多工位级进模设计

合集下载

多工位级进模的设计

多工位级进模的设计

多工位级进模的设计多工位级进模是一种高效的集成电路设计方法,能够有效提高集成电路设计的速度和效率。

本文将介绍多工位级进模的概念、设计原则以及其在集成电路设计中的应用。

一、概念与原理多工位级进模是一种将传统的级进模拟法和多工作位技术相结合的设计方法。

它通过将一个电路分成多个工作位,并行处理每个工作位的数据,从而大大提高了设计的效率。

在传统的级进模拟法中,设计者需要按照顺序逐个设计每个电路模块,然后将它们按照级进的方式连接起来。

这种方法存在着设计时间长、设计过程复杂等问题。

而多工位级进模则采用并行处理的方式,将一个电路分成多个工作位,每个工作位独立设计,最后再将它们合并在一起。

这种方法不仅可以提高设计效率,还可以减少设计过程中的冗余。

二、多工位级进模的设计原则1. 分工明确:在设计多工位级进模时,需要明确每个工作位的任务和功能。

每个工作位应该独立处理一部分任务,并将结果传递给下一个工作位。

2. 数据共享:在多工位级进模的设计中,各个工作位之间需要进行数据共享。

设计者需要合理规划数据的传递和交换方式,确保数据在各个工作位之间流动顺畅。

3. 数据同步:在多工位级进模的设计中,各个工作位之间需要进行数据同步。

设计者需要合理安排同步信号,以确保各个工作位能够按照正确的顺序进行处理。

4. 效率优化:在设计多工位级进模时,需要考虑如何优化设计效率。

可以通过设计合理的并行处理流程、合理分配资源、合理利用并行计算等方式来提高设计效率。

三、多工位级进模在集成电路设计中的应用多工位级进模广泛应用于集成电路设计的各个领域,如数字电路设计、模拟电路设计、系数字混合电路设计等。

在数字电路设计中,多工位级进模可以帮助设计者快速设计复杂的逻辑电路。

设计者可以将逻辑电路分成多个工作位,每个工作位独立设计,最后再将它们合并在一起,大大提高了设计效率。

在模拟电路设计中,多工位级进模可以帮助设计者快速设计复杂的模拟电路。

设计者可以将模拟电路分成多个工作位,每个工作位独立设计,最后再将它们合并在一起,减少了设计过程中的冗余。

多工位级进模的排样设计

多工位级进模的排样设计

2.2.4双边载体排样
双边载体排样是在产品条料的两侧分别留出一定宽度的材 料,并在适当位置与产品两边相连接,实现对产品条料的送 进,它比单边载体排样送进更顺利,料带定位精度更高,适 合产品两端都有接口可连,特别适合送进强度较弱的薄板料。 但是,相对材料利用率较低,且通常需要采用双边导正。
图2-7所示为双边载体排样,共有16个工位,其中 (1)~(4) 工位为冲裁; (5)~(14) 工位为弯曲;(15) 工位将制件从条 料上分离;(16) 工位为将废料切断,这一步根据实际情况而 定,如果有自动收料装置时,可不设计。
边料载体虽然增大了条料两侧搭边的宽度,材料的利用率有所 降低,但是提供了冲导正工艺孔需要的载体,特别是所冲带料较 薄时,可保证送料的刚度和精度。这种载体主要多用于薄料(t小 于0.2mm),制件精度要求较高的场合。
2.2.3单边载体排样
单边载体排样是在产品条料的一侧留出一定宽度的材料,并 在适当位置与产品相连接,实现对产品条料的送进,一般适合切 边型排样。
如图2-6所示的是产品生产批量较大或为提高材料利用率, 而采用的双向交叉排样。实际上是一模出两根料带,并在两 个产品( 可以是同一产品,也可以是不同产品 )相邻的地方找 出合适的部位用一连接带连起来,俗称“手拉手”,这样大 大增加整个条料的强度,在所有冲裁和成形的工序完成后再 把牵手部位冲掉即可,这一步称为“分手”。但是,实践证 明一根条料分出的料带越多、工位越多,生产过程越不稳定, 冲压得到的产品精度也越低。该排样共有18个有效工位( 其 余为空位 ),其中 (1) 为预压;(2) (3) (4) (5) (8) (16) 工 位为冲裁;(6) (7) (9) (10) (11) (12) (13) (14) (15) (17)工位为弯曲(第16工位在这里被称为分手 );(18) 为调整 工位。

