8土坡稳定分析
第八章 土坡稳定性分析与计算
O
R
Vi+1
MR
(c l N tan ) T R R
i i i i i
H
i
Wi
Ti
Fs
Ms MR
(c l N tan ) R W sin R
i i i i i i
O i 2 1 -1 -2 0
R b B 3 4 5 6
C
7
计 算 程 序 流 程
计算 mi
Fs Fs
计算
Fs
No
Fs Fs Fs
A
变化圆心 O 和半径 R
Fs 最小
END
3.简化毕肖普法的特点
★假设滑裂面为圆弧; ★假设条块间作用力只有法向力没有切向力 (Vi=0); ★满足整体力矩平衡条件; ★满足各条块力的多边形闭合条件,但不满足条块的 力矩平衡条件; ★满足滑动面上的极限平衡条件。
i
f 土坡稳定 安全系数
(一) 瑞典条分法的基本原理
1、假设圆弧滑动面 确定圆心和半径
2、把滑动土体分成若干条(条分法) 3、取第i条土条进行受力分析
O
R
Vi+1 Hi hi Vi Wi Hi+1 hi+1
i
Ti Ni
瑞典条分法
静定化条件:假设条块两侧的作用 力合力Si,Si+1 大小相等、方向相 反且作用于同一直线上——不考虑 条块间的作用力。 1)根据径向力的静力平衡条件 得
表层滑动
砂土
概述 表层滑动的边 坡稳定分析
天然休止角
无粘性土
边坡稳定性分析
T f = N tan ϕ = W cosθ tan ϕ
式中 N 是单元体自重在坡面法线方向的
分力,ϕ 是土的内摩擦角。无粘性土土
T
θ
θN
W
坡的稳定安全因数定义为最大抗剪力与 剪切力之比,即
图 8.2.1 均质无粘性土坡稳定性分析
Ks
= Tf T
= W cosθ tanϕ = tanϕ W sinθ tanθ
均质无粘性土坡如图 8.2.1 所示,土坡的坡角θ,土的内摩擦角ϕ 。现从坡面上任取
一侧面竖直、底面与坡面平行的土体单元,假定不考虑该单元土两侧应力对稳定性的影响。
设单元体的自重 W,则它下滑的剪切力就只有 W 在顺坡方向的分力
T=Wsinα
阻止土体下滑的力是此单元体与下面土体
之间的抗剪力,其所能发挥的最大值为
(3)人工填筑的土堤、土坝、路基等,形成地面以上新的土坡。由于这些工程的长度很 大,边坡稍微改陡一点,往往可以节省工程量。
由此可见,土坡稳定在工程上具有很重要的意义,影响土坡稳定的因素很多,包括土坡 的边界条件、土质条件和外界条件。具体因素如下:
(1)边坡坡角θ,坡角θ越小就越安全但不经济;坡角θ太大,则经济而不安全。 (2)坡高 H,试验研究表明,其它条件相同的土坡,坡高 H 越小,土坡越稳定。 (3)土的性质,土的性质越好,土坡越稳定。例如,土的重度γ和抗剪强度指标 c、φ 值大的土坡,比γ、c、φ小的土坡更安全。 (4)地下水的渗透力,当土坡中存在与滑动方向一致的渗透力时,对土坡不利。如水库 土坝下游土坡就可能发生这种情况。 (5)震动作用如强烈地震、工程爆破和车辆震动等,会使土的强度降低,对土坡稳定性 产生不利影响。 (6)施工不合理,对坡角的不合理开挖或超挖,将使坡体的被动抗力减小。这在平整场 地过程中经常遇到。不适当的工程措施引起古滑坡的复活等,均需预先对坡体的稳定性作出 估计。 (7)人类活动和生态环境的影响。
第八章+土坡稳定性分析
土力学与地基基础
• 由于计算上述安全系数时,滑动面为任意 假定,并不是最危险的滑动面,因此所求 结果并非最小的安全系数。通常在计算时 需要假定一系列滑动面,进行多次试算, 计算工作量很大。 • W.费伦纽斯(Fellenius,1927)通过大量计 算分析,提出了以下所介绍的确定最危险 滑动面圆心的经验方法。
土力学与地基基础
瑞典条分法和毕肖普法的比较
• 瑞典条分法忽略各条间力对Ni的影响,i土 条上只有Gi,Ni,Ti三种力作用,低估安全系 数5~20%。 • 毕肖普法忽略土条竖向剪切力的作用,考 虑了土条两侧的作用力,比瑞典条分法更 合理,低估安全系数约为2~7%。
土力学与地基基础
li
K
1 m cb Gi ui b X i tan i
