数值分析常微分方程初值问题的数值解
浅谈常微分方程初值问题数值解法
浅谈常微分方程初值问题数值解法在自然科学、工程技术、甚至社会科学的一些领域中,常常会遇见一阶常微分方程的求解问题:()上述问题,寻求解的具体表达式十分困难,仅对一些特殊形式的才有可能找到解的解析表达式,在大多情况下,初值问题的解不能用初等函数表示出来即使可写出解的解析表达式,但因为这些表达式过于复杂,要计算它在某些点上的函数值也异常困难。
在实际问题中,经常需要的恰是解在某些点上的函数值,因此研究初值问题的数值解法十分必要。
1 常微分方程初值问题的数值解法常微分方程的近似解法大体可分成三大类:一类是图解法和器械法;第二类是解的近似法;第三类是数值解法,即通过离散化的方法直接求出函数在某些点上的近似值,此数值解仅为精确解的近似解。
其基本原理为:一阶常微分方程的初值问题的解是上变量的连续函数,因此求上述问题的数值解,就是在区间上的若干离散点上用离散化的方法将初值问题化成离散变量的相应问题,从而相应问题的解可作为初值问题理论解的近似值。
由常微分方程的理论可知,只要在区域内连续,且关于满足林普希兹条件,则方程的解存在且唯一。
初值问题的数值解法通常采取“步进法”,而“步进法”又可分为“单步法”和“多步法”两类。
(1)单步法。
所谓“单步法”是指在计算时,只用到前一步的有关信息。
其一般形式为:,主要包括下面三种方法:Euler方法,改进的Euler公式-梯形公式和Runge-Kutta法。
(2)线性多步法。
单步法没有用到前几步计算得到的信息,因此为了提高精度,需重新计算多个点处的函数数值,如RK方法,故计算量较大。
线性多步法的基本思想是充分利用前面的已知信息来构造精度高且计算量小的算法来计算。
多步法常用方法是线性多步法,求解公式为:构造的常用方法是Taylor展开和数值积分方法。
常用的线性多步公式有:四阶Adams显式公式:四阶Adams隐式公式:四阶Milne显式公式:三阶Hamming公式:(隐式公式)预测校正系统和预测校正修正法:一般地,同阶的隐式法比显式法精确,而且数值稳定性好,但隐式公式中的求解较难,需要用到迭代法,这就增加了计算量。
课题10常微分方程初值问题的数值方法
课题10. 常微分方程初值问题的数值方法一.问题提出(1)利用欧拉方法和改进的欧拉方法求解初值问题:dy/dx=4*x/y-x*y; y(0)=3; 其中0<x<=2二.问题算法、c语言编程和上机运算结果1.欧拉法算法:输入微分方程f(x,y);输入积分部数n;输入初值x0,y0;输入步长h;利用k1=f(xn,yn)y(n+1)=yn+k1*h;n=0,1,2……采取不断循环计算;输出x1,x2,……xn.程序:/*微分方程*/float f(x,y)float x,y;{float z;z=4*x/y-x*y;return(z);}/* 欧拉法*/float EULAR(f)float (*f)();{int i,n;float x0,y0,x,y,k1,h;printf("\n请输入积分步数n:");scanf("%d",&n);printf("\n请输入初值x(0) y(0):");scanf("%f%f",&x0,&y0);printf("\n请输入步长h:");scanf("%f",&h);printf("\n x y"); printf("\n %f %f",x0,y0); for(i=1;i<=n;i++){x=x0+h;k1=(*f)(x0,y0);y=y0+h*k1;printf("\n %f %f",x,y); x0=x;y0=y;}}main(){EULAR(f);}结果:(1)h=0.1时(2)h=0.2时(3)h=0.4时2.改进的欧拉法算法:输入微分方程f(x,y);输入积分部数n;输入初值x0,y0;输入步长h;利用k1=f(xn,yn)k2=f(xn+h,yn+h*k1)y(n+1)=yn+(k1+k2)/2;n=0,1,2……采取不断循环计算;输出x1,x2,……xn.程序:/*微分方程*/float f(x,y)float x,y;{float z;z=y-2.0*x/y;return(z);}/* 改进欧拉法*/float EULAR(f)float (*f)();{int i,n;float x0,y0,x,y,k1,k2,h;printf("\n请输入积分步数n:");scanf("%d",&n);printf("\n请输入初值x(0) y(0):");scanf("%f%f",&x0,&y0);printf("\n请输入步长h:");scanf("%f",&h);printf("\n x y"); printf("\n %f %f",x0,y0); for(i=1;i<=n;i++){x=x0+h;k1=(*f)(x0,y0);k2=(*f)(x,y0+h*k1);y=y0+h*(k1+k2)/2.0;printf("\n %f %f",x,y); x0=x;y0=y;}}main(){EULAR(f);}结果:(1)当h=0.1时(2)当h=0.2时(3)当h=0.4时三.结果分析讨论1.对比欧拉法,改进的欧拉法和精确解的结果可知,改进的欧拉法所得到结果的精度比欧拉法的大,这是因为改进的欧拉法融入了属于隐式公式的梯形公式,它的计算数值解的精度要比欧拉公式好。
数值分析 第9章 常微分方程初值问题数值解法
9 .2 .2 梯形方法/* trapezoid formula */— 显、隐式两种算法的平均 为得到比欧拉法精度高的计算公式, 在等式( 2.4) 右端积分 中若用梯形求积公式近似, 并用yn 代替y ( xn ) , yn+1 代替y ( xn+1 ) ,则得
h yn 1 yn [ f ( xn , yn ) f ( xn 1 , yn 1 )], 2
yn 1 yn f ( xn , yn ), xn 1 xn
即 yn+1 = yn + hf ( xn , yn ) . ( 2 .1)
这就是著名的欧拉( Euler ) 公式.
