七年级上册一元一次方程追击问题

合集下载

一元一次方程之追及问题及公式

一元一次方程之追及问题及公式

甲、乙两车站相距400千米慢车每小时行驶100千米,快车每小时行驶140千米先让慢车行驶100千米,然后快车再出发问多长时间快车能追上慢车如果不是快车慢车的那再给你找一些追及应用题吧1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车2、甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。

乙每小时行4千米,甲每小时行多少千米3、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远4、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远5、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇6、一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车7、甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车8、兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米9、甲乙两站相距360千米,客车与货车同时从甲站出发驶向乙站,客车每小时行驶60千米,货车每小时行驶40千米,客车到达乙站后又以原速度返回甲站,两车在开出几小时后相遇10、甲乙两人在周长是400米的环形跑道上跑步,甲比乙跑得快,如果两人从同一地点出发,背向而行,那么经过2分钟相遇,如果两人从同一地点同向而行,那么经过20分钟甲追上乙,求甲乙各自的速度是多少11.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地每小时步行4千米。

一元一次方程(追击问题)

一元一次方程(追击问题)

一元一次方程——行程问题(追及问题)【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度X时间时间=路程十速度速度=路程十时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距二原距速度差:快车比慢车单位时间内多行的路程。

即快车每小时比慢车多行的或每分钟多行的路程。

追及时间:快车追上慢车所用的时间。

路程差:快车开始和慢车相差的路程。

熟悉追及问题的三个基本公式:路程差=速度差X追及时间;速度差=路程差十追及时间;追及时间=路程差*速度差追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。

【经典例题】例题1.甲、乙两站相距480 公里,一列慢车从甲站开出,每小时行90 公里,一列快车从乙站开出,每小时行140 公里。

(1)慢车先开出1 小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600 公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600 公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

行程(追击)问题例1. 甲、乙两人相距150 米,甲在前,乙在后,甲每分钟走60 米,乙每分钟走75 米,两人同时向南出发,几分钟后乙追上甲?例2. 骑车人与行人同一条街同方向前进,行人在骑自行车人前面450 米处,行人每分钟步行60 米,两人同时出发,3 分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例3. 两辆汽车从A 地到B 地,第一辆汽车每小时行54 千米,第二辆汽车每小时行63 千米,第一辆汽车先行一会后,第二辆汽车才出发,12 小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?例4. 甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300 千米,甲机每小时行300 千米,乙2 小时后追上甲飞机,乙飞机每小时飞行多少千米?练习1.姐姐步行速度是75米/分,妹妹步行速度是45 米/分。

一元一次方程(追击问题)知识讲解

一元一次方程(追击问题)知识讲解

一元一次方程——行程问题(追及问题)【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距速度差:快车比慢车单位时间内多行的路程。

即快车每小时比慢车多行的或每分钟多行的路程。

追及时间:快车追上慢车所用的时间。

路程差:快车开始和慢车相差的路程。

熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。

【经典例题】例题1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

行程(追击)问题例1.甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例2.骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例3.两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?例4.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300千米,甲机每小时行300千米,乙2小时后追上甲飞机,乙飞机每小时飞行多少千米?练习1.姐姐步行速度是75米/分,妹妹步行速度是45米/分。

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题问题描述追及问题是数学中一个常见的应用问题,也是一元一次方程的经典应用之一。

考虑如下情境:A 、B 两人从同一地点出发,A 的速度为 v1 m/s ,B 的速度为 v2m/s 。

如果 A 比 B 先出发 t 秒,那么 B 多久能追上 A ?构建方程为了解决这个追及问题,我们需要先构建一个一元一次方程来代表 A 和 B 的位置关系。

首先,我们根据题意可以得到 A 和 B 的距离和时间之间的关系:•A 的距离 = (A 的速度) * (时间 + t),即 d1 = v1 * (t + t)•B 的距离 = B 的速度 * 时间,即 d2 = v2 * t其中,d1 和 d2 分别表示 A 和 B 的距离,t 表示 A 比 B 先出发的时间差。