G sin
i
i
土力学与地基基础
• 毕肖普条分法考虑了土条两侧的作用力, 计算结果比较合理。 • 分析时先后利用每一土条竖向力的平衡及 整个滑动土体的力矩平衡条件,避开了Ei 及其作用点的位置,并假定所有的 X i 均等 于零,使分析过程得到了简化。 • 但该方法同样不能满足所有的平衡条件, 还不是一个严格的方法,由此产生的误差 约为2%~7%。另外,毕肖普条分法也可以 用于总应力分析,即在上述公式中采用总 应力强度指标c、φ计算即可。
土力学与地基基础
土坡形态及各部分名称
坡肩 坡顶
坡高 坡脚
坡面
坡角
土力学与地基基础
土力学与地基基础
土力学与地基基础
土力学与地基基础
4.土坡由于其表面倾斜,在自重或外部荷 载的作用下,存在着向下移动的趋势, 一旦潜在滑动面上的剪应力超过了该面 上的抗剪强度,稳定平衡遭到破坏, 就可 能造成土坡中一部分土体相对于另一部 分的向下滑动,该滑动现象称为滑坡。 5.天然的斜坡、填筑的堤坝以及基坑放坡 开挖等问题,都要演算土坡的稳定性。 亦即比较可能滑动面上的剪应力与抗剪 强度,这种工作称为稳定性分析。
土坡稳定分析
土坡稳定分析随着工业和城市化进程的加快,土地利用的需求不断增加。
然而,在土地利用过程中,土坡的稳定性往往成为一个重要的问题。
土坡的稳定性分析是评估土坡在不同外力作用下的破坏潜势,帮助我们制定合理的土坡保护和加固措施。
本文将对土坡的稳定性分析进行讨论和探究。
一、土坡的定义和特点土坡是指土地表面自然或人为构筑的斜坡地形。
土坡的特点是地势较陡,地表由土壤、岩石等松散覆盖物构成。
土坡的稳定性可以通过分析斜坡的坡度、坡高、坡面形状、土壤类型、地下水位、降雨等因素进行评估。
二、土坡稳定性分析的基本原理土坡的稳定性分析首先需要确定土坡的受力情况,包括自重和外力的作用。
自重是指土体本身由于地心引力产生的作用力,外力包括风力、地震、降雨等因素引起的外力作用。
其次,需要考虑土坡材料的抗剪强度和抗压强度,这两个参数是判断土坡稳定性的关键。
三、土坡稳定性分析的方法根据土坡的不同特性和现场条件,可以采用不同的方法进行稳定性分析。
常用的方法包括平衡法、极限平衡法和数值模拟法。
平衡法是最简单也是最常用的土坡稳定性分析方法。
它基于土坡处于平衡状态的假设,通过坡面上各点受力平衡方程的计算,判断土坡是否存在破坏的倾向。
极限平衡法是一种较为精确的土坡稳定性分析方法。
它考虑到土坡在破坏前存在最大抗剪强度边界的概念,通过确定可能出现破坏的最不利滑动面,计算其稳定性系数,并与规定的安全系数进行比较,判断土坡的稳定性。
数值模拟法是一种基于计算机模拟的土坡稳定性分析方法。
使用数值模拟软件,建立土坡的几何模型和物理模型,模拟不同荷载条件下土坡的变形和破坏过程,得出土坡的稳定性评估结果。
四、土坡稳定性分析的影响因素土坡的稳定性受多个因素的影响,主要包括土体的物理力学性质、地下水位、降雨和外力作用等。
1. 土体的物理力学性质:土壤的密实度、粘聚力、内摩擦角等参数直接影响土坡的抗剪强度,这些参数可通过室内试验获得。
2. 地下水位:地下水的上升会增加土壤的重量和水力压力,从而对土坡稳定性产生不利影响。
土坡稳定分析
ai
d H 6 R 8.35m 2 sin 2 sin sin 2 sin 40 cos 34
是否安全与合理,边坡过陡可能发生坍塌,过缓
则使土方量增加。 土坡的稳定安全度用稳定安全系数K表示,它是 指土的抗剪强度 f 与土坡中可能滑动面上产生的 剪应力 间的比值,
f K
2016年12月19日
砂性土的土坡稳定分析
砂性土中,一般均假定其滑动面为平面。 已知:土坡高度H,坡角β,土的容重γ,土的抗剪强度
稳定力矩 M r K 滑动力矩 M s Wa
f LR
泰勒的分析方法仅适用于均质简单土坡,对非均质、复 杂坡形以及有水渗流等情况均不适用。而费伦纽斯提出
的条分法很好地解决了这一问题,至今得到广泛应用。
2016年12月19日
基本原理
为了尽量减小计算τf 时的法向应力的误差,怎么办?