多工位级进模的设计基础知识02

多工位级进模的设计基础知识02

多工位级进模的设计〔根底知识〕024.2 凹模多工位级进模凹模的设计与制造较凸模更为复杂和困难。

凹模的结构常用的类型有整体式、拼块式和嵌块式。

整体式凹模由于受到模具制造精度和制造方法的限制已不适用于多工位级进模。

1.嵌块式凹模图6.4.6 所示是嵌块式凹模。

嵌块式凹模的特点是:嵌块套外形做成圆形,且可选用标准的嵌块,加工出型孔。

嵌块损坏后可迅速更换备件。

嵌块固定板安装孔的加工常使用坐标镗床和坐标磨床。

当嵌块工作型孔为非圆孔,由于固定局部为圆形必须考虑防转。

图6.4.7为常用的凹模嵌块结构。

a图为整体式嵌块,b图为异形孔时,因不能磨削型孔和漏料孔而将它分成两块〔其分割方向取决于孔的形状〕,要考虑到其拼接缝要对冲裁有利和便于磨削加工,镶入固定板后用键使其定位。

这种方法也适用于异形孔的导套。

此主题相关图片如下:此主题相关图片如下:在设计排样时,不仅要考虑嵌块布置的位置还应考虑嵌块的大小,以及与凹模嵌块相对应的凸模、卸料嵌套等。

如图6.4.8所示。

2.拼块式凹模拼块式凹模的组合形式因采用的加工方法不同而分为两种结构。

当采用放电加工的拼块拼装的凹模,结构多采用并列组合式;假设将凹模型孔轮廓分割后进行成形磨削加工,然后将磨削后的拼块装在所需的垫板上,再镶入凹模框并以螺栓固定,那么此结构为成形磨削拼装组合凹模。

图6.4.9为图6.2.2所示弯曲零件采用并列组合凹模的结构示意图,图中省略了其他零部件。

拼块的型孔制造用电加工完成,加工好的拼块安装在垫板上并与下模座固定。

图6.4.10为该零件采用磨削拼装的凹模结构,拼块用螺钉,销钉固定在垫板上,镶入模框并装在凹模座上。

圆形或简单形状型孔可采用圆凹模嵌套。

当某拼块因磨损需要修正时,只需要更换该拼块就能继续使用。

磨削拼装组合的凹模,由于拼块全部经过磨削和研磨,拼块有较高的精度。

在组装时为确保相互有关联的尺寸,可对需配合面增加研磨工序,对易损件可制作备件。

关于分块原那么和拼块的设计见2.9。

多工位级进模设计实例

多工位级进模设计实例

多工位级进模设计实例
1.6 计算冲裁各工艺力
6.总的冲裁力 7.卸料力 8.推件力 9.冲裁总工艺力
多工位级进模设计实例
1.7 压力中心的确定
由于冲裁力较小,并且采用对角导柱模架, 受力平稳,同时根据零件的排样图可以看出, 模具压力中心不会超出冲模模柄的投影面积。 故压力中心确定为本模具的凹模对称中心。
冲压工艺与模具设计
多工位级进模设计实例
1.1 零件的工艺性分析
1. 零件尺寸精度
2. 零件结构
形状
3. 确定冲压 工艺方案
多工位级进模设计实例
1.1 零件的工艺性分析
簧片
1.2 排样设计
多工位级进模设计实例
排样图
1.3 模具工作工程
多工位级进模设计实例
模具工作过程
1.4 材料利用率
多工位级进模设计实例
落料凸模
多工位级进模设计实例
1.10 模具主要部件零件图
卸料板
多工位级进模设计实例
1.10 模具主要实例
1.5 凹模轮廓尺寸
1
2
凹模计算尺寸
根据凹模轮廓 尺寸选取标准
凹模
选取模具结构 的典型组合
3
根据典型组合 选取标准模架
4
多工位级进模设计实例
1.6 计算冲裁各工艺力
1.工件外轮廓周边长度 2.孔(φ6 mm)周边长度 3.侧刃冲切长度 4.冲切一个工件的周边长度 5.一个工步内冲切工件的总长度
9、21—
10—防转销;
11—模柄; 13—卸料螺钉;
14—垫板; 15—
16—弹簧; 17—导套;
18—导柱; 20—承料板;
22—下模座
簧片落料冲孔级进模

