2018年秋北师大版八年级上《第三章位置与坐标》单元测试含答案

合集下载

北师大版八年级数学上册 第三章 位置与坐标 单元测试(含答案)

北师大版八年级数学上册 第三章 位置与坐标 单元测试(含答案)

第三章位置与坐标单元测试一、单选题(共10题;共30分)1、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A、原点上B、x轴上C、y轴上D、坐标轴上2、已知点A(a,3)和点B(4,b)关于y轴对称,则a+b的值是()A、1B、-1C、7D、-73、已知点P关于x轴的对称点为(a,-2),关于y轴对称点为(1,b),那么点P的坐标为()A、(a, -b)B、(b, -a)C、(-2,1)D、(-1,2)4、已知点P(-2,1),那么点P关于x轴对称的点P′的坐标是()A、(-2,1)B、(-1,2)C、(2,1)D、(-2,-1)5、在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A、33B、-33C、-7D、76、已知点P(4,3),则点P到y轴的距离为()A、4B、4C、3D、37、在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),则点B′的横坐标是()A、6B、-6C、3D、-38、如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A、5aB、4aC、3aD、2a9、下列各点中位于第四象限的点是()A、(3,4)B、(﹣3,4)C、(3,﹣4)D、(﹣3,﹣4)10、已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A、﹣1B、1C、﹣3D、3二、填空题(共8题;共35分)11、点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为________ .12、已知点A(a,5)与点A′(﹣2,b)关于经过点(3,0)且平行于y轴的直线对称,那么a+b=________ .13、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 ________ .14、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是________15、点A(﹣2a,a﹣1)在x轴上,则A点的坐标是________,A点关于y轴的对称点的坐标是________.16、点P(﹣2,)在第________象限.17、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积是8,则点C的坐标为________.18、如图,在所给的平面直角坐标系中描出下列各点:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度;②点B在x轴下方,y轴右侧,距离x、y 轴都是3个单位长度;③点C在y轴上,位于原点下方,距离原点2个单位长度;④点D在x轴上,位于原点右侧,距离原点4个单位长度.填空:点A的坐标为________;点B的坐标为________;点B位于第________象限内;点C的坐标为________;点D的坐标为________;线段CD的长度为________.三、解答题(共6题;共36分)19、已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标20、如图,A、B两点的坐标分别是(2,﹣3)、(﹣4,﹣3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.21、如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.23、在图中建立适当的直角坐标系表示图中各景点位置.A狮虎山B猴山C珍禽馆D熊猫馆E大山F游乐场G长廊.24、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?答案解析一、单选题1、【答案】D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清2、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【分析】首先根据平面直角坐标系中两个关于y轴成轴对称的点的坐标特点,分别求出a、b的值,然后代入计算即可.【解答】∵点A(a,3)和点B(4,b)关于y轴对称,∴a=-4,b=3,∴a+b=-4+3=-1.故选B.【点评】本题主要考查了平面直角坐标系中关于y轴成轴对称的两个点的坐标特点:纵坐标相等,横坐标互为相反数.3、【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.【解答】∵点P关于x轴的对称点为(a,-2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(-1,b),则a=-1,b=2.∴点P的坐标为(-1,2).故选D.【点评】解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).4、【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】关于x轴对称的点的横坐标相同,纵坐标互为相反数.点P(-2,1)关于x轴对称的点P′的坐标是(-2,-1),故选D、【点评】本题属于基础应用题,只需学生熟知关于x轴对称的点的坐标,即可完成.5、【答案】D【考点】关于原点对称的点的坐标【解析】【分析】首先根据关于原点对称的点的坐标特点可得a、b的值,然后在计算a+b 的值.【解答】∵点P(-20,a)与点Q(b,13)关于原点对称,∴b=20,a=-13,∴a+b=20-13=7,故答案为:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反6、【答案】A【考点】点的坐标【解析】【分析】点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值、【解答】∵点P(4,3)∴点P到y轴的距离为4故选A、7、【答案】C【考点】坐标与图形变化-对称【解析】【解答】如图所示,∵等边△OAB关于x轴对称的图形是等边△OA′B′,∴点A′的坐标为(6,0),∴点B′的横坐标是3.故选C.