——化整为零 基本原理:将滑动土体分成若干块竖直土条,分别考虑 其法向应力和抗剪强度τf ,求各土条对滑动圆心的抗滑 力矩和滑动力矩,最后取其总和,计算安全系数。
2016年12月19日
泰勒的分析方法
泰勒提出了确定均质简单土坡稳定安全系数的图表法。他 认为圆弧滑动面的3种形式是同土的内摩擦角φ值、坡角β
以及硬层埋深等因素有关,经过大量计算分析后提出:
当φ>3°或当φ=0且 β>53°时,滑动面均
为坡脚圆,其最危险滑
动面圆心位臵,可根据 φ及β角值,从右图中的 曲线中查得θ及α值作图 求得。
c=16.7kPa。试用条分法验算土坡的稳定安全系数。
解:1)按比例绘出土 坡的剖面图。按泰勒 的经验方法确定最危 险滑动面圆心的位臵。
当φ=12°、β=55°
第七章土坡稳定分析
第七章土坡稳定分析土坡的稳定性是指土坡在自身重力和外部荷载作用下,能够保持不发生倾覆、滑动或坍塌的能力。
土坡的稳定性分析是土坡工程设计的关键步骤之一,它的目的是确定土体的最大稳定角,以及土坡所能承受的最大荷载。
土坡稳定性分析主要包括以下几个方面:1.荷载计算:首先需要确定土坡所受到的各种荷载,包括自重荷载、地震荷载、水压力荷载等。
这些荷载将直接影响土坡的稳定性。
2.土体力学参数:土坡的稳定性分析需要确定土体的力学参数,包括土体的内摩擦角、剪胀角、孔隙比等。
这些参数可以通过室内试验或现场试验来确定。
3.土体抗剪强度:土坡的稳定性分析需要确定土体的抗剪强度,包括黏聚力和内摩擦角。
一般可通过室内试验或相关经验公式来确定。
4.平衡条件:土坡的稳定性分析需要确定土坡的平衡条件,即坡面上的剪切力与抗剪强度之间的平衡关系。
通过平衡条件,可以计算出土坡的最大稳定角。
5.稳定性判据:土坡的稳定性分析需要选择适当的稳定性判据,以判断土坡是否稳定。
常用的稳定性判据包括平衡法、极限平衡法、有限元法等。
在进行土坡稳定性分析时,需要注意以下几个问题:1.考虑边界条件:土坡的稳定性分析需要考虑土坡周围的边界条件,包括土坡顶部的固结载荷、土坡脚部的支撑条件等。
2.考虑不同荷载组合:土坡的稳定性分析需要考虑不同荷载组合的影响,包括常规和临界荷载组合。
常规荷载组合是指常规工况下土坡所承受的荷载组合,临界荷载组合是指在其中一特定条件下土坡的最不利工况下所承受的荷载组合。
3.安全系数:土坡的稳定性分析需要根据土坡的设计要求和实际情况,确定相应的安全系数。
安全系数是指土坡的稳定强度与设计要求强度之间的比值,一般要求安全系数大于14.考虑时间因素:土坡的稳定性分析需要考虑土体的变形和固结过程。
在长期静荷载作用下,土体可能发生蠕变和沉降等变形。
因此,在进行土坡稳定性分析时,需要考虑时间因素的影响。
综上所述,土坡的稳定性分析是土坡工程设计中一个非常重要的环节。
精品课件- 土坡稳定性分析
四、影响土坡稳定性的主要因素
(1)边坡坡角β。坡角β越小愈安全,但是采用较小的坡角β,在工程中会增加挖填方 量,不经济。
(2)坡高H 。H越大越不安全。 (3)土的性质。γ、φ和c大的土坡比、和小的土坡更安全。 (4)地下水的渗透力。当边坡中有地下水渗透时,渗透力与滑动方向相反时,土坡则
更安全;如两者方向相同时,土坡稳定性就会下降。 (5)震动作用的影响。如地震、工程爆破、车辆震动等。 (6)人类活动和生态环境的影响。
2.造成土抗剪强度降低的原因有: (1)冻胀再融化; (2)振动液化; (3)浸水后土的结构崩解; (4)土中含水量增加等。 • 土坡失稳一般多发生在雨天,因为水渗入土中一方面使土中剪应力增加了;另一方
面又使土的抗剪强度降低了,特别是坡顶出现竖向大裂缝时,水进入竖向裂缝对土 坡产生侧向压力,从而导致土坡失稳。因此,土坡产生竖向裂缝常常是土坡失稳的 预兆之一。
• 若假定滑动面是通过坡角A的平面AC,AC的倾角为α,并沿土坡长度方向截取单位长 度进行分析,则其滑动土楔体ABC的重力为:
•
W=பைடு நூலகம்×(△ABC)
• 则沿滑动面向下的滑动力为:
•
T=Wsin α
• 抗滑力为摩擦力,即:
•
T`=Ntanφ=Wcosαtanφ
• 土坡滑动稳定安全系数为:
• 当α=β时,滑动稳定安全系数最小,即
•
§3 粘性土坡稳定分析
• 一、粘性土坡滑动面的形式
• 根据一些实测的资料,粘性土坡的滑动面常常为曲面。土坡滑动前一般在坡顶先产 生张力裂缝,继而沿某一曲面产生整体滑动。为便于理论分析,可以近似地假设滑 动面为一圆弧面。
• 圆弧滑动面的形式一般有下述三种:
土坡稳定性分析
坚硬 1:0.75~1:1.00 1:1.00~1:1.25 硬塑 1:1.00~1:1.25 1:1.25~1:1.50
注:1.表中碎石土的充填物为坚硬或硬塑状态的粘性土。
2.对于砂土或充填物为砂土的碎石土, 其边坡坡度允许值均按自然休止角确定。
土坡稳定性分析
(四)黏性土土坡稳定性分析
圆弧滑动分析法——条分法。
土坡稳定性分析
土的 类别
碎石 土
粘性 土
土质边坡坡度允许值
密实度
坡度允许值(高宽比)
或状态 坡高在5m以内 坡高为5~10m
密实 中密 稍密