根据题意,当 A、B 两人相遇时,他们的距离相等。

因此,我们可以得到以下方程:v1 * (t + t) = v2 * t将上述方程变换一下,得到一元一次方程的标准形式:v1 * t + v1 * t = v2 * t再进一步整理得到:(v1 - v2) * t = 0根据一元一次方程的定义,我们可以推断出 t = 0 或 v1 - v2 = 0。

由于 t 表示 A比 B 先出发的时间差,而实际问题中 A 必然比 B 先出发,所以 t 不能等于 0。

因此,我们只需考虑 v1 - v2 = 0 的情况。

当 v1 - v2 = 0 时,即 A 和 B 的速度相等,这时无论谁先出发,B 都无法追上 A。

因此,追及问题存在的条件是v1 ≠ v2。

判断追及问题是否有解在解追及问题之前,我们需要先判断问题是否有解。

根据一元一次方程的定义,我们知道如果方程的系数一致,方程有解。

因此,当v1 ≠ v2 时,追及问题有解;当 v1 = v2 时,追及问题无解。

解追及问题当追及问题有解时,我们可以利用一元一次方程的求解方法来计算出相遇的时间 t。

将 v1 和 v2 带入 t 的方程中,求解得到 t 的值。

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题追及问题是一种经典的一元一次方程应用问题,常常出现在物理学、运动学以及交通领域中。

它描述的是两个物体相互追赶、追及的情况,通过建立一元一次方程来求解物体的速度、距离和时间等相关问题。

例如,假设有两个人A和B,他们在同一条直线上同时从不同的位置出发,A的速度是5米/秒,B的速度是4米/秒。

问题1:如果A和B同时出发后,多久之后他们能够相遇?问题2:相遇时,A和B分别走了多少米?首先,可以设定A和B同时出发的时间为t,那么A和B在t时间内分别走过的距离可以用速度乘以时间来表示。

根据题目中给出的数据,A 和B的速度分别是5米/秒和4米/秒,那么他们走过的距离可以表示为:A的距离=5tB的距离=4t问题1:他们相遇的时间是多久?由于他们在相遇时走过的距离是相等的,所以我们可以将A的距离和B的距离相等,即5t=4t。

解这个方程可以得到t=0,表示他们在出发后立即相遇。

但根据题意可知,他们是同时出发的,所以这个解是不符合实际情况的。

因此,我们可以设定他们相遇的时间为t,即5t=4t。

解这个方程可以得到t=0。

这个解同样不符合实际情况,所以可以排除。

问题2:相遇时,A和B分别走了多少米?我们可以将相遇时的距离设为d,即A和B相遇时的距离是d,那么根据上面的分析,A和B分别走过的距离分别是5d和4d。

根据题意,A 和B相遇时的距离是相等的,所以可以写出5d=4d,从而解得d=0。

同样不符合实际情况。

通过上面的分析可以看出,在这个问题中,A和B根本无法相遇。

这是因为在他们的出发速度中,A的速度5米/秒大于B的速度4米/秒,A 始终能够保持在B的前方,无论经过多久都不可能相遇。

通过这个例子,我们可以看到追及问题中一元一次方程的应用。

尽管上述问题中我们没有得到实际的解,但这并不妨碍追及问题在实际情况中的应用。

例如,在交通运输领域中,追及问题可以用于计算不同车辆之间的距离,以及不同车辆的相对速度和时间。

人教版七年级上册第三章一元一次方程3.4实际问题与一元一次方程行程问题应用题归类解析-追及问题教案

人教版七年级上册第三章一元一次方程3.4实际问题与一元一次方程行程问题应用题归类解析-追及问题教案
3.重点难点解析:在讲授过程中,我会特别强调速度、时间和距离的关和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与追及问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。通过实验操作,学生可以直观地看到追及过程,并理解速度和时间的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“追及问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.通过实际案例,归类解析不同类型的追及问题,提高学生解决实际问题的能力;
4.培养学生运用方程思想解决实际问题的习惯,激发学生的学习兴趣。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高学生的数学应用意识;
2.培养学生通过分析问题,抽象出数学模型,运用一元一次方程解决问题的能力,强化学生的数学建模素养;
3.在解决追及问题的过程中,培养学生逻辑思维和推理能力,提高学生的数学逻辑素养;
4.引导学生通过小组合作、交流讨论的方式,培养团队协作能力和表达能力,增强学生的数学交流素养;
5.激发学生主动探索、积极思考的学习兴趣,培养学生的自主学习能力和终身学习观念。
三、教学难点与重点
1.教学重点
-掌握追及问题的基本概念,包括速度、时间、距离的关系;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解追及问题的基本概念。追及问题是研究两个物体在运动过程中,一个物体追赶另一个物体的数学模型。它是行程问题中的重要组成部分,可以帮助我们解决现实生活中的许多问题。

