吉林省长春市2017年中考数学真题试题(真题试卷)
2017年吉林省长春市中考真题数学
解得:a=4.
答案:4.
11.如图,直线 a∥b∥c,直线 l1,l2 与这三条平行线分别交于点 A,B,C 和点 D,E,F.若 AB:BC=1:2,DE=3,则 EF 的长为 .
解析:∵a∥b∥c,
∴ AB DE , BC EF
∴1 3 , 2 EF
∴EF=6. 答案:6.
12.如图,则△ABC 中,∠BAC=100°,AB=AC=4,以点 B 为圆心,BA 长为半径作圆弧,交 BC
2017 年吉林省长春市中考真题数学
一、选择题:本大题共 8 个小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
1. 3 的相反数是( ) A.-3
B. 1 3
C. 1 3
D.3 解析:根据相反数的定义即可求出 3 的相反数. 3 的相反数是-3. 答案:A.
解析:∵四边形 ABCD 是平行四边形,点 A 的坐标为(-4,0), ∴BC=4, ∵DB:DC=3:1, ∴B(-3,OD),C(1,OD), ∵∠BAO=60°, ∴∠COD=30°,
∴OD= 3 , ∴C(1, 3 ), ∴k= 3 .
答案:D.
二、填空题(每题 3 分,满分 18 分,将答案填在答题纸上)
答案: 8 . 9
13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽 弦图”.此图案的示意图如图②,其中四边形 ABCD 和四边形 EFGH 都是正方形,△ABF、△BCG、 △CDH、△DAE 是四个全等的直角三角形.若 EF=2,DE=8,则 AB 的长为 .
解析:依题意知,BG=AF=DE=8,EF=FG=2 ∴BF=BG-BABC 的顶点 A 的坐标为(-4,0),顶点 B 在第二
2017年吉林省长春市中考数学试卷_0
2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3B.﹣C.D.32.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105C.6.7×107D.6.7×108 3.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组的解集为()A.x<﹣2B.x≤﹣1C.x≤1D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA 的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:×=.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F 的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA 的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.2017年吉林省长春市中考数学试卷参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A;2.C;3.D;4.C;5.C;6.A;7.B;8.D;二、填空题(每题3分,满分18分,将答案填在答题纸上)9.;10.4;11.6;12.;13.10;14.(﹣2,﹣3);三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.;16.;17.;18.;19.;20.;21.80;1140;22.AC=BD;;23.;24.;。
2017年长春市中考数学试卷(含答案)
20XX年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣C. D.32.(3分)据统计,20XX年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106 B.6.7×105C.6.7×107D.6.7×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA 的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A. B. C. D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:×=.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH 都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12(参考数据:sin31°=0.515,米,求大厅两层之间的距离BC的长.(结果精确到0.1米)cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA 的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.20XX年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣C. D.3【解答】解:3的相反数是﹣3故选:A.2.(3分)据统计,20XX年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106 B.6.7×105C.6.7×107D.6.7×108【解答】解:67000000这个数用科学记数法表示为6.7×107.故选:C.3.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.【解答】解:下列图形中,可以是正方体表面展开图的是,故选:D.4.(3分)不等式组的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【解答】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.5.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选:C.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA 的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°【解答】解:作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,∵OA=OB′,∴∠AB′C=∠OAB′=29°.∴∠DOC=∠AB′C+∠OAB′=58°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=90°﹣58°=32°.故选:B.8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A. B. C. D.【解答】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:×=.【解答】解:×=;故答案为:.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是4.【解答】解:∵关于x的一元二次方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4a=16﹣4a=0,解得:a=4.故答案为:4.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为6.【解答】解:∵a∥b∥c,∴=,∴=,∴EF=6,故答案为6.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)【解答】解:∵△ABC中,∠BAC=100°,AB=AC,∴∠B=∠C=(180°﹣100°)=40°,∵AB=4,∴的长为=.故答案为.13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为10.【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===10.故答案是:10.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为(﹣2,﹣3).【解答】解:如图,点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2,∠ABD=45°,∴BD=AD=2,A(4,3),设AB的解析式为y=kx+b,将A,B点坐标代入,得,解得,AB的解析式为y=x﹣1,当y=0时,x=1,即P(1,0),由中点坐标公式,得x A′=2x P﹣x A=2﹣4=﹣2,y A′=2y A′﹣y A=0﹣3=﹣3,A′(﹣2,﹣3).故答案为:(﹣2,﹣3).三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【解答】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【解答】解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P==.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12(参考数据:sin31°=0.515,米,求大厅两层之间的距离BC的长.(结果精确到0.1米)cos31°=0.857,tan31°=0.60)【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【解答】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.【解答】解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,,∴△BCE≌△DCF,∴∠F=∠E=86°.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【解答】解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为80件;这批服装的总件数为1140件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【解答】解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA 的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:AC=BD.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.【解答】解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=AC,同【探究】的方法得,FG=BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F,G是BC,CD的中点,∴FG∥BD,FG=BD,∴△CFG∽△CBD,∴,∴S △BCD =4S △CFG ,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =,同理:S △DHG +S △BEF =,∴S 四边形EFGH =S 四边形ABCD ﹣(S △CFG +S △AEH +S △DHG +S △BEF )=5﹣=,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG=BD ,∴CM=OM=OC ,同理:AN=ON=OA ,∵OA=OC ,∴OM=ON ,易知,四边形ENOP ,FMOP 是平行四边形,∴S 阴影=S 四边形EFGH =,故答案为.23.(10分)如图①,在Rt △ABC 中,∠C=90°,AB=10,BC=6,点P 从点A 出发,沿折线AB ﹣BC 向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0≤t≤时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣•[5t﹣(8﹣t)]•[5t﹣(8﹣t)]=.c、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.S=S四边形PBQF﹣S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+32t ﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【解答】解:(1)函数y=ax﹣3的相关函数为y=,将点A(﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x2+4x﹣的相关函数为y=①当m<0时,将B(m,)代入y=x2﹣4x+得m2﹣4m+=,解得:m=2+(舍去)或m=2﹣.当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣.②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为.当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为,最小值为﹣;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n<﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n<﹣1或1<n≤.。
精编版-2017年吉林长春中考数学真题及答案