1:0.35~1:0.50 1:0.50~1:0.75 1:0.50~1:0.75 1:0.75~1:1.00 1:0.75~1:1.00 1:1.00~1:1.25
N W cos T W sin
无粘性土土坡稳定性分析
T N tan W cos tan
K
抗滑力 滑动力 T TWcos tan W sin
t an t an
从上式看出,只要 土坡就是稳定的。
工程中一般要求K≥1.25~1.30
土坡稳定性分析
(三)土质边坡开挖规定
《规范》规定,在山坡整体稳定的条件下,土质边坡的开挖 应符合下列规定: (1)边坡的坡度允许值,应根据当地经验,参照同类土层的 稳定坡度确定。当土质良好且均匀、无不良地质现象、地下 水不丰富时,可按表7.2确定。 (2)土质边坡开挖时,应采取排水措施,边坡的顶部应设置 截水沟。在任何情况下不允许在坡脚及坡面上积水。 (3)边坡开挖时,应由上往下开挖,依次进行。弃土应分散 处理,不得将弃土堆置在坡顶及坡面上。当必须在坡顶或坡 面上设置弃土转运站时,应进行坡体稳定性验算,严格控制 堆栈的土方量。 (4)边坡开挖后,应立即对边坡进行防护处理。
第八章-土坡稳定性分析(改)
W
cu L R Fs Wd
d
O B A C W
粘性土土坡滑动前,坡 顶常常出现竖向裂缝
A
z0
深度近似采 用土压力临 界深度
z 0 2c / K a
裂缝的出现将使滑弧长度由 AC减小到AC,如果裂缝中 积水,还要考虑静水压力对 土坡稳定的不利影响
Fs是任意假定某个滑动面 的抗滑安全系数,实际要 求的是与最危险滑动面相 对应的最小安全系数
由于极限平衡法具有模型简单、计算公式简 捷、可以解决各种复杂剖面形状、能考虑各种 加载形式的优点,因此得到广泛的应用。 但是极限平衡法存在着一定的局限性: 其一,需要事先假设边坡中存在的滑动面(圆 弧法或折线法); 其二,无法考虑土体与支护结构之间的作用及 其变形协调关系; 其三,不能计算边坡及支护结构的位移情况。
三、毕肖普法(1955)
毕肖普法提出的土坡稳定系数的含义是整 个滑动面上土的抗剪强度τf与实际产生剪应力τ 的比,即K= τf/ τ, 假定滑动面是圆弧,任一土条i受力为:土 条重Wi引起的切向力Ti和法向力Ni,并分别作 用于底面中心处;土条侧面作用法向力 Ei 、 Ei+1 和切向力Xi、 Xi+1。但是毕肖普忽略了条间 切向力,即Xi+1-Xi =0,这样就得出了国内外广 泛使用的毕肖普简化公式:
1 [ci' bi (Wi ui bi )tgi' ] m i 简化后得: K Wi sin i
力矩分析 为什么没 考虑条间 力?
tgi' mi cos i sin i K
土坡稳定分析中有关问题*
一、土的抗剪强度指标及安全系数的选用
* 指标值过高,有发生滑坡的可能
一、土坡圆弧滑动面的整体稳定分析 假定滑动面为圆柱面, 截面为圆弧,利用土 体极限平衡条件下的 受力情况: Mf f LR f LR Fs M LR Wd 饱和粘土,不排水 剪条件下,u=0, τf =cu 滑动面上的最 大抗滑力矩与 滑动力矩之比
土坡稳定性分析
土坡稳定性分析
土坡稳定性分析是评估土坡在自然力或人工力作用下是否能维持稳定的一种工程技术手段。
在工程施工中,土坡的稳定性是非常重要的,一旦发生滑坡或崩塌等灾害,将对施工进度和安全造成严重影响。
因此,进行土坡稳定性分析可以有效地提前预防和解决土坡问题,确保工程施工的顺利进行。
土坡稳定性分析一般包括以下几个步骤:
1.野外调查:通过对土坡进行实地勘查,包括土壤的类型、坡度、坡面形态等方面的观测与测量,获取基本的地质和地形信息。
2.室内试验:对采集到的土样进行室内试验,包括土壤的抗剪强度试验、水分含量试验等,以获取土壤力学参数。
3.力学分析:根据土壤力学理论,将野外调查和室内试验得到的数据进行处理和分析,进行力学计算和分析。
常用的分析方法包括平衡法、有限元法、边坡稳定性分析等。
4.稳定性评估:根据力学分析的结果,进行土坡的稳定性评估。
可以采用不同的评估方法,如强度折减法、潜在滑动面分析法等。
5.稳定性措施:根据评估结果,确定合理的稳定性措施。
可以采取加固措施,如加固坡面、加固土体等,也可以采取削减高度等减轻土压力的措施。
土坡稳定性分析有助于预测土坡的变形和破坏,提供工程设计和施工的依据。
通过对土壤性质和地质环境等因素的分析,可以选择适当的施工
方案和措施,确保土坡的稳定性。
此外,分析结果还可以反馈给设计师和施工人员,提供参考和建议,确保施工过程中的安全性。
需要注意的是,土坡稳定性分析是一个复杂的过程,需要考虑多个因素的相互作用。
在实际应用中,还需要结合工程实际情况和经验进行判断和调整。
土坡稳定分析
第八章土坡稳定分析学习指导内容简介土坡的稳定性分析是土力学中重要的稳定分析问题,本章将分别介绍无粘性土坡和粘性土坡的稳定性分析方法,讨论土坡最危险滑裂面的确定方法和土坡稳定分析的图解法,并将简单介绍天然土体上的土坡稳定分析方法。
教学目标重点学习粘性土坡的稳定性分析方法,掌握无粘性土坡和自然土坡的稳定分析方法。