• 若初值y0 已知, 则依公式( 2.1)可逐步算出
• y1 = y0 + hf ( x0 , y0 ) ,
为了分析迭代过程的收敛性, 将( 2. 7) 式与(2. 8 )式相减, 得
h ( k 1) (k ) yn 1 yn [ f ( x , y ) f ( x , y 1 n 1 n 1 n 1 n 1 )] 2
于是有
| yn 1 y
( k 1) n 1
hL (k ) | | yn 1 yn 1 |, 2
| f ( x, y1 ) f ( x, y2 ) | L | y1 y2 |, y1, y2 R,
定理1 设f在区域D={(x,y)|a≤x ≤b,y∈R}上连续, 关于y满足利普希茨条件,则对任意x0 ∈[a,b], y0 ∈R,常微分方程初值问题(1.1)式和(1.2)式当x ∈[a,b]时存在唯一的连续可微解y(x). 定理2 设f在区域D上连续,且关于y满足利 普希茨条件,设初值问题
1 2 1 2 dy x ydy xdx y x c 2 2 dx y y (0) 2 y2 x2 4
实验报告七常微分方程初值问题的数值解法
浙江大学城市学院实验报告课程名称数值计算方法实验项目名称常微分方程初值问题的数值解法 实验成绩指导老师签名日期2015/12/16 一.实验目的和要求1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题;二.实验内容和原理编程题2-1要求写出Matlab 源程序m 文件,并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上; 2-1 编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 2-2 分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度; 2-3 分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法; 3龙格-库塔方法;2-4 分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较; MATLAB 相关函数求微分方程的解析解及其数值的代入dsolve‘egn1’,‘egn2’,‘x ’ subsexpr,{x,y,…},{x1,y1,…}其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t ; subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入; >>symsxyz>>subs'x+y+z',{x,y,z},{1,2,3} ans= 6>>symsx>>subs'x^2',x,2 ans= 4>>s=dsolve‘12Dy y ∧=+’,‘(0)1y =’,‘x ’ ans= >>symsx >>subss,x,2 ans=右端函数(,)f x y 的自动生成f=inline ‘expr ’,’var1’,‘var2’,……其中’expr ’表示函数的表达式,’var1’,‘var2’表示函数表达式中的变量,运行该函数,生成一个新的函数表达式为fvar1,var2,……; >>f=inline'x+3y','x','y' f=Inlinefunction: fx,y=x+3y >>f2,3 ans= 114,5阶龙格-库塔方法求解微分方程数值解t,x=ode45f,ts,x0,options其中f 是由待解方程写成的m 文件名;x0为函数的初值;t,x 分别为输出的自变量和函数值列向量,t的步长是程序根据误差限自动选定的;若ts=t0,t1,t2,…,tf,则输出在自变量指定值,等步长时用ts=t0:k:tf,输出在等分点;options 用于设定误差限可以缺省,缺省时设定为相对误差310-,绝对误差610-,程序为:options=odeset ‘reltol ’,rt,’abstol ’,at,这里rt,at 分别为设定的相对误差和绝对误差;常用选项见下表;选项名 功能 可选值 省缺值 AbsTol 设定绝对误差正数 RelTol 设定相对误差 正数InitialStep 设定初始步长 正数 自动 MaxStep设定步长上界正数MaxOrder 设定ode15s 的最高阶数 1,2,3,4,5 5 Stats 显示计算成本统计 on,off off BDF 设定ode15s 是否用反向差分on,offoff例:在命令窗口执行>>odefun =inline ‘2*y t y -’,‘t ’,‘y ’;>>[],45(,[0,4],1)t y ode odefun =;ans=>>t y ‘o-’,%解函数图形表示>>45(,[0,4],1)ode odefun %不用输出变量,则直接输出图形 >>[],45(,0:4,1)t y ode odefun =;[],t yans=三.操作方法与实验步骤包括实验数据记录和处理2-1编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1Euler 法y=eulera,b,n,y0,f,f1,b1 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; yi+1=yi+hfxi,yi; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; for i=1:100y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解'改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 %求微分方程的数值解 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; T1=fxi,yi; T2=fxi+1,yi+hT1; yi+1=yi+h/2T1+T2; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; fori=1:100 y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解' 2-2分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度;1向前欧拉法>>euler0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8(2)改进欧拉法>>eulerpro0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8改进欧拉法的精度比向前欧拉法更高; 2-3分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法;2-4分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较;1>>euler0,50,50,,inline'','t','p','Dp=','p0= 1' ans= 精确解为 s=1-99/100expx/500 ans=Columns1through82>>dsolve'Dp=','p0=','t' ans=1-99/100expt/500 >>1-99/100exp ans=与欧拉法求得的精确值差0,0001四.实验结果与分析。
第9章 常微分方程初值问题数值解法
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )
宽
9
高
实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率
常微分方程初值问题数值解法
0.4 1.3582 1.3416 0.9 1.7178 1.6733
0.5 1.4351 1.4142 1.0 1.7848 1.7321
7
初值问题(2.2)有解 y ,1按2这x 个解析式子
算出的准确值 y(x同n )近似值 一y起n 列在表9-1中,两者 相比较可以看出欧拉方法的精度很差.