一元一次方程之追及问题

一元一次方程之追及问题

一元一次方程之追及问题甲、乙两车站相距400千米慢车每小时行驶100千米,快车每小时行驶140千米先让慢车行驶100千米,然后快车再出发问多长时间快车能追上慢车???如果不是快车慢车的那再给你找一些追及应用题吧1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车?2、甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。

乙每小时行4千米,甲每小时行多少千米?3、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远?4、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远5、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇?6、一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车?7、甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车?8、兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米?9、甲乙两站相距360千米,客车与货车同时从甲站出发驶向乙站,客车每小时行驶60千米,货车每小时行驶40千米,客车到达乙站后又以原速度返回甲站,两车在开出几小时后相遇?10、甲乙两人在周长是400米的环形跑道上跑步,甲比乙跑得快,如果两人从同一地点出发,背向而行,那么经过2分钟相遇,如果两人从同一地点同向而行,那么经过20分钟甲追上乙,求甲乙各自的速度是多少?11.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地每小时步行4千米。

北师大版七年级(上)第五章一元一次方程-追及问题专项练习

北师大版七年级(上)第五章一元一次方程-追及问题专项练习

七年级(上)第五章一元一次方程(追及问题专项练习)班级_______姓名________学号________成绩____________1. 某人在商店里购买商品后,骑上自行车以5米/秒的速度沿平直运速骑行,5分钟后店主发现顾客忘了物品,就开摩托车开始追赶该顾客,如果摩托车行驶速度为54千米/时摩托车要什么时候能追上顾客?追上时离店多远?2、甲、乙两人在公路上同方向匀速前进,甲的速度为3千米/时,乙的速度为5千米/时,甲正午通过A地,乙下午2点才经过A地,问下午几点乙才能追上甲?追上时距A地多远?3.一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地,在甲、乙两地的终点处火车追上汽车,甲、乙两地相距多少千米?4.甲乙二人进行短跑训练如果甲让乙先跑40米则甲需要跑20秒追上乙,如果甲让乙先跑6秒,则甲仅用9秒就能追上乙,甲、乙二人的速度各是多少?5.甲在乙的后面36千米处,两人同时同向而行,甲每小时行18千米,乙每小时行9千米。

甲几小时可以追上乙?6.甲、乙两城之间的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇,如果两车分别从两城向同一方向开出,慢车在前、快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?7.上午10点,从一个港口开出一只货船,下午2点钟,又从这个港口开出一只客船,客船开出12小时追上货船,客船速度20千米/小时,求货船速度。

8.兄妹两人同时离家去上学。

哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校多远?9.一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子?10.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比乙领先多少米?11.一架敌机侵犯我领空,我机立即起飞迎击,在两机相距50千米时,敌机扭转机头以每分15千米的速度逃跑,我机以每分22千米的速度追击,当我机追至敌机1千米时与敌机激战,只用了半分就将敌机击落.敌机从扭头逃跑到被击落共用了多少分?12.小明、小峰和小光三人都从甲地到乙地,早上6时小明、小峰两人一起从甲地出发,小明每小时走5千米,小峰每小时走4千米,小光上午8时从甲地出发,傍晚6时,小光、小明同时到达乙地。

一元一次方程(追击问题)

一元一次方程(追击问题)

一元一次方程——行程问题(追及问题)【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距速度差:快车比慢车单位时间内多行的路程。