【分析】根据轴对称的作出△OAB和△OA′B′,然后根据等腰三角形三线合一的性质求出点B′的横坐标即可.8、【答案】B【考点】坐标与图形变化-对称【解析】【解答】解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.【分析】如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.9、【答案】C【考点】点的坐标【解析】【解答】解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.【分析】应先判断点在第四象限内点的坐标的符号特点,进而找相应坐标.10、【答案】A【考点】坐标与图形性质【解析】【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故选A.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.二、填空题11、【答案】(0,﹣3)【考点】坐标与图形变化-对称【解析】【解答】解:所求点的纵坐标为﹣3,横坐标为﹣2﹣(﹣2)=0,∴点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为(0,﹣3).故答案为:(0,﹣3).【分析】易得两点的纵坐标相等,横坐标在﹣1的右边,为﹣2﹣(﹣2).12、【答案】13【考点】坐标与图形变化-对称【解析】【解答】解:如图所示:∵点A(a,5)与点A′(﹣2,b)关于经过点(3,0)且平行于y轴的直线对称,∴A′(﹣2,5),由图可知A′距离x=3这条直线有5个单位,∴A距离x=3这条直线也有5个单位,∴A(8,5),∴a=8,b=5,∴a+b=13,故答案为:13.【分析】首先根据题意画出图形,可得到A′点坐标,再根据关于经过点(3,0)且平行于y 轴的直线对称可得到A点坐标,进而得到答案.13、【答案】(3,2)【考点】坐标确定位置【解析】【解答】解:先向上爬4个单位长度,得(0,4);再向右爬3个单位长度,得(3,4);再向下爬2个单位长度后,得(3,2).故答案为:(3,2).【分析】此题可按照蚂蚁爬行的方向来确定点的坐标,具体方法是“右加左减,上加下减”.14、【答案】(﹣3,2)【考点】点的坐标【解析】【解答】解:∵点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是2,∴点P的坐标为(﹣3,2).故答案为:(﹣3,2).【分析】根据第二象限内点的坐标特征和点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.15、【答案】(﹣2,0);(2,0)【考点】点的坐标,关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(﹣2a,a﹣1)在x轴上,∴a﹣1=0,解得:a=1,∴A(﹣2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(﹣2,0)、(2,0).【分析】根据x轴上的坐标特点:纵坐标为0可得a﹣1=0,解出a的值,进而可得A点坐标,再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.16、【答案】二【考点】点的坐标【解析】【解答】解:点P(﹣2,)在第二象限.故答案为:二.【分析】根据四个象限内点的坐标符号可判定P点所在象限.17、【答案】(0,)或(0,﹣)【考点】坐标与图形性质【解析】【解答】解:设点C的坐标为:(0,t),由题意得,3×|t|=8,则|t|= ,解得,t=±,则点C的坐标为:(0,)或(0,﹣).故答案为:(0,)或(0,﹣).【分析】设点C的坐标为:(0,t),根据三角形的面积公式计算即可.18、【答案】(﹣2,4);(3,﹣3);四;(0,﹣2);(4,0);2【考点】坐标与图形性质【解析】【解答】解:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,∴点A的坐标为(﹣2,4);②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度,∴点B的坐标为(3,﹣3);点B位于第四象限内;③点C在y轴上,位于原点下方,距离原点2个单位长度;∴点C的坐标为(0,﹣2);④点D在x轴上,位于原点右侧,距离原点4个单位长度点D的坐标为(4,0);线段CD的长度= =2 ,故答案为:(﹣2,4),(3,﹣3),四,(0,﹣2),(4,0),2 .【分析】根据题意即可得到结论.三、解答题19、【答案】解答:由第二象限内的点的横坐标小于零,得a=-3.由第二象限内点的纵坐标大于零,得b=8,故P点坐标是(-3,8)【考点】点的坐标【解析】【分析】根据第二象限内的点的横坐标小于零,可得a的值,根据第二象限内点的纵坐标大于零,可得b的值20、【答案】解:(1)根据A、B两点的坐标可知:x轴平行于A、B两点所在的直线,且距离是3;y轴在距A点2(距B点4)位置处,如图建立直角坐标系,则点P(4,3)的位置,即如图所示的点P;(2)点Q的坐标是(﹣2,2).【考点】坐标确定位置【解析】【分析】(1)根据点A、B两点的坐标先确定坐标原点,再求得P(4,3)的位置;(2)根据平面直角坐标系得出Q的坐标.21、【答案】解:因为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4),可得坐标系如图:(2)由坐标系可得:D1(﹣3,3),D2(0,﹣3),D3(3,0),D4(8,1)【考点】坐标确定位置【解析】【分析】(1)根据M1(﹣5,﹣1),M2(4,4),M3(5,﹣4)确定原点,画出坐标系即可;(2)根据坐标系得出各点坐标即可.22、【答案】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【考点】坐标与图形变化-对称【解析】【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.23、【答案】解:如图以C为原点建立平面直角坐标系,A(﹣6,4),B(﹣7,﹣2),E(﹣7,﹣5),F(1,2),C(0,0),D(0,﹣3),G(﹣2,﹣5).【考点】坐标确定位置【解析】【分析】根据原点的位置,可得平面直角坐标系,根据点在坐标系中的位置,可得答案.24、【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).【考点】坐标确定位置【解析】【分析】根据马场的坐标为(﹣3,﹣3),建立直角坐标系,找到原点和x轴、y 轴.再找到其他各景点的坐标.。