学习要求1、了解无粘性土坡的稳定分析方法2、掌握粘性土坡的稳定分析方法,包括整体圆弧滑动法和条分法(瑞典条分法、毕肖甫法和普遍条分法);3、掌握粘性土坡最危险滑裂面的确定方法;了解粘性边坡稳定分析的图解法。
4、了解天然土体(裂隙硬粘土和软土地基)上的土坡稳定分析。
基本概念天然土坡、人工土坡、滑坡、圆弧滑动法、条分法、最危险滑动面学习内容第一节概述第二节无粘性土坡稳定分析第三节粘性土坡稳定分析第四节天然土坡的稳定分析第五节复合滑动面的土坡稳定分析第六节土坡稳定分析中的几个问题学时安排本章总学时数:5.5学时第一节 0.5学时第二节 0.5学时第三节 3学时第四节 0.5学时第五节 0.5学时第六节 0.5学时主要内容第一节概述本章主要学习目前常用的土坡稳定分析方法,学习与土的抗剪强度有关的问题。
无粘性土坡稳定分析分两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法,要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。
粘性土坡的稳定分析:学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。
要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。
边坡稳定分析的总应力法和有效应力法:学习稳定渗流期、施工期、地震期边坡稳定分析方法。
土坡稳定分析讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。
一、基本概念土坡就是具有倾斜坡面的土体。
由自然地质作用所形成的土坡,如山坡、江河的岸坡等,称为天然土坡(naturalsoilslope)。
土力学_第8章(土坡稳定性分析)
18
3
粘性土土坡的稳定性分析
瑞典(彼得森,K.E. Petterson, 1915年提出的) 瑞典圆弧法
滑动面
(a) 实际滑坡体
(b)假设滑动面是圆弧面
19
基本思想:
整体圆弧滑动。 稳定系数定义为:
f Fs
滑移面
也可定义为抗滑力矩与滑动力矩之比:
Fs
Mf Ms
f LAC R
1
i
Fs
m
[ci'bi (Wi ui bi ) tan ' ]
W sin
i
i
mi cos i (1
tani tan i ) Fs
பைடு நூலகம்27
考虑地震作用力后的计算公式:
Fs
c' bi bi (hi w hiw ) tan ' i 1 cos i (sin i tan ' ) / Fs
Ni Wi cosi P i 1 i ) 0 i 1 sin(
P i i 1 ) Tfi 0 i Wi sin i P i 1 cos(
li ci' ( N i ui li ) tan ' T fi Fs
由上面三个计算式,消去Ni、Tfi得到满足力极限平衡得方程为: 1 Pi Wi sin i [li ci' (Wi cos i ui li ) tan 'i ] Pi 1 i Fs Pi—剩余下滑力; i —传递系数。 tani ' sin( i 1 i ) i cos( i 1 i ) Fs
W x T
i i
fi
土力学电子教案之土坡稳定分析
教案表头:教学内容设计及安排第八章土坡稳定分析第一节无粘性土坡的稳定分析【基本内容】天然土坡:由于地质作用而自然形成的土坡。
人工土坡:人们在修建各种工程时,在天然土体中开挖或填筑而成的土坡。
滑坡:土坡丧失其原有稳定性,一部分土体相对另一部分土体滑动的现象。
分析土坡稳定性的目的:验算土坡的断面是否稳定合理,或根据土坡预定高度、土的性 质等已知条件,设计出合理的土坡断面。
简单土坡:土坡的坡顶和底面都是水平面,并伸至无穷远,土坡由均质土组成。
一、一般情况下的无粘性土土坡条件:均质的无粘性土土坡,干燥或完全浸水,土粒间无粘结力分析方法:只要位于坡面上的土单元体能够保持稳定,则整个坡面就是稳定的 滑动力: T =W sin β 垂直于坡面上的分力: N = W cos β最大静摩擦力: T '= N tan ϕ = W cos βtan ϕ 抗滑力与滑动力的比值称为稳定安全系数K ,2K =βϕβϕβtan tan sin tan cos =='W W T T当β=ϕ 时,K =1,土坡处于极限平衡状态。
砂土的内摩擦角也称为自然休止角。
当β<φ,即K >1,土坡就是稳定的。
可取K =1.1~1.5。
【讨论】无粘性土土坡的稳定性与坡高无关,仅取决于坡角β。
二、有渗流作用时的无粘性土土坡分析方法:若渗流为顺坡出流,则渗流方向与坡面平行,此时使土体下滑的剪切力为J W J T +=+βsin 稳定安全系数为JW W JT T F f s +=+=βϕβsin tan cos 对单位土体,土体自重W =γ ',渗透力J =γw i ,水力坡降i =sin β,于是βγϕγβγβγϕβγtan tan sin sin tan cos sat w s F '=+''==【讨论】当坡面有顺坡渗流作用时,无粘性土土坡的稳定安全系数将近乎降低一半。
