侧,∴P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.【点评】本题考查了数轴上点的运动,掌握数轴上两点之间的距离求解方法是解决问题的关键.3.(2021秋•连云港期末)解下列方程:(1)x+2=3x﹣6;(2)=﹣1.【分析】(1)根据移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)x+2=3x﹣6,移项,得x﹣3x=﹣6﹣2,合并同类项,得﹣2x=﹣8把系数化为1,得x=4;(2)=﹣1,去分母,得3(x﹣1)=2(3﹣2x)﹣6,去括号,得3x﹣3=6﹣4x﹣6,移项,得3x+4x=6﹣6+3,合并同类项,得7x=3,把系数化为1,得x=.【点评】本题考查解一元一次方程,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.4.(2021秋•亭湖区期末)解下列方程.(1)5(x﹣2)﹣1=﹣2(2x+1);(2).【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;【解答】(1)解:去括号,得5x﹣10﹣1=﹣4x﹣2,移项,得5x+4x=﹣2+10+1,合并同类项,得9x=9,把系数化为1,得x=1;(2)解:去分母,得4(2y﹣1)﹣12=﹣3(y+2),去括号,得8y﹣4﹣12=﹣3y﹣6,移项,得8y+3y=﹣6+4+12,合并同类项,得11y=10,把系数化为1,得.【点评】本题考查解一元一次方程,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.5.(2021秋•太仓市期末)若规定“⊕”的运算过程表示为:a⊕b=a﹣2b,如3⊕1=×3﹣2×1=﹣1.(1)则(﹣6)⊕=﹣3.(2)若(2x﹣1)⊕x=3⊕x,求x的值.【分析】(1)根据规定的运算列式计算;(2)根据规定的运算列方程,解出一元一次方程.【解答】解:(1)(﹣6)⊕=×(﹣6)﹣2×=﹣2﹣1=﹣3,故答案为:﹣3;(2)(2x﹣1)⊕x=3⊕x,×(2x﹣1)﹣2×x=×3﹣2x,x﹣﹣x=1﹣2x,x﹣x+2x=1+,x=,x=.【点评】本题考查解一元一次方程、有理数混合运算,掌握解一元一次方程的步骤和有理数混合运算顺序,理解规定的运算列式及方程是解题的关键.6.(2021秋•连云港期末)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x=8和x+1=0为“美好方程”.(1)若关于x的方程3x+m=0与方程4x﹣2=x+10是“美好方程“,求m的值;(2)若“美好方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的一元一次方程x+3=2x+k和x+1=0是“美好方程”,求关于y 的一元一次方程(y+1)+3=2y+k+2的解.【分析】(1)先表示两个方程的解,再求值.(2)根据条件建立关于n的方程,再求值.(3)先求k,再解方程.【解答】解:(1)∵3x+m=0,∴x=﹣.∵4x﹣2=x+10.。
人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)
《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。
一元一次方程的解法去分母解一元一次方程)同步练习+2024-2025学年北师大版数学七年级上册
第三课时去分母【知识导航】1.等式的性质2等式的两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.解一元一次方程的基本步骤(1)去分母:方程的两边同时乘各分母的________________,它的依据是______________,去分母时要注意不要漏乘某项(特别是不含分母的项);(2)去括号;(3)移项;(4)合并并同类项;(5)系数化为1.【针对练习】1.解方程1−x+36=x2,去分母,得()A.1-x-3=3xB.6-x-3=3xC.6-x+3=3xD.1-x+3=3x2.将方程x0.3=1+1.2−0.3x0.2中的分母化为整数,正确的是()A.10x3=1+12−3x2B.x3=10+1.2−0.33x0.2C.10x3=10+12−3x2D.x3=1+1.2−0.3x0.23.如果a3与2a−93互为相反数,那么a的值为()A.32B.-32C.-3D.34.若方程x−43−8=−x+22的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,则代数式a-1a的值为()A.−154B.154C.174D.-1745.已知关于x的方程x+a2=bx+55的解为x=2,其中a≠0,b≠0,则代数式ba的值是()A.54B.-54C.45D.-456.解方程2x−13−3x−44=1时,去分母为:___________________.7.已知x=1是方程3a−x4−x=5a−76的解,则a的值为_________.8.若代数式2x−13与代数式3-2x的和为4,则x=________.9.解方程.(1)14x−12=34(2)7x−54=38(3)3−x2=x+43(4)14(x+1)=13(x−1)(5)3(2x+1)4−2(2x−1)3=1(6)x−2x+56=1−2x−32(7)x0.7−0.17−0.2x0.03=1(8)13[14(x+15−1)−1]=210.