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。

2018年秋北师大版八年级上《第三章位置与坐标》单元测试含答案

2018年秋北师大版八年级上《第三章位置与坐标》单元测试含答案

第三章位置与坐标本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,已知点P(2,-3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为 ()A.M(-1,2),N(3,1)B.M(2,-1),N(3,1)C.M(-1,2),N(1,3)D.M(2,-1),N(1,3)3.如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012次相遇点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为一切实数B.m=0,n<0C.m为一切实数,n=0D.m<0,n=06.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向上平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度7.已知点M (3,-4) ,在x轴上有一点B,B点与M点的距离为5,则点B的坐标为()A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)8.点A(a,4),点B(3,b)关于x轴对称,则(a+b)2013的值为 ()A.0B.-1C.1D.720139.如果点A(m,n)在第二象限,那么点B(-m,|n|)在()A.第一象限B.第二象限C.第三象限D.第四象限10.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依次类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除余数是1时,则向右走1个单位长度,当n被3除余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每小题4分,共32分)11.点P(-2,3)关于x轴对称的点P'的坐标为.12.点P(1,-2)关于y轴对称的点P'的坐标为.13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是.14.在平面直角坐标系中,点A(2,m2+1)一定在第象限.15.点A(a,b)和点B关于x轴对称,而点B与点C(2,3)关于y轴对称,那么a=,b=,点A和点C的位置关系是.16.在电影院里7排5号可以用(7,5)表示,那么(6,2)表示的是排号.17.如图所示,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为.18.已知点M(a,-1)和N(2,b)不重合.(1)当点M,N关于对称时,a=2,b=1;(2)当点M,N关于原点对称时,a=,b=.三、解答题(共58分)19.(8分)在平面直角坐标系中,点A关于y轴的对称点为点B,点B关于x轴的对称点为点C.(1)若点A的坐标为(1,2),请你在给出的坐标系中画出ΔABC,设AB与y轴的交点为D,求的值;(2)若点A的坐标为(a,b)(ab≠0),判断ΔABC的形状.20.(8分)如图所示,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(写出一种做法即可)(2)如果把A,B,C,D各点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?21.(10分)如图所示,在直角坐标系中,RtΔAOB的两条直角边OA,OB分别在x 轴的负半轴和y轴的负半轴上,且OA=2,OB=1.将RtΔAOB绕点O按顺时针方向旋转90°,再把所得的三角形沿x轴正方向平移1个单位长度,得ΔCDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.22.(10分)如图所示,正方形ABCD的边长为10,连接各边的中点E,F,G,H得到正方形EFGH,请你建立适当的直角坐标系,分别写出A,B,C,D,E,F,G,H的坐标.23.(10分)在如图所示的直角坐标系中,四边形OABC各个顶点的坐标分别为O(0,0),A(2,3),B(5,4),C(8,2).(1)试确定图中四边形OABC的面积;(2)请作出四边形OABC关于x轴对称的图形.24.(12分)(1)在平面直角坐标系中,将点A(-3,4)向右平移5个单位长度到点A1,再将点A1绕坐标原点顺时针旋转90°到点A2,求点A1,A2的坐标;(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位长度得到第一象限内的点B1,再将点B1绕坐标原点顺时针旋转90°到点B2,写出点B1,B2的坐标;(3)在平面直角坐标系中,将点P(c,d)沿水平方向平移n个单位长度到点P1,再将点P1绕坐标原点顺时针旋转90°到点P2,写出点P2的坐标.【答案与解析】1.D(解析:因为横坐标为正,纵坐标为负,所以点P(2,-3)在第四象限.故选D.)2.A(解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号特征是解题的关键,四个象限点的坐标符号分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).)3.D(解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1∶2.由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇,此时甲、乙回到出发点,则每相遇三次,两点回到出发点.因为2012÷3=670……2,所以两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即在DE边相遇,此时相遇点的坐标为(-1,-1).故选D.)4.D(解析:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4.当a=-1时,点P的坐标为(3,3);当a=-4时,点P的坐标为(6,-6).)5.D(解析:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.又因为点A位于原点的左侧,所以横坐标小于0,即m<0,所以m<0,n=0.故选D.)6.D7.D(解析:过点M作MD⊥x轴于点D,则点D的坐标为(3,0).因为点M到x轴的距离为4,所以MD=4.又因为BM=5,所以由勾股定理得BD==3,所以点B的坐标为(6,0)或(0,0).故选D.)8.B(解析:因为点A(a,4)与点B(3,b)关于x轴对称,所以a=3,b=-4,所以(a+b)2013=(3-4)2013=-1.)9.A(解析:因为点A在第二象限,所以m<0,n>0,所以-m>0,|n|>0,因此点B在第一象限.)10.C(解析:在1至100这100个数中:能被3整除的有33个,故向上走了33个单位长度;被3除余数为1的数有34个,故向右走了34个单位长度;被3除余数为2的数有33个,故向右走了66个单位长度.故总共向右走了34+66=100个单位长度,向上走了33个单位长度.所以走完第100步时所处位置的横坐标为100,纵坐标为33.故选C.)11.(-2,-3)(解析:关于x轴对称的点的横坐标相等,纵坐标互为相反数,所以点P(-2,3)关于x轴对称的点P'的坐标为(-2,-3).)12.(-1,-2)(解析:关于y轴对称的点的横坐标互为相反数,纵坐标相等,故点P(1,-2)关于y轴对称的点的坐标为(-1,-2).)13.(3,2)(解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2).)14.一(解析:因为m2≥0,1>0,所以纵坐标m2+1>0,又因为点A的横坐标2>0,所以点A一定在第一象限.)15.-2-3关于原点对称(解析:因为点A(a,b)和点B关于x轴对称,所以点B 的坐标为(a,-b);因为点B与点C(2,3)关于y轴对称,所以点B的坐标为(-2,3),所以a=-2,b=-3,点A和点C关于原点对称.)16.6 217.(3,5)(解析:因为正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x 轴,所以点C的横坐标为4-1=3,点C的纵坐标为4+1=5,所以点C的坐标为(3,5).)18.(1)x轴(2)-21(解析:两点关于x轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.)19.解:(1)如图所示,.(2)直角三角形.20.解:(1)80,可分割成直角三角形和长方形求面积.(答案不唯一)(2)80.21.解:(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2)如图所示,连接AC,在RtΔACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=.22.提示:答案不唯一,如:以EG所在直线为x轴,以FH所在直线为y轴,建立如图所示的直角坐标系,则A(-5,-5),B(5,-5),C(5,5),D(-5,5),E(-5,0),F(0,-5),G(5,0),H(0,5).23.提示:(1)14.(2)略.24.解:(1)∵将点A(-3,4)向右平移5个单位长度到点A1,∴点A1的坐标为(2,4),∵又将点A1绕坐标原点顺时针旋转90°到点A2,∴A2的坐标为(4,-2).(2)根据(1)中的规律,得B1的坐标为(a+m,b),B2的坐标为(b,-a-m).(3)分两种情况:①当把点P(c,d)沿水平方向向右平移n个单位长度到点P1时,P1的坐标为(c+n,d),P2的坐标为(d,-c-n);②当把点P(c,d)沿水平方向向左平移n个单位长度到点P1时,P1的坐标为(c-n,d),然后将点P1绕坐标原点顺时针旋转90°到点P2,则P2的坐标为(d,-c+n).。