多工位级进模设计实例

多工位级进模设计实例

多工位级进模设计实例在计算机科学领域中,多工位级进模设计是一种用于提高处理器性能的技术。

它通过将处理器划分为多个工位,并在每个工位上同时执行不同的指令,以实现指令级并行处理。

本文将介绍几个多工位级进模设计的实例,以帮助读者更好地理解这一概念。

实例一:乘法器设计乘法运算是计算机中常见的运算之一。

在传统的乘法器设计中,需要进行多次乘法和加法操作,整个运算过程比较耗时。

而采用多工位级进模设计,可以将乘法运算拆分为多个阶段,每个阶段在一个工位上并行执行。

例如,可以将乘法器划分为部分积生成、部分积累加和最终结果生成等多个工位,在每个工位上同时执行不同的操作。

这样可以大大提高乘法器的运算速度。

实例二:浮点数加法器设计浮点数加法是计算机中常见的浮点运算之一。

在传统的浮点数加法器设计中,需要进行多次位运算和规格化等操作,整个运算过程较为复杂。

而采用多工位级进模设计,可以将浮点数加法器划分为多个阶段,每个阶段在一个工位上并行执行。

例如,可以将浮点数加法器划分为对阶段、对尾数相加和规格化等多个工位,在每个工位上同时执行不同的操作。

这样可以显著提高浮点数加法器的运算速度。

实例三:流水线设计流水线是多工位级进模设计中常用的一种技术。

它将处理器的指令执行过程划分为多个阶段,并在每个阶段上同时执行不同的指令。

例如,可以将流水线划分为取指、译码、执行、访存和写回等多个阶段,在每个阶段上并行执行不同的指令。

这样可以大大提高处理器的指令执行效率。

实例四:并行排序算法设计排序算法是计算机中常用的一种算法。

传统的排序算法通常是串行执行的,即每次只处理一个元素。

而采用多工位级进模设计,可以将排序算法划分为多个阶段,每个阶段在一个工位上并行执行。

例如,可以将排序算法划分为分组、局部排序和合并等多个工位,在每个工位上同时处理不同的元素。

这样可以显著提高排序算法的执行速度。

多工位级进模设计是一种提高处理器性能的重要技术。

通过将处理器划分为多个工位,并在每个工位上同时执行不同的指令,可以实现指令级并行处理,从而大大提高处理器的运算速度和指令执行效率。

本科毕业设计论文(多工位级进模设计)

本科毕业设计论文(多工位级进模设计)

第一章概论1.1 级进模概述一个冲压零件,如用简易模具冲制,一般来说,每项冲压工序,如冲裁〔冲孔、冲切或落料〕、弯曲、拉深、成型等,就需要一副模具。

这对于一个比较复杂的冲压零件来说,则需要几副模具才能完成。

因此这种简易模具的生产效率,相对来说仍是较低的。

对于大批料生产的定型产品,用简易模具进行生产是极不适应的。

多工位级进模是冷冲模的一种。

级进模又称跳步模,它是在一副模具内,按所加工的零件分为假设干个等距离工位,在每个工位上设置一定的冲压工序,完成冲压零件的某部分加工。

被加工材料〔一般为条料或带料〕在控制送进距离机构的控制下,经逐个工位冲制后,便得到一个完整的冲压零件〔或半成品〕。

这样,一个比较复杂的冲压零件,用一副多工位级进模即可冲制完成。

在一副多工位级进模中,可以连续完成冲裁、弯曲、拉深、成型等工序。

一般地说,无论冲压零件的形状怎样复杂,冲压工序怎样多,均可用一副多工位级进模冲制完成。

多工位级进模的结构比较复杂,模具制造精度高,这对模具设计者来说需要考虑的内容很多,尤其是级进模条料排样图的设计,模具各部分结构的考虑等都是十分重要的。

级进模,尤其是多工位级进模,配合高速冲床,实现高速自动化作业,能使冲压生产料率大幅度提高。

它在提高生产效率、降低成本、提高质量和实现冲压自动化等方面有着非常现实的意义。

多工位级进模可以对于一些形状十分复杂的冲压件进行冲裁、弯曲、拉深、成形加工。

对大批量生产的冲压零件尤其应当采用多工位级进模进行冲制。

级进模特点及其现状级进模是在压力机一次行程中完成多个工序的模具,它具有操作安全的显著特点,模具强度较高,寿命较长。

使用级进模便于冲压生产自动化,可以采用高速压力机生产。

级进模较难保证内、外形相对位置的一致性。

多工位级进模冲压工艺具有生产效率高,材料利用率高,冲压设备比较简单,对操作工人技术等级要求不高等优点,所以在工业生产中,应用广泛,并已成为不可缺少的重要加工手段之一。