2017年吉林长春中考数学真题及答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是()A.﹣3 B.﹣13C.13D.3【答案】A2.据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105C.6.7×107D.6.7×108【答案】C3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.【答案】D4.不等式组10251xx-≤⎧⎨-<⎩的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【答案】C5.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【答案】C6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A7.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【答案】B8.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则k的值为()A 3B3C23D3【答案】D二、填空题(每题3分,满分18分,将答案填在答题纸上)923= .610.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.【答案】411.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.【答案】612.如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)【答案】8 913.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.【答案】1014.如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.【答案】(-1,-2)三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【答案】3a3+4a2﹣a﹣2,36.16.一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【答案】1 317.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)【答案】大厅两层之间的距离BC的长约为6.18米.18.某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【答案】跳绳的单价是15元.19.如图,在菱形AB CD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.【答案】86°20.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【答案】(1)n=60;(2)估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【答案】(1)80;1140;(2)乙车间加工服装数量y与x之间的函数关系式为y=60x﹣120(4≤x≤9);(3)甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.【答案】【探究】平行四边形.理由见解析;【应用】(1)添加AC=BD,理由见解析;(2)54.23.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.【答案】(1)AQ=8﹣43t(0≤t≤4);(2)t=32s或3s时, PQ与△ABC的一边平行;(3)①当0≤t≤32时,S=﹣16t2+24t.当32<t≤2时,S=﹣163t2+40t-48.当2<t≤3时,S=﹣203t2+30t﹣24.②当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=()()1010x xx x-+<⎧⎪⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣12.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣12的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣12,1),(92,1}),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【答案】(1)a=1;(2)①m=2﹣5或m=2+2或m=2﹣2.②当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)n的取值范围是﹣3<n≤﹣1或1<n≤54.。
2017年长春市中考数学试卷试题试卷
专
当
这个 数
当
时
数
标
写线
与
数
值围
关数图 时
值
关数
值
值
标 别为
训
关
连结
图 两个
时
数学
页页
荭
过
长线
为
标
顶
标为
顶
歹轴严
彐
数乡
图
乡窀 则
为
Į
«
计
į
题
产
鱼线
吕
卫
题 线
题
两个
与这 条 线
则
长为
实数 则
兰画 复
题
汇
两
彐
这 个图 图
长为 国汉 图
赵 边
个
为圆
结 髀 经 时给 边 胜
长为 径 圆
们称它为 赵 图
习
»
戛
标
顶
线彐
轴
标 别为 与 吕关
对你 网
标为
数学
页
页
蔷围
题
国 氧 营业 厅
黟
钱 俞为
长
为 军问 时
装 数为
车 维 设备
车间
两车
装 从开 维 设备
务为 设 与间
这
装数 与 装时 车间
这
两车间
数图
图
装 总 数为
间
关
时间
į
装 车间 继续 装数
霉
时
现图
卫
图圆
边
断边
应
条
边
你
条
图
边
对线
积为 则阴
图
别
【试卷】2017年吉林省长春市中考数学试卷含答案解析版
【关键字】试卷2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.1.(3分)3的相反数是()A.﹣3 B.﹣C.D.32.(3分)据统计,2016年长春市接待旅游人数约人次,这个数用科学记数法表示为()A.67×106 B.6.7×105 C.6.7×107 D.6.7×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:×=.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)13.(3分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅的距离AC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C 顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分红两部分的面积比为1:2时t 的值.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1}),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.2017年吉林省长春市中考数学试卷一、选择题:1.A.2.C.3.D 4.C.5.C.6.A.7.B.8.D.二、填空题9..10.4.11.6.12..13.10.14.(﹣1,﹣2).三、解答题15.解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.16.解:列表如下:a b ca(a,a)(b,a)(c,a)b(a,b)(b,b)(c,b)c(a,c)(b,c)(c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P==.17.解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴AC=AB•cos∠BAC=12×0.857≈10.3(米).即大厅的距离AC的长约为10.3米.18.解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.19.解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,,∴△BCE≌△DCF,∴∠F=∠E=86°.20.解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x +60x ﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.解:【探究】平行四边形.理由:如图1,连接AC , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF=AC , 同理HG ∥AC ,HG=AC ,综上可得:EF ∥HG ,EF=HG , 故四边形EFGH 是平行四边形.【应用】(1)添加AC=BD ,理由:连接AC ,BD ,同(1)知,EF=AC ,同【探究】的方法得,FG=BD ,∵AC=BD , ∴EF=FG ,∵四边形EFGH 是平行四边形, ∴▱EFGH 是菱形;故答案为AC=BD ;(2)如图2,由【探究】得,四边形EFGH 是平行四边形,∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG=BD , ∴△CFG ∽△CBD , ∴, ∴S △BCD =4S △CFG ,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5, ∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =, 同理:S △DHG +S △BEF =,∴S 四边形EFGH =S 四边形ABCD ﹣(S △CFG +S △AEH +S △DHG +S △BEF )=5﹣=,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG=BD ,∴CM=OM=OC ,同理:AN=ON=OA ,∵OA=OC , ∴OM=ON ,易知,四边形ENOP ,FMOP 是平行四边形,∴S 阴影=S 四边形EFGH =, 故答案为.23.解:(1)在Rt △ABC 中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t ,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0≤t≤时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣•(t﹣8)•(﹣8)=t2﹣t ﹣.C、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.S=S四边形PBQF S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+30t﹣24.综上所述,S=.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(3﹣3t):(3﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(3t﹣3):(3﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.24.解:(1)函数y=ax﹣3的相关函数为y=,将点A(﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x2+4x﹣的相关函数为y=①当m<0时,将B(m,)代入y=x2﹣4x+得m2﹣4m+=,解得:m=2+(舍去)或m=2﹣.当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣.②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为.当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为,最小值为﹣;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
2017年长春市中考数学试(全word版含答案)
2017年长春市初中毕业生学业水平考试数 学本试卷包括三道大题,共24道小题,共6页.全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(本大题共8小题,每小题3分,共24分) 1.3的相反数是 (A )-3.(B )13-. (C )13.(D )3.2.据统计,2016年长春市接待旅游人数约67 000 000人.67 000 000这个数用科学记数法表示为 (A )67×106. (B )6.7×106. (C )6.7×107. (D )6.7×108.3.下列图形中,可以是正方形表面展开图的是(A )(B ) (C )(D )4.不等式组10,251x x -⎧⎨-<⎩≤的解集为(A )2x <-. (B )1x -≤. (C )1x ≤.(D )3x <.5.如图,在△ABC 中,点D 在AB 上,点E 在AC 上.DE ∥BC ,若∠A=62°,∠AED=54°.则∠B 的大小为 (A )54°. (B )62°. (C )64°. (D )74°.(第5题) (第6题)6.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 (A )3a +2b .(B )3a +4b . (C )6a +2b .(D )6a +4b .E D CBA7.如图,点A 、B 、C 在⊙O 上,∠ABC =29°,过点C 作⊙O 的切线交OA 的延长线于点D .则∠D 的大小为 (A )29°.(B )32°. (C )(第7题)(第8题)8.如图,在平面直角坐标系中,□ABCD 的顶点A 的坐标为(-4,0),顶点B 在第二象限,∠BAO =60°.BC交y 轴于点D ,BD :DC =3:1.若函数(0,0)ky k x x=>>的图象经过点C , 则k 的值为 (A . (B . (C (D . 二、填空题(本大题共6小题,每小题3分,共18分) 9= .10.若关于x 的一元二次方程240x x a ++=有两个相等的实数根,则a 的值是 . 11.如图,直线a ∥b ∥c ,直线l 1 、l 2与这三条平行线分别相交于点A 、B 、C 和点D 、E 、F .若AB :BC =1:2, DE =3.则EF 的长为 .(第11题) (第12题)12.如图,在△ABC 中,∠BAC=100°,AB=AC=4,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D .则弧AD 的长为 .(结果保留π)(第13题) 13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图” . 此图案的示意图如图②,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF 、△BCG 、△CDH 、△DAE 是四个全等的直角三角形.