北师大版八年级数学上册《第三章-位置与坐标》单元测试卷(附答案)

北师大版八年级数学上册《第三章-位置与坐标》单元测试卷(附答案)

北师大版八年级数学上册《第三章位置与坐标》单元测试卷(附答案)一、选择题1.在平面直角坐标系中,点(−8,2)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )A. (−1,0)B. (1,0)C. (−2,0)D. (2,0)3.如图,小手盖住的点的坐标可能是( )A. (3,−4)B. (3,4)C. (−3,−4)D. (−3,4)4.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(−2,−2),“马”位于点(1,−2),则“兵”位于点( )A. (−1,1)B. (−2,−1)C. (−4,1)D. (1,−2)5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( )A. 小李现在位置为第1排第2列B. 小张现在位置为第3排第2列C. 小王现在位置为第2排第2列D. 小谢现在位置为第4排第2列6.已知P(2−x,3x−4)到两坐标轴的距离相等,则x的值为( )A. 32B. −1 C. 32或−1 D. 32或17.如图,在平面直角坐标系中点A、B、C的坐标分别为(0,1),(3,1),(4,3),在下列选项的E点坐标中,不能使△ABE和△ABC全等是( )A. (4,−1)B. (−1,3)C. (−1,−1)D. (1,3)8.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )A. (√ 22,−√ 22)B. (1,0)C. (−√ 22,−√ 22)D. (0,−1)二、填空题9.点A(−4,3)关于x轴的对称点的坐标是______________.10.若点A(1+m,1−n)与点B(−3,2)关于y轴对称,则m+n的值是______.11.已知线段AB=3,AB//x轴,若点A的坐标为(−2,3),则点B的坐标为______.12.如图,第一象限内有两点P(m−3,n),Q(m,n−2)将线段PQ平移使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是______.13.已知点P1(a−1,5)和P2(2,b−1)关于x轴对称,则(a+b)2019的值为______.14.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(−y+1,x+2),我们把点P′(−y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4…Pn.若点P1的坐标为(2,0),则点P2017的坐标为_______.三、解答题15.已知P(4x,x−3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.16.若点M(3a−9,10−2a)在第二象限,且点M到x轴与y轴的距离相等,试求(a+2)2008−1的值.17.在平面直角坐标系中,已知点P1,P2的坐标分别为P1(a−12,a+13),P2(12b−1,b+4)根据下列条件,解决问题.(1)若点P1在y轴上,求点P1的坐标.(2)若点Q的坐标为(−5,7),直线P2Q//y轴,求点P2的坐标.18.在平面直角坐标系xOy中,点A、B、C的坐标分别为(−1,0)、(−2,3)、(−3,1)(1)作出△ABC关于x轴对称的△A1B1C1,直接写出B1、C1两点的坐标:B1(__,__)C1(__,___).(2)写出△ABC的面积,S△ABC=_________.(3)在y轴上找一点D,使得BD+DA的值最小,求D点的坐标.19.已知点P(a−2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ//y轴;(4)点P到x轴、y轴的距离相等.20.在平面直角坐标系xOy中,已知点A(a,a),B(a,a−3)其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1<y<√ 5,直接写出a的所有可能取值:_______________________.答案和解析1.【答案】B【解析】【分析】此题主要考查了点的坐标,以及点所在的象限的判断,要熟练掌握.在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此判断出点(−8,2)所在的象限是哪个即可.【解答】∵−8<0,2>0∴在平面直角坐标系中,点(−8,2)所在的象限是第二象限.故选:B.2.【答案】B【解析】解:∵点P(m+3,2m+4)在x轴上∴2m+4=0解得m=−2∴m+3=−2+3=1∴点P的坐标为(1,0).故选:B.根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.【答案】A【解析】【分析】此题主要考查了点的坐标的相关知识,熟练掌握点的坐标特征是解题的关键.