即快车每小时比慢车多行的或每分钟多行的路程。

追及时间:快车追上慢车所用的时间。

路程差:快车开始和慢车相差的路程。

熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。

【经典例题】例题1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

行程(追击)问题例1.甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例2.骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例3.两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?例4.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300千米,甲机每小时行300千米,乙2小时后追上甲飞机,乙飞机每小时飞行多少千米?练习1.姐姐步行速度是75米/分,妹妹步行速度是45米/分。

七年级一元一次方程应用题

七年级一元一次方程应用题

七年级一元一次方程应用题一、行程问题1. 例题:甲、乙两人从相距240千米的A、B两地同时出发,相向而行,3小时后相遇。

已知甲每小时行45千米,求乙每小时行多少千米?解析:设乙每小时行公式千米。

根据路程 = 速度×时间,甲行驶的路程为公式千米,乙行驶的路程为公式千米。

由于两人是相向而行,总路程为240千米,所以可列方程公式。

解方程:首先对公式进行移项,得到公式。

即公式,解得公式。

答案:乙每小时行35千米。

2. 追及问题例题:甲、乙两人在同一条路上同向而行,甲每小时走7千米,乙每小时走5千米,乙先走2小时后,甲才开始走,问甲几小时能追上乙?解析:设甲公式小时能追上乙。

乙先走2小时,则乙先走的路程为公式千米。

公式小时后,甲走的路程为公式千米,乙走的路程为公式千米。

当甲追上乙时,他们所走的路程相等,可列方程公式。

解方程:移项得公式。

即公式,解得公式。

答案:甲5小时能追上乙。

二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要公式天完成。

把这项工程的工作量看作单位“1”。

甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。

根据工作量 = 工作效率×工作时间,两人合作的工作效率为公式,可列方程公式。

解方程:先对括号内进行通分,公式。

则方程变为公式,解得公式。

答案:两人合作需要6天完成。

2. 例题:一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在两队合作,其间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天。

问乙队休息了几天?解析:设乙队休息了公式天。

甲队单独做20天完成,甲队每天的工作效率为公式;乙队单独做30天完成,乙队每天的工作效率为公式。

甲队工作了公式天,甲队完成的工作量为公式。

乙队工作了公式天,乙队完成的工作量为公式。

两队完成的工作量之和为单位“1”,可列方程公式。

人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)

人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)

人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)一、单选题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上乙,则下列四个方程中不正确的是()A.7x=6.5x+10B.7x-10=6.5x C.(7-6.5)x=10D.7x=6.5x-102.甲、乙两列火车在平行轨道上相向而行,已知两车自车头相遇到车尾相离共需8 s.若甲、乙两车的速度之比为3∶2,甲车长200 m,乙车长280 m,则甲、乙两车的速度分别为( ) A.30 m/s,20 m/s B.36 m/s,24 m/sC.38 m/s,22 m/s D.60 m/s,40 m/s3.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+4.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35B.7:34C.7:33D.7:325.甲乙两人练习跑步,甲先让乙跑10米,则甲5秒钟追上乙,若甲让乙先跑2秒,甲跑4秒就追上乙,甲乙两人每秒分别跑()A.4米、6米B.2米、4米C.6米、4米D.4米、2米6.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结果乙还比甲早到 0.1h .设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.+0.1=0.145x x- B.-0.1=0.145x x+ C.=0.145x x- D.4x ﹣0.1=5x+0.17.甲、已两地相距50千米,小明、小刚分别以6?千米/时、4千米/时从甲乙两地同时出发,小明领一只小狗以10千米/时奔向小刚,碰到小刚后奔向小明,碰到小明后奔向小刚…一直到两人相遇,小狗共跑了多少路程?( ) A.25千米B.30千米C.35千米D.50千米8.A 、B 两地相距900千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( ) A .4小时 B .4.5小时 C .5小时 D .4小时或5小时 二、填空题9.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时.10.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.11.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A ,C 两地距离为2千米,则A ,B 两地之间的距离是_____.12.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.13.在一段双轨铁道上,两人辆火车迎头驶过,A 列车车速为20米/秒,B 列车车速为25米/秒,若A 列车全长200米,B 列车全长160米,两列车错车的时间为____秒。