若EF=2,DE=8,则AB 的长为 .14.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、(6,1),∠BAC =90°,AB =AC ,直线AB 交x 轴于点P .若△ABC 与△A B C '''关于点P 成中心对称,则点A '的坐标为 .CBAODl 2Fl 1cba A BC DEABCDFEDCBAGH三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:22(24)2(1)a a a a ++-+,其中2a =.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a ,b ,c .每个小球除字母不同外其余均相同.小圆同学从口袋中随机摸出一个小球,记下字母后放回并搅匀;再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小圆同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米.求大厅两层之间的距离BC的长.(结果精确到0.1米)【参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.601】18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个.求跳绳的单价.19.(7分)如图,在菱形ABCD 中,∠A =110°.点E 是菱形ABCD 内一点,连结CE ,将线段CE 绕点C 顺时针旋转110°得到线段CF ,连结BE 、DF .若∠E =86°,求∠F 的度数.31°CBA ADEF20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t (小时)分为A 、B 、C 、D 、E (A :9≤t ≤24;B :8≤t <9;C :7≤t <8;D :6≤t <7;E :0≤t <6)五个选项,进行了一次问卷调查,随机抽取n 名同学的调查问卷进行了整理,绘制成如下条形统计图.根据统计图提供的信息解答下列问题:(1)求n 的值.(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC 中,点D 、E 分别是AB 、AC 的中点.可以得到:DE ∥BC ,且DE=12BC . 【探究】如图②,在四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,判断四边形EFGH 的形状,并加以证明.【应用】(1)在【探究】的条件下,四边形ABDC 满足什么条件时,四边形EFGH 是菱形?你添加的条件是: .(只添加一个条件)(2)如图③,在四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,对角线AC 、BD 相交于点O .若AO=OC ,四边形ABCD 的面积为5,则阴影部分的面积为 .图① 图② 图③某校八年级n 名学生睡眠情况y (件)EDCBAED CBAGHA23.(10分)如图①,在Rt △ABC 中,∠C =90°,AB =10,BC =6.点P 从点A 出发,沿折现AB —BC 向终点C运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动.点Q 从点C出发,沿CA 方向以每秒43个单位长度的速度运动.点P 、Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒. (1)求线段AQ 的长.(用含t 的代数式表示)(2)连结PQ ,当PQ 与△ABC 的一边平行时,求t 的值. (3)如图②,过点P 作PE ⊥AC 于点E ,以PE 、QE 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式.②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.图① 图②24.(CBAQPPQ CBAFE D参考答案一、1. A 2.C 3.D 4.C 5.C 6.A 7.B 8.D 二、9.10.4.11.6.12.89π.13.10.14.(2,3)-- . 三、15.326a -=.16.1317. BC =AB sin31°=12×0.515=6.18≈6.2 18.750900303x x=+,15x = 19.全等, 86°20.(1) 60n =(2)96009060⨯= 21.(1)80(件),1140(件)(2)60120y x =- (3)80601201000x x +-= 8x = 22.探究:连结AC ,平行四边形,连结AC ,由中位线定理易证应用:(1)AC =BD23.(1)483t -(2)32t =,3t = (3)①当302t≤≤时,21624S t t =-+当 322t <≤时,2168243S t t =+-当23t <≤时,220323S t t =-+-② 35t = 65t =A)PQ CBAFE D24.(1)3y ax =-的相关函数为 3(0),3(ax x y ax x -+<⎧=⎨-⎩≥0).(5,8)A -在一次函数3(0)y ax x =-+<的图象上,1a =(2)①2142y x x =-+-的相关函数为2214(0),214(2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-⎪⎩≥0).点3(,)2B m 在这个函数的相关函数的图象上,当0m <时,代入214(0)2y x x x =-+<得,2m =,2m =(舍)。
吉林省长春市中考数学试卷
2017年吉林省长春市中考数学试卷(总30页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣C.D.32.(3分)据统计,2016年长春市接待旅游人数约人次,这个数用科学记数法表示为()A.67×106B.×105C.×107D.×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:×= .10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA 长为半径作圆弧,交BC于点D,则的长为.(结果保留π)13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到米)(参考数据:sin31°=,cos31°=,tan31°=)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A 出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.2017年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(3分)据统计,2016年长春市接待旅游人数约人次,这个数用科学记数法表示为()A.67×106B.×105C.×107D.×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:这个数用科学记数法表示为×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.【分析】观察选项中的图形,确定出作为正方体表面展开图的即可.【解答】解:下列图形中,可以是正方体表面展开图的是,故选D【点评】此题考查了几何体的展开图,熟练掌握正方体的表面展开图是解题关键.4.(3分)不等式组的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【分析】先求出每个不等式的解集,再求出每个解集的公共部分即可.【解答】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选C.【点评】本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.5.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°【分析】根据平行线的性质得到∠C=∠AED=54°,根据三角形的内角和即可得到结论.【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选C.【点评】本题考查了平行线的性质,三角形的内角和,熟练掌握三角形的内角和是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°【分析】作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,由等腰三角形的性质和三角形的外角的性质可求得∠DOC=54°,接下来,由切线的性质可证明∠OCD=90°,最后在Rt△OCD中根据两锐角互余可求得∠D的度数.【解答】解:作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,∵OA=OB′,∴∠AB′C=∠OAB′=29°.∴∠DOC=∠AB′C+∠OAB′=58°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=90°﹣58°=32°.故选B.【点评】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠ABC=∠OAB′=29°是解题的关键.8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.【分析】根据平行四边形的性质得出点B的横坐标,再由DB:DC=3:1得出点C的横坐标,由∠BAO=60°,得∠COD,即可得出点C坐标,即可得出k的值.【解答】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.【点评】本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:×= .【分析】根据二次根式的乘法法则进行计算即可.【解答】解:×=;故答案为:.【点评】此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则=是本题的关键,是一道基础题.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是 4 .【分析】根据方程的系数结合根的判别式,即可得出△=16﹣4a=0,解之即可得出a值.【解答】解:∵关于x的一元二次方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4a=16﹣4a=0,解得:a=4.故答案为:4.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 6 .【分析】由a∥b∥c,可得=,由此即可解决问题.【解答】解:∵a∥b∥c,∴=,∴=,∴EF=6,故答案为6.【点评】本题考查平行线分线段成比例定理,解题的关键是正确应用平行线分线段成比例定理,属于中考常考题型.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA 长为半径作圆弧,交BC于点D,则的长为.(结果保留π)【分析】先根据等边对等角以及三角形内角和定理求出∠B的度数,再代入弧长公式计算即可.【解答】解:∵△ABC中,∠BAC=100°,AB=AC,∴∠B=∠C=(180°﹣100°)=40°,∵AB=4,∴的长为=.故答案为.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等腰三角形的性质以及三角形内角和定理.13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为10 .【分析】在直角△ABF中,利用勾股定理进行解答即可.【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===10.故答案是:10.【点评】此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为(﹣2,﹣3).【分析】根据等腰直角三角形,可得AB的长,再根据锐角三角函数,可得AD,BD的长,再根据待定系数法,可得函数解析式,根据自变量与函数值得对应关系,可得P点坐标,根据中点坐标公式,可得答案.【解答】解:如图,点B ,C 的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC ,得AB=2,∠ABD=45°,∴BD=AD=2,A (4,3),设AB 的解析式为y=kx+b ,将A ,B 点坐标代入,得, 解得,AB 的解析式为y=x ﹣1,当y=1时,x=1,即P (1,0),由中点坐标公式,得x A′=2x P ﹣x A =2﹣4=﹣2,y A′=2y A′﹣y A =0﹣3=﹣3,A′(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查了等腰直角三角形,利用等腰直角三角形得出AB 的长是解题关键.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a (a 2+2a+1)﹣2(a+1)2,其中a=2.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.(6分)一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【分析】列表得出所有等可能的情况数,找出两次摸出的小球的标号相同的情况数,即可求出所求的概率.【解答】解:列表如下:a b ca(a,a)(b,a)(c,a)b(a,b)(b,b)(c,b)c(a,c)(b,c)(c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到米)(参考数据:sin31°=,cos31°=,tan31°=)【分析】过B作地平面的垂线段BC,垂足为C,构造直角三角形,利用正弦函数的定义,即可求出BC的长.【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×≈(米).即大厅两层之间的距离BC的长约为米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,把坡面与水平面的夹角α叫做坡角.