多工位级进模设计

多工位级进模设计

多工位级进模设计多工位级进模的特点是生产效率高,生产周期短,占用的操作人员少,非常适合大批量生产。

主要介绍了多工位级进模有别于普通冲模的工作特点和设计特点。

标签:模具;多工位级进模;冲压模具1 多工位级进模定义及特点1.1 多工位级进模定义多工位级进模是在普通级进模的基础上发展起来的一种高精度、高效率、高寿命的模具,是技术密集型模具的重要代表,是冲模发展方向之一。

这种模具除进行冲孔落料工作外,还可根据零件结构的特点和成形性质,完成压筋、冲窝、弯曲、拉深等成形工序,甚至还可以在模具中完成装配工序。

1.2 多工位级进模特点冲压时,将带料或条料由模具入口端送进后,在严格控制步距精度的条件下,按照成形工艺安排的顺序,通过各工位的连续冲压,在最后工位经冲裁或切断后,便可冲制出符合产品要求的冲压件。

为保证多工位级进模的正常工作,模具必须具有高精度的导向和准确的定距系统,配备有自动送料、自动出件、安全检测等装置。

所以多工位级进模与普通冲模相比要复杂,具有如下特点:其特点概括起来有以下几条:(1)可以完成多道冲压工序,局部分离与连续成形结合。

(2)具有高精度的导向和准确的定距系统。

(3)配备有自动送料、自动出件、安全检测等装置。

(4)模具结构复杂,镶块较多,模具制造精度要求很高,制造和装调难度大。

(5)多工位级进模主要用于冲制厚度较薄(一般不超过2mm)、产量大,形状复杂、精度要求较高的中、小型零件。

用这种模具冲制的零件,精度可达IT10级。

2 多工位级进模的排样设计2.1 排样设计应遵循的原则排样设计是在零件冲压工艺分析和必要的工艺试验的基础之上进行的。

多工位级进模的排样,除了遵守普通冲模的排样原则外,还应考虑如下几点:(1)利于成形,后工序不能影响前已成形工序。

(2)载体形式选择:多工位冲压时条料上连接工序件,并使工序件在模具上稳定送进的部分材料。

其中,载体的基本形式分为双边载体、单边载体、中间载体等几种载体。

第四节多工位级进模的排样设计一

第四节多工位级进模的排样设计一
,要十分平直或圆滑,保证被冲零件的质量。
张家界航院模具教研室
13
第13页,共30页。
第四节 多工位级进模的排样设计
二、条料排样图设计时应考虑的因素 多工位级进模切废后,各段的连接方式有三种:
(1)搭接
张家界航院模具教研室
14
第14页,共30页。
第四节 多工位级进模的排样设计
二、条料排样图设计时应考虑的因素
为单排。
应用范围:薄料、制件精度要求高。 料厚t<0.2 mm, 工位数多(可
大于15个)
张家界航院模具教研室
19
第19页,共30页。
第四节 多工位级进模的排样设计
三、载体设计
5.中间载体
特点:具有单侧载体和双侧载体的优点,可节省大量的材料。中间
载体适合对称性零件的冲制,最适合对称且两外侧有弯曲的制件,这
8)冲制不同形状及尺寸的多孔工序时,尽量把大孔和小孔分开安排在不同工 位,以便修磨时能确保孔距精度。
9)为提高凹模强度及便于模具加工与制造,在冲裁形状复杂的制件时,可用
分断切除方法,即将其分解为单形孔分步进行冲裁。
张家界航院模具教研室
5
第5页,共30页。
第四节 多工位级进模的排样设计
一、条料排样图设计原则
张家界航院模具教研室
8
第8页,共30页。
第四节 多工位级进模的排样设计
二、条料排样图设计时应考虑的因素
5.模具结构
6.被加工材料
(1)材料供料状态
(2)加工材料的物理力学性能 (3)纤维方向
(4)材料利用率
张家界航院模具教研室
9
第9页,共30页。
第四节 多工位级进模的排样设计
二、条料排样图设计时应考虑的因素