17
所以,局部截断误差可理解为用方法(2.10)计算一步的 误差,也即公式(2.10)中用准确解y(x代) 替数值解产生
的公式误差.
根据定义,显然欧拉法的局部截断误差
Tn1 y( xn1) y( xn ) hf ( xn , y( xn ))
y(xn h) y(xn ) hy(xn )
y(2) n1
yn
hf
( xn1,
y (1) n1
).
11
如此反复进行,得
y (k 1) n1
yn
hf
( xn1,
y(k) n1
),
(k 0,1, ).
(2.6)
由于 f (x,对y) 满足y 利普希茨条件(1.3). 由(2.6)减 (2.5)得
y (k 1) n 1
yn1
h
f
( xn1,
y(k) n 1
积分曲线上一点 (x的, y切)线斜率等于函数 值.
的f (x, y)
如果按函数 f (在x, y) 平x面y上建立一个方向场,那 么,积分曲线上每一点的切线方向均与方向场在该点的方 向相一致.
基于上述几何解释,从初始点 P0 (x出0 ,发y0,) 先依 方向场在该点的方向推进到 x 上x1一点 ,P然1 后再从 P1 依方向场的方向推进到 x 上x2一点 ,循P2此前进做出
数值分析(25) 常微分方程初值问题的
(9-1)
只要 f (x, y) 在[a, b] R1 上连续,且关于 y 满足 Lipschitz 条 件,即存在与 x, y 无关的常数 L 使 | f ( x, y1 ) f ( x, y2 ) | L | y1 y2 | 数值解 对任意定义在 [a, b] 上的 y1(x) 和 y2(x) 都成立,则上述IVP存 在唯一解。
3、 中点欧拉公式 /* midpoint formula */
中心差商近似导数
y( x 2 ) y( x0 ) y( x1 ) 2h
y( x2 ) y( x0 ) 2h f ( x1 , y( x1 ))
y n1 yn1 2hf (xn , y n ) n 1, 2,
h yn1 yn ( f ( xn , yn ) f ( xn 1 , yn hf ( xn , yn )) 2
可得
h yn 1 yn h (1 )( xn yn ) 1 2
yn 1 0.905 yn 0.095 xn 0.1
x0
x1
y1
x0 x1
过点 ( x0 , y0 ) ,以 f ( x0 , y0 ) 为切线斜率的
切线方程为
y y0 f ( x0 , y0 )( x x0 )
用 y1 y0 f ( x0 , y0 )( x1 x0 ) y0 hf ( x0 , y0 ) 近似代替 y ( x1 )
若数值公式的局部截断误差 En 1 O ( h p 1 ) ,则称此数值 公式是 p 阶的, p 是正整数。
欧拉法的局部截断误差,由Taylor展开: En 1 y( xn 1 ) yn 1
常微分方程初值问题的数值解法
常微分方程初值问题数值解法初值问题:即满足初值条件的常微分方程的解y′=f(x,y),x∈[x0,b]y(x0)=y0.定理1(利普希茨条件)若存在正数L,使得对任意,y1,y2,有|f(x,y1)−f(x,y2)|≤L|(y1−y2)|定理2(解存在性)①若函数f在方区域x∈[a,b],y∈R连续,②函数f关于y 满足利普希茨条件,则对任意x∈[a,b],常微分方程存在唯一的连续可微数值解.两类问题:①单步法---计算下一个点的值yn+1只需要用到前面一个点的值yn②多步法---计算下一个点的值yn+1需要用到前面l个点的值yl1、欧拉法---下一个点的计算值等于前一个点的计算值加上步长乘以前一个点的函数值•具体过程一些批注:显式欧拉方程指下一步要计算的值,不在迭代方程中;隐式欧拉方程指下一步要计算的值,在迭代方程中。
怎么计算隐式欧拉方程----要借助显示欧拉迭代计算---一般用迭代法-----迭代---将微分方程在区间[xn,xn+1]进行积分,然后函数f进行近似,即可得到迭代方程-----迭代方程收敛性?由函数关于y满足利普希茨条件,可以推出迭代公式收敛。
•局部截断误差:假设前n步误差为0,我们计算第n+1步的误差,将次误差称为局部截断误差,且局部误差为O(hp+1)•p阶精度:由理论证明:若局部误差阶的时间复杂度为O(hp+1),则整体误差阶为O(hp)我们称公式精度为p。