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【分析】首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.【解答】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.【分析】由菱形的性质有BC=CD,∠BCD=∠A=110°,根据旋转的性质知CE=CF,∠ECF=∠BCD=110°,于是得到∠BCE=∠DCF=110°﹣∠DCE,根据全等三角形的判定证得△BCE≌△DCF,根据全等三角形的性质即可得到结论.【解答】解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,,∴△BCE≌△DCF,∴∠F=∠E=86°.【点评】本题主要考查了菱形的性质,旋转的性质,全等三角形的性质和判定,由旋转的性质得到CE=CF,∠ECF=∠BCD是解题的关键.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【分析】(1)将各频数相加即可;(2)先计算不足7小时(即最后两组:D和E组),两组的百分比,与总人数600的积就是结果.【解答】解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为80 件;这批服装的总件数为1140 件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【分析】(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.【解答】解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:AC=BD .(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.【分析】【探究】利用三角形的中位线定理可得出HG=EF、EF∥GH,继而可判断出四边形EFGH的形状;【应用】(1)同【探究】的方法判断出EF=AC,即可判断出EF=FG,即可得出结论;(2)先判断出S△BCD =4S△CFG,同理:S△ABD=4S△AEH,进而得出S四边形EFGH=,再判断出OM=ON,进而得出S阴影=S四边形EFGH即可.【解答】解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=AC,同【探究】的方法得,FG=BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F,G是BC,CD的中点,∴FG∥BD,FG=BD,∴△CFG∽△CBD,∴,∴S△BCD =4S△CFG,同理:S△ABD =4S△AEH,∵四边形ABCD面积为5,∴S△BCD +S△ABD=5,∴S△CFG +S△AEH=,同理:S△DHG +S△BEF=,∴S四边形EFGH =S四边形ABCD﹣(S△CFG+S△AEH+S△DHG+S△BEF)=5﹣=,设AC与FG,EH相交于M,N,EF与BD相交于P,∵FG∥BD,FG=BD,∴CM=OM=OC,同理:AN=ON=OA,∵OA=OC,∴OM=ON,易知,四边形ENOP,FMOP是平行四边形,∴S阴影=S四边形EFGH=,故答案为.【点评】此题是四边形综合题,主要考查了三角形的中位线定理,平行四边形的判定,菱形的判定,相似三角形的判定和性质,解【探究】的关键是判断出HG∥AC,HG=AC,解【应用】的关键是判断出S=,是一道基础题目.四边形EFGH23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A 出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.【分析】(1)利用勾股定理先求出AC,根据AQ=AC﹣CQ即可解决问题;(2)分两种情形列出方程求解即可;(3)①分三种情形a、如图1中,当0≤t≤时,重叠部分是四边形PEQF.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.C、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.分别求解即可;②分两种情形a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.分别列出方程即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0≤t≤时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF ﹣S△PFN=(16t2﹣24t)﹣•[5t﹣(8﹣t)]•[5t﹣(8﹣t)]=.c、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.S=S四边形PBQF ﹣S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+32t﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.【点评】本题考查四边形综合题、矩形的性质、勾股定理、相似三角形的性质和判定、平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【分析】(1)函数y=ax﹣3的相关函数为y=,将然后将点A (﹣5,8)代入y=﹣ax+3求解即可;(2)二次函数y=﹣x2+4x﹣的相关函数为y=,①分为m<0和m≥0两种情况将点B的坐标代入对应的关系式求解即可;②当﹣3≤x<0时,y=x2﹣4x+,然后可此时的最大值和最小值,当0≤x≤3时,函数y=﹣x2+4x﹣,求得此时的最大值和最小值,从而可得到当﹣3≤x≤3时的最大值和最小值;(3)首先确定出二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.【解答】解:(1)函数y=ax﹣3的相关函数为y=,将点A(﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x2+4x﹣的相关函数为y=①当m<0时,将B(m,)代入y=x2﹣4x+得m2﹣4m+=,解得:m=2+(舍去)或m=2﹣.当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣.②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为.当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为,最小值为﹣;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.。
(完整版)吉林省2017年中考数学试卷和答案
吉林省2017年中考数学真题试卷、答案 一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是( )A.1B.2C.﹣1D.﹣22.如图是一个正六棱柱的茶叶盒,其俯视图为( )A.B.C.D.3.下列计算正确的是( )A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab24.不等式x+1≥2的解集在数轴上表示正确的是( )A.B.C.D.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连第1页(共24页)接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )A.70°B.44°C.34°D.24°6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为( )A.5B.6C.7D.8二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为 .8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克 元(用含x的代数式表示).9.分解因式:a2+4a+4= .10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是 .第2页(共24页)第3页(共24页)11.如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C'D'.若点B 的对应点B'落在边CD 上,则B'C 的长为 .12.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=4m ,BD=14m ,则旗杆AB 的高为 m.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画,BE .若AB=1,则阴影部分图形的周长为 (结果保留π).CE 14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx +b 与Al h 第4页(共24页)y=bx +k 互为交换函数.例如:y=4x +3的交换函数为y=3x +4.一次函数y=kx +2与它的交换函数图象的交点横坐标为 . 三、解答题(每小题5分,共20分)15.某学生化简分式+出现了错误,解答过程如下:1x +12x 2‒1原式=+(第一步)1(x +1)(x ‒1)2(x +1)(x ‒1)=(第二步)1+2(x +1)(x ‒1)=.(第三步)3x 2‒1(1)该学生解答过程是从第 步开始出错的,其错误原因是 ;(2)请写出此题正确的解答过程.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .Al l th i n g s in th ei be i ng a r eg oo df o 第5页(共24页)四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.29.69.67.89.3乙 5.89.79.8 5.89.9丙46.28.59.99.9(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)中位数(万元)众数(万元)甲 9.39.6乙8.2 5.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.第6页(共24页)20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB 为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB 为边画一个平行四边形,且另外两个顶点在格点上.21.如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求A ,B 两点间的距离(结果精确到0.1km ).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.如图,在平面直角坐标系中,直线AB 与函数y=(x >0)的图象交于点kx A (m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使OD=OC ,且△ACD 的面积是6,连接BC .12(1)求m,k,n的值;的面积.(2)求△ABC五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为 ;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.第7页(共24页)(1)正方体的棱长为 cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC.重叠部分图形的面积是y(cm2),点P的运动时间为x(s)(1)当点Q在边AC上时,正方形DEFQ的边长为 cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;第8页(共24页)第9页(共24页)(4)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a (x ﹣2)2﹣经过原点O ,与43x 轴的另一个交点为A ,则a= .【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式.【探究】在图②中,过点B (0,1)作直线l 平行于x 轴,与图象G 的交点从左至右依次为点C ,D ,E ,F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象G 上一点,其横坐标为m ,连接PD ,PE .直接写出△PDE 的面积不小于1时m的取值范围.答案一、单项选择题(每小题2分,共12分)1.A.2.B.3.C4.A.5.解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.6.D.二、填空题(每小题3分,共24分)7.8.4×107.8.0.8x.第10页(共24页)l l第11页(共24页)9.(a +2)2.10.同位角相等,两直线平行.11.解:由旋转的性质得到AB=AB′=5,在直角△AB′D 中,∠D=90°,AD=3,AB′=AB=5,所以B′D===4,AB '2‒AD 252‒32所以B′C=5﹣B′D=1.故答案是:1.12.解:∵OD=4m ,BD=14m ,∴OB=OD +BD=18m ,由题意可知∠ODC=∠OBA ,且∠O 为公共角,∴△OCD ∽△OAB ,∴=,即=,解得AB=9,OD OB CD AB 4182ABaA第12页(共24页)即旗杆AB 的高为9m .13.解:∵五边形ABCDE 为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=π,BE CE 108°180°35∴C 阴影=++BC=π+1.BE CE 6514.1.三、解答题(每小题5分,共20分)15.解:(1)一、分式的基本性质用错;(2)原式=+x ‒1(x +1)(x ‒1)2(x +1)(x ‒1)=x +1(x +1)(x ‒1)=1x ‒116.解:设隧道累计长度为xkm ,桥梁累计长度为yk ,根据题意得:,{x +y =3422x =y +36解得:.{x =126y =216答:隧道累计长度为126km ,桥梁累计长度为216km .17.