一元一次方程应用题追及问题

一元一次方程应用题追及问题

一元一次方程应用题追及问题一元一次方程应用题8种类型是相遇问题,追及问题,数字问题,溶度问题,体积变形问题,倍数问题,工程问题,实际生活问题。

1、追击问题:行程问题中的三个基本量及其关系:路程=速度×时间、时间=路程÷速度、速度=路程÷时间。

2、相遇问题:快行距+慢行距=原距、快行距-慢行距=原距。

3、航行问题:顺水(风)速度=静水(风)速度+水流(风)速度、逆水(风)速度=静水(风)速度-水流(风)速度。

4、水流问题:水流速度=(顺水速度-逆水速度)÷2。

5、工程问题:三个量及其关系为:工作总量=工作效率×工作时间,经常在题目中未给出工作总量时,设工作总量为单位1,即完成某项任务的各工作量的和=总工作量=1。

6、环形跑道与时钟问题:跑道÷两人速度差,甲的路程+乙的路程=环形周长,追及时间=路程差÷速度差,速度差=路程差÷追及时间,追及时间×速度差=路程差,快的路程-慢的路程=曲线的周长。

7、经济问题:商品利润=商品售价-商品成本价。

商品利润率=商品利润商品成本价×100%。

商品销售额=商品销售价×商品销售量。

商品的销售利润=(销售价-成本价)×销售量。

商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。

8、和、差、倍、分问题:增长量=原有量×增长率,在量=原有量+增长量。

复合应用题解题思路:1、理解题意,就是弄清应用题中的已知条件和要求问题。

2、分析数量关系,就是分析已知数量与未知数数量,已知数量与未知数数量间的关系,找到解题途径,确定先算什么,再算什么,最好算什么。

3、列式解答,就是根据分析,列出算式并计算出来。

4、验算并给出答案,就是检验解答过程中是否合理,结果是否正确,与原题的条件是否相符,最后写出答案。

人教版初中数学七年级上册一元一次方程与实际问题《行程问题追及相遇问题》

人教版初中数学七年级上册一元一次方程与实际问题《行程问题追及相遇问题》

答:B车行了3小时后与A车相遇。
变式练习
1. 甲、乙两地路程为 180 千米,一人
骑自行车从甲地出发每时走 15 千米,另 一人骑摩托车从乙地出发,已知摩托车 速度是自行车速度的 3倍,若两人同时出 发,相向而行,问经过多少时间两人相
遇?

例 2:小明每天早晨要在 7: 20 之前赶到距离家
归纳
一.画线段分析图
二.分析数量关系,找等量关系式(路程)
三.设出合适的未知数 四.列出方程
作业
练习册:P68例2、P76第10题、 P81放飞思维、P83第4题,
精讲例题
例1:A、B两车分别靠在相距240千米
的甲、乙两地,A车每小时行50千米,B 车每小时行30千米。 若两车同时相向而行,请问B车行了多 长时间后与A车相遇?
线段图分析:
甲 A 50x 240千米 30x B 乙
解:设B车行了x小时后与A车相遇 A车路程+B车路程=相距路程 50x+30x=240 解得x=3
家 小明80×5
1000米 80x ?
学校
爸爸
180x
解:设爸爸追上小明用了x小时 小明先行路程+小明后行路程=爸爸路程
80×5+80x =180x
解得x=4 答:爸爸追上小明需要4分钟
变式练习
1.若明明以每小时4千米的速度行驶上学,哥哥半小时后 发现明明忘了作业,就骑车以每小时8千米追赶,问哥哥需要 多长时间才可以送到作业?
爸发现他忘了带语文书,于是,爸爸立 即以 180 米 /分的速度去追小明,并且在 途中追上他。爸爸追上小明用了多少时 间?

例 2:小明每天早晨要在 7: 20 之前赶到距离家
1000米的学校上学,小明以80米/分的速度出发, 5分钟后,小明的爸爸发现他忘了带语文书,于是, 爸爸立即以 180 米 / 分的速度去追小明,并且在途 中追上他。爸爸追上小明用了多少时间?