【例题先自习后讲解】【例8-1】有一均质无粘性土土坡,其饱和重度 γsat =20.0kN/m 3, 内摩擦角ϕ =30°, 若要求该土坡的稳定安全系数为1.20,试问在干坡或完全浸水情况下以及坡面有顺坡渗流时其坡角应为多少度? 【讨论】有渗流作用的土坡稳定比无渗流作用的土坡稳定,坡角要小得多。
土坡稳定性分析与计算
土坡稳定性分析与计算土坡稳定性分析与计算是指对土坡在自然状态下或外力作用下的稳定性进行评价和计算的过程。
土坡稳定性是土壤在外力作用下不发生坍塌和滑动破坏的能力。
稳定性分析与计算是土石坡工程设计的重要内容,对保证工程的安全和可靠性具有重要意义。
1.极限平衡法:该方法是最常用的土坡稳定性分析方法之一,通过研究土体和水的力学性质以及坡地的差异性,建立土坡的平衡方程,计算土坡的抗滑稳定性。
2.有限元法:有限元法是计算机模拟方法,将土坡划分为许多小单元,通过迭代计算每个小单元的反应力和位移,得出整个土坡的稳定性状况。
3.极限状态法:该方法通过统计土体参数和外力水平,研究土坡稳定性的失效概率,并采用可靠度分析进行结果评价。
在进行土坡稳定性分析与计算时,通常需要进行以下步骤:1.收集必要数据:包括土体的物理力学性质,如孔隙比、重度等;土坡的几何形状和边坡角度;及土坡周边的水文地质条件等。
2.建立土坡的力学模型:根据收集的数据,建立土坡的力学模型,选择适合的分析方法。
3.分析各种力的作用:根据土坡的力学模型,分析土坡所受内外力的作用,如地震力、重力、水力等。
4.计算土坡的稳定性:根据所选的分析方法,进行计算,得出土坡的稳定系数或稳定系数曲线等。
5.结果评价和修正措施:对计算结果进行评价,如与设计标准进行对比,判断土坡是否稳定。
若土坡不稳定,需采取相应的修正措施,如改变边坡角度、加固土坡等。
土坡稳定性分析与计算是土石工程中的重要内容,对于保证工程的安全和可靠性具有重要意义。
通过科学的分析和计算,可以预测和评估土坡的稳定性,为工程提供科学的设计依据,并制定相应的工程措施,提高工程的安全性和经济效益。
8土坡稳定分析
=0 F
s
β1 β
B
>0
圆心位置在EO
的延长线上
圆心位置由β1, β2确定
O β2 A
H 2H
4.5H
E
条分法分析步骤I
O
R
βi
d
c
i A
da b
c
Pi+1Xi+1
Wi
Xi
Pi
b
a Ti Ni
li
C B
H
假设两组合力 (Pi,Xi)= (Pi +1,Xi+1)
静力平衡
1.按比例绘出土坡剖面
2.任选一圆心O,确定
四、安全系数的选用
影响安全系数的因素很多,如抗剪强度指标的选用,计算方 法和计算条件的选择等。工程等级愈高,所需要的安全系数愈大。
目前,对于土坡稳定的安全系数,各个部门有不同的规定。
同一边坡稳定分析,选用不同的试验方法、不同的稳定分析方法, 会得到不同的安全系数。根据结果综合分析安全系数,得到比较 可靠的结论
及土条重W i,计算该圆心和半径下的安全系数 ④对圆心O选不同半径,得到O对应的最小安全系数; ⑤在可能滑动范围内,选取其它圆心O1,O2,O3,…,重复
上述计算,求出最小安全系数,即为该土坡的稳定安全系数
四、泰勒图表法
土坡的稳定性相关因素:
泰勒(Taylor,D.W, 1937)用图表表达影 响因素的相互关系
其坡角应为多少度? 干坡或完全浸水情况 T
顺坡出流情况 T
TN
W tan tan 0.481
Fs 25.7
JT N W
tan tan 0.241 sat Fs
13.5
渗流作用的土坡稳定比无渗流作 用的土坡稳定,坡角要小得多
关于土坡稳定的分析
关于土坡稳定的分析在工程建设中常常会遇到土坡稳定的问题,土坡包括天然土坡和人工土坡。
天然土坡是指自然形成的土坡和江河湖海的岸坡,人工土坡则是指人工开挖基坑、基槽、路堑或填筑路基、土坝形成的边坡。
边坡由于失去稳定性就会发生滑坡,边坡塌滑是一种常见的工程现象,通常称为“滑坡”。
土坡滑动失稳的原因主要有两种,一种是外界力的作用破坏了土体原来的应力平衡状态;一种是土体的抗剪强度由于外界各种因素的作用而降低,从而使得土体的稳定性降低,使土体发生失稳。
滑坡的实质是土体在滑动面上作用的滑动力超过了土体的抗剪强度。
土坡的稳定程度用安全系数来衡量,土坡的安全系数可表示为滑动面上的抗滑力矩和滑动力矩之比,即:或者是抗滑力与滑动力之比,即:或者是实有的抗剪强度与土坡中最危险滑动面上产生的剪应力的比值,即:,也有用粘聚力、摩擦角、临界高度表示的。
所有的表达方式只是在不同的情况下为了应用方便而提出的。
在无黏性土坡的稳定性分析中,破坏时滑动面大多近似为平面,因此在分析无黏性土坡的稳定性时,一般均假定滑动面是平面,如图1.1所示。
此时土坡滑动稳定安全形式为:。
对于黏聚力的均质无黏性土坡,当时,滑动稳定安全系数最小,也即土坡坡面的一层土是最容易滑动的。
(其中,为AC的倾角,为坡角,为内摩擦角)。
这表明对于的均质无黏性土坡稳定性与坡高无关,而仅与坡角有关,只要坡角小于土的内摩擦角(<),>1,则无论土坡多高在理论图1.1上都是稳定的。
=1表明土坡处于极限状态,即土坡坡角等于土的内摩擦角。