解:画树状图得:第13页(共24页)∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为.4918.证明:∵BE=FC ,∴BE +EF=CF +EF ,即BF=CE ;又∵AB=DC ,∠B=∠C ,∴△ABF ≌△DCE ;(SAS )∴∠A=∠D .四、解答题(每小题7分,共28分)19.解:(1)=(7.2+9.6+9.6+7.8+9.3)=8.7(万元)x 甲15把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.故答案为:8.7,9.7,9.9;(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.第14页(共24页)20.解:(1)如图①、②所示,△ABC 和△ABD即为所求;(2)如图③所示,▱ABCD 即为所求.21.解:由题意可得:∠AOC=90°,OC=5km .在Rt △AOC 中,∵tan34°=,OAOC ∴OA=OC•tan34°=5×0.67=3.35km ,在Rt △BOC 中,∠BCO=45°,∴OB=OC=5km ,∴AB=5﹣3.35=1.65≈1.7km ,答:求A ,B 两点间的距离约为1.7km .22.解:(1)∵点A 的坐标为(m ,2),AC 平行于x 轴,∴OC=2,AC ⊥y 轴,∵OD=OC ,12第15页(共24页)∴OD=1,∴CD=3,∵△ACD 的面积为6,∴CD•AC=6,12∴AC=4,即m=4,则点A 的坐标为(4,2),将其代入y=可得k=8,kx ∵点B (2,n )在y=的图象上,8x ∴n=4;(2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,∴S △ABC =AC•BE=×4×2=4,1212即△ABC 的面积为4.第16页(共24页)五、解答题(每小题8分,共16分)23.解:(1)∵BD 是矩形ABCD 的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD ,∠D'B'C'=∠DBC=∠ADB=60°,∴AD ∥B'C'∴四边形AB'C'D 是平行四边形,∵B'为BD 中点,∴Rt △ABD 中,AB'=BD=DB',12又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D 是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB ∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D ,∴四边形ABC'D'是菱形,第17页(共24页)∵AB=AD=,33∴四边形ABC'D′的周长为4,3(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+或2+3.33 24.解:(1)由题意可得:12秒时,水槽内水面的高度为10cm ,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm ;(2)设线段AB 对应的函数解析式为:y=kx +b ,∵图象过A (12,0),B (28,20),∴,{12k +b =1028k +b =20解得:,{k =58b =52第18页(共24页)∴线段AB 对应的解析式为:y=x +(12≤x ≤28);5852(3)∵28﹣12=16(cm ),∴没有立方体时,水面上升10cm ,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.六、解答题(每小题10分,共20分)25.解:(1)∵∠ACB=90°,∠A=45°,PQ ⊥AB ,∴∠AQP=45°,∴PQ=AP=2x ,∵D 为PQ 中点,∴DQ=x ,故答案为:x ;(2)如图①,延长FE 交AB 于G ,由题意得AP=2x ,∵D 为PQ 中点,∴DQ=x ,∴GP=2x ,第19页(共24页)∴2x +x +2x=4,∴x=;45(3)如图②,当0<x ≤时,y=S 正方形DEFQ =DQ 2=x 2,45∴y=x 2;如图③,当<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH=AB=2,4512∵PQ=AP=2x ,CK=2﹣2x ,∴MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形DEFQ ﹣S △MNF =DQ 2﹣FM 2,12∴y=x 2﹣(5x ﹣4)2=﹣x 2+20x ﹣8,12232∴y=﹣x 2+20x ﹣8;232如图④,当1<x <2时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S △DEQ =DQ 2,12i m h第20页(共24页)∴y=(2﹣x )2,12∴y=x 2﹣2x +2;12(4)当Q 与C 重合时,E 为BC 的中点,即2x=2,∴x=1,当Q 为BC 的中点时,BQ=,2PB=1,∴AP=3,∴2x=3,∴x=,32∴边BC 的中点落在正方形DEFQ 内部时x 的取值范围为:1<x <.32第21页(共24页)26.解:【问题】∵抛物线y=a (x ﹣2)2﹣经过原点O ,43∴0=a (0﹣2)2﹣,43a=,13故答案为:;13【操作】:如图①,抛物线:y=(x ﹣2)2﹣,1343对称轴是:直线x=2,由对称性得:A (4,0),沿x 轴折叠后所得抛物线为:y=﹣(x ﹣2)2+1343n dAl l h i n 第22页(共24页)如图②,图象G 对应的函数解析式为:y=;{13(x ‒2)2‒43(x ≤0或x ≥4)‒13(x ‒2)2+43(0<x <4)【探究】:如图③,由题意得:当y=1时,(x ﹣2)2﹣=0,1343解得:x 1=2+,x 2=2﹣,77∴C (2﹣,1),F (2+,1),77当y=1时,﹣(x ﹣2)2+=0,1343解得:x 1=3,x 2=1,∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >2+时,函数y 随x7增大而增大;【应用】:∵D (1,1),E (3,1),∴DE=3﹣1=2,∵S △PDE =DE•h ≥1,12∴h ≥1;n A第23页(共24页)①当P 在C 的左侧或F 的右侧部分时,设P [m ,],13(m ‒2)2‒43∴h=(m ﹣2)2﹣﹣1≥1,1343(m ﹣2)2≥10,m ﹣2≥或m ﹣2≤﹣,1010m ≥2+或m ≤2﹣,1010②如图③,作对称轴交抛物线G 于H ,交直线CD 于M ,交x 轴于N ,∵H (2,),43∴HM=﹣1=<1,4313∴当点P 不可能在DE 的上方;③∵MN=1,且O (0,0),a (4,0),∴P 与O 或A 重合时,符合条件,∴m=0或m=4;综上所述,△PDE 的面积不小于1时,m 的取值范围是:m=0或m=4或m ≤2﹣或m ≥2+.1010第24页(共24页)。
吉林长春2017年中考数学试题
吉林省长春市2017年中考数学试题一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.3的相反数是 ( )A .3-B .13-C .13D .3 2. 据统计,2016年长春市接待旅行人数约67000000人次,67000000那个数用科学记数法表示为( )A .66710⨯B .56.710⨯C .76.710⨯D .86.710⨯3.以下图形中,能够是正方形表面展开图的是( )A .B .C .D .4. 不等式组10251x x -≤⎧⎨-<⎩ 的解集为( )A .2x <-B .1x ≤- C.1x ≤ D .3x < 5.如图,在ABC ∆中,点D 在AB 上,点E 在AC 上,DE BC ,若62,54A AED ∠=∠=,则B ∠的大小为 ( )A .54B .62 C.64 D .746.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,假设拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A .32a b +B .34a b + C. 62a b + D .64a b +7. 如图,点,,A B C 在O 上,29ABC ∠=,过点C 作O 的切线交OA 的延长线于点D ,则D ∠的大小为( )A .29B .32 C.42 D .588.如图,在平面直角坐标系中,平行四边形OABC 的极点A 的坐标为()4,0-,极点B 在第二象限,60,BAO BC ∠=交y 轴于点,:3:1D DB DC =若,函数()0,0k y k x x =>>的图象,通过点C ,那么k 的值为 ( )A .33B .32 C.233D .3 二、填空题(每题3分,总分值18分,将答案填在答题纸上)9.计算:23⨯= .10.若关于x 的一元二次方程240x x a ++=有两个相等的实数根,那么a 的值是 .11.如图,直线a b c ,直线12,l l 与这三条平分线别离交于点,,C A B 和点,,D E F ,若:1:2,3AB BC DE ==,则EF 的长为 .12.如图,那么ABC ∆中,100,4BAC AB AC ∠===,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D ,则AD 的长为 .(结果保留π)13.如图①,那个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案 案的示用意如图②,其中四边形ABCD 和四边形EFGH 都是正方形,ABF ∆ 、BCG ∆、CDH ∆、DAE ∆是四个全等的直角三角形,假设2,8EF DE ==,则AB 的长为 .图1 图2 14. 如图,在平面直角坐标系中,ABC ∆的极点A 在第一象限,点,B C 的坐标为()()2,1,6,1,90,BAC AB AC ∠==,直线AB 交x 轴于点P ,若ABC ∆与'''A B C ∆关于点P 成中心对称,那么点'A 的坐标为 .三、解答题 (本大题共10小题,共78分.解许诺写出文字说明、证明进程或演算步骤.)15. 先化简,再求值:()223(21)21a a a a ++-+,其中2a = . 16. 一个不透明的口袋中有一个小球,上面别离标有字母,,a b c ,每一个小球除字母不同外其余均相同,小园同窗从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母,用画树状图(或列表)的方式,求小园同窗两次摸出的小球上的字母相同的概率.17. 如图,某商店营业大厅自动扶梯AB 的倾斜角为31AB ,的长为12米,求大厅的距离HC 的长.(结果精准到0.1米)(参考数据:sin310.515,cos310.857,tan310.60===)18. 某校为了丰硕学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.如图,在菱形ABCD 中,110A ∠=,点E 是菱形ABCD 内一点,连结CE 绕点C 顺时针旋转110,取得线段CF ,连结,BE DF ,若86E ∠= ,求F ∠的度数.20.某校八年级学生会为了解今年级600名学生的睡眠情形,将同窗们某天的睡眠时长t (小时)分为(),,,,:924;:89;:78;:67;:06A B C D E A t B t C t D t E t ≤≤≤≤≤≤≤≤≤≤五个选项,进行了一次问卷调查 ,随机抽取n 名同窗的调查问卷并进行了整理,绘制成如下条形统计图,依照统计图提供的信息解答以下问题:(1)求n 的值;(2)依照统计图结果,估量该年级600名学生中睡眠时长不足7小时的人数.21.甲、乙两车间同时开始加工—批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在半途停工一段时刻维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时刻为x (时),y 与x 之间的函数图象如下图.(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.(2)求乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式;(3)求甲、乙两车间一起加工完1000件服装时甲车间所用的时刻.22. 【再现】如图①,在ABC ∆中,点,D E 别离是,AB AC 的中点,能够取得:DE BC ,且12DE BC = .(不需要证明) 【探讨】如图②,在四边形ABCD 中,点,,,E F G H 别离是,,,AB BC CD DA 的中点,判定四边形EFGH 的形状,并加以证明.【应用】在(1)【探讨】的条件下,四边形ABCD 中,知足什么条件时,四边形EFGH 是菱形?你添加的条件是: .(只添加一个条件)(2)如图③,在四边形ABCD 中,点,,,E F G H 别离是,,,AB BC CD DA 的中点,对角线,AC BD 相交于点O .若AO OC =,四边形ABCD 面积为5,那么阴影部份图形的面积和为 .23. 如图①,在Rt ABC ∆中,90,10,6C AB BC ∠===,点P 从点A 动身,沿折线AB BC -向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q 从点C 动身,沿CA 方向以每秒43个单位长度的速度运动,,P Q 两点同时动身,当点P 停止时,点Q 也随之停止.设点P 运动的时刻为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连结PQ ,当PQ 与ABC ∆的一边平行时,求t 的值;(3)如图②,过点P 作PE AC ⊥于点E ,以,PE EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与 ABC ∆重叠部份图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部份的面积比为1:2时t 的值.:关于给定的两个函数,任取自变量x 的一个值,当0x <时,它们对应的函数值互为相反数;当0x ≥时,它们对应的函数值相等,咱们称如此的两个函数互为相关函数.例如:一次函数1y x =-,它们的相关函数为()()1010x x y x x -+<⎧⎪=⎨-≥⎪⎩. (1)已知点()5,8A - 在一次函数3y ax =-的相关函数的图象上,求a 的值;(2)已知二次函数2142y x x =-+- . ①当点3,2B m ⎛⎫ ⎪⎝⎭在那个函数的相关函数的图象上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值; (3)在平面直角坐标系中,点,M N 的坐标别离为19,1,,122⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,连结MN .直接写出线段MN 与二 次函数24y x x n =-++ 的相关函数的图象有两个公共点时n 的取值范围。
