高中立体几何定理及性质讲课讲稿

合集下载

高中数学立体几何讲义

高中数学立体几何讲义

高中数学立体几何讲义(一)(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面与空间直线(Ⅰ)、平面的基本性质及其推论1、空间图形是由点、线、面组成的。

点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法) AaA a ∈ 点A 在直线a 上。

AaA a ∉点A 不在直线a 上。

AαA α∈点A 在平面α内。

AαA α∉点A 不在平面α内。

b a Aa b A =直线a 、b 交于A 点。

aαa α直线a 在平面α内。

aαa α=∅直线a 与平面α无公共点。

aAαa A α=直线a 与平面α交于点A 。

l αβ=平面α、β相交于直线l 。

α⊄a (平面α外的直线a )表示a α=∅或a A α=。

2、平面的基本性质公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⎬∈⎭。

如图示:应用:是判定直线是否在平面内的依据,也是检验平面的方法。

BA α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上。

例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD ,∴AB ,CD 确定一个平面β.又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线.说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点).α D C B A EFHGA证明∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α β.又∵α β=l,∴M∈l,即AB,CD,l共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的.公理3:经过不在同一条直线上的三点,有且只有一个平面。

高中数学教学备课教案立体几何的基本概念和性质

高中数学教学备课教案立体几何的基本概念和性质

高中数学教学备课教案立体几何的基本概念和性质高中数学教学备课教案立体几何的基本概念和性质导言:立体几何是数学中的一个重要分支,它研究了三维空间中的几何形体及其属性。

本教案旨在通过教师备课,系统地介绍立体几何的基本概念和性质,并提供一些教学策略和资源。

一、基本概念在开始讲解立体几何之前,我们首先要了解一些基本概念。

下面将介绍几个常用的基本概念。

1. 空间和立体空间是三维几何学的基本对象,我们生活的世界就是一个三维空间。

而立体是空间中的一个特殊对象,它具有长度、宽度和高度三个维度。

常见的立体包括立方体、圆柱体、圆锥体、球体等。

2. 面面是指立体几何中的二维表面,它由一组相互连接的线段组成。

在立体几何中,常见的面有底面、侧面和顶面等。

3. 边和顶点边是指立体几何中连接两个点的线段,它是立体的构造要素之一。

而顶点是指立体几何中的一个尖点,它是多条边的交汇点。

4. 直线、射线和线段直线是由无数个点连成的,它没有起点和终点。

射线是由一个起点出发,并延伸至无穷远的线段。

线段是由两个端点和之间的所有点组成。

5. 平行和垂直平行是指在同一个平面中,两条直线或线段永远不会相交。

垂直是指两条直线或线段在相交处的夹角为90度。

二、基本性质除了基本概念外,了解立体几何的基本性质也是非常重要的。

下面将介绍几个与立体几何相关的基本性质。

1. 体积和表面积体积是指立体几何中所包含的三维空间的大小。

通常用单位立方米(m³)来表示。

而表面积是指立体几何的外部各个面的总面积。

常见的计量单位有平方米(m²)。

2. 图形的投影立体几何中,当一个立体体块投影到一个平面上时,得到的图形被称为该立体体块在该平面上的投影。

常见的投影有俯视图、侧视图和正视图等。

3. 空间角空间角是指由两个非平行线段所夹的角度。

例如,两条直线的夹角就是一个空间角。

空间角的大小可以通过角度或弧度来表示。

4. 空间位置关系在立体几何中,各个面、边和顶点之间有着特定的位置关系。

(完整word版)高中数学立体几何讲义(二)

(完整word版)高中数学立体几何讲义(二)

空间中的垂直关系I、直线与平面垂直1线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直.其中直线叫做平面的垂线,平面叫做直线的垂面。

交点叫做垂足。

直线与平面垂直简称线面垂直,记作:a丄a。

2、直线与平面垂直的判定方法:①利用定义。

②判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

③其它方法:(I)、如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面。

(n)、如果一条直线垂直于两个平行平面中的一个,那么也垂直于另一个面。

(川)、如果两个平面互相垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。

(W)、如果两个相交平面都和第三个平面垂直,那么相交平面的交线也垂直于第三个方面。

3、直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

4、三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的投影垂直,那么它也和这条斜线垂直。

说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;PO ,OPAI A a PAa , a OA5、三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的投影垂直。

aAPO ,O PAI A a AOa , a AP练习:1若a,b,c 表示直线,表示平面,下列条件中,能使 a 的是 (D )(A) a b, a c,b , c (B)a b,b//(C)aI b A, b, a b(D) a//b,b2 .已知 l 与m 是两条不同的直线,若直线 1平面,①若直线m l ,则m 〃;②若m,则m//l ;③若m,则m l:④ m//l ,则 m。

上述判断正确的是 (B)(A)①②③(B)②③④(C)①③④ (D)②④3.设三棱锥P ABC 的顶点P 在平面ABC 上的射影是H ,给出以下命题:① 若PA BC ,PB AC ,则H 是 ABC 的垂心② 若PA, PB,PC 两两互相垂直,则 H 是 ABC 的垂心 ③ 若 ABC 90°,H 是AC 的中点,贝U PA PB PC ④ 若PA PB PC ,则H 是 ABC 的外心其中正确命题的命题是 _①②③④ ________________例1、 已知PA ^O O 所在的平面,AB 是O O 的直径,C 是O O 上任意一点,过 A 点作AE ± PC 于点E ,求证:AE ±平面PBC证明:••• PAL 平面 ABC 二PA !BG 又T AB 是O O 的直径,二BC 丄AG 而PC A AC=C ••• BC 丄平面 PAC 又T AE 在平面 PAC 内,二BC 丄AE= •/ PC 丄 AE,且 PC n BC=C • AE!平面 PBC[反思归纳]证明直线与平面垂直的常用方法有:利用线面垂直的定义; 利用线面垂直的判定定理;利用"若直线a //直线b ,直线a 丄平面a,则直线 b 丄平面a”P KC例2、在直三棱柱ABC-A i BQ 中,BC =A C, A B± AC,求证:A i B±B G证明:取A i B 的中点D,连结C i D。

高一数学立体几何讲义

高一数学立体几何讲义

I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。

数学课教案立体几何的基本概念和性质

数学课教案立体几何的基本概念和性质

数学课教案立体几何的基本概念和性质教案:数学课教案立体几何的基本概念和性质引言:数学是一门抽象而严谨的学科,它不仅可以培养学生的逻辑思维和分析问题的能力,还可以增强学生的空间想象力。