•显示欧拉法与隐式欧拉法•梯形方法----将显式欧拉迭代方程与隐式欧拉迭代方程做一下加权平均,构造的计算公式.•改进的欧拉方法---思想:因为梯形公式是隐式公式,将显式欧拉公式对下一步的计算值进行预估,用梯形公式对下一步的计算值进行校正.2、龙格-库塔方法思想:根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以前一个点的斜率;而这个斜率用该区间上的多个点的斜率的算数平均来逼近。
注意:怎么计算任意斜率Ki?第i个点的斜率Ki有微分方程可以算出f′=f(xn,yn)所以要算的f(xn,yn)值,由欧拉法即可算出, yn+1=yn+hf′•2阶-龙格-库塔方法----类似改进的欧拉法根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以斜率;而这个斜率用区间上的端点和中点的斜率的算数平均来逼近。
数值分析李庆扬第9章常微分方程初值问题数值解法讲义.
② 由 x0 , y0 f x0 , y0 切线 P0P1 ,
切线与 x x1 交点 P1 : y1 的近似值 ;
③ 再由 x1 , y1 向前推进到 P2 , 得到折线 P0P1 Pn ,近似 y yx 。
7
2021年5月4日
《数值分析》 黄龙主讲
h
yxn
yxn1
yn1 yn f
h
xn1 , yn1
yn1 yn h f xn1 , yn1
——后退的欧拉公式(隐式)
注意:① 显式计算方便,隐式稳定性较好;
② 上式隐含 yn1 ? ,采用迭代法求解。
12
2021年5月4日
《数值分析》 黄龙主讲来自欧拉公式的另一种理解:
将常微分方程 y f x, y 改写 dy f t , ytdt
“步进式”:顺着节点排列顺序,一步一步地向前推进。
步长:常用等步长 hn xn1 xn ,节点为 xn x0 nh 单步法:计算 yn1 时,只用到前一点的值 yn k 步法:计算 yn1 时,用到前面 k 点的值 yn , yn1 , , ynk1
5
2021年5月4日
《数值分析》 黄龙主讲
对微分方程从 xn 到 xn1 积分
y xn1 yxn
xn1 f t , yt dt
xn
由积分左矩形公式得
xn1 xn
f
t ,
yt dt
hf
xn ,
yxn
例如:
lim
h0
yxn1
h
yxn
yxn
yxn1
h
yxn
yxn
f xn , yxn
常微分方程初值问题的数值积分法
y( xn1) y( xn ) hfh ( xn , y( xn )) Rh ( xn ),
并且当 h 0时,
yh,0
y(x0 )
h1 max xIh
Rh (x)
0,
(7.4.2)
则称(7.4.1) 式为初值问题(7.1.1)的一个相容近似 ,
或称此格式满足相容条件即(7.4.2)式。
若
Rh (xn ) O(h p1), yh,0 y(x0) O(h p )(h 0)
a x0 x1 L xN1 xN b,
令 hn xn1 xn,称为积分网格的步长。
用y0 , y1, y2 , , yN 表示精确解 y(x)在节点 x0 , x1, x2 , , xN 上函数值 y( x0 ), y( x1), y( x2 ), , y( xN )的近似值。
对给定的数值积分法,各个 yn 是按某一递推算法确 定的。若在计算 yn1 时只用到已求出的 y0, y1,L , yn中的 yn ,而无须使用其余值 y0, y1,L , yn1 中的任何一个, 则称此法为单步法,否则,称之为多步法。
xn
的右端积分中用梯形公式,则得
yn1
yn
h 2
[
f
(
xn
,
yn
)
f (xn1, yn1)],
n 0,1,L
称该递推公式为梯形方法。
梯形公式
b f (x)dx (b a) ( f (a) f (b))
a
2
梯形方法
yn1
yn
h 2
[
f
( xn
,
yn
)
f (xn1, yn1)],
n 0,1,L
7.2 几个简单的数值积分法
数值分析教案_常微分方程初值问题数值解法