一元一次方程追及相遇问题

一元一次方程追及相遇问题

一元一次方程追及相遇问题追及问题两个运动着的物体从不同的地点出发,同向运动。

慢的在前,快的在后,经过若干时间,快的追上慢的。

有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。

解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。

解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

基本公式有:追及(或领先)的路程÷速度差=追及时间速度差×追及时间=追及(或领先)的路程追及(或领先)的路程÷追及时间=速度差要正确解答有关“行程问题”,必须弄清物体运动的具体情况。

如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。

相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。

这类问题即为相遇问题。

相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。

相遇问题的核心是“速度和”问题。

利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。

一元一次方程应用题追及问题

一元一次方程应用题追及问题

一元一次方程应用题追及问题一、引言一元一次方程是初中阶段数学中的一个重要知识点,也是学生学习的一个重要内容。

在现实生活中,一元一次方程有着广泛的应用,例如追及问题就是一元一次方程应用的一个典型例子。

本文将通过追及问题来探讨一元一次方程在实际生活中的应用,内容主要包括追及问题的概念、解题方法、应用实例和解决问题的思维方式等。

二、追及问题的概念追及问题是指两个物体在同一直线上相向运动,当它们起始位置、速度和方向都已知的情况下,求它们相遇时的时间和地点。

追及问题是一种典型的应用题,它可以用一元一次方程来解决。

在追及问题中,一般可以将两个物体的运动过程分别用两个一元一次方程来表示,通过求解这两个方程,就可以得到它们相遇的时间和地点。

三、解题方法1.建立方程在追及问题中,首先要根据题目中所给的信息,建立两个物体的运动方程。

通常可以采用以下步骤来建立方程:(1)确定变量及其含义:在问题中,通常需要确定两个物体的位置、速度和时间等变量,然后通过这些变量来建立方程。

(2)建立运动方程:根据两个物体的起始位置、速度和方向等信息,可以建立它们的运动方程。

例如,假设两个物体分别以v1和v2的速度从两个不同的地点出发,那么它们的位置与时间的关系可以表示为s1= v1t + s0和s2 = v2t + s0。

2.求解方程建立方程之后,接下来就是求解方程。

通常可以采用以下方法来求解一元一次方程:(1)代入法:将一个方程中的某个变量的值用另一个方程中的变量表示,然后将此值代入另一个方程中,求出另一个变量的值。

(2)消元法:通过两个方程的加减法,将一个变量消去,然后求解另一个变量。

3.检验解的合理性求解方程之后,还需要检验解的合理性。

通常可以通过代入原方程进行检验,如果代入后等式成立,则说明解是正确的;如果等式不成立,则需要重新检查解题过程。

四、应用实例下面通过几个实际的应用实例来说明追及问题的具体应用:实例一:小明骑自行车以每小时12公里的速度从A地出发,2小时后小红驾车以每小时20公里的速度从B地出发,两人在5小时后相遇,请问A、B两地的距离各是多少公里?解:设A、B两地的距离分别为x公里。

七年级上册一元一次方程追击问题

七年级上册一元一次方程追击问题

一元一次方程追赶小明问题题型11、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?2、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

3,、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?题型21、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。

3、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。

4、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。

题型31、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?2、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.3、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?4、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?5、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?6、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?题型41、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?2、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?3、一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。

人教版初一数学上册 一元一次方程应用题 追及问题 讲义

人教版初一数学上册 一元一次方程应用题 追及问题 讲义

追及问题
解题步骤:
1、设x
2、明确谁快谁慢,是谁在追谁
3、将追上的一点表示出来
4、用含有x的式子表示总路程
5、写出两者路程的等式
例1、有一天,小明在街上走着走着,突然一名形迹可疑男子从他身边走过,抢了他的钱包,并以8m/s的速度逃离现场。

呆了5秒之后,小明才恍然大悟,马上以10m/s的速度去追,照这样计算,小明多少秒之后追上他?
1、甲、乙两人同时同地同向开始赛跑,甲每秒跑7米,乙每秒跑6.5米,如果让乙先跑2秒,那么甲几秒钟可以追上乙?
2、一队学生从学校出发去野区军训,他们以5km/h的速度行进,走了18分钟,学校校长发现路线不对,于是叫一个通讯员从学校出发通知带队的教官。