而立体几何作为数学的一个分支,对于学生来说,既具有理论性又具有实践性。

本节课主要介绍立体几何的基本概念和性质,通过学习,让学生了解立体几何的基本知识和应用。

一、了解立体几何的基本概念在开始学习立体几何之前,我们首先要了解一些基本概念,这样才能更好地理解立体几何的内容。

1. 点、线、面的概念和关系点是几何学的基本要素,没有大小和方向的概念。

线是由无数个点组成,有长度和方向的概念。

而面则是由无数个线段组成,有长度、宽度和方向的概念。

点、线、面是立体几何的基本构成要素,它们之间有着密切的联系和关系。

2. 立体几何的基本体立体几何的基本体主要包括球体、圆锥、圆柱、棱锥、棱柱等。

每个基本体都有其独特的性质和特点,我们需要通过实例来了解它们。

3. 立体几何的基本要素立体几何的基本要素主要包括面积、体积、表面积和侧面积等。

不同的基本要素有着不同的计算方式和应用场景。

二、探索立体几何的性质1. 球体的性质球体是立体几何中的一种基本体,它具有许多特殊的性质和规律。

通过观察实例和推理分析,学生将会发现球体的表面积和体积的计算公式,并且学会在实际问题中应用。

2. 圆锥的性质圆锥也是常见的一种基本体,它由一个圆锥顶点和一个底面组成。

通过观察不同形状的圆锥,学生可以总结出圆锥的性质和特点,并学会应用圆锥的计算公式。

3. 圆柱的性质圆柱是立体几何中最有代表性的基本体之一,它具有许多重要的性质和应用。

通过观察不同形状的圆柱,学生可以总结出圆柱的性质和特点,并学会应用圆柱的计算公式。

4. 棱锥和棱柱的性质棱锥和棱柱是由平面多边形组成的立体体,它们有着丰富的性质和特点。

通过观察不同形状的棱锥和棱柱,学生可以总结出它们的性质和特点,并学会应用相应的计算公式。

高中立体几何八大定理知识讲解

高中立体几何八大定理知识讲解
作用:面面平行 线线平行
五、直线与平面垂直的判定定理:
文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面
图形语言:
符号语言:
现在是个飞速发展的时代,与时俱进的大学生当然也不会闲着,在装扮上也不俱一格,那么对作为必备道具的饰品多样性的要求也就可想而知了。作用:线线垂直 线面垂直
符号语言:
作用:线面平行 线线平行
三、平面与平面平行的判定定理
文字语言:如果一个平面内有平行.
图形语言:
符号语言:
作用:线线平行 面面平行
四、平面与平面平行的性质定理:
文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行
图形语言:
符号语言:
秘诀:好市口+个性经营
六、直线与平面垂直的性质定理:
文字语言:若两条直线垂直于同一个平面,则这两条直线平行
3、你是否购买过DIY手工艺制品?图形语言:
十字绣□编制类□银饰制品类□串珠首饰类□符号语言:
6、你购买DIY手工艺制品的目的有那些?作用:线面垂直 线线平行
七、平面与平面垂直的判定定理:
(2)缺乏经营经验文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
(四)DIY手工艺品的“个性化”图形语言:
而手工艺制品是一种价格适中,不仅能锻炼同学们的动手能力,同时在制作过程中也能体会一下我国传统工艺的文化。无论是送给朋友还是亲人都能让人体会到一份浓厚的情谊。它的价值是不用金钱去估价而是用你一颗真诚而又温暖的心去体会的。更能让学生家长所接受。符号语言:
作用:面面垂直 线面垂直
十字绣□编制类□银饰制品类□串珠首饰类□ 图形语言:
符号表示:
开了连锁店,最大的好处是让别人记住你。“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。“品牌效应”是商家梦寐以求的制胜法宝。注:线面垂直 面面垂直

高中数学讲义 第七章 立体几何初步(超级详细)

高中数学讲义 第七章 立体几何初步(超级详细)
(3)若AB=BC=CD=DA,作出异面直线AC与BD的公垂线段.翰林汇
分析:证明两条直线异面通常采用反证法。
证明:(1)(反证法)假设AC与BD不是异面直线,则AC与BD共面,
所以A、B、C、D四点共面
这与空间四边形ABCD的定义矛盾
所以对角线AC与BD是异面直线
(2)解:∵E,F分别为AB,BC的中点,∴EF//AC,且EF= AC.
(1)求圆锥的母线与底面所成的角;
(2)求圆锥的全面积.
解: (1)设圆锥的底面半径为R,母线长为l,
由题意得: ,
即 ,
所以母线和底面所成的角为
(2)设截面与圆锥侧面的交线为MON,
其中O为截面与AC的交点,则OO1//AB且
在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,
则O为抛物线的顶点,所以抛物线方程为x2=-2py,
同理HG//AC,且HG= AC.∴EF平行且相等HG,∴EFGH是平行四边形.
又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.
∵AC⊥BD,∴∠EFG=90o.∴EFGH是矩形.
(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.
点评:在空间四边形中我们通常会遇到上述类似的问题,取中点往往是很有效的方法,特别是遇到等腰三角形的时候。
3.抓主线,攻重点。针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心的核心,角与距离的计算已经降低要求。
4.复习中要加强数学思想方法的总结与提炼。立体几何中蕴含着丰富的思想方法,如:将空间问题转化成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空间向量的运算。

高中数学教案立体几何的基本概念和性质

高中数学教案立体几何的基本概念和性质

高中数学教案立体几何的基本概念和性质高中数学教案:立体几何的基本概念和性质导语:立体几何是数学中的一个重要分支,涉及到空间中的各种图形和体形。

本教案旨在介绍立体几何的基本概念和性质,帮助学生全面理解并掌握相关知识。

一、点、线、面的区别和联系在几何中,点、线、面是构成立体的基本要素。

点是没有长度、宽度和高度的,线是由无数个点连在一起形成,面是由无数条线相互平行或相交组成的。

点、线和面之间有着密切的联系,点可以确定一条线,线可以确定一个面,而面可以包含无数个点和线。

二、立体几何的基本概念1. 多面体多面体是指由平面多边形围成的立体图形。

常见的多面体有正方体、长方体、正六面体等。

多面体由若干个面、边和顶点组成。

2. 面的种类在立体几何中,面分为底面、侧面和顶面。

底面是多面体的一个平面,通常用于支撑整个多面体。

侧面是由底面和顶面的边所组成,可以理解为多面体的侧边。

顶面则是多面体的最上方的一个面。

3. 棱的种类棱是由多面体的两个顶点所确定的线段,不同多面体中的棱有不同的名称。

常见的棱有边棱、对棱和斜棱等。

4. 顶点与对顶点多面体的顶点是多条棱相交的地方,一个多面体通常有多个顶点。

对顶点是指多面体中,关于某条线段对称的两个顶点。

三、立体几何的基本性质1. 和等在立体几何中,相同形状和大小的多面体可以做加法。

即两个相同形状和大小的多面体放在一起时,它们的体积等于两个多面体的体积之和。

2. 是等角当两个多面体的相应对面之间的夹角相等时,它们是等角的。

等角的多面体,虽然形状可能不同,但是它们的面之间的夹角是相等的。

3. 是等积当两个多面体的相应面积相等时,它们是等积的。

等积的多面体,虽然形状可能不同,但是它们的面积是相等的。

4. 是全等当两个多面体的相应面积和相应夹角都相等时,它们是全等的。

全等的多面体,不仅形状相同,而且各个对应部分的大小相等。

5. 是轴对称轴对称是指多面体中存在一个直线,使得直线两侧的图形关于该直线完全对称,即一个图形可以通过旋转180度绕着直线得到另一个图形。

高中数学竞赛标准讲义:第12章:立体几何

高中数学竞赛标准讲义:第12章:立体几何

高中数学竞赛标准讲义:第12章:立体几何2021高中数学竞赛标准讲义:第十二章:立体几何一、基础知识公理1 一条直线。

上如果有两个不同的点在平面。

内.则这条直线在这个平面内,记作:a?a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。

即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。

高中数学空间立体几何讲义

高中数学空间立体几何讲义

第1讲 空间几何体高考《考试大纲》的要求:① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( )A .6π B .3πC .32πD .65π例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )A .π2B .π23C .π332D .π21例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。