请将下列解方程0.3x−0.50.2=1−2x3−3的过程补充完整并完成解答.解:原方程可变形为3x−52=1−2x3−3.(① ),得3(3x−5)=2(1−2x)−18.去括号,得① .(① ),得① .(① )合并同类项,得①未知数的系数化为1,得① .(① )(其中①①填写变形步骤名称,①①①①填写变形结果,①①填写变形依据.)11.某同学在解方程2x−13=x+a3−1去分母时,方程右边的−1没有乘3,因而求得方程的解为x=2,则方程正确的解为.12.列方程或方程组解答:如图,足球表面是由一些呈多边形的黑、白皮块缝合而成的,共计有32块,已知黑色皮块数比白色皮块数的一半多2,问两种颜色的皮块各有多少?13.已知线段AB=a,延长线段AB到点C;若点M是线段AC的中点,点N是线段BC的中点,且a是方程1−2x3=3x+17−3的解,则线段MN的长为()A.4117B.5221C.5936D.6746。
一元一次方程的解法(去分母)知识储备卷及学案
一元一次方程的解法(去分母)知识储备卷1、解方程:(1)42112+=+x x ; (2)2(x -2)-(4x -1)=3(1-x )2、找出下列各数的最小公倍数(1)4、2、3 (2)2、4、5 (3)3、4、123、找出下列各式中分母的最小公倍数(1)、2x -13 和x+22 (2)、 60x 和80x(3)21-x 和6112-x 和432x - (4)213-x 和432-x 和553+x4、运用等式的性质将下列方程中的分母去掉(1) (2)312253-=+x x5、课本98页的图是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了·在文书中记载了许多有关数学的问题·问题 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。
怎么用方程求出这个数?(只列不解)6、为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划共植树多少棵?(只列不解)1512=+x一元一次方程的解法(去分母)导学案一、学习目标1、知识目标:(1)掌握解一元一次方程中"去分母"的方法,并能准确、熟练的解这种类 型的方程 (2)了解一元一次方程解法的一般步骤,并按要求书写解答过程2、能力目标: 在具体情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,初步培养学生的化归思想,提升学生的计算能力。
3、情感态度价值观:通过具体情境引入新问题(如何去分母),激发学生的探究欲望二、重点、难点重点:能准确的 "去分母"解一元一次方程难点:(1)分子是多项式,去分母时的符号问题。
(2)学生克服漏乘现象。
三、学习过程(一)新知探索1、交流储备卷第4题如何运用等式的性质将方程中的分母去掉2、交流储备卷第6题 你能用两种方法解方程60x -80x =4吗? 解法一: 解法二:3、下面方程可以怎样求解?(二)尝试练习(1)、 (2)、53210232213+--=-+x x x312253-=+x x 1512412223=++--+x x x(三) 反思提高1 如何去分母?2 去分母应注意什么?3 数学小诊所:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2015•广州)解方程:5x=3(x ﹣4)【答案与解析】解:方程去括号得:5x=3x ﹣12,移项合并得:2x=﹣12,解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b (a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a =. 举一反三:【变式】下列方程变形正确的是( ).A .由2x -3=-x -4,得2x+x =-4-3B .由x+3=2-4x ,得5x =5C .由2332x -=,得x =-1 D .由3=x -2,得-x =-2-3【答案】D类型二、去括号解一元一次方程2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程.【答案与解析】(1)去括号得:42107x x +=+移项合并得:65x -=解得:56x =- (2)去括号得:32226x x --=-移项合并得:47x -=-解得:74x = 【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号.举一反三:【变式】解方程: 5(x -5)+2x =-4.【答案】解: 去括号得:5x -25+2x =-4.移项合并得: 7x =21.解得: x =3.类型三、解含分母的一元一次方程()()1221107x x +=+()()()232123x x -+=-3.解方程:4343431 623x x x+++++=.【答案与解析】解法1:去分母,得(4x+3)+3(4x+3)+2(4x+3)=6.去括号,得4x+3+12x+9+8x+6=6.移项合并,得24x=-12,系数化为1,得12x=-.解法2:将“4x+3”看作整体,直接合并,得6(4x+3)=6,即4x+3=1,移项,得4x=-2,系数化为1,得12x=-.【总结升华】对于解法l:(1)去分母时,“1”不要漏乘分母的最小公倍数“6”;(2)注意适时添括号3(4x+3)防止出现3×4x+3.对于解法2:先将“4x+3”看作一个整体来解,最后求x.