第九章常微分方程初值问题数值解法图9-1n 作为()n x y 的近似值,得 ()n n y x hf ,)y x ,两边从n x 到1+n x 积分,得()dx x y x f x y x n nx x n n ⎰+=-+1))(,()1 矩形公式计算上式右侧积分,即()()x x x x x d x y x f dx x y x f n nn n⎰⎰++≈11,))(,()n ,得()n n n n y x hf y y ,1+=+,故欧拉法也称为矩形法。
为了达到较高精度的计算公式,对欧拉法进行改进,用梯形公式计算()()([1,2))(,(1++≈+n n n x f x y x f hdx x y x f n 的近似值,得9.2 龙格—库塔法前面讨论的欧拉法与改进的欧拉法都是一步法,即计算y 1+n 时,只用到前一步值。
龙格—库塔(Runge-Kutta)法(简称为R-K 方法)不是通过求导数的方法构造近似公式,而是通过计算不同点上的函数值,并对这些函数值作线性组合,构造近似公式,再把近似公式与解的泰勒展开式进行比较,使前面的若干项相同,从而使近似公式达到一定的阶数。
我们先分析欧拉法与预估—校正法。
对于欧拉法⎩⎨⎧=+=+),(111n n n n y x hf k k y y 每步计算f 的值一次,其截断误差为O (2h )。
对于预估—校正法()()⎪⎪⎩⎪⎪⎨⎧++==++=+121211,,2121k y h x hf k y x hf k k k y y n n n n n n 每步计算f 的值两次,其截断误差为O (3h ).下面对预估—校正法进行改进,将该公式写成更一般的形式()()bh y ah x hf k y x hf k k R k R y y n n n n n n ++==++=+,,2122111 (2.1)其中b a R R ,,,21为待定常数。
选择这些常数的原则是在)(n n x y y =的前提下,使11)(++-n n y x y )的阶尽量高。
第一章常微分方程初值问题数值解法
(1.2.3)
其中rn,k(t)为插值余项。 代到(1.2.2)式中得
u ( tn +1 ) = u ( tn ) +
舍去余项 并用uj代替u(tj)即得
∫
tn+1 tn
Ln , k ( t ) dt + ∫ t rn , k ( t ) dt
tn+1
n
(1.2.4 (1.2.5)
Rn , k = ∫
⎡ ∑ ⎣α u
j =0
j =0
αk ≠ 0
(1.2.1)
j n+ j
⎤ − hβ j f n + j ⎦ = 0(数值解满足的差分方程)
因此称(1.2.1)为多步法 或 k-步法。 又因为(1.2.1)关于 u n + j , f n + j 是线性的,所以称为线性多步法。 为使多步法的计算能够进行,除给定的初值u0 外,还要 知道附加初值u1,u2,…,uk-1 ,这可用其它方法计算。 若 β k = 0 则称(1.2.1)是显式的; 若 β k ≠ 0 则方法(1.2.1)是隐式的。 例如,一般线性二步法可写成:
f ( t , u ( t ) ) = Ln , k +1 ( t ) + rn , k +1 ( t )
其中rn,k+1(t)为插值余项。 同理即
un +1 = un + h ∑ bk +1i f ( tn −i +1 , un −i +1 )
i =0
k +1
其中
bk +1i
=∫ ∏
−1
j =0 j ≠i
0
k +1
9、常微分方程初值问题数值解法
( k +1) yn +1
xn +1 ∫xn
− yn +1 |≤
hL 2
|
(k ) yn +1
− yn +1 |,
( 只要 hL < 1,则( 2.8)的ynk +1)收敛到(2.7)的yn +1. +1 2
三、单步法的局部截断误差与阶
一阶常微分方程初值问题(1.1)(1.2)的单步法的一般形式 yn +1 = yn + hϕ ( xn , yn , yn +1, h).
clear x=0,yn=1 %初始化 for n=1:10 yp=yn+0.1*(yn-2*x/yn); %预测 x=x+0.1; yc=yn+0.1*(yp-2*x/yp) ; yn=(yp+yc)/2 %校正 end
( 2.2)
作业: 作业:P381, 1, 2(1).