(二)基础训练:1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为( )(A )3R (B) 6R π(C)56R π(D) 23R π①正方形 ②圆锥 ③三棱台 ④正四棱锥C3.若一个底面边长为2的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .4. 已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为___________,球心到平面ABC 的距离为________ 5.如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.(三)巩固练习:1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( )(A )π3 (B )π33 (C )π6 (D )π92、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( ) A.34 B.45 C.35 D.-35 4.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为( )(A )31 (B )33 (C )32 (D)36 5.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为()A .3 B .13π C.23π D .36.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于________7.请您设计一个帐篷。

高中数学立体几何判定定理及性质大全课件-高三数学二轮专题复习课件

高中数学立体几何判定定理及性质大全课件-高三数学二轮专题复习课件

知识清单
线∥面的判定定理
图形语言
文字语言
符号语言
如果平面外一条直线和 这个平面内一条直线平行 , 那么这条直线和这个平面 平行.
a
b
a

a

b
作用
直线∥直线 直线∥平面
知识清单
线∥面的性质定理
图形语言
文字语言
符号语言
如果一条直线和一个平 面平行 , 经过这条直线的平
a∥
面和这个平面相交 , 那么这 a

B
作用
直线 平面 平面∥平面
a∥b
条直线和交线平行.
b
作用
直线∥平面 直线∥直线
知识清单
面∥面的判定定理
图形语言
文字语言
符号语言
aA b
如果一个平面内有两条 相交直线都平行于另一个平 面 , 那么这两个平面平行.
a∥
a b∥

b
a b A
作用
直线∥平面 平面∥平面
知识清单
面∥面的性质定理
图形语言
文字语言
文字语言
符号语言
如果两个平面互相垂直,
那么在一个平面内垂直于它 们交线的直线垂直于另一个 平面.

a a
MN
MN
a
作用
平面 平面 直线 平面
知识清单
面∥面的判定定理
图形语言
文字语言
符号语言
l
A
如果一个平面内有两条 相交直线都平行于另一个平 面 , 那么这两个平面平行.
l l
a∥b c∥b
a

c
作用
判定:线∥线的依据
知识清单

高中数学立体几何讲解

高中数学立体几何讲解

高中数学立体几何讲解一、教学任务及对象1、教学任务本次教学任务是针对高中数学课程中的立体几何部分进行深入讲解。

立体几何是高中数学的重点和难点,它不仅要求学生掌握基本的几何概念和性质,还需要具备一定的空间想象能力和逻辑推理能力。

通过本次教学,旨在帮助学生建立完整的立体几何知识体系,提高解题技巧,培养他们的空间思维能力和创新意识。

2、教学对象本次教学的对象是高中学生,他们已经具备了一定的数学基础,掌握了平面几何的基本知识和基本的代数运算。

然而,在立体几何方面,学生们的掌握程度参差不齐,部分学生对空间概念的理解存在困难,需要通过本次教学活动来加强和巩固相关知识。

此外,针对不同学生的特点,教学中将注重因材施教,激发学生的学习兴趣,提高他们的学习积极性。

二、教学目标1、知识与技能(1)理解并掌握立体几何的基本概念,包括点、线、面的位置关系,立体图形的分类及性质。

(2)掌握立体几何图形的面积和体积的计算方法,并能熟练运用。

(3)学会运用立体几何的相关定理和性质解决实际问题,提高解题能力。

(4)掌握空间向量在立体几何中的应用,如用向量表示线段、计算夹角等。

(5)培养空间想象能力和逻辑推理能力,提高对立体几何问题的分析、综合和解决能力。

2、过程与方法(1)通过讲解、示范、练习等多种教学手段,使学生掌握立体几何的基本知识和方法。

(2)采用问题驱动的教学方法,引导学生主动探究、发现和解决问题,培养他们的自主学习能力。

(3)组织小组讨论、合作学习,让学生在互动中交流思想,提高合作能力和沟通能力。

(4)利用现代教育技术手段,如计算机软件、多媒体课件等,辅助教学,增强学生对立体几何图形的认识和理解。

(5)设计不同难度的习题和例题,使学生在实践中不断提高自己的空间想象能力和逻辑推理能力。

3、情感,态度与价值观(1)激发学生对立体几何的兴趣,培养他们积极探究、勇于创新的精神。

(2)通过学习立体几何,培养学生严谨、踏实的科学态度,增强他们面对困难的勇气和毅力。

高中立体几何定理及性质

高中立体几何定理及性质

高中立体几何定理及性质-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中立体几何定理及性质一、公理及其推论文字语言符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

我们说:直线在平面内或:平面经过直线A lB lABABααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭lPP lαα⊂⎫⇒∈⎬∈⎭①用来验证直线在平面内;②用来说明平面是无限延展的③可以用来判定点在平面内公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)Pαβ∈lP lαβ=⎧⇒⎨∈⎩①用来证明两个平面是相交关系;②用来证明多点共线。

公理3经过不在同一条直线上的三点,有且只有一个平面简单的说,不共线的三点,确定一个平面确定一个平面不共线CBACBA,,,,⇒C AB∉⇒直线α存在唯一的平面,ABCααα∈⎧⎪∈⎨⎪∈⎩使得可以用来确定一个平面用来证明多点共面,多线共面推论1经过一条直线和这条直线外的一点,有且只有一个平面A a∉⇒直线α存在唯一的平面,Aaαα∈⎧⎨⊂⎩使得推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄线线平行推线面平行(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

立体几何图形讲课稿范文

立体几何图形讲课稿范文

立体几何图形讲课稿范文世间万物皆有形状,而几何图形就是研究这些形状的学问。

立体几何图形是其中的一个分支,它研究的是具有长度、宽度和高度的物体。

首先,我们来介绍一下常见的立体几何图形之一——立方体。

立方体有六个面,每个面是一个正方形。

它的六个面都相等,都是相互平行的。

立方体的特点是六个面均为正方形,八个顶点相互连接,共有12条棱。

举个例子,一颗骰子就是一个立方体,它的六个面上有从1到6的点数。

接下来,我们来介绍一下圆柱体。

圆柱体是由一个圆和与这个圆平行的直线段所围成的立体图形。

圆柱体有三个面,其中两个面是圆面,一个面是侧面。

圆柱体的特点是圆面上的所有点到直线的距离都相等,且圆面和侧面相互垂直。

一个常见的例子就是水杯,它的底部是一个圆面,侧面是一个圆柱面。

再来介绍一个我们经常见到的立体几何图形——球体。

球体是由半径相等的所有点和这些点组成的立体。

球体只有一个面,没有棱和顶点。

它的特点是任意两点之间的最短距离都是弧长的一半,且球面上的所有点到球心的距离都相等。

例如,篮球就是一个球体,在篮球的表面上,任意两点之间的最短距离都是这两点连线所对应的圆弧的一半。

最后,让我们来介绍一个稍微复杂一些的立体几何图形——正四面体。

正四面体有四个面,其中三个面是等边三角形,一个面是等腰三角形。

正四面体的特点是四个面相互垂直,且四个面的交线上有一个共同的点。

我们可以以一颗骰子为例,将四个正方形面上的相邻点相连,就可以构成一个正四面体。

以上就是对常见的立体几何图形的介绍。

通过学习立体几何图形,我们可以更好地理解和描述各种实际形状,帮助我们在生活和学习中更好地应用几何知识。

立体几何讲座

立体几何讲座

如果和这个平面的一 PA AB A 条斜线垂直,则它也 a面 PAB 和这条斜线的射影垂 直。 PB 面 PAB
aPB
四、空间两个平面 1、位置关系
(1)平行:无公共点,记为 // . a ( AB ). (2)相交:有一条公共直线,记为
2、面面平行的判定
P