根据第四象限的点的横坐标为正,纵坐标为负即可找到答案.【解答】解:因为小手盖住了第四象限第四象限点的横坐标为正,纵坐标为负所以只有选项A符合所求故选:A.4.【答案】C【解析】【分析】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.根据“帅”位于点(−2,−2),“马”位于点(1,−2),可知原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O.【解答】解:如图∵“帅”位于点(−2,−2),“马”位于点(1,−2)∴原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O∴“兵”位于点(−4,1).故选C.5.【答案】B【解析】解:根据题意画出图形可得:A、小李现在位置为第1排第4列,选项说法错误;B、小张现在位置为第3排第2列,选项说法正确;C、小王现在位置为第2排第3列,选项说法错误;D、小谢现在位置为第4排第4列,选项说法错误;故选:B.根据坐标确定位置,从有序数对的两个数的实际意义考虑解答.本题考查了确定位置.6.【答案】D【解析】解:由题意,得2−x=3x−4或2−x+(3x−4)=0由2−x=3x−4得x=32由2−x+(3x−4)=0得x=1则x的值为3或12故选D.根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.7.【答案】D【解析】解:△ABE与△ABC有一条公共边AB当点E在AB的下边时,点E有两种情况①坐标是(4,−1);②坐标为(−1,−1);当点E在AB的上边时,坐标为(−1,3);点E的坐标是(4,−1)或(−1,3)或(−1,−1).故选:D.因为△ABE与△ABC有一条公共边AB,故本题应从点E在AB的上边、点E在AB的下边两种情况入手进行讨论,计算即可得出答案.本题综合考查了全等三角形的判定,图形的性质和坐标的确定,分情况进行讨论是解决本题的关键.8.【答案】A【解析】解:如图∵四边形OABC是正方形,且OA=1∴A(0,1)∵将正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1∴A1(√ 22,√ 22),A2(1,0),A3(√ 22,−√ 22),…发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标与点A3坐标相同为(√ 22,−√ 22)故选:A.探究规律,利用规律解决问题即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.9.【答案】(−4,−3).【解析】【分析】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可解答.【解答】解:根据平面内关于x轴对称的点,横坐标相同,纵坐标互为相反数∴点A(−4,3)关于x轴对称的点的坐标是(−4,−3).故答案为(−4,−3).10.【答案】1【解析】解:∵点A(1+m,1−n)与点B(−3,2)关于y轴对称∴1+m=3、1−n=2解得:m=2、n=−1所以m+n=2−1=1故答案为:1.根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.11.【答案】(1,3)或(−5,3)【解析】【分析】本题考查了坐标与图形的性质,解决本题的关键是进行分类讨论.在平面直角坐标系中与x轴平行,则它上面的点纵坐标相同,可求B点纵坐标;与x轴平行,相当于点A左右平移,可求B点横坐标.【解答】解:∵AB//x轴∴点B纵坐标与点A纵坐标相同,为3又∵AB=3,可能右移,横坐标为−2+3=1;可能左移横坐标为−2−3=−5∴B点坐标为(1,3)或(−5,3)故答案为(1,3)或(−5,3).12.【答案】(0,2)或(−3,0)【解析】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上则P′横坐标为0,Q′纵坐标为0∵0−(n−2)=−n+2∴n−n+2=2∴点P平移后的对应点的坐标是(0,2);②P′在x轴上,Q′在y轴上则P′纵坐标为0,Q′横坐标为0∵0−m=−m∴m−3−m=−3∴点P平移后的对应点的坐标是(−3,0);综上可知,点P平移后的对应点的坐标是(0,2)或(−3,0).故答案为(0,2)或(−3,0).设平移后点P、Q的对应点分别是P′、Q′分两种情况进行讨论:①P′在y轴上,Q′在x轴上;②P′在x轴上,Q′在y轴上.此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.【答案】−1【解析】解:∵点P1(a−1,5)和P2(2,b−1)关于x轴对称∴a−1=2,b−1=−5解得:a=3,b=−4∴(a+b)2019=−1.故答案为:−1.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,进而可得(a+b)2019的值.此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.14.