第六章 多工位级进模设计

第六章 多工位级进模设计
图6-14 刃口分解与重组示例二
四、空工位设置及步距设计
(1)空工位设置 空工位简称空位,是指工序件经过时,不做任何加工的工位。级进模中
空工位的设置比较普遍。
级进模中设立空工位的目的是:
提高模具强度,保证模具寿命和产品质量 模具中设置特殊机构 在带料的级进拉深中,补偿拉深次数计算误差。 产品局部结构的改进导致模具结构也应作相应调整, 为避免重新制造新模具,利用预先设置的空工位进行调整。
第六章 多工位级进模设计
多工位级进冲压是指在一副模具中沿被冲原材料(条料或卷料)的直 线送进方向,具有至少两个或两个以上等距离工位,并在压力机的一次行 程中,在不同的工位上完成两个或两个以上冲压工序的冲压方法。
多工位级进模是一种结构复杂、加工精度要求高、可实现连续冲压的 先进模具,是技术密集型模具的重要代表,是冲模发展方向之一。
(二)级进弯曲的工序排样 1)对于带孔的弯曲类零件,一般应先冲孔,再冲切掉需要弯
曲部分的周边材料,然后再弯曲,最后切除其余废料,使 工件与条料分离。但当孔靠近弯曲变形区且又有精度要求 时应先弯曲后冲孔,以防孔变形。 2)压弯时应先弯外面再弯里面,弯曲半径过小时应加整形工序。
图6-5 级进弯曲工序排样的应用举例一
凸模的固定方式
图6-28 凸模常用的固定方法(1) a)、b)螺钉固定 c)锥面压装
图6-29 凸模常用的固定方法(2) a)销钉吊装 b)带压板槽的小凸模
1-凸模 2-销钉 3-凸模固定板
图6-30 组合式凸模安装
图6-31 硬质合金凸模的安装与固定
凸模高度可调装置
(二)凹模设计 (1)凹模的结构形式及固定方式
3)毛刺方向一般应位于弯曲区内侧,以减少弯曲破裂的危 险,改善产品外观。

多工位级进模的设计基础知识

多工位级进模的设计基础知识

多工位级进模的设计基础知识多工位级进模(multi-station progressive die)是一种常用于大批量生产金属零件的模具设计,它具有较高的生产效率和加工精度。