龙格—库塔 库塔(Runge-Kutta)法 §3 龙格 库塔 法
进一步 y ( xn +1 ) = y ( xn ) + ∫
xn +1 xn
f ( x, y ( x))dx,
(Байду номын сангаас.3)
∫
⇒ 其中
xn +1 xn
f ( x, y ( x))dx ≈ h ∑ ci f ( xn + λi h, y ( xn + λi h)).
yn +1 = yn + hϕ ( xn , yn , h),
i =1
r
(3.4) (3.5) 欧拉法r = 1, p = 1.改进
数值分析2.5__常微分方程的数值解
三、单步法的局部截断误差和精度 有关) 单步法的一般形式为 : (ϕ与f 有关) 显式单步法 + hϕ ( x n , y n , y n +1 , h)
yn +1 = yn + hϕ ( xn , yn , h)
整体截断误差: 整体截断误差:从x0开始,考虑每一步产生的 开始, 误差,直到x 误差,直到 n,则有误差 e = y ( x ) − y
y′′ = f ( x, y, y′) a ≤ x ≤ b (3) y ( a ) = y0 , y (b) = yn
(1),(2)式称为初值问题,(3)式称为边值问题。 , 式称为初值问题 式称为初值问题, 式称为边值问题 式称为边值问题。 在实际应用中还经常需要求解常微分方程组: 在实际应用中还经常需要求解常微分方程组:
xn 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 y(xn) 0 0.1923 0.3448 0.4412 0.4878 0.5000 0.4918 0.4730 yn 0 0.2000 0.3840 0.5170 0.5824 0.5924 0.5705 0.5354 yn-y(xn) 0 0.0077 0.0392 0.0758 0.0946 0.0924 0.0787 0.0624
并将数值解和该问题的解析解比较。 并将数值解和该问题的解析解比较。 x 解析解: y ( x) = 2 1+ x 方法的具体格式: 解:Euler方法的具体格式: 方法的具体格式
y n +1
yn 2 = y n + h( − 2 y n ) xn
取h=0.2, xn=nh,(n=0,1,2…,15), f(x,y)=y/x – 2y2 计算中取f(0,0)=1. 计算结果如下: 计算结果如下: 计算中取
常微分方程初值问题的的数值解法
本章讨论常微分方程初值问题的数值解法
2
考虑一阶常微分方程的初值问题
⎧ dy ⎪ = f ( x, y ) ⎨ dx ⎪ ⎩ y (a ) = y0
x ∈ [a, b]
只要 f (x, y) 在[a, b] × R1 上连续,且关于 y 满足 Lipschitz 条 件,即存在与 x, y 无关的常数 L 使对任意x∈[a, b] ,和y1, y2 ∈ R1 都有 | f ( x, y1) − f ( x, y2 ) | ≤ L| y1 − y2 | 在唯一解。 成立, 则上述问题存
⎧ ⎪ ⎨ ⎪ ⎩ y n +1 = yn + hf ( xn , yn ), h yn +1 = yn + [ f ( xn , yn ) + f ( xn +1 , y n +1 )] 2
改进的Euler方法:y0=1,
y1=y0+hf (x0, y0) =1.1, y1=1+01./2 ×[(1−2 ×0/1)+(1.1−2 ×0.1/1.1)] =1.095909, …… y11=…… y11=1.737869.
1 yn +1 = yn + h[ f ( xn , yn ) + f ( xn +1 , yn +1 )] 2
12
称之为梯形公式。这是一个隐式的计算公式,欲求的yn+1需 解一个方程。
3.截断误差
定义 在假设 yn = y(xn),即第 n 步计算是精确的前提下,考 虑的截断误差 εn+1 = y(xn+1) − yn+1 称为局部截断误差
⎧ y n +1 = y n + k1 ⎨ ⎩k1 = hf ( xn ,y n )
常微分方程初值问题的数值解法
常微分方程初值问题的数值解法在实际应用中,对于某些微分方程,我们并不能直接给出其解析解,需要通过数值方法来求得其近似解,以便更好地理解和掌握现象的本质。
常微分方程初值问题(IVP)即为一种最常见的微分方程求解问题,其求解方法有多种,本文将对常微分方程初值问题的数值解法进行较为详细的介绍。
一、欧拉法欧拉法是最基本的一种数值解法,它采用泰勒级数展开并截断低阶项,从而获得一个差分方程近似求解。
具体来讲,设 t 为独立变量,y(t) 为函数 y 关于 t 的函数,方程为:$$y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$$其中 f(t,y(t)) 为已知的函数,y(t_0) 为已知的初值。
将函数 y(t) 进行泰勒级数展开:$$y(t+h) = y(t) + hf(t, y(t)) + O(h^2)$$其中 h 表示步长,O(h^2) 表示其他高阶项。
为了使误差较小,一般取步长 h 尽可能小,于是我们可以用欧拉公式表示数值解:$$y_{n+1} = y_n + hf(t_n, y_n), \qquad y_0 = y(t_0)$$欧拉法的优点是容易理解和实现,但是由于截取低阶项且使用的单步法,所以误差较大,精度较低,在具体应用时需要慎重考虑。