举一反三:【变式】(2015•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122 ()22233 x x x-+=-再去中括号得:11122 24433 x x x-+=-移项,合并得:511 1212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.【巩固练习】一、选择题1.(2014春•唐河县期末)方程|2x ﹣1|=2的解是( ) A. x= B. x=﹣ C. x=或x=﹣ D. x=﹣2.下列解方程的过程中,移项错误的是( ).A .方程2x+6=-3变形为2x =-3+6B .方程2x -6=-3变形为2x =-3+6C .方程3x =4-x 变形为3x+x =4D .方程4-x =3x 变形为x+3x =4 3. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x = 4.对方程2(2x -1)-(x -3)=1,去括号正确的是( ).A .4x -1-x -3=1B .4x -1-x+3=1C .4x -2-x -3=1D .4x -2-x+3=15.方程1302x --=可变形为( ). A .3-x -1=0 B .6-x -1=0 C .6-x+1=0 D .6-x+1=2 6.3x -12的值与13-互为倒数,则x 的值为( ).A .3B .-3C .5D .-57.解方程21101136x x ++-=时,去分母,去括号后,正确结果是( ). A .4x+1-10x+1=1 B .4x+2-10x -1=1 C .4x+2-10x -1=6D .4x+2-10x+1=68. (2011山东日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏二、填空题9.(1)方程2x+3=3x -2,利用________可变形为2x -3x =-2-3,这种变形叫________.(2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x -kx+1=5x -2的解是x =-1,k 的值是_______.11.(2014秋•铜陵期末)如果|a+3|=1,那么a= .12.将方程1111124396x x x x +++=去分母后得到方程________. 13.(黔东南州)在有理数范围内定义一种运算“※”,其规则为a ※b =a -b .根据这个规则,求方程(x -2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s .三、解答题15.解下列方程:(1)4(2x -1)-3(5x+2)=3(2-x );(2)12323x x x ---=-; (3)0.10.2130.020.5x x -+-= . 16.(2015春•宜阳县期中)当k 取何值时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x ++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.【答案与解析】 一、选择题1.【答案】C.【解析】由题意,2x ﹣1=2,或2x ﹣1=﹣2,解这两个方程得:x=,或x=﹣2. 【答案】A【解析】A 中移项未改变符号.3. 【答案】C【解析】系数化为1,两边同乘以4即可.4. 【答案】D【解析】A 中,去掉第1个括号时第二项漏乘,去掉第2个括号时,-3没变号;B 中,去掉第1个括号时第二项漏乘;C 中,去掉第2个括号时,-3没变号.5.【答案】C【解析】A 中,去分母时3没有乘以2,-1没变号;B 中,去分母时-1没变号;D 中,等号右边0乘以2应是0,而不应是2.6.【答案】A【解析】-3x-12与13-互为倒数,所以3x -12=-3,x =3. 7. 【答案】C【解析】两边同乘以6得:2(21)(101)6x x +-+=,再去括号得:421016x x +--=.8. 【答案】B【解析】设有x 盏,则有(1)x -个灯距,由题意可得:36(1061)70(1)x -=-,解得:55x =.二、填空题9.【答案】(1)等式性质1, 移项; (2)等式性质2, 除以-3, 53-10.【答案】k =-6【解析】将1x =-代入得:2152k -++=--,解得:6k =-.11.【答案】﹣2或﹣4.【解析】∵|a+3|=1,∴a+3=1或a+3=﹣1,∴a=﹣2或﹣4.12.【答案】43x =6【解析】将方程两边乘以36,得18x+9x+12x+4x =6.13.【答案】x =3【解析】根据规则得:x -2-1=0,x =3.14.【答案】50 【解析】6001505015+=(秒) . 三、解答题15.【解析】 解:(1)8x -4-15x -6=6-3x8x -15x+3x =6+4+6-4x =16x =-4(2)12323x x x ---=- 6x -3(1-x )=18-2(x -2)11x =252511x = (3)原方程可化为:10201010325x x -+-=,约分得:5x -10-(2x+2)=3,去括号得5x -10-2x -2=3,移项及合并,得3x =15,系数化为1,得x =5.16.【解析】解2(2x ﹣3)=1﹣2x ,得x=,把x=代入8﹣k=2(x+),得8﹣k=2(+),解得k=4,当k=4时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同.17.【解析】解:将14x =代入,得: 113144155⨯++•=-. 解得:3•=. 所以被污染的数字为3.。