(完整版)2017吉林长春市中考数学试题(含答案解析)
2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣13C.13D.32.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105 C.6.7×107 D.6.7×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组{x−1≤02x−5<1的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b7.(3分)如图,点A ,B ,C 在⊙O 上,∠ABC=29°,过点C 作⊙O 的切线交OA 的延长线于点D ,则∠D 的大小为( )A .29°B .32°C .42°D .58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=x x(k >0,x >0)的图象经过点C ,则k 的值为( )A .√33B .√32C .2√33D .√3二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3= .10.(3分)若关于x 的一元二次方程x 2+4x+a=0有两个相等的实数根,则a 的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则xx̂的长为.(结果保留π)13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒43个单位长度的速度运动,P ,Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连结PQ ,当PQ 与△ABC 的一边平行时,求t 的值;(3)如图②,过点P 作PE ⊥AC 于点E ,以PE ,EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.24.(12分)定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x ﹣1,它的相关函数为y={−x +1(x<0)x −1(x ≥0). (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣12.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣12的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.2017年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣13C.13D.3【解答】解:3的相反数是﹣3故选:A.2.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105 C.6.7×107 D.6.7×108【解答】解:67000000这个数用科学记数法表示为6.7×107.故选:C.3.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.【解答】解:下列图形中,可以是正方体表面展开图的是,故选:D.4.(3分)不等式组{x−1≤02x−5<1的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【解答】解:{x−1≤0x 2x−5<1x解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.5.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选:C.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA 的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【解答】解:作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,∵OA=OB′,∴∠AB′C=∠OAB′=29°.∴∠DOC=∠AB′C+∠OAB′=58°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=90°﹣58°=32°.故选:B .8.(3分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=x x(k >0,x >0)的图象经过点C ,则k 的值为( )A .√33B .√32C .2√33D .√3 【解答】解:∵四边形ABCD 是平行四边形,点A 的坐标为(﹣4,0), ∴BC=4,∵DB :DC=3:1,∴B (﹣3,OD ),C (1,OD ),∵∠BAO=60°,∴∠COD=30°,∴OD=√3,∴C(1,√3),∴k=√3,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3= √6.【解答】解:√2×√3=√6;故答案为:√6.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是 4 .【解答】解:∵关于x的一元二次方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4a=16﹣4a=0,解得:a=4.故答案为:4.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 6 .【解答】解:∵a∥b∥c,∴xx xx =xx xx, ∴12=3xx, ∴EF=6,故答案为6.12.(3分)如图,则△ABC 中,∠BAC=100°,AB=AC=4,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D ,则xx ̂的长为 8x 9.(结果保留π)【解答】解:∵△ABC 中,∠BAC=100°,AB=AC ,∴∠B=∠C=12(180°﹣100°)=40°, ∵AB=4,∴xx ̂的长为40x ×4180=8x 9. 故答案为8x 9.13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF 、△BCG 、△CDH 、△DAE 是四个全等的直角三角形.若EF=2,DE=8,则AB 的长为 10 .【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB=√xx2+xx2=√82+62=10.故答案是:10.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为(﹣2,﹣3).【解答】解:如图,点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2√2,∠ABD=45°,∴BD=AD=2,A(4,3),设AB的解析式为y=kx+b,将A,B点坐标代入,得{2x+x=1,4x+x=3,解得{x=1x=−1AB的解析式为y=x﹣1,当y=0时,x=1,即P(1,0),由中点坐标公式,得x A′=2x P﹣x A=2﹣4=﹣2,y A′=2y A′﹣y A=0﹣3=﹣3,A′(﹣2,﹣3).故答案为:(﹣2,﹣3).三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【解答】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【解答】解:列表如下:a b ca(a,a)(b,a)(c,a)b(a,b)(b,b)(c,b)c(a,c)(b,c)(c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P=39=1 3.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【解答】解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得:750x ﹣9003x=30, 解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.19.(7分)如图,在菱形ABCD 中,∠A=110°,点E 是菱形ABCD 内一点,连结CE 绕点C 顺时针旋转110°,得到线段CF ,连结BE ,DF ,若∠E=86°,求∠F 的度数.【解答】解:∵菱形ABCD ,∴BC=CD ,∠BCD=∠A=110°,由旋转的性质知,CE=CF ,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE ,在△BCE 和△DCF 中,{xx =xx ∠xxx =∠xxx xx =xx,∴△BCE ≌△DCF ,∴∠F=∠E=86°.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【解答】解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为80 件;这批服装的总件数为1140 件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【解答】解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:AC=BD .(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为54.【解答】解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12 AC,同【探究】的方法得,FG=12 BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG=12BD , ∴△CFG ∽△CBD ,∴x △xxx x △xxx =14, ∴S △BCD =4S △CFG ,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54, 同理:S △DHG +S △BEF =54, ∴S 四边形EFGH =S 四边形ABCD ﹣(S △CFG +S △AEH +S △DHG +S △BEF )=5﹣52=52, 设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG=12BD , ∴CM=OM=12OC , 同理:AN=ON=12OA , ∵OA=OC ,∴OM=ON ,易知,四边形ENOP ,FMOP 是平行四边形,∴S 阴影=12S 四边形EFGH =54, 故答案为54.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P 运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.【解答】解:(1)在Rt △ABC 中,∵∠C=90°,AB=10,BC=6,∴AC=√xx 2−xx 2=√102−62=8, ∵CQ=43t , ∴AQ=8﹣43t (0≤t ≤4).(2)①当PQ ∥BC 时,xx xx =xx xx, ∴5x 10=8−43x 8, ∴t=32s . ②当PQ ∥AB 时,xx xx =xx xx , ∴43x 8=6−3(x −2)6, ∴t=3,综上所述,t=32s 或3s 时,当PQ 与△ABC 的一边平行.(3)①如图1中,a 、当0≤t ≤32时,重叠部分是四边形PEQF .S=PE•EQ=3t•(8﹣4t ﹣43t )=﹣16t 2+24t . b 、如图2中,当32<t ≤2时,重叠部分是四边形PNQE .S=S 四边形PEQF ﹣S △PFN =(16t 2﹣24t )﹣12•45[5t ﹣54(8﹣43t )]•35[5t ﹣54(8﹣43t )]=163x 2+8x −24. c 、如图3中,当2<t ≤3时,重叠部分是五边形MNPBQ .S=S 四边形PBQF ﹣S △FNM =43t•[6﹣3(t ﹣2)]﹣12•[43t ﹣4(t ﹣2)]•34[43t ﹣4(t ﹣2)]=﹣203t 2+32t ﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣43t)=1:2,解得t=35s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣43t)=1:3,解得t=65 s,综上所述,当t=35s或65s时,DF将矩形PEQF分成两部分的面积比为1:2.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y={−x +1(x<0)x −1(x ≥0). (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣12.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣12的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象有两个公共点时n 的取值范围.【解答】解:(1)函数y=ax ﹣3的相关函数为y={−xx +3(x<0)xx −3(x ≥0),将点A (﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x 2+4x ﹣12的相关函数为y={x 2−4x +12(x<0)−x 2+4x −12(x ≥0) ①当m <0时,将B (m ,32)代入y=x 2﹣4x+12得m 2﹣4m+12=32,解得:m=2+√5(舍去)或m=2﹣√5.当m ≥0时,将B (m ,32)代入y=﹣x 2+4x ﹣12得:﹣m 2+4m ﹣12=32,解得:m=2+√2或m=2﹣√2.综上所述:m=2﹣√5或m=2+√2或m=2﹣√2.②当﹣3≤x <0时,y=x 2﹣4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小,∴此时y 的最大值为432. 当0≤x ≤3时,函数y=﹣x 2+4x ﹣12,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣12,当x=2时,有最大值,最大值y=72. 综上所述,当﹣3≤x ≤3时,函数y=﹣x 2+4x ﹣12的相关函数的最大值为432,最小值为﹣12; (3)如图1所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有3个公共点∵抛物线y=x 2﹣4x ﹣n 与y 轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n <﹣1时,线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=﹣x 2+4x+n 经过点(0,1),∴n=1.如图4所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.∵抛物线y=x 2﹣4x ﹣n 经过点M (﹣12,1), ∴14+2﹣n=1,解得:n=54. ∴1<n ≤54时,线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n <﹣1或1<n ≤54.。