A

B

a
四、空间直线与平面 7、三垂线定理证明
P
A

已知 : PA , PB B , a AB
证明: PA

B

aLeabharlann PA a 在平面内的一条直线, 又 AB a
a 6 、三垂线定理的逆定理
6、三垂线定理 在平面内的一条直线, 如果和这个平面的一 条斜线的射影垂直, 则它也和这条斜线垂 直。
如果一个平面内有两条相交直线都平行于另一个平面, 则这两个平面平行。
线线平行 3、二面角
线面平行
面面平行
A

从一条直线出发的两个半平 面所组成的图形叫二面角。
AB—二面角的棱
、 —二面角的面
记为:二面角 AB .
B

四、空间两个平面
4、二面角的平面角
以二面角的棱上任意点为端点,在两个半平 面内分别作垂直于棱的两条射线,这两条射 线所成的角叫二面角的平面角。即AOB
1、多面体:由若干个平面多边形所围成的几何体叫多面体。 D C 各个多边形——多面体的面 A B 两个面的公共边——多面体的棱 若干个面的公共顶点——多面体的顶点 2、棱柱、棱锥、棱台
A1 D1 B1 C1
3、圆柱、圆锥、圆台
4、多面体和旋转体的体积

高一立体几何讲义(一)

高一立体几何讲义(一)

立体几何初步【知识网络及在高考中的重要性】立体几何是高中数学中的重要内容,也是高考的热点内容。

该部分新增加了三视图,对三视图的考查应引起格外的注意。

立体几何在高考解答题中,常以空间几何体(柱,锥,台)为背景,考查几何元素之间的位置关系。

另外还应注意非标准图形的识别、三视图的运用、图形的翻折、求体积时的割补思想等,以及把运动的思想引进立体几何。

最近几年综合分析全国及各省高考真题,立体几何开放题是高考命题的一个重要方向,开放题更能全面的考查学生综合分析问题的能力。

考查内容一般有以下几块内容:1、平行:包括线线平行,线面平行,面面平行;2、垂直:包括线线垂直,线面垂直,面面垂直;3、角度:包括线线(主要是异面直线)所成的角,线面所成的角,面面所成的角;4、求距离或体积;1.1.1构成空间几何体的基本元素【感悟新课标新理念】背景知识激趣生活中的几何———欧式几何“几何”这个词在汉语里是“多少”的意思,但在数学里“几何”的含义就完全不同了。

“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。

在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、宽、窄、厚、薄等概念,并且逐步认识了这些概念之间,以及它们之间位置关系跟数量之间的关系,这些后来就成了几何学的基本概念。

柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导,逐步趋向于系统和严密的方向发展.柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证. 亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的.到今天,在初等几何学中,仍是运用“三段论”的形式来进行推理。

但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。

真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里德。

立体几何讲义(前7讲)

立体几何讲义(前7讲)