二、龙格-库塔法龙格-库塔法(Runge-Kutta method)是一种多步法,比欧拉法更加精确。
龙格-库塔法的主要思想是使用不同的插值多项式来计算近似解,并且将时间步长分解,每次计算需要多次求解。
以下简要介绍二阶和四阶龙格-库塔法。
二阶龙格-库塔法将时间步长 h 分解成两步 h/2,得到近似解表达式:$$\begin{aligned} k_1 &= hf(t_n, y_n)\\ k_2 &= hf(t_n+h/2,y_n+k_1/2)\\ y_{n+1} &= y_n+k_2+O(h^3)\\ \end{aligned}$$四阶龙格-库塔法四阶龙格-库塔法是龙格-库塔法中应用最为广泛的一种方法,其需要计算的中间值较多,但是具有更高的精度。
实验八 常微分方程初值问题数值解法报告
实验八 常微分方程初值问题数值解法一、基本题科学计算中经常遇到微分方程(组)初值问题,需要利用Euler 法,改进Euler 法,Rung-Kutta 方法求其数值解,诸如以下问题:(1) ()⎪⎩⎪⎨⎧=-='004y xy y x y 20≤<x分别取h=0.1,0.2,0.4时数值解。
初值问题的精确解245x y e -=+。
(2) ()⎩⎨⎧=--='0122y y x y 01≤≤-x用r=3的Adams 显式和预 - 校式求解取步长h=0.1,用四阶标准R-K 方法求值。
(3)()()()100010321331221==-='⎪⎩⎪⎨⎧-='-='='y y y y y y y y y 10≤≤x用改进Euler 法或四阶标准R-K 方法求解取步长0.01,计算(0.05),(0.1y y y 数值解,参考结果 123(0.15)0.9880787,(0.15)0.1493359,(0.15)0.8613125y y y ≈-≈≈。
(4)利用四阶标准R- K 方法求二阶方程初值问题的数值解(I )()()⎩⎨⎧='==+'-''10,00023y y y y y 02.0,10=≤≤h x(II)()()()⎩⎨⎧='==+'--''00,10011.02y y y y y y 1.0,10=≤≤h x(III)()()⎪⎩⎪⎨⎧='=+='00,101y y e y y x 1.0,20=≤≤h x(IV)()()⎩⎨⎧='==+''00,100sin y y y y 2.0,40=≤≤h x二、应用题1. 小型火箭初始质量为900千克,其中包括600千克燃料。
火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。
数值分析-第七章小结
第七章 常微分方程初值问题的数值解法--------学习小结姓名 班级 学号一、 学习体会本章研究求解常微分方程初值问题的数值方法.构造数值方法主要有两条途径:基于数值积分的构造方法和基于泰勒展开的构造方法.后一种方法更灵活,也更具有一般性.泰勒展开方法还有一个优点,它在构造差分公式的同时可以得到关于截断误差的估计.常微分方程初值问题的数值解法的基本思想就是对常微分方程初值问题的数值解法,就是要算出精确解y(x)在区间[a,b]上的一系列离散节点处的函数值的近似值.数值解法需要把连续性的问题加以离散化,从而求出离散节点的数值。
本章介绍了常微分方程初值问题的基本数值解法,包括单步法和多步法。
单步法主要有欧拉法、改进欧拉法和龙格—库塔方法,多步法是Adams 法。
它们都是基于把一个连续的定解问题离散化为一个差分方程来求解,是一种步进式的方法。
用多步法求常微分方程的数值解可获得较高的精度。
实际应用时,选择合适的算法有一定的难度,既要考虑算法的简易性和计算量,又要考虑截断误差和收敛性、稳定性。
谢谢半年多来的老师和助教的辛勤劳动!二、 知识梳理7.1 常微分方程初值问题的数值解法一般概念基本思想:将初值问题离散化步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000'(,),()y f t y t t Ty t y =≤≤⎧⎨=⎩ 的数值解法的一般形式是1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-显式Euler 公式10(,),0,1,n n n n n y y hf t y t t nh n +=+⎧⎨=+=⎩隐式Euler 公式1110(,),0,1,n n n n n y y hf t y t t nh n +++=+⎧⎨=+=⎩7.2 显示单步法7.2.1 显示单步法的一般形式1(,,),(0,1,...,1)n n n n y y h t y h n M ϕ+=+=-单步法的局部截断误差111()()[,(),]n n n n n R y t y t h t y t h φ---=--整体截断误差()n n n y t y ε=-定理7.2.1 单步法的阶设增量函数在区域00{(,,)|,||,0}D t y h t t T y h h =≤≤<∞≤≤内对变量y 满足Lipschitz 条件,即存在常数K ,使对D 内任何两点1(,,)t u h 和2(,,)t u h ,不等式1212|(,,)(,,)|||t u h t u h K u u ϕϕ-≤-成立,那么,若单步法的局部截断误差1n R +与1(1)p h p +≥同阶,即11()p n R O h ++=,则单步法的整体截断误差1n ε+与p h 同阶,即1()p n O h ε+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、分别取步长 ,用显式欧拉法和隐式欧拉法求解初值问题