(完整版)吉林省2017年中考数学试卷和答案
吉林省2017年中考数学真题试卷、答案一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣22.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.3.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6D.(ab)2=ab24.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O 于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).9.分解因式:a2+4a+4=.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.11.如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.12.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画BE ̂,CE ̂.若AB=1,则阴影部分图形的周长为 (结果保留π).14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx +b 与y=bx +k 互为交换函数.例如:y=4x +3的交换函数为y=3x +4.一次函数y=kx +2与它的交换函数图象的交点横坐标为 .三、解答题(每小题5分,共20分)15.某学生化简分式1x+1+2x −1出现了错误,解答过程如下:原式=1(x+1)(x−1)+2(x+1)(x−1)(第一步)=1+2(x+1)(x−1)(第二步) =3x 2−1.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:第1月第2月第3月第4月第5月月份销售额人员甲7.29.69.67.89.3乙 5.89.79.8 5.89.9丙4 6.28.59.99.9(1)根据上表中的数据,将下表补充完整:平均数(万元)中位数(万元)众数(万元)统计值数值人员甲9.39.6乙8.2 5.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB 为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB 为边画一个平行四边形,且另外两个顶点在格点上. 21.如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求A ,B 两点间的距离(结果精确到0.1km ). (参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.如图,在平面直角坐标系中,直线AB 与函数y=kx(x >0)的图象交于点A(m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使OD=12OC ,且△ACD 的面积是6,连接BC .(1)求m ,k ,n 的值; (2)求△ABC 的面积.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣43经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.答案一、单项选择题(每小题2分,共12分)1.A.2.B.3.C4.A.5.解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.6.D.二、填空题(每小题3分,共24分)7.8.4×107.8.0.8x.9.(a+2)2.10.同位角相等,两直线平行.11.解:由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以B′D=√AB′2−AD2=√52−32=4,所以B′C=5﹣B′D=1.故答案是:1.12.解:∵OD=4m ,BD=14m , ∴OB=OD +BD=18m ,由题意可知∠ODC=∠OBA ,且∠O 为公共角, ∴△OCD ∽△OAB ,∴OD OB =CD AB ,即418=2AB,解得AB=9, 即旗杆AB 的高为9m .13.解:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴BÊ=CE ̂=108°180°•πAB=35π, ∴C 阴影=BÊ+CE ̂+BC=65π+1. 14.1.三、解答题(每小题5分,共20分) 15.解:(1)一、分式的基本性质用错;(2)原式=x−1(x+1)(x−1)+2(x+1)(x−1)=x+1(x+1)(x−1) =1x−116.解:设隧道累计长度为xkm ,桥梁累计长度为yk , 根据题意得:{x +y =3422x =y +36,解得:{x =126y =216.答:隧道累计长度为126km ,桥梁累计长度为216km . 17.解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为4 9.18.证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.四、解答题(每小题7分,共28分)19.解:(1)x甲=15(7.2+9.6+9.6+7.8+9.3)=8.7(万元)把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.故答案为:8.7,9.7,9.9;(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.20.解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.21.解:由题意可得:∠AOC=90°,OC=5km.在Rt △AOC 中,∵tan34°=OA OC, ∴OA=OC•tan34°=5×0.67=3.35km ,在Rt △BOC 中,∠BCO=45°,∴OB=OC=5km ,∴AB=5﹣3.35=1.65≈1.7km ,答:求A ,B 两点间的距离约为1.7km .22.解:(1)∵点A 的坐标为(m ,2),AC 平行于x 轴,∴OC=2,AC ⊥y 轴,∵OD=12OC , ∴OD=1,∴CD=3,∵△ACD 的面积为6,∴12CD•AC=6, ∴AC=4,即m=4,则点A 的坐标为(4,2),将其代入y=k x 可得k=8, ∵点B (2,n )在y=8x的图象上, ∴n=4;(2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,∴S △ABC =12AC•BE=12×4×2=4,即△ABC的面积为4.五、解答题(每小题8分,共16分)23.解:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=√3AD=√3,∴四边形ABC'D′的周长为4√3,(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+√3或2√3+3.24.解:(1)由题意可得:12秒时,水槽内水面的高度为10cm ,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm ;(2)设线段AB 对应的函数解析式为:y=kx +b ,∵图象过A (12,0),B (28,20),∴{12k +b =1028k +b =20, 解得:{k =58b =52, ∴线段AB 对应的解析式为:y=58x +52(12≤x ≤28);(3)∵28﹣12=16(cm ),∴没有立方体时,水面上升10cm ,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.六、解答题(每小题10分,共20分)25.解:(1)∵∠ACB=90°,∠A=45°,PQ ⊥AB ,∴∠AQP=45°,∴PQ=AP=2x ,∵D 为PQ 中点,∴DQ=x ,故答案为:x ;(2)如图①,延长FE 交AB 于G ,由题意得AP=2x ,∵D 为PQ 中点,∴DQ=x ,∴GP=2x ,∴2x +x +2x=4,∴x=45; (3)如图②,当0<x ≤45时,y=S 正方形DEFQ =DQ 2=x 2, ∴y=x 2;如图③,当45<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH=12AB=2, ∵PQ=AP=2x ,CK=2﹣2x ,∴MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形DEFQ ﹣S △MNF =DQ 2﹣12FM 2, ∴y=x 2﹣12(5x ﹣4)2=﹣232x 2+20x ﹣8, ∴y=﹣232x 2+20x ﹣8; 如图④,当1<x <2时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S △DEQ =12DQ 2, ∴y=12(2﹣x )2, ∴y=12x 2﹣2x +2; (4)当Q 与C 重合时,E 为BC 的中点,即2x=2,∴x=1,当Q 为BC 的中点时,BQ=√2,PB=1,∴AP=3,∴2x=3,∴x=32, ∴边BC 的中点落在正方形DEFQ 内部时x 的取值范围为:1<x <32.26.解:【问题】∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13, 故答案为:13;【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0),沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43 如图②,图象G 对应的函数解析式为:y={13(x −2)2−43(x ≤0或x ≥4)−13(x −2)2+43(0<x <4);【探究】:如图③,由题意得:当y=1时,13(x ﹣2)2﹣43=0, 解得:x 1=2+√7,x 2=2﹣√7,∴C (2﹣√7,1),F (2+√7,1),当y=1时,﹣13(x ﹣2)2+43=0, 解得:x 1=3,x 2=1,∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >2+√7时,函数y 随x 增大而增大;【应用】:∵D (1,1),E (3,1),∴DE=3﹣1=2,∵S △PDE =12DE•h ≥1, ∴h ≥1;①当P 在C 的左侧或F 的右侧部分时,设P [m ,13(m −2)2−43], ∴h=13(m ﹣2)2﹣43﹣1≥1, (m ﹣2)2≥10,m ﹣2≥√10或m ﹣2≤﹣√10,m ≥2+√10或m ≤2﹣√10,②如图③,作对称轴交抛物线G 于H ,交直线CD 于M ,交x 轴于N ,∵H (2,43), ∴HM=43﹣1=13<1, ∴当点P 不可能在DE 的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣√10或m≥2+√10.。
吉林省2017中考试题数学卷(含解析)