在黏性土坡的稳定性分析中,由于黏聚力的存在,粘性土土坡不会像无黏性图土坡那样沿坡面表面滑动,黏性土坡危险滑动面会深入土体内部。
黏性土坡的滑动和当地的工程地质条件有关,其实际滑动面位置总是发生在受力最不利或者土性最薄弱的位置。
在非均质土层中,如果土坡下面有软弱层,则滑动面很大程度上通过软弱层,形成曲折的复合滑动面。
基于极限平衡理论可以推导出,均质黏性土坡发生滑动时,滑动面形状近似于圆柱面,在断面上呈现圆弧形。
8 土坡稳定性
计算
1、按比例绘出土坡,选择圆心,作出相应的滑动圆弧 取圆心O ,取半 径R = 8.35m 2、将滑动土体分成若干土条,对土条编号
计算
3、列表计算该圆心和半径下的安全系数
编号 中心高度(m) 条宽(m) 条重W kN/m β (o) G isinβi 1 i 1 11.16 1 0.60 9.5 1.84 2 33.48 1 1.80 16.5 9.51 3 53.01 1 2.85 23.8 21.39 4 69.75 1 3.75 31.6 36.55 5 76.26 1 4.83. 40.1 49.12 6 56.73 1 051. 49.8 43.33 7 27.90 1.15 50 63.0 24.86 合计 186.60 G icosβi 11.0 32.1 48.5 59.41 58.33 36.62 12.67 258.63
由 ϕ =15°,Ns= 8.9查图得稳定坡角β = 57° 2、由β =60°,ϕ =15°查图得泰勒稳定数Ns为8.6 稳定数 :
g H cr 17.8´ H cr Ns = = = 8.6 c 12.0
H max 5.80 = = 3.87 m 1.5
求得坡高Hcr=5.80m,稳定安全系数为1.5时的最大坡高Hmax为
由于地质作用而自然 形成的土坡 在天然土体中开挖或 填筑而成的土坡
坡高 坡底 坡脚 坡角
土坡稳定分析问题
1972年7月某日清晨,香港宝城路附近,两万立方米残积土从山坡上下滑, 巨大滑动体正好冲过一幢高层住宅--宝城大厦,顷刻间宝城大厦被冲毁倒塌并砸 毁相邻一幢大楼一角约五层住宅。死亡67人。 原因:山坡上残积土本身强度较低,加之雨水入渗使其强度进一步大大降 低,使得土体滑动力超过土的强度,于是山坡土体发生滑动。
土力学 土坡稳定分析
A
i
Pi hi Hi
Wi
i
Ti
土重条力底Wi面:上已的知反力Ni和切向反力Ti:未知数=Nni
Ti
hi+1
cili Nitgi
Fs
土条间的法向作用力Pi和Pi+1:作用点也未知,但相邻 土条间的作用力大小相等,方向相反:未知数=2(n-1)
土条间的切向作用力Hi和Hi+1:无作用点,相邻土条间 的作用力大小相等,方向相反:未知数=(n-1)
8.1 概述 引起滑坡的根本原因 岩土体内部某个面上的剪应力达到了它的抗剪强度→ 稳定平衡遭到破坏
剪应力增加 抗剪强度降低
【改变边坡的几何形状】
8.1 概述 引起滑坡的根本原因
剪应力增加
采取工程措施 加强工程管理
坡顶堆载或修筑建筑物
降雨→土体的重量增加、静水压力、渗流力
水库蓄水或水位降落→渗流力
• 圆弧滑动面
• 滑动土体呈刚性转动
• 在滑动面上处于极限平衡状态
滑动面上的 平均抗剪强度
滑动面上的 平均剪应力
Fs
f பைடு நூலகம்
f Fs
滑动面上的 平均剪应力
滑动面上的假想的 平均抗剪强度
8.3 粘性土土坡稳定分析 一、整体圆弧滑动法
平衡条件(各力对圆心O的力矩平衡)
O
(1) 滑动力矩:
R
B
C
Ms Wd (2) 抗滑力矩:
思路
O
R
O
C
i
RBb
B
C
离散化 分条
条分法
A
d iW
A
8.3 粘性土土坡稳定分析
安全系数定义
滑动面上 的剪应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、例题分析
【例】均质无粘性土土坡,其饱和重度
sat=20.0kN/m3, 内摩擦角 =30°,若要求该土坡的稳定
安全系数为1.20,在干坡情况下以及坡面有顺坡渗流时
其坡角应为多少度? 干坡或完全浸水情况 T
顺坡出流情况 T
TN
W
tantan0.481
Fs
25.7
JT N W
tantan0.241 F sat s
②将滑动土体分成若干土条, 对土条编号
③列表计算该圆心和半径下 的安全系数编Leabharlann 中心高度(m) 条宽(m) 条重W
1
0.60
1 ikN1/1m.16
2
1.80
1
33.48
3
2.85
1
53.01
4
3.75
1
69.75
5
4.10
1
76.26
6
3.05
1
56.73
7
1.50
1.15
27.90
β1(o) W isini 9.5 1.84 16.5 9.51 23.8 21.39 31.6 36.55 40.1 49.12 49.8 43.33 63.0 24.86
R
βi
d c
B
C 确定滑动土体的重量及其重心 位置比较困难,而且抗剪强度 的分布不同,一般采用条分法
H 分析
i A
ab
滑动土体 分为若干 垂直土条
土坡稳定 安全系数
各土条对滑弧 圆心的抗滑力 矩和滑动力矩