新高中讲义01.平面性质及两直线的位置关系1.平面性质(1.1)平面概念,平面的表示法将水平的平面画成一个平行四边形,用平行四边形表示平面,如图(1),平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮住,为了增强它的立体感,常把被遮挡部分用虚线画出来,如图(2).注.立体几何中的虚线总表示被遮住的线条而不是辅助线.若添加的辅助线是未被遮住的,则要画成实线.把希腊字母,,αβγ等写在代表平面的平行四边形的一个角上,如平面α,平面β;也可以用代表平四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称,图(1)的平面α,也可以记为:平面ABCD ,平面AC 或者平面BD .面内有无数个点,平面可以看成点的集合.如图(3),点A 在平面α内,记作A α∈;点B 在平面α外,记作B α∉.(1.2)平面公理及推论公理1.若一条直线上的两点在一个平面内,则这条直线在此平面内.点P 在直线l 上,记作P l ∈;点P 在直线l 外,记作P l ∉.若直线l 上的所有点都在平面α内,就说直线l 在平面α内,或者说平面α经过直线l ,记作l α⊂;否则就说直线l 在平面α外,记作l α⊄.公理1也可以用符号表示:,A l ∈B l ∈且,A α∈B α∈l α⇒⊂.公理2.若两个平面有一个公共点,则它们有且只有一条过该点的公共直线.公理2表明,如果两个平面有一个公共点,则它们有无限多个公共点,所有公共点构成一条直线,称为两个平面相交,这条由公共点组成的直线称为这两个平面的交线.若已知两个平面有两个公共点,A B ,则它们的 其他公共点都在直线AB 上.这一结论可用于证明三点共线.平面,αβ的交线是l ,记为l αβ⋂=.注.本讲义中的“两点”,“两条直线”,“两个平面”等,如无特别申明,均指不同两点,不同两直线及不同两平面.例1.用α表示平面,l 表示直线,,A B 表示点,以下关系式中正确的是A.A αβ⋂=B.l α∈C.AB α⊂D.A α⊂公理3. 过不在同一直线上的三点,有且只有一个平面.公理3简述:不在同一直线上的三点确定一个平面.不在同一直线上的三点,,A B C 所确定的平面,可以记成“平面ABC ”.推论1.过一条直线及直线外一点的平面有且只有一个.推论2.过两条相交直线的平面有且只有一个.推论3.过两条平行直线的平面有且只有一个.例2.(1)证明两两相交而不共点的4条直线在同一平面内.(2)空间4条线段首尾相连,这4条线段在同一平面内吗?例3.正方体1111ABCD A B C D -中,1,O O 分别是上下底面的中心,判断下列命题是否正确,说明理由.(1)直线1AC ⊂平面11CC B B .(2)直线1OO 是平面11AAC C 与平面11BB D D 的交线.(3)由,,A O C 可确定一个平面.(4)由11,,A C B 确定的平面是11ADC B .(5)直线l ⊂平面AC ,直线m ⊂平面1D C 且,l m 交于P ,则P ∈直线CD .(6)由11,,A C B 确定的平面与由1,,A C D 确定的平面是同一平面.例4.三个平面两两相交,若其中两条交线有公共点,证明第三条交线也过此点.例5.如图,正方体1111ABCD A B C D -中,O 为面ABCD 的中心,直线1AC 与面1C BD 交于M ,求证:(1)1,,C M O 共线.(2)M 为1C BD ∆的重心.2.空间两直线的位置关系(2.1)空间两直线的位置关系分类既不相交也不平行的两条直线称为异面直线.(2.2)空间两直线平行公理4.平行于同一直线的两直线互相平行.定理.若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.空间图形F 作一次平移是指F 的所有点都沿同一方向平移相同距离.顺次连接不共面4点得到的四边形称为空间四边形.例6.空间四边形ABCD 中,,,,E F G H 分别在边,,,AB BC CD DA 上,AE AH EB HD =且CF CG FB GD=,证明:(1)//EH FG .(2)三直线,,AC EF GH 平行或共点.注.顺次连接空间四边形四边中点的四边形是平行四边形.(2.3)异面直线定义.设,a b 是两直线,若不存在平面π满足,a b ππ⊂⊂,则称,a b 为一对异面直线. 直观描述:永远不在同一平面内的两直线称为一对异面直线.定理.过平面内一点和平面外一点的直线,与平面内不过该点的直线是异面直线.异面直线的另一种画图法.例7.正方体的12条棱所在的直线中有多少异面直线对?例8.设,,,m a b a m A αβαβ⋂=⊂⊂⋂=.(1)若//b m ,证明,a b 异面.(2)若b m ⋂ B =,则,a b 能否异面?两条异面直线所成的角.设直线,a b 异面,任取空间一点O ,过O 作两直线//,//a a b b '',称,a b ''所夹的(不超过直角的)角为异面直线,a b 所成的角.异面直线,a b 所成角θ的范围是(0,]2π.若2πθ=,则称,a b 互相垂直,记为a b ⊥.空间两直线垂直有两种可能:共面垂直(有垂足)和异面垂直(无公共点).求异面直线所成角,一般可平移直线构造三角形,再用余弦定理解出.注意该三角形的内角可能恰为两异面直线所成角,也可能是其补角.例9.空间四边形ABCD 中,AB BC CD DA AC BD =====,,M N 分别是BC 和DA 的中点,直线,AM CN 所成的角是θ,求cos θ的值.例10.正方体1111ABCD A B C D -中,,M N 分别是11A B 和1BB 的中点,求直线AM 与1C N 所成角的余弦值.例11.正方体1111ABCD A B C D -中,E 为BC 的中点,求异面直线1,AC DE 所成角的正切值.例12.设异面直线,a b 成080,过点P 且与,a b 都成050角的直线有条?将050改成060呢?两条异面直线的距离.设,a b 是一对异面直线,与,a b 都垂直的直线有无限多条,但与,a b 都垂直且都相交的直线有且仅有一条,两垂足间的线段称为,a b 的公垂线段,公垂线段的长称为两异面直线,a b 的距离.例13.设正方体1111ABCD A B C D -的棱长为1,则异面直线11,AC A B 的距离为1,异面直线1,AB CC 的距离为1,异面直线1,AC BD 的距离是多少?练习题1.有如下命题:①三个平面两两相交,则这三条交线共面.②一条直线与两平行线都相交,则这三直线共面;③四边形内角和为0360;④空间四点中有三点共线,则这四点共面;⑤若,a b ππ⊂⊄,则,a b 异面.其中正确命题的序号是__________.2.直线,a b 交于平面π内一点P 用符号表示,不正确的是A.,,a b P a b ππ⋂=⊂⊂B.a b P ππ⋂=⋂=C.,a b P P π⋂=∈D.,a P P B π⋂=∈3.下列各图都是正方体或正四面体,,,,P Q R S 分别是所在棱的中点,则,,,P Q R S 不共面的是4.若直线,a b 与直线c 所成的角相等,则,a b 的位置关系是A.平行B.相交C.异面D.不能确定5.已知,,c a b αβαβ=⋂⊂⊂且,a b 异面,则直线c A.与直线,a b 都相交 B.可与直线,a b 都不相交C.至少与,a b 之一相交D.至多与,a b 之一相交6.三个平面可将空间划分成m 个互和重叠的部分,则m 的值的集合为___________.7.正方体1111ABCD A B C D -中,与1AB 成060角的面对角线的条数是_______.8.空间四边形ABCD 中,,M N 分别是,BD AC 的中点,2,AB CD MN ===求,AB CD 所成角的大小.9.空间四边形ABCD 中,32,22AB BD AD BC CD AC ======,延长BC 到E ,使得CE BC =,F 是BD 的中点,求,AF DE 所成角的大小.新高中讲义02.线面平行与面面平行1.直线与平面平行(1.1)直线和平面的位置关系分类直线在平面内(无限多个公共点);直线与平面相交(唯一公共点);直线与平面平行(无公共点).(1.2)直线与平面平行定理1.若平面外的一条直线平行于平面内的一条直线,则这条直线与该平面平行.符号表示(注意是三个条件,缺一不可): ,,////j l j l j ααα⊄⊂⇒.定理2.若直线l 与平面α平行,过l 的平面β与平面α相交,则l 与两平面的交线平行.例 1.(1)证明:过平面内一点且平行于平面的一条平行线的直线在该平面内.(2)若直线a 平行于平面π的一条平行线,判断a 与π的位置关系.例2.如图,两个全等的正方形ABCD 与ABEF 不在同一平面内,,M AC N FB ∈∈且AM FN =,求证://MN 平面BCE .a kj例3.已知,AB CD 都是平面α的平行线且分居α两侧,,AC E BD F αα⋂=⋂=.(1)求证AE BF EC FD=.*(2)若,AB CD AB CD EF ⊥===,求(1)中的比值.例4.证明:过两异面直线中的一条,有且仅有一个平面平行于另一条.例5.证明:若两相交平面平行于同一直线,则它们的交线平行于该直线.2.平行平面(2.1)两平面的位置关系:平行(无公共点);相交(有公共点).(2.2)两平面平行的性质和判定定理1.若两平面平行,则其中一平面内的任何直线平行于另一平面.定理2.若两个平行平面都与第三个平面相交,则两条交线平行.例6.求证:夹在两平行平面间的平行线段的长相等.定理3.若一平面内有两条相交直线平行于另一平面,则这两个平面平行.推论1.若一平面内有两条相交直线分别平行于另一平面内的两条直线,则这两平面平行.推论2.平行于同一平面的两平面互相平行.例7.如图,,AB CD 是异面直线,//,AB CD αα⊂,,M N 分别是,AC BD 的中点,求证://MN α.例8.正方体1111ABCD A B C D -的棱长为a ,1,M A B N AC ∈∈且1A M AN =,求证: //MN 平面11BB C C .例9.正方体1111ABCD A B C D -中,,E F 分别是11,AA CC 的中点,(1)求证:平面//BDF 平面11B D E .(2)求证:1DFB E 是平行四边形.例10.设,AB CD 是夹在两个平行平面,αβ间的线段,,M N 分别是,AB CD 的中点,求证://MN α.