通讯员骑自行车以14km/h的速度按原路追上去,那么要多少个小时才能追上这支学生队伍呢?
3、在一条公路干线上有相距18km的A、B两个村庄,A地一辆汽车的速度是54km/h,B地一辆汽车的速度是36km/h,如果两车同时同向而行,求经过几个小时候两车相距9千米
4、一架敌机侵犯我国领空,我机起飞迎击。

在两机相距50千米时,敌机知道打不过我们,于是扭转机头,以15千米每分钟的速度逃跑。

我机以22千米每分钟的速度追击。

当我机追至距敌机1千米时,向敌机开火,经过半分钟,敌人的飞机被打爆,一头栽了下去。

问敌机从逃跑到被我机击毁经过了多少分钟?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程追赶小明问题题型11、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?2、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

3,、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?题型21、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。

3、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。

4、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。

题型31、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?2、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.3、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?4、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?5、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?6、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?题型41、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?2、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?3、一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。

问这种鞋的标价是多少元?优惠价是多少?5、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?题型51、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.2、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.3、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?4、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?5、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).6、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?2、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?3、某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?4、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。

3、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米若甲让乙先跑1秒,甲经过几秒可以追上乙?4、甲、乙两人都从A地去B地甲步行,每小时走5千米,先走1.5小时;乙骑自行车,乙走了50分,两人同时到达目的地,问乙每小时骑多少千米?5、甲、乙两人住处之间的路程为30千米某天他俩同时骑摩托车出发去某地,甲在乙后面,乙每小时骑52千米,甲每小时骑70千米经过多少时间甲赶上乙?6、甲、乙二人个距40千米,甲先出发1.5小时乙再出发,甲在后,乙在前,二人同向而行甲的速是每小时8千米,乙的速度是每小时6千米,甲出发后几小时可追上乙?7、小明每天早上7:20前赶到距家1000米的学校上学。

一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书,于是爸爸以180米/分的速度去追赶小明,并且在途中追上了他。

问:爸爸追上小明用了多长时间?8、小明和小华的家相距300米,两人同时从家里出发去学校,小明在小华后面,小明经过5分钟追上了小华,已知小华每分钟走100米,小明每分钟走多少米?9、敌、我相距28千米,得知敌军1小时前以每小时8千米的速度逃跑,现在我军以每小时14千米的速度追敌军,问几小时可以追上敌军?10、一队学生去校外参加劳动,以4千米/时的速度步行前往走了半小时,学校有紧急通知要传给队长,通讯员骑自行车以14千米/时的速度按原路追上去通讯员要多少分才能追上学生队伍?11、一队学生从学校出发,步行速度是5千米/小时,走了4.5千米后,一学生按原路返回给学校报信,然后他随即追赶队伍,他的速度是14千米/小时,他在距目的地6千米处追赶上队伍,问:学校到目的地的距离?12、一队学生从学校出发,他们以4千米/小时的速度前进,在队尾的联络员接到通知后立即送到队首队长处,关到后立即返回队尾,共用去14.4分钟,已知联络员速度为6千米/小时,求队伍的长度?13、一队学生去学校外进行军事训练他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去通讯员用多少时间可以追上学生队伍?14、一队学生从学校出发,步行去某地参加社会公益活动, 每小时行走4千米.出发30分钟后,学校要将一个紧急通知给队长,一名通讯员骑自行车以12千米/时的速度按原路去追赶队伍,问通讯员用多少时间可以追上队伍?15、甲已两人在环形跑道上跑步,已知环形跑道一周长400米,甲每秒跑8米,乙每秒跑6米,(1)如果甲乙两人在跑道上相距8米处同时反向出发,那么以过多少秒两人可以首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么以过多少秒,两人可以首次相遇?16、一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米,乙练习赛跑,平均每分钟跑250米.两人同时、同地、同向出发,经过多少时间,两人首次相遇.。

相关文档
最新文档