条分法分析步骤I
O
R
βi
d
c
i A
da b
c
Pi+1Xi+1
Wi
Xi
Pi
b
a Ti Ni
li
C B
土坡的临界高 度或极限高度
Fs
H cr H
根据不同的 绘出 与Ns的关系曲线
泰勒图表法适宜解决简单土坡稳定分析的问题:
①已知坡角及土的指标c、、,求稳定的坡高H
②已知坡高H及土的指标c、、,求稳定的坡角
③已知坡角、坡高H及土的指标c、、,求稳定安全系数F
剪条件下,u=0,
τf=cu
Fs
cuLR Wd
d
O
BA
z0
A
粘性土土坡滑动前,坡 顶常常出现竖向裂缝
深度近似采 用土压力临 界深度
C
W
z0 2c/ Ka
裂缝的出现将使滑弧长度由
AC减小到AC,如果裂缝中
积水,还要考虑静水压力对 土坡稳定的不利影响
Fs是任意假定某个滑动面 的抗滑安全系数,实际要 求的是与最危险滑动面相 对应的最小安全系数
及土条重W i,计算该圆心和半径下的安全系数 ④对圆心O选不同半径,得到O对应的最小安全系数; ⑤在可能滑动范围内,选取其它圆心O1,O2,O3,…,重复
上述计算,求出最小安全系数,即为该土坡的稳定安全系数
计算
①按比例绘出土坡,选择圆 心,作出相应的滑动圆弧
取圆心O ,取半径 R = 8.35m
H
假设两组合力 (Pi,Xi)= (Pi +1,Xi+1)
静力平衡
1.按比例绘出土坡剖面
2.任选一圆心O,确定
滑动面,将滑动面以上 土体分成几个等宽或不 等宽土条 3.每个土条的受力分析
i
Ni li
l1i Wi cosi
i
Ti li
l1i Wi sini
Ni Wicosi
Ti Wisini
条分法分析步骤Ⅱ
假定若干 滑动面
最小安全 系数
最危险滑动面圆心的确定
O β2 A R
β1 β
B
对于均质粘性土 土坡,其最危险 滑动面通过坡脚
=0 F
s
β1 β
B
>0
圆心位置在EO
的延长线上
圆心位置由β1, β2确定
O β2 A
H 2H
4.5H
E
二、条分法
O
对于外形复杂、 >0的粘性
土土坡,土体分层情况时,要
8土坡稳定分析
第八章
土坡稳定分析
主要内容
§8.1无粘性土土坡稳定分析 §8.2粘性土土坡稳定分析 §8.3土坡稳定分析中有关问题*
土坡稳定概述
由于地质作用而自 然形成的土坡
在天然土体中开挖 或填筑而成的土坡
天然土坡
人工土坡 坡顶
山坡、江 河岸坡
路基、堤坝
坡底
坡脚
坡角
坡高
土坡稳定分析问题
§3.1 无粘性土坡稳定分析
O
R
βi
B d
c
i A
ab d
c
Xi
Pi+1Xi+1
Pi b
a Ti Ni
li
C 4.滑动面的总滑动力矩
T R R T iR W isiin
5.滑动面的总抗滑力矩
H TRR fliiR itain cili R (W ico itsain cili)
6.确定安全系数
F sT T R R W ic W o is itsg iiin cili
13.5
渗流作用的土坡稳定比无渗流作 用的土坡稳定,坡角要小得多
§3.2 粘性土土坡稳定分析
一、瑞典圆弧滑动法
d O
BA
C
W
滑动面上的最 大抗滑力矩与 滑动力矩之比
假定滑动面为圆柱面,
截面为圆弧,利用土
体极限平衡条件下的
受力情况:
Fs M M f fL L R RW fLR d
饱和粘土,不排水
条分法是一种试算法,应选取 不同圆心位置和不同半径进行 计算,求最小的安全系数
三、例题分析
【例】某土坡如图所示。已知土坡高度H=6m,坡角 =55°,土的重度 =18.6kN/m3,内摩擦角 =12°,
粘聚力c =16.7kPa。试用条分法验算土坡的稳定安全系 数
分析:
①按比例绘出土坡,选择圆心,作出相应的滑动圆弧 ②将滑动土体分成若干土条,对土条编号 ③量出各土条中心高度hi、宽度b i,列表计算sin i、cos i以
T Wcostan tan FsT Wsin tan
安全系数
二、有渗流作用时的无粘性土土坡分析
T
JT N
W
稳定条件:T>T+J
T Fs T J
顺坡出流情况: Jwsin
/ sat≈1/2,
坡面有顺坡渗 流作用时,无 粘性土土坡稳 定安全系数将 近降低一半
F s T T J W W c s o it n J a s n sc i o n tw s a s in n stt aa a tn n
W icosi 11.0 32.1 48.5 59.41 58.33 36.62 12.67
合计
186.60 258.63
四、泰勒图表法
土坡的稳定性相关因素:
泰勒(Taylor,D.W, 1937)用图表表达影 响因素的相互关系
抗剪强度指标c和、 重度 、土坡的尺寸
坡角 和坡高H
Ns
Hcr
c
稳定数
一、一般情况下的无粘性土土坡
均质的无粘性土 土坡,在干燥或 完全浸水条件下, 土粒间无粘结力
T
T N
W
土坡整 体稳定
只要位于坡面上的土单 T>T
元体能够保持稳定,则
整个坡面就是稳定的
单元体 稳定
T
T N
W
稳定条件:T>T
TWsin NWcos
砂土的内 摩擦角
T' Ntan
T' Wcosta n
抗滑力与滑 动力的比值