【答案】(2,0)【解析】【分析】根据题意求得点P2,P3,P4,P5的坐标,即可发现其中的规律,根据发现的规律即可得到P2017的坐标.【解答】解:点P1的坐标为(2,0),根据题意,则P2的坐标为(1,4),P3的坐标为(−3,3),P4的坐标为(−2,−1),P5的坐标为(2,0)∴P n的坐标为(2,0),(1,4),(−3,3),(−2,−1)循环∵2017=2016+1=4×504+1∴P2017的坐标与P1相同,为(2,0).故答案为(2,0).【点评】本题考查了学生发现点的坐标规律的能力,找到P n坐标的变化规律是解题的关键.15.【答案】解:(1)由题意,得4x=x−3解得x=−1∴点P在第三象限的角平分线上时,x=−1.(2)由题意,得4x+[−(x−3)]=9则3x=6解得x=2,此时点P的坐标为(8,−1)∴当点P在第四象限,且到两坐标轴的距离之和为9时x=2.【解析】本题考查了点的坐标,理解题意得出方程是解题关键.(1)根据角平分线上的点到坐标轴的距离相等,可得答案;(2)根据坐标的和,可得方程.16.【答案】解:∵点M(3a−9,10−2a)在第二象限,且点M到x轴与y轴的距离相等∴(3a−9)+(10−2a)=0解得a=−1∴(a+2)2008−1=(−1+2)2008−1=1−1=0.【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,且互为相反数列出方程求解得到a的值,然后代入代数式进行计算即可得解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).17.【答案】解:(1)∵点P1(a−12,a+13)在y轴上∴a−12=0,解得a=12故a+13=12+13=56∴点P1的坐标为(0,56);(2)∵点P2(12b−1,b+4)在过点Q(−5,7)且与y轴平行的直线上∴12b−1=−5,解得b=−8∴b+4=−8+4=−4∴点P2的坐标为(−5,−4).【解析】本题考查了平面直角坐标系中点的坐标,坐标与图形的性质,能根据点与坐标的位置关系求出点的坐标是解题的关键.(1)根据若点P1在y轴上,可知横坐标为0,可求出a的值,然后可得出P1的坐标;(2)根据点P2(12b−1,b+4)在过点Q(−5,7)且与y轴平行的直线上,可得12b−1=−5,求出b的值,然后再得出P2的坐标.18.【答案】解:(1)如图,△AB1C1即为所求−2;−3;−3;−1.(2)2.5;(3)作点B关于y轴的对称点B′,连接AB′,交y轴于点D,可得D(0,1).【解析】【分析】本题主要考查轴对称作图及轴对称−最短路线问题,熟练掌握轴对称的性质是解题的关键.(1)分别作出点B、C关于x轴的对称点,顺次连接即可得;(2)割补法求解可得;(3)作点B关于y轴的对称点B′,连接AB′,交y轴于点D,即可得点D的坐标.【解答】解:(1)由图可知B1(−2,−3),C1(−3,−1)故答案为−2;−3;−3;−1.(2)S△ABC=2×3−12×1×2−12×1×3−12×1×2=2.5故答案为2.5.(3)见答案.19.【答案】解:(1)∵点P(a−2,2a+8),在x轴上∴2a+8=0解得:a=−4故a−2=−4−2=−6则P(−6,0).(2)∵点P(a−2,2a+8),在y轴上∴a−2=0解得:a=2故2a+8=2×2+8=12则P(0,12).(3)∵点Q的坐标为(1,5),直线PQ//y轴;∴a−2=1解得:a=3故2a+8=14则P(1,14).(4)∵点P到x轴、y轴的距离相等∴a−2=2a+8或a−2+2a+8=0解得:a1=−10,a2=−2故当a=−10则:a−2=−12,2a+8=−12则P(−12,−12);故当a=−2则:a−2=−4,2a+8=4则P(−4,4).综上所述:P(−12,−12),(−4,4).【解析】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.20.【答案】解:(1)如图所示;(2)由题意可知,点C的坐标为(a,a)或(a,a−1)或(a,a−2)或(a,a−3)∵点C在x轴上∴点C的纵坐标为0.由此可得a的取值为0,1,2或3因此点C的坐标是(0,0)或(1,0)或(2,0)或(3,0);(3)a的所有可能取值是2,3,4,5.【解析】【分析】本题主要考查的是点的坐标的确定,线段的画法,两点间的距离公式等有关知识.(1)先找出点A,点B,然后连线即可;(2)根据题意得到点C的坐标为(a,a)或(a,a−1)或(a,a−2)或(a,a−3),再根据点C在x轴上得到a的值,从而解出此题;(3)先求出点C的坐标,然后根据点C纵坐标满足1<y<√ 5进行求解即可.【解答】解:(1)见答案;(2)见答案;(3)由题意得点C的坐标为(a,a)或(a,a−1)或(a,a−2)或(a,a−3)∵点C纵坐标满足1<y<√ 5∴1<a<√ 5或1<a−1<√ 5或1<a−2<√ 5或1<a−3<√ 5∴1<a<√ 5或2<a<√ 5+1或3<a<2+√ 5或4<a<3+√ 5∵点C的横纵坐标均为整数∴a=2或a=3或a=4或a=5.故答案为2,3,4,5.。