在实际制造过程中,对多工位级进模的设计基础知识有一定的了解可以帮助提高设计效率和质量。

本文将介绍多工位级进模的设计基础知识,包括模具结构、工作原理、设计要点等方面。

模具结构多工位级进模主要由上模和下模组成,每个工位上都布置有一组冲头和模具,通过一定的传动装置使各工位上的冲头同步作用。

同时,模具还包括进料系统、定位系统、导向系统等辅助设备,以确保生产过程中的稳定性和准确性。

工作原理多工位级进模的工作原理是:当金属板材经过进料系统送入模具中时,上模和下模的冲头会对金属板材进行一系列顺序的冲压操作,最终完成零件的成型。

在这个过程中,模具的每个工位都承担着特定的工艺加工任务,通过多个工位的协同作用,实现了高效、精确的生产。

设计要点1.工位规划:在设计多工位级进模时,需要充分考虑零件的结构特点和加工工艺要求,合理规划每个工位的功能和顺序,确保每个工位都能充分发挥作用。

2.冲压力计算:根据不同工位上的冲头数量、尺寸和材质,计算各工位所需要的冲压力,并合理选用动力装置和传动装置,保证整个模具的稳定性和可靠性。

3.导向系统设计:设计合理的导向系统可以确保工件在加工过程中的精度和稳定性,避免因歪斜或错位导致的质量问题。

4.冲头设计:冲头是冲压加工中的关键部件,设计冲头时需要考虑其形状、尺寸和材质,以确保零件能够满足设计要求。

5.进料系统设计:进料系统的设计直接影响到生产效率和产品质量,需要选择适当的进料方式和装置,保证金属板材的准确进料和定位。

通过严格按照以上设计要点进行设计,可以有效提高多工位级进模的制造效率和产品质量,满足大规模生产的需求。

总结多工位级进模是现代金属加工中常用的一种模具设计,它具有高效、精确、稳定的加工特点,适用于大批量生产各种金属零件。

§2.3 多工位级进模的设计步骤及其总体设计

§2.3  多工位级进模的设计步骤及其总体设计
§2.3 多工位级进模的设计步骤及其总体设计
一、多工位级进模的设计步骤
多工位级进模结构复杂、精密、高速冲压,造价高,制 造周期长。所以设计多工位级进模时,应十分细致、全 面地考虑问题。特别是某些模具有几个方向的运动, (侧向冲压-滑块机构)机构多种多样,且其体积又有 限(要不干涉,留足够的运动空间),给设计工作带来 很多困难。
§2.3 多工位级进模的设计步骤及其总体设计
二、多工位级进模的总体设计
5.拉深工位设计- 整体条料拉深
变形越来越厉害
§2.3 多工位级进模的设计步骤及其总体设计
二、多工位级进模的总体设计
5.拉深工位设计- 整体条料拉深 将在整条材料上某个部位进行拉深成形,在拉深过程中,
条料边缘易折弯起皱(受到周围材料的制约),影响冲 压过程的顺利进行。因此,必须增加拉深次数(使每次
§2.3 多工位级进模的设计步骤及其总体设计
二、多工位级进模的总体设计
3.搭边尺寸 根据排样来确定工位布置图,工件的周围与一般冲裁 模一样,应留有搭边。搭边值大则送料时条料刚性好, 便于送料,但材料利用率低,故应合理确定搭边值。
生产中确定搭边值的常用方法有以下几种:(按单工序 冲模确定,不在叙述) 1)根据加工材料厚度t确定搭边值(A=B)-查表
§2.3 多工位级进模的设计步骤及其总体设计
二、多工位级进模的总体设计
4.冲裁工位设计 1)尽量避免采用复杂形状的凸模,采用多段切除,宁 可多增加 些冲裁工位,也要使凸模形状简单,便于 凸、凹模的加工。
2)孔边距很小的冲件,为防止落料时引起离冲件边 缘很近的孔产生变形,可使冲外缘工位在前,冲内 孔工位在后。外缘以冲孔方式冲出。 3)局部内外形状位置精度要求很高时,尽可能在同一工 位上冲出。(复合模) 4)弯边附近的孔,为防止变形,应使弯曲工位在先、冲 孔工位在后。 5)为增加凹模强度,应考虑在模具适当位置上安排空工 位。