(2.3)斜二测画法平面图形的斜二测画法:在原图F 上建立平面直角坐标系xOy ,任取点O ',作仿射坐标系x O y ''',使得045x O y '''∠=;作F 上点(,)A x y 在新图形F '上的对应点1(,)2A x y ';连接相应线段并擦去坐标系x O y ''',就得到F 的按斜二测画法作出的直观图F '. 例11.用斜二测画法画出正6边形的直观图. 注.由画法直接得到:若F '是平面图形F 由斜二测画法画出的直观图,则F '的面积与F 的面积的比为4. 空间图形的斜二测画法:在原图F 上取水平平面及互相垂直的轴,Ox Oy ,再取轴Oz 使之与,Ox Oy 都互相垂直;作平面仿射坐标系x O y '''如前,作出F 的水平平面上图形的直观图;再取O z ''使之垂直于面x O y ''',将F 中与Oz 平行的线段画成与O z ''平行的线段并保持长度不变例12.用斜二测画法画出正方体的直观图.练习题1.设,a b 为直线,π为平面,下列说法正确的是A.若a 平行于π内的无数条直线,则//a πB.若a π⊄,则//a πC.若//,a b b π⊂,则a 平行于π内的无数条直线D.若//,a b b π⊂,则//a π2.过两异面直线外一点且与这两直线都平行的平面A.可能不存在B.有且仅有一个C.有无限个D.至少一个3.设,a b 为异面直线,a π⊂,则过b 且与平面π平行的平面A.不存在B.至多一个C.恰有一个D.有无数个4.正方体1111ABCD A B C D -中,,,E F G 分别是,,AD DC1CC 的中点,则平面EFG 截正方体表面所得图形为A.等腰三角形B.等腰梯形C.正五边形D.正六边形5.平面//αβ,直线,,//,//a b a b αββα⊂⊂,则直线,a b 的位置关系是____________.6.设,m n 是平面α外的两条直线,给出:①//m n ;②//m α;③//n α,以其中两个为条件另一个为结论的正确命题是______________.7.设平面//αβ,,,,A C B D αβ∈∈,AB CD S ⋂=,若5,8,21AS BS CD ===,且060ASB ∠=,则CS 的长为_________.8.如图,正方体1111ABCD A B C D -的棱长为a ,1111,,M AB N AC A N AM ∈∈=.(1)求证//MN 平面11BB C C .(2)求MN 长的最小值.9.设平面l αβ⋂=,直线,,//a b a b αβ⊂⊂,求证//a l .新高中讲义03.线面垂直与线面角1.线面垂直与线面角(1.1)直线与平面垂直定义:若一条直线垂直于一个平面内的所有直线,则称这条直线与这个平面垂直. 直线l 与平面α垂直,记为l α⊥.例 1.(1)证明过一点且垂直于已知平面的直线有且只有一条.(2)证明过一点且垂直于已知直线的平面有且只有一个.定理1.若一条直线垂直于一个平面内的两条相交直线,则这条直线垂直于这个平面.推论1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于该平面.若一直线垂直于两个平行平面中的一个,则必垂直于另一个.推论2.垂直于同一平面的两条直线互相平行.垂直于同一直线的两个平面互相平行. 例2.四面体ABCD 中,,AB CD AC BD ⊥⊥,求证:AD BC ⊥.例 3.(1)设直线l ⊥平面α,垂足A ,证明过A 且垂直于l 的直线必在平面α内.(2)若已知,l l m α⊥⊥,则,l α有何关系?例4.如图,PA ⊥平面ABC ,090ABC ∠=,AE PB ⊥于,E AF PC ⊥于F .(1)证明PB BC ⊥.(2)三棱锥P ABC -的4个面中有几个直角三角形?(3)证明PC ⊥面AEF .(1.2)正射影与三垂线定理自点P 向平面α作垂线,垂足P '叫做点P 在平面α内的正射影(简称射影).线段PP '的长叫做点P 到平面α的距离,是集合{}PQ Q α∈中长度最小者.若图形F 的点在平面α内的正射影构成图形F ',则称F '为F 在平面α内的射影. 与平面相交但不垂直的直线称为平面的斜线,交点叫斜足.任何直线在平面上的射影是一个点或一条直线.设点P 在平面α内的射影P ',又,A B α∈,则PA PB P A P B ''>⇔>.例5.设,,,P A B C αα∉∈.(1)PA PB PC ==⇔P 在α内的射影是ABC ∆的外心.(2),PA BC PB AC ⊥⊥⇔P 在α内的射影是ABC ∆的垂心.(3)P 到直线,,BC CA AB 的距离(垂线段的长)相等P ⇔在α内的射影是ABC ∆的内心或旁心.三垂线定理.设平面α的斜线l 在α内的射影是l ',m α⊂,则l m l m '⊥⇔⊥.例6.如图,梯形ABCD 中,090,,2DAB ABC AB BC a AD a ∠=∠====,PA ⊥平面,ABCD PA a =.(1)求证:PC CD ⊥.(2)求点B 到直线PC 的距离.例7.正方体1111ABCD A B C D -中,,,M N P 分别是1,,AB BC DD 的中点,证明PB ⊥ 平面1B MN .2.直线与平面所成的角定义.平面的斜线与它在平面内的射影所夹的角,称为斜线与平面所成的角.规定平面的垂线与平面所成角为直角;规定平面内的直线或平面的平行线与平面所成的角为零.直线与平面所成角的范围是[0,]2π;斜线与平面所成角的范围是(0,)2π. 直线与平面所成的角是直线与平面内所有直线所成角中的最小者.例8.(三余弦公式)直线l 在平面α内的射影是l ',直线m α⊂.若,l l '所成角为0θ,,l m 所成角为2θ,,l m '所成角为1θ,则201cos cos cos θθθ=.例9.COB ∠在平面α内,OA 是α的一条斜线,060AOB AOC ∠=∠=,OA OB =OC a ==,BC =,求OA 与α所成的角.例10.如图,平面α内线段AB 的长为3,CA α⊥,BD 与α所成角为030,,BD AB ⊥,C D 在α同侧,4CA BD ==.(1)求CD 长.(2)求直线CD 与α所成角的正切值.例11.四面体PABC 中,,,PA PB PC 两两互相垂直.(1)证明ABC ∆是锐角三角形.(2)设H 是P 在平面ABC 内的射影,证明22221111PH PA PB PC =++.(3)证明ABC ∆的面积的平方等于,,PBC PCA PAB ∆∆∆的面积的平方和.(4)证明,,PA PB PC 与平面ABC 所成的角的正弦的平方和为定值.例12.如图,已知AB ⊥平面BCD ,AB BC =且090BCD ∠=,又AD 与平面BCD 所成角为030.(1)求AD 与平面ABC 所成角的大小.(2)求AC 与平面ABD 所成角的正弦.练习题1.设直线l 交平面α于点P ,则平面α内A.存在平行于l 的直线B.存在两条相交直线都垂直于lC.有无数条直线垂直于lD.存在与l 成030角的直线2.若不共线三点到平面α的距离相等且大于0,则这三点确定的平面与α的关系是A.平行B.相交C.平行或相交D.前面答案都不对3.正方体1111ABCD A B C D -中,1O 是11AC 的中点,则与直线1CO 垂直的是A.ACB.BDC.1A DD.1A A4.,a b 是两条相交直线,直线,c d 与,a b都垂直,则直线,c d 的关系是________.5.设P 是正方体1111ABCD A B C D -的中心,则APC ∆在其表面的射影的可能图形的序号是___________.6.P 是边长为3的正ABC ∆所在平面α外一点,2PA PB PC ===,则PC 与平面α 所成角的度数是_________.7.Rt ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为0030,45,则AB 边上的高与α所成角的度数是__________.8.如图,已知ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交,SB ,SC SD 于,,E F G ,求证:,AE SB AG SD ⊥⊥.9.ABC ∆中,090,3,4,A AB AC PA ∠===是平面ABC 的斜线,PAB PAC ∠=∠ 060=.(1)求PA 与平面ABC 所成角的大小.(2)若P 在平面ABC 上的射影恰在BC 上,求PA 的长.新高中讲义04.二面角及两平面互相垂直1.二面角平面内一条直线将平面分成两部分,每部分都叫做一个半平面,这条直线称为半平面的端线.定义.有公共端线的两个半平面构成的空间图形叫做二面角,这两个半平面叫做二面角的面,公共端线叫做二面角的棱.棱为l ,两个半平面分别为,αβ的二面角记为l αβ--.注.二面角也可看成是一个半平面(始面)绕其端线旋转到一定位置(终面)所形成的空间图形.二面角的度量.垂直于二面角l αβ--的棱的平面γ分别与面,αβ交于射线OA 和OB ,则AOB ∠称为二面角l αβ--的平面角,显然平面角的大小只与二面角l αβ--有关而与平面γ的选择(即点O l ∈的选择)无关.规定二面角的度数等于其平面角的度数.二面角的范围是00[0,180]:当终面与始面重合时,认为该二面角为00;当终面与始面互为反向延伸面(合成一平面)时,认为该二面角为0180.例1.如图,三棱锥S ABC -中,SA ⊥面ABC ,AB BC ⊥,,SA AB SB BC ==,又E 为SC 中点,D AC ∈且DE SC ⊥,求二面角C BD E --的大小.例2.如图,已知ABCD 是正方形,PA ⊥平面ABCD ,且S BC D --和S CD B --都是045的二面角,求二面角B SC D --的大小.求二面角大小的一般方法第一步:先从其一个面内任一点P (一般选择现成的特殊点)向另一面所在平面作垂线,由垂足Q 的位置可判断该二面角是锐角还是钝角:若Q 在另一面上,则该二面角是锐二面角;若Q 在另一面的反向延伸面上,则该二面角为钝二面角.第二步:作QH l ⊥于H ,连PH ,由三垂线定理知PH l ⊥,故PHQ ∠为所论二面角的平面角(解题时这步要书写到位).第三步:在Rt PHQ ∆中由已知条件算出PHQ ∠的某三角函数值进而求出PHQ ∠. 例3.正方体1111ABCD A B C D -中,P 为AB 中点,求二面角1P AC B --的大小.例4.自二面角l αβ--的棱l 上一点A ,在平面β引射线AC ,与棱l 成045角,与面α成030角,求二面角l αβ--的大小.例5.空间一点P 到二面角l αβ--的两个面的距离分别为1到棱的距离为2,求此二面角的大小.