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x,y-1)在第三象限.又知点M与点Q关于原点对称,所以点M在第一象限.21、解:(1)OA'=OA-AA'=10-3×2=4,∴点A'的坐标为(0,4)、∵OB'=OB-BB'=8-2×2=4,∴点B'的坐标为(4,0).(2)四边形AA'B'B的面积=△AOB的面积-△A'OB'的面积=1110844=408=32 22⨯⨯-⨯⨯-、。

(考试真题)第三章 位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)

(考试真题)第三章 位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)

(考试真题)第三章位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,直角坐标系中,O为原点,A(12,0),在等腰三角形ABO中,OB=BA=10,点B在第一象限,C为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连接AD并延长与y轴交于点M(0,m),则m的值为().A. B. C. D.2、在平面直角坐标系xOy中,点P在第二象限,且点P到x轴的距离是4,到y轴的距离是5,则点P坐标是()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)3、如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A. B. C. D.4、如图,线段两个端点的坐标分别为、,以原点为位似中心,将线段放大得到线段,若点的坐标为,则点的坐标为()A. B. C. D.5、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上6、平面直角坐标系中,的横坐标与纵坐标的绝对值之和叫做的勾股值,记为,即.若点B在第一象限且满足,则满足条件的所有B点与坐标轴围成的图形的面积为()A.2B.4C.6D.87、课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)8、如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2 ),则点C的坐标为()A.(,1)B.(1,)C.(1,2)D.(2,1)9、点M在第二象限内,M到x轴是距离是3,到y轴距离是2,那么点M的坐标是( )A.(-3,2)B.(-2,-3)C.(-2,3)D.(2,-3)10、在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)11、以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米12、下列选项所给数据,能让你在地图上准确找到位置的是()A.东经128°B.西经71°C.南纬13°D.东经118°,北纬24°13、如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A坐标是()A.(2,1)B.(1,﹣2)C.(1,2)D.(2,﹣1)14、如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A. B. C. D.15、已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1B.-4C.2D.3二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,正六边形的边长是2,则它的外接圆圆心的坐标是________.17、在平面直角坐标系中,点P(2t+8,5﹣t)在y轴上,则与点P关于x轴对称的点的坐标是________.18、如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点________.19、如图,半径为且坐标原点为圆心的圆交轴、轴于点、、、,过圆上的一动点(不与重合)作,且在右侧)⑴连结,当时,则点的横坐标是________.⑵连结,设线段的长为,则的取值范围是________.20、如图,写出各点的坐标:A(________,________ ),B(________,________ ),C(________,________ )。

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。

北师大版八年级上第三章位置与坐标单元测试含答案解析

北师大版八年级上第三章位置与坐标单元测试含答案解析

《第3章位置与坐标》一、选择题1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3) B.(﹣5,3)或(5,3) C.(3,5) D.(﹣3,5)或(3,5)2.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限 B.第二象限;C.第三象限 D.第四象限3.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上4.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)5.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)8.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定9.如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7) D.(﹣7,7)10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2) D.(1,﹣2)二、填空题11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示______.12.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为______.13.点P(a,b)与点Q(1,2)关于x轴对称,则a+b=______.14.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的______的方向上.15.已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=______,y=______.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.17.已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是______.18.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是______.三、解答题19.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?20.如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼______、湖心岛______、金凤广场______、动物园______.21.一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?22.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?23.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)24.如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.25.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.《第3章位置与坐标》参考答案一、选择题1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3) B.(﹣5,3)或(5,3) C.(3,5) D.(﹣3,5)或(3,5)【解答】解:∵点距离x轴5个单位长度,∴点M的纵坐标是±5,又∵这点在x轴上侧,∴点M的纵坐标是5;∵点距离y轴3个单位长度即横坐标是±3,∴M点的坐标为(﹣3,5)或(3,5).故选D.2.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限 B.第二象限;C.第三象限 D.第四象限【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴﹣m>0,|n|>0,∴点B在第一象限.3.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.4.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.5.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等 B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【解答】解:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.7.A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)【解答】解:由题意可得:A(﹣3,2)关于y轴的对称点是B(3,2),B关于x轴的对称点是C(3,﹣2).故选:C.8.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.9.如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7) D.(﹣7,7)【解答】解:如图,设AD与y轴的交点为E,在直角梯形ABCD中,∵点A的坐标为(﹣2,7),∴OB=2,OE=7,∵AD=5,∴DE=5﹣2=3,∴点D的坐标为(3,7).故选C.10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2) D.(1,﹣2)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选B.二、填空题11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示10排15号.【解答】解:∵“8排4号”记作(8,4),∴(10,15)表示10排15号.故答案为:10排15号.12.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为(6,3).【解答】解:如图,点N的位置可表示为(6,3).故答案为(6,3).13.点P(a,b)与点Q(1,2)关于x轴对称,则a+b= ﹣1 .【解答】解:∵点P(a,b)与点Q(1,2)关于x轴对称,∴a=1,b=﹣2,即a+b=﹣1.14.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的南偏西30°的方向上.【解答】解:由图可得,灯塔B在小岛A的南偏西30°的方向上.15.已知点A(x,2),B(﹣3,y),若AB∥y轴,则x= ﹣3 ,y= 不等于2的任意实数.【解答】解:∵点A(x,2),B(﹣3,y),AB∥y轴,∴x=﹣3,y不等于2的是任意实数.故答案为:﹣3,不等于2的任意实数.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是±4 .【解答】解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴点a的值是4或﹣4.故答案为:±4.17.已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是(4,4)或(12,﹣12).【解答】解:由点P到两坐标轴的距离相等,得3+x=﹣2x+6或3+x+(﹣2x+6)=0,解得x=1或x=9,点P的坐标(4,4)或(12,﹣12),故答案为:(4,4)或(12,﹣12).18.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三、解答题19.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?【解答】解:(1)点B(0,﹣2)和点E(0,2)关于x轴对称;(2)点B(0,﹣2)与点E(0,2),点C(2,﹣1)与点D(2,1),它们的横坐标相同纵坐标互为相反数.20.如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼(0,0)、湖心岛(﹣1.5,1)、金凤广场(﹣2,﹣1.5)、动物园(7,3).【解答】解:以光月楼为坐标原点建立直角坐标系,如图,所以光岳楼的坐标为(0,0)、湖心岛的坐标为(﹣1.5,1)、金凤广场的坐标为(﹣2,﹣1.5)、动物园的坐标为(7,3).故答案为(0,0),(﹣1.5,1),(﹣2,﹣1.5),(7,3).21.一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?【解答】解:如右图所示,∠BAC=75°﹣30°=45°,∠ABC=30°+60°=90°,∴∠C=90°﹣45°=45°,∴∠BAC=∠C,∴△ABC是等腰直角三角形,∴BC=AB=1km,答:走私地点C离B处是1km.22.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.23.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.24.如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.【解答】解:(1)由图可知四边形ABCD的对角线互相垂直,并且长都是6,所以面积=×6×6=18平方单位;(2)A′(﹣6,4),B′(﹣3,1),C(0,4),D′(﹣3,7);(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.25.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.【解答】解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,∵A(2,﹣1),B(4,3),C(1,2),∴EF=BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC =S矩形BDEF﹣S△BDC﹣S△CEA﹣S△BFA=BD•DE﹣•DC•DB﹣•CE•AE﹣AF•BF,=12﹣1.5﹣1.5﹣4=5.(本题也可先由勾股定理的逆定理,判别出△ABC为直角三角形,再求面积).。