由结果分析算法的稳定性。(解析解为 )
解:当取步长 ,计算得到以下结果
准确值
显示欧拉法
隐式欧拉法
0
100.0000
100
0.025
28.6505
23.7305
32.768
0.03
22.3130
17.79797
26.2144
由结果可知,当 时,显式欧拉法不太稳定,而隐式欧拉法发散;
当 时,显式欧拉法和隐式欧拉法都是稳定的。
3、选择某常微分方程初值问题的数值方法计算 的近似值,并保证有四位有效数字。
, ,
t
0.1
0.2
0.3
3.125
13.1687
0.06
4.9787
1.5625
8.7791
当取步长为 ,计算结果如下:
准确值
显示欧拉法
隐式欧拉法
0.0
100
100
100
0.005
77.8801
75
80
0.01
60.6531
56.25
64
0.015
47.2367
42.1875
51.2
0.02
36.7879
42.1875
40.96
2.2
2.3
2.4
2.5
2.6
改进欧拉法
1.0000
1.1875
1.3565
1.5134
1.6614
1.8029
1.8029
四阶龙格库塔
1.0000
1.1874
1.3565
1.5133
1.6613
1.8028
1.9391
精确值
1.0000
1.1874
1.3565
1.5133
1.6613
1.8028
1.9391
100.0000
0.1
0.6738
-400
16.6667
0.2
0.0045
1600
2.7778
0.3
0.0000
-6400
0.4630
0.4
0.0000
25600
0.0772
0.5
0.0000
-102400
0.0129
0.6
0.0000
409600
0.0021
0.7
0.0000
-1638400
0.0004
1、编程求解常微分方程初值问题
a)
b)
(1)编程实现改进欧拉法和四阶龙格-库塔法,并求解常微分方程初值问题a)和b),写出数值结果。
(2)分析改进的欧拉公式和四阶龙格-库塔法的求解结果,并从结果分析其收敛性。
问题a)的真解为 ,问题b)的真解为 。
解:用改进欧拉法和龙格库塔法求解微分方程
求解结果如下:
数值分析课程实验报告
实验名称常微分方程初值问题的数值解
班级
姓名
学号
序号
教师
地点
数学实验中心
评分
一、实验目的
掌握常微分方程数值解的常用算法;
培养编程与上机调试能力。
二、用文字或图表记录实验过程和结果
对给定的 ,用如下改进的欧拉公式
对上述给定的 ,用如下四阶龙格-库塔法求解常微分方程初值问题,
三、练习与思考题分析解答
方法
0
0.1
0.2
0.3
0.4
改进欧拉法
1.0000
1.111
1.2520
1.4330
1.6762
四库塔法阶龙格
1.0000
1.1111
1.2500
1.4286
1.6667
精确值
1.0000
1.1111
1.2500
1.4286
1.4286
用改进欧拉法和龙格库塔法求解微分方程
求解结果如下:
方法
2.0
2.1
0.5
0.0000
5776.5
0.0004
当取步长为 ,计算结果如下:
准确值
显示欧拉法
隐式欧拉法
0.0
100
100
100
0.01
60.6531
50
66.6667
0.02
36.7879
25
44.4445
0.03
22.3130
12.5
29.6296
0.04
13.5335
6.25
19.7531
0.05
8.2085
0.15
0.0553
-337.5
2.3324
0.2
0.0045
506.2
0.6664
0.25
0.0004
-759.4
0.1904
0.3
0.0000
113.91
0.0544
0.35
0.0000
-17086
0.0155
0.4
0.0000
2562.9
0.0044
0.45
0.0000
-3844.3
0.0013
0.4
0.5
y
1.0999
1.1996
1.2985
1.3965
1.4931
t
0.6
0.7
0.8
0.9
1
y
1.5881
1.6812
1.7721
1.8605
1.9461
故近似值为:1.5863
4、画出RKF方法的算法流程图,并编程实现该算法,求解5.4节的常微分方程初值问题
四、本次实验的重点难点分析
重点:在理论理解显示欧拉法、隐式欧拉法、改进的欧拉法;通过编程实现改进欧拉法和四阶龙格-库塔法;
0.8
0.0000
6553600
0.0001
0.9
0.0000
-26214400
0.0ቤተ መጻሕፍቲ ባይዱ00
1.0
0.0000
104857600
0.0000
当取步长为 ,计算结果如下:
准确值
显示欧拉法
隐式欧拉法
0
100.0000
100
1
0.0000
0.05
8.2085
-150
28.5714
0.1
0.6738
225
8.1633
难点:本次试验当中通过具体的题目编写实现改进欧拉法和四阶龙格-库塔法,虽然可以计算出具体数值,但是实验并不能准确表达各种方法的准确度,以及实验结果的收敛性,所以我们要将理论和实践相结合,理解各种算法的收敛性。