多工位级进模设计文献综述

多工位级进模设计文献综述

多工位级进模设计文献综述多工位级进模设计指的是在数字集成电路中使用多个级进模(MSB)单元,以提高电路的效率和速度。

传统的单工位级进模设计通常包含一个MSB单元,该单元通过递归方式进行数据移位和增量计算。

然而,这种设计方法会导致数据的长路径延迟和较低的处理速度,特别是当输入数据非常大时。

为了解决这个问题,研究人员提出了多工位级进模设计方法。

这种方法使用多个MSB单元并行地执行数据的移位和增量计算,从而减少了数据的传输路径,提高了处理速度和效率。

多工位级进模设计可以分为两种类型:并行型和串行型。

在并行型多工位级进模设计中,多个MSB单元被并行连接,每个MSB单元负责处理输入数据的一部分,并将结果传递给下一个MSB单元进行处理。

这种设计方法可以提高处理速度和效率,但是由于每个MSB单元都需要占用较大的面积,导致芯片的面积增加。

相比之下,串行型多工位级进模设计只需要一个MSB单元,但是该单元可以按照串行方式处理多个输入数据。

这种设计方法可以节省芯片面积,但是处理速度相对较低。

近年来,研究人员提出了许多新的多工位级进模设计方法,以进一步提高其性能和功能。

例如,一些研究人员提出了使用可重构逻辑门实现多工位级进模设计,通过动态改变电路结构实现不同位数的级进模运算。

另一些研究人员提出了使用并行计算单元来并行执行多个MSB单元的计算,从而提高速度和效率。

总之,多工位级进模设计是一个重要的电路设计技术,可以显著提高集成电路的性能和功能密度。

通过并行连接多个MSB单元或者通过串行方式处理多个输入数据,可以提高处理速度和效率。

未来,我们可以期待更多的研究工作,以进一步改进多工位级进模设计的性能和功能。

第四节多工位级进模的排样设计

第四节多工位级进模的排样设计

第四节多工位级进模的排样设计多工位级进模排样设计是指在一次进模运行中,利用模具上的多个工位,同时加工多个工序,提高运行效率的一种排样设计方法。

在传统的单工位连续模具排样设计中,模具在一次进模运行中只加工一道工序,造成了生产效率低下的问题。

而多工位级进模排样设计则通过合理的排样布局,将多个工序同时安排在同一模具上,充分利用机床的进给时间,提高生产效率。

在多工位级进模排样设计中,首先需要对产品的工序进行分析和归类,将相同性质的工序进行归类,按照工序的先后顺序,确定在一次进模运行中要加工的工序。

然后,根据加工工序的数量,确定需要的工位数量,同时考虑每个工序的加工时间、装夹时间和切换时间等因素,制定出合理的进模时间表。

接下来,根据进模时间表,进行排样布局设计。

在排样布局设计中,需要考虑多个工序之间的顺序、位置和间距等因素。

通常情况下,相邻工序的位置尽量靠近,以缩短切换时间;同时,各个工序之间要保持一定的间距,以方便装夹和操作。

此外,还需要考虑排样的可行性和工件的几何形状等因素,确保排样布局的合理性和稳定性。

在进行排样布局设计时,还可以利用计算机辅助设计软件进行模拟和优化。

通过虚拟的模具和工件,可以对排样布局进行可视化和动态模拟,快速评估不同布局的效果,并进行优化调整。

通过反复的模拟和优化,可以得到一个更加理想的排样布局方案。

总之,多工位级进模排样设计是一种提高生产效率的重要方法。

通过合理的工序归类、进模时间表制定和排样布局设计,可以充分利用机床的进给时间,提高生产效率,降低生产成本,提高企业的竞争力。

同时,借助计算机辅助设计软件的支持,可以进一步优化排样布局方案,提高设计效率和准确性。

冲压工艺与模具设计第6章多工位级进模设计

冲压工艺与模具设计第6章多工位级进模设计

冲压工艺与模具设计第6章多工位级进模设计多工位级进模设计是冲压工艺和模具设计中的一种重要技术。

它通过在模具中设置多个工位,并在一次冲压周期内完成多道工序的加工,提高了生产效率,降低了生产成本。

本章将介绍多工位级进模设计的原理、步骤和注意事项。

首先,多工位级进模设计的原理是在一张板材上设置多个工位,通过模具的移动,将板材逐个引导至不同的工位进行加工。

这样能够实现多道工序的同步进行,大大提高了生产效率。

同时,多工位级进模设计还能够减少加工误差,提高产品的质量稳定性。

多工位级进模设计的步骤主要包括以下几个方面:1.确定工序和工位数:根据产品的工艺要求和加工工序,确定需要设置的工位数。

通常情况下,每个工位都有一个特定的工序,因此需要根据产品的工艺流程来确定工位数。

2.工位的位置和间距:根据产品的尺寸和形状,确定不同工位之间的位置和间距。

通常情况下,工位之间的距离要足够大,以便模具的移动和板材的引导。

同时,还需要考虑工件的定位和夹持问题。

3.设计模具结构:根据产品的形状和工艺要求,设计模具的结构。

模具的结构应该能够实现板材的引导和定位,同时还要具备足够的刚性和稳定性。