例 6.如图,锐二面角l αβ--的大小为θ,,(,)AC BD A B l αβ∈∈∈都垂直于l .(1)求证,AC BD 所成的角等于θ.(2)若060θ=,4,6,8AB AC BD ===,求CD 的长.面积射影定理.设二面角l αβ--的大小为θ,平面α内一图形的面积为0S ,它在β内的射影的面积为1S ,则10cos S S θ=.立得:正四面体的所有二面角的余弦都是13. 2.平面与平面垂直定义.平面角是直角的二面角叫做直二面角,若两平面相交成直二面角,则称这两平面互相垂直.平面,αβ互相垂直,记为αβ⊥.注.研究直线与平面的位置关系时,是先定义直线与平面垂直,再利用射影定义直线与平面所成的角;研究平面与平面的位置关系时,是先定义二面角,再用直二面角定义两平面垂直.能先定义两平面垂直再定义二面角吗?定理.若一平面过另一平面的一条垂线,则这两平面互相垂直.推论.若一平面平行于另一平面的一条垂线,则这两平面互相垂直.定理2.若两平面互相垂直,则一平面内垂直于交线的直线垂直于另一平面.推论.若l αβ--是直二面角,直线m β⊥,则m α⊂,或//m α.例7.求证:若一平面垂直于两相交平面,则此平面垂直于那两平面的交线.例8.如图,将菱形ABCD 平移得一个平行六面体1111ABCD A B C D -,已知1A AB ∠=1A AD ∠,求证平面11ACC A ⊥平面ABCD .例9.如图,A 是0120的二面角EF αβ--内一点,,AB AC αβ⊥⊥,垂足,B C .(1)求证:,αβ都垂直于平面ABC .(2)若4,6AB AC ==,求BC 长及A 到EF 的距离.例10.如图,ABC ∆是正三角形,,EC DB 都垂直于平面ABC ,2EC AB DB ==,M 为AE 中点.求证: (1)DE DA =.(2)平面BDM ⊥平面EAC .(3)平面DEA ⊥平面EAC .例11.平行四边形ABCD 中,02,60AB AD BAD =∠=,O 为对角线交点,沿BD 将其折成直二面角.(1)求证:CB ⊥平面BAD .(2)求证:平面ACD ⊥平面CBD .(3)求二面角C AO B --的大小.练习题1.设,a b 是直线,,αβ是平面,,a b αβ⊂⊂,则A.a b αβ⊥⇒⊥B.////a b αβ⇒C.a βαβ⊥⇒⊥D.a b αβ⊥⇒⊥2.设,a b 是异面直线,所成角为060,若,a b βα⊥⊥,则二面角l αβ--的大小为A.030B.060C.0120D.060或01203.设l αβ--是直二面角,直线,a b αβ⊂⊂,且,a b 都不垂直于l ,则A.,a b 可能垂直,但不可能平行B.,a b 既可能垂直,也可能平行C.,a b 不可能垂直,但可能平行D.,a b 既不可能垂直,也不可能平行4.设,m l 为直线,,,αβγ是平面,,//,,l l m m βγααγ=⋂⊂⊥,则A.αγ⊥且l m ⊥B.//αγ且//m βC.//m β且l m ⊥D.//αβ且αγ⊥5.设,m l 为直线,,αβ是平面,命题:①若l 垂直于α内的两条相交直线,则l α⊥;②若//l α,则l 平行于α内所有直线;③,m l αβ⊂⊂且m l ⊥,则m β⊥;④,m l αβ⊂⊂且m l ⊥,则l α⊥.其中正确命题的序号是________.6.设P 是二面角AB αβ--的棱AB 上一点,分别在,αβ上作射线,PM PN ,使得0045,60BPM BPN MPN ∠=∠=∠=,则二面角AB αβ--的大小是_______.7.四面体ABCD 中,C AB D --是直二面角,090,ACB AC BC ∠==,又ABD ∆是正三角形,则二面角C BD A --的正切值为_______.8.如图,已知ABCD 是矩形,SA ⊥平面ABCD ,1,SA AB AD ===求二面角 A SC B --的正弦值.9.正方体1111ABCD A B C D -中,,,,K L M N 分别是111111,,,A B BC C D B C 的中点.(1)求证平面MNL ⊥平面KNL .(2)求二面角K ML N --的正切值.新高中讲义05.简单多面体和球1.多面体由若干个平面多边形围成的空间图形叫多面体,围成多面体的各个多边形叫多面体的面,两个面的公共边叫多面体的棱,两条棱的公共点叫做多面体的顶点,连接不在同一面上两顶点的线段叫多面体的对角线.将一个多面体的任一面延展成平面,若多面体其余面都在这个平面的同一侧,这样的多面体叫凸多面体.一个多面体有几个面就称为几面体,如四面体,五面体,六面体等.多面体的Euler 公式:2v e f -+=,其中,,v e f 分别是多面体的顶点数,棱数和面数. 正多面体:每个面都是有相同边数的正多边形,且每个顶点为端点都有相同的棱数的凸多面体叫正多面体.由多面体的Euler 公式可推得正多面体只有5种:正四面体,正六面体,正八面体,正十二面体及正二十面体.2.棱柱有两个面互相平行,其余每相邻两面的交线互相平行的多面体叫棱柱,两个互相平行的面叫棱柱的底面,简称底,其余各面叫棱柱的侧面,两侧面的公共边叫棱柱的侧棱,两个底面所在平面的公垂线段叫棱柱的高.侧棱垂直于底面的棱柱叫直棱柱,底面是正多边形的直棱柱叫正棱柱.侧棱不垂直于底面的棱柱叫斜棱柱.棱柱的底面是几边形就被称为几棱柱,如三棱柱,四棱柱,五棱柱等.棱柱用代表底面各顶点的字母来表示,如三棱柱111ABC A B C -等.棱柱的体积等于底面积乘以高.棱柱性质:(1)棱柱的各侧面都是平行四边形,所有侧棱都相等;直棱柱的各侧面都是矩形,正棱柱的各侧面是全等的矩形.(2)棱柱的两底面与平行于底面的截面是对应边互相平行的全等的多边形.(3)过棱柱不相邻的两侧棱的截面是平行四边形.例1.下列各几何体中,哪些是棱柱?若是棱柱,指出其底面.例2.如图,正三棱柱111ABC A B C -中,11AB BC ⊥,求证11BC CA ⊥.例3.如图,正三棱柱111ABC A B C -中,D 是AC 中点.(1)求证:1//AB 平面1DBC .(2)若还有11AB BC ⊥,求二面角1D BC C --的大小.平行六面体与长方体:底面是平行四边形的四棱柱叫平行六面体,侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.换个说法:底面是矩形的直四棱柱叫长方体.定理1.平行六面体的四条对角线共点且互相平分.定理2.(1)长方体的对角线长的平方等于同一顶点处三棱长的平方和.(2)长方体的对角线与同一顶点处三棱所成角的余弦的平方和等于1,与同一顶点处三面所成角的余弦的平方和等于2.例 4.长方体1111ABCD A B C D -中,15,4,3AB AC AA ===,沿长方体表面从A 到1C 的最小路径长是多少?例5.如图是三个几何体的侧面展开图,它们的原图各是什么几何体?3.棱锥和棱台一个面是多边形,其余各面是有公共顶点的三角形的多面体叫棱锥,这些有公共顶点的三角形叫棱锥的侧面,两个相邻侧面的公共边叫棱锥的侧棱,各侧面的公共顶点叫棱锥的顶点,顶点对面的多边形叫棱锥的底面,顶点到底面所在平面的垂线段叫棱锥的高.底面是正多边形且顶点在底面的射影是底面中心的棱锥叫正棱锥.(也可说成:底面是正多边形,各侧面是全等的等腰三角形的棱锥叫正棱锥.)棱锥性质:棱锥被平行于底面的平面所截的截面与底面相似.正棱锥性质:正棱锥的高,斜高(锥顶到底面边的距离),斜高在底面的射影(底面正多边形边心距)构成一个直角三角形;正棱锥的高,侧棱,侧棱在底面的射影(底面正多边形半径)也构成一个直角三角形.棱锥的体积等于等底等高的棱柱体积的三分之一.例6.如图所示的长方体中,以,,,,O A B C D 为顶点的几何体是A.三棱锥B.四棱锥C.五棱锥D.六棱锥例7.正三棱锥S ABC -中,O 是底面中心,SO =且SA ,BC 的公垂线段的长是3,求ASB ∠的大小.例7.如图,正四棱锥P ABCD -,过AC 且平行于PB 的截面交PD 于点E ,求截面EAC 与底面所成较小二面角的大小.用平行于棱锥底面的平面去截棱锥,截面与底面之间的部分叫棱台.棱台有两个平行的面,称为棱台的底面,是两个相似而不全等的多边形,其余各面都是梯形,称为棱台的侧面,梯形的腰称为棱台的侧棱.棱台的所有侧棱延长相交于同一点.设棱台的两底面积分别为12,S S ,高为h ,则棱台的体积为12()3h V S S =.两底是对应边分别平行的相似多边形,且两底中心连线垂直于底面的棱台叫正棱台.正棱台的各侧棱长相等,各侧面是全等的等腰梯形.例8.下列命题中错误的是________.①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两面互相平行,其余四面都是等腰梯形的六面体是棱台;④仅有两个面互相平行的五面体是棱台.例9.对右图有描述:①是六面体;②是四棱台;③是四棱柱;④可由三棱柱截去一个小三棱柱而得;⑤可由四棱柱截去一个小三棱柱而得.其中描述正确的是___________.4.圆柱,圆锥,圆台以矩形一边所在直线为旋转轴,其余三边旋转所生成的面围成的旋转体叫圆柱,旋转轴叫圆柱的轴,垂直于轴的边旋转生成的面叫圆柱的底面,平行于轴的边旋转生成的面叫圆柱的侧面,平行于轴的边的任何位置都叫圆柱的母线.以直角三角形一条直角边所在直线为旋转轴,其余两边旋转生成的面所包围的旋转体叫圆锥,相仿地可定义圆锥的轴,侧面及母线.相仿地可定义圆台及相关概念.计算圆柱,圆锥和圆台的侧面积可用曲面展开法:圆柱的侧面可展开为一个矩形,其一边等于圆柱的母线长,另一边等于圆柱的底面周长;圆锥的侧面可展开为一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长;圆台的侧面展开图是一个扇环(如上最后一图).5.球到定点的距离等于定长的点的集合叫球面,到定点的距离不大于定长的点的集合叫球体(简称球),其中定点叫球心,定长叫半径.一个球或球面用表示其球心的字母表示,如球O等.另一表述:半圆绕其直径旋转一周所形成的曲面叫球面,球面所包围的几何体叫球体.用一个平面去截一个球面,截面是一个圆.若此平面过球心,则得到的截面称为大圆;若此平面不过球心,则截面称为小圆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中立体几何定理及
性质
高中立体几何定理及性质
一、公理及其推论
文字语言符号语言图像语言作用公理1
如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