2017年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6 C.(a2)3=a6D.(ab)2=ab2【答案】C.试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B. C.D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4= .【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a ∥b (同位角相等,两直线平行); 考点:平行线的判定.11.如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C'D'.若点B 的对应点B'落在边CD 上,则B'C 的长为 .【答案】1. 【解析】试题解析:由旋转的性质得到AB=AB′=5, 在直角△A B′D 中,∠D=90°,AD=3,AB′=AB=5, 所以222254AB AD '-=-,所以B′C=5﹣B′D=1. 故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.【答案】9.【解析】即旗杆AB的高为9m.考点:相似三角形的应用.13.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).【答案】65π+1. 【解析】试题解析:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°, ∴BE =CE =10831805AB ππ︒⨯⨯=︒, ∴C 阴影=BE +CE +BC=65π+1. 考点:正多边形和圆.14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 . 【答案】1. 【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式21211x x ++-出现了错误,解答过程如下: 原式=12(1)(1)(1)(1)x x x x ++-+-(第一步) =1+2(1)(1)x x +-(第二步)=231x -.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析. 【解析】试题分析:根据分式的运算法则即可求出答案. 试题解析:(1)一、分式的基本性质用错; (2)原式=12(1)(1)(1)(1)x x x x x -++-+-=x+1(1)(1)x x +-=11x -. 考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.【答案】隧道累计长度为126km ,桥梁累计长度为216km .【解析】解得:126216x y ⎧=⎨=⎩.答:隧道累计长度为126km ,桥梁累计长度为216km . 考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【答案】49. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可. 试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况, ∴两次两次抽取的卡片上数字之和是奇数的概率为49.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.29.69.67.89.3乙 5.89.79.8 5.89.9丙4 6.28.59.99.9(1)根据上表中的数据,将下表补充完整:统计值平均数(万元)中位数(万元)众数(万元)数值人员甲9.39.6乙8.2 5.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴12CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=kx可得k=8,∵点B(2,n)在y=8x的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=12AC•BE=12×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2)43;(3)6+3或23+3.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,BD=DB',∴Rt△ABD中,AB'=12又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=3AD=3,∴四边形ABC'D′的周长为43,∴矩形周长为33.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y (cm )与注水时间x (s )之间的函数图象如图②所示. (1)正方体的棱长为cm ;(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;(3)如果将正方体铁块取出,又经过t (s )恰好将此水槽注满,直接写出t 的值.【答案】(1)10;(2)y=58x+52(12≤x ≤28);(3)4秒 【解析】(2)设线段AB 对应的函数解析式为:y=kx+b , ∵图象过A (12,0),B (28,20), ∴1202820k b k b ⎧+=⎨+=⎩,解得:5852k b ⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:y=58x+52(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s 的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=45;(3)见解析;(4)1<x<32.【解析】(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=2,得到x=32,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x,DQ2,∴y=S△DEQ=12(2﹣x)2,∴y=12∴y=1x2﹣2x+2;2(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,2PB=1,∴AP=3,∴2x=3,,∴x=32∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<3.2考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x 轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【答案】【问题】:a=13;【操作】:y=2214(2)(0或4)3314(2)(04)33xx x xx<<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;【探究】:当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P 在C 的左侧或F 的右侧部分时,设P[m ,214(2)33m --],根据h ≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P 不可能在DE 的上方;③P 与O 或A 重合时,符合条件,m=0或m=4.试题解析:【问题】∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13; 【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0),沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43如图②,图象G 对应的函数解析式为:y=2214(2)(0或4)3314(2)(04)33x x x x x <<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S△PDE=1DE•h≥1,2∴h≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,43),∴HM=43﹣1=13<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤210或m≥10.考点:二次函数综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省长春市2017年中考数学试题
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.3的相反数是 ( )
A .3−
B .13−
C .13
D .3 2. 据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为( ) A .6
6710⨯ B .56.710⨯ C .76.710⨯ D .86.710⨯
3.下列图形中,可以是正方形表面展开图的是( )
A .
B .
C .
D .
4. 不等式组10251
x x −≤⎧⎨−<⎩ 的解集为( )
A .2x <−
B .1x ≤− C.1x ≤ D .3x < 5.如图,在AB
C ∆中,点
D 在AB 上,点
E 在AC 上,DE BC ,若62,54A AED ∠=∠=,则B ∠的大小为 ( )
A .54
B .62 C.64 D .74
6.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )
A .32a b +
B .34a b + C. 62a b + D .64a b +
7. 如图,点,,A B C 在O 上,29ABC ∠=,过点C 作O 的切线交OA 的延长线于点D ,则D ∠的
大小为( )
A .29
B .32 C.42 D .58
8.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为()4,0−,顶点B 在第二象限,60,BAO BC ∠=交y 轴于点,:3:1D DB DC =若,函数()0,0k y k x x =>>的图象,经过点C ,则k 的值为 ( )
A .33
B .32 C.233
D .3 二、填空题(每题3分,满分18分,将答案填在答题纸上)
9.计算:23⨯= .
10.若关于x 的一元二次方程240x x a ++=有两个相等的实数根,则a 的值是 .
11.如图,直线a b c ,直线12,l l 与这三条平分线分别交于点,,C A B 和点,,D E F ,若:1:2,3AB BC DE ==,则EF 的长为 .
12.如图,则ABC ∆中,100,4BAC AB AC ∠===,以点B 为圆心,BA 长为半径作圆弧,交BC 于点
D ,则AD 的长为 .
(结果保留π)
13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案 案的示意图如图②,其中四边形ABCD 和四边形EFGH 都是正方形,ABF ∆ 、BCG ∆、CDH ∆、DAE ∆是四个全等的直角三角形,若2,8EF DE ==,则AB 的长为 .
图1 图2 14. 如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点,B C 的坐标为
()()2,1,6,1,90,BAC AB AC ∠==,直线AB 交x 轴于点P ,若ABC ∆与'''A B C ∆关于点P 成中心对称,则点'A 的坐标为 .
三、解答题 (本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)
15. 先化简,再求值:()2
23(21)21a a a a ++−+,其中2a = . 16. 一个不透明的口袋中有一个小球,上面分别标有字母,,a b c ,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母,用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.
17. 如图,某商店营业大厅自动扶梯AB 的倾斜角为31AB ,的长为12米,求大厅的距离HC 的长.(结果精确到0.1米)
(参考数据:sin310.515,cos310.857,tan310.60===)
18. 某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.
19.如图,在菱形ABCD 中,110A ∠=,点E 是菱形ABCD 内一点,连结CE 绕点C 顺时针旋转110,得到线段CF ,连结,BE DF ,若86E ∠= ,求F ∠的度数.
20.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t (小时)分为(),,,,:924;:89;:78;:67;:06A B C D E A t B t C t D t E t ≤≤≤≤≤≤≤≤≤≤五个选项,进行了一次问卷调查 ,随机抽取n 名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:
(1)求n 的值;
(2)根据统计图结果,估计该年级600名学生中睡眠时长不足7小时的人数.
21.甲、乙两车间同时开始加工—批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
(2)求乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
22. 【再现】如图①,在ABC ∆中,点,D E 分别是,AB AC 的中点,可以得到:DE BC ,且12
DE BC = .(不需要证明) 【探究】如图②,在四边形ABCD 中,点,,,E F G H 分别是,,,AB BC CD DA 的中点,判断四边形EFGH 的形状,并加以证明.
【应用】在(1)【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是: .(只添加一个条件)
(2)如图③,在四边形ABCD 中,点,,,E F G H 分别是,,,AB BC CD DA 的中点,对角线,AC BD 相交于点O .若AO OC =,四边形ABCD 面积为5,则阴影部分图形的面积和为 .
23. 如图①,在Rt ABC ∆中,90,10,6C AB BC ∠===,点P 从点A 出发,沿折线AB BC −向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒43
个单位长度的速度运动,,P Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.
(1)求线段AQ 的长;(用含t 的代数式表示)
(2)连结PQ ,当PQ 与ABC ∆的一边平行时,求t 的值;
(3)如图②,过点P 作PE AC ⊥于点E ,以,PE EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与 ABC ∆重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.
24.定义:对于给定的两个函数,任取自变量x 的一个值,当0x <时,它们对应的函数值互为相反数;当0x ≥时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数1y x =−,它们的相关
函数为()()
1010x x y x x −+<⎧⎪=⎨−≥⎪⎩ .
(1)已知点()5,8A − 在一次函数3y ax =−的相关函数的图象上,求a 的值;
(2)已知二次函数2142y x x =−+− . ①当点3,2B m ⎛⎫ ⎪⎝⎭
在这个函数的相关函数的图象上时,求m 的值; ②当33x −≤≤时,求函数2142
y x x =−+−的相关函数的最大值和最小值; (3)在平面直角坐标系中,点,M N 的坐标分别为19,1,,122⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭ ,连结MN .直接写出线段MN 与二 次函数24y x x n =−++ 的相关函数的图象有两个公共点时n 的取值范围.。