4.确定进模方式:根据产品的工艺流程和加工要求,确定板材的进模方式。

通常情况下,可以采用滑块、导柱、引导板等方式来实现板材的进模。

5.考虑模具的适应性:在设计模具的同时,还要考虑模具的适应性。

模具应该能够适应不同尺寸和形状的板材,以应对不同的生产需求。

在进行多工位级进模设计时,还需要注意以下几点:1.合理安排工位的顺序:根据产品的工艺要求和加工工序,合理安排工位的顺序。

通常情况下,先进行简单工序,再进行复杂工序,以确保生产的连续性和高效性。

2.考虑工位的平衡性:在设置多个工位时,要考虑工位之间的平衡性。

工位之间的加工时间应该尽量一致,以避免生产的瓶颈。

3.加工误差的控制:在多工位级进模设计中,由于板材的引导和移动,容易产生加工误差。

因此,需要在设计模具时,采取相应的措施来控制加工误差,提高产品的精度和一致性。

多工位级进模的设计

多工位级进模的设计

多工位级进模的设计在制造业中,多工位级进模是一种常见的生产工艺,它可以提高生产效率和降低生产成本。

本文将介绍多工位级进模的设计原理和优势。

什么是多工位级进模?多工位级进模是一种通过在同一模具上设置多个工位,实现在不同工位上同时进行不同生产工序的工艺。

通常在汽车零部件、家电产品及日用品等行业中广泛应用。

通过多工位级进模,可以实现高效的生产流程,节约生产时间,提高生产效率。

多工位级进模的设计原理多工位级进模的设计原理主要包括以下几个方面:1.模具结构设计:多工位级进模需要设计合理的模具结构,包括各个工位的分布、工位之间的联动方式等。

模具结构设计需要考虑材料选择、强度分析等因素,确保模具的稳定性和耐用性。

2.工位规划:在设计多工位级进模时,需要合理规划各个工位的位置和功能,确保各工位之间的协调配合,实现生产流程的顺畅进行。

3.工艺参数设计:多工位级进模的设计还需要考虑工艺参数的设定,包括生产速度、温度控制、压力等参数的调整,以保证产品的质量和生产效率。

多工位级进模的优势多工位级进模相比传统的单工位模具具有一些明显的优势,包括:•提高生产效率:多工位级进模可以同时进行多个工序,节约生产时间,提高生产效率。

•降低生产成本:由于生产效率提高,可以减少生产周期,降低生产成本。

•减少人为操作:多工位级进模可以自动完成不同的工序,减少人为操作,减少人力成本。

结语多工位级进模是一种高效的生产工艺,可以极大提高生产效率,降低生产成本。

通过合理的模具结构设计和工位规划,可以实现多工位级进模的设计和制造。

在今后的制造业发展中,多工位级进模将发挥更加重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念
双侧载体 单侧载体是在条料的一侧设计的载体,实现对工序件的运载 。
中间载体
中间载体是指载体设计在条料的中间,该方法一般适用于对称零 件,尤其是两侧有弯曲的对称零件。
空位工位
当条料送进这个工位时,不进行任何加工,随着条料的送进,再 进入下一个工位,这样的工位称为空位工位。
级进模步距
级进模步距是指条料在模具中每送进一次,所需要向前移动的 送料距离。
平接
平接是在零件的直边上先冲切去一段,然后在另一工位再冲切去余 下部分,两侧冲切刃口平行、共线但不重叠 。
切接
切接是指在零件的圆弧部位上或圆弧与圆弧相切处进行分段切除的 连接方式,即在前工位先冲切一部分圆弧段,以后工位再冲切出其 余的圆弧部分,要求先后冲切出的圆弧光滑连接 。
单侧载体 单侧载体是在条料的一侧设计的载体,实现对工序件的运载 。
1 8孔; ③—空工位; ④—冲切两端局部余料;
⑤—冲两工件之间的分断槽余料;⑥—弯曲; ⑦—冲中部长方孔;ຫໍສະໝຸດ ⑧—载体切断,零件与条料分离
冲压工艺与模具设计
冲压工艺与模具设计
基本概念
多工位级进模
多工位级进模它是在一副模具内按照所需加工零件的冲压工 艺分成若干个等距离工位,在每个工位上设置一定的冲压工 序,完成零件某一部分的冲压工作。
搭接
形孔分两次冲裁,第1工位冲切出 A、C 区,第2工位冲出B区,B 区 长度方向比被冲裁部位的实际长度略长些,长处部分即为搭接区。
调试及维修困难。
(5)材料利用率较其他模具低,对于复杂零件产生的废料较多。
2.多工位级进模的分类
1)按冲压工序性质分类
(1) 冲裁多 工位级 进模
(2) 多工序成形 多工位级
进模
2) 按冲压件的成形
方法分类
(1)封闭形孔级进模
(2)切除余料级进模
封闭形孔连续式多工位冲压
①—冲导正销孔; ②—
1.多工位级进模的主要特点
(1)在一副模具内可以连续完成冲裁、弯曲、拉深、成形等多道冲压工序, 具有较高的生产效率。
(2)备有自动送料、自动出件、安全检测等装置,因而操作安全、自动化 程度高。
(3)具有高精度的导向和定距系统,因此产品的加工精度高 。 (4)模具结构复杂,镶块较多,模具制造精度要求很高,所以模具制造、
相关文档
最新文档