α
α
α






l
B
A
l
B
l
A,
,
,①用来验证直
线在平面内;
②用来说明平
面是无限延展

公理2
如果两个平面有
一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)
l
l
P

=




P

β
α
β
α
①用来证明两
个平面是相交
关系;
②用来证明多
点共线,多线
共点。

公理3
经过不在同一条直线上的三点,有且只有一个平面
确定一个平面
不共线
C
B
A
C
B
A
,
,
,
,

用来证明多点
共面,多线共

推论1
经过一条直线和
这条直线外的一点,有且只有一个平面
α
α
α
α




a
A
A
,
使
,有且只有一个平面
推论2
经过两条相交直
线,有且只有一个平面
α
α
α



=

b
a
P
b
a
,
使
,有且只有一个平面
推论3
经过两条平行直
线,有且只有一个平面
α
α
α



b
a
b
a
,
使
,有且只有一个平面

公理4 (平行公理)
平行于同一条直线的两条直线平行
c
a
c
b
b
a






⎫用来证明线线
平行
二、平行关系
文字语言符号语言图像语言作用
(1)公理4 (平行公理)平行于同一条直线的两条直线平行
c
a
c
b
b
a
∥∥





(2)线面平行的判定定理
如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

αα
α∥∥
a
b
a
b
a








(3)线面平行
的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

b
a
a
b
b
∥∥







=

β
β
α
β
(4)面面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
β
α
α
α
β
β
∥∥






⎪⎪





=

b
a
O
b
a
b
a
(5)面面平行的判定如果两个
β
α
β
α






'

'
O
O
O
O
平面垂直于同一条直线,那么这两个平面平行。

(6)面面平行
的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

b
a
b
a∥∥






=

=

γ
β
γ
α
β
α
(7)面面平行的性质如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。

βα
β
α
∥∥
a
a





(8)面面平行
的性质如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。

βα
β
α






l
l

(9)面面平行的性质
平行于同一个平面的两个平面平行。

γ
α
γ
β
β
α
∥∥





三、垂直关系
文字语言符号语言图像语言作用(10)三垂线定理
在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直
PO
a
a
AO
a
O
PO
PA











=


α
α
α
(11)三垂线定理的
逆定理
在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂
AO
a
a
PO
a
O
PO
PA











=


α
α
α
直.
(12)线面垂直的判定定理
如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

αα
α






⎪⎪





=



l
n
m
B
n
m
n
l
m
l
(13)线面垂直的判定
如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面
αα






b
a
b
a∥
(14)线面垂直的性质定理如果两条直线同垂直于一个平面,那么这两条直线平行。

b
a
b
a







α
α
(15)线面垂直的性

如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线
b
a
b
a∥∥






=

=

γ
β
γ
α
β
α
(16)面面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

β
α
β
α







AB
AB
(17)面面垂直的性
质定理
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

α
β
β
α
β
α











=


AB
AB
CD
AB
CD
最小角定理
斜线和平面所成的角,是这条斜线和这个平面内的直线
所成的一切角中最小的角,且有21cos cos cos θθθ⋅= (其中21,,θθθ如图中所示)。

相关文档
最新文档