第3章 位置与坐标 北师大版八年级上册数学单元测试题(含答案)

第3章 位置与坐标 北师大版八年级上册数学单元测试题(含答案)

北师大版八年级上册数学第三章测试题(附答案)一、单选题(共12题;共24分)1.如图,用坐标(1,﹣2)表示学校的位置,用(3,2)表示书店的位置,则表示邮局位置的点的坐标是( )A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)2.如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A. (3,5)B. (4,3)C. (3,4)D. (5,3)3.平面直角坐标系xOy中,如果有点P(﹣2,1)与点Q(2,﹣1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在y=-的图象上,前面的四种描述正确的是( )A. ①②B. ②③C. ①④D. ③④4.已知点A的坐标为(0,0),点B的坐标为(4,0),点C在y轴上,△ABC的面积是10,则点C的坐标可能是()A. (0,10)B. (5,0)C. (0,﹣5)D. (0,4)5.在平面直角坐标系中,点(-1,m2+1)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.已知点P(x,|x|),则点P一定()A. 在第一象限B. 在第一或第二象限C. 在x轴上方D. 不在x轴下方7.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)8.若点P关于x轴对称点为P1(2a+b,3),关于y轴对称点为P2(9,b+2),则点P坐标为()A. (9,3)B. (﹣9,3)C. (9,﹣3)D. (﹣9,﹣3)9.已知点M到x轴的距离为1,到y轴的距离为2,则M点的坐标可能是()A. (1,2)B. (-1,-2)C. (1,-2)D. (-2,1)10.如图,半径为1个单位长度的圆从点P(﹣2,0)沿x轴向右滚动一周,圆上的一点由P点到达P′点,则点P′的横坐标是( )A. 4B. 2πC. π﹣2D. 2π﹣211.定义:平面内的直线l1与l2相交于点O ,对于该平面内任意一点M ,点M到直线l1、l2的距离分别为a、b ,则称有序非实数对(a ,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( ).A. 2个B. 3个C. 4个D. 5个12.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共12分)13.把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为________.14.同学们玩过五子棋吗?它的比赛规则是只要同色五子先成一条直线就算胜.如图是两人玩的一盘棋,若白①的位置是(1,-5),黑②的位置是(2,-4),现在轮到黑棋走,你认为黑棋放在_______位置就可获胜.15.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是________ 。

北师大版八年级上册数学第三章位置与坐标单元测试(含答案)

北师大版八年级上册数学第三章位置与坐标单元测试(含答案)

八年级上册数学第三章单元测试一、选择题(每题3分,共30分)1.下列数据能确定物体具体位置的是()A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°2.下列各点中,在第二象限的点是()A.(2,4) B.(2,-4)C.(-2,4) D.(-2,-4)3.在平面直角坐标系中,点P(x2+2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系xOy中,点A(-3,4)关于y轴对称的点的坐标是() A.(3,-4) B.(-3,-4)C.(-3,4) D.(3,4)5.如图所示的象棋盘上,若“帅”位于点(-1,-2),“马”位于点(3,-2),则位于原点位置的是()A.兵B.炮C.相D.车6.在平面直角坐标系中,点(-9,2)关于x轴对称的点的坐标是() A.(9,2) B.(-9,-2)C.(-2,-9) D.(2,-9)7.在平面直角坐标系中,过A点向x轴作垂线段,垂足为M,向y轴作垂线段,垂足为N,垂足M在x轴上的坐标为-3,垂足N在y轴上的坐标是4,则下列说法不正确的是()A.A点横坐标为-3 B.A点纵坐标为4C.A点坐标为(-3,4) D.A点在第四象限8.已知点A(m,n)在第一象限,那么点B(-n,-m)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点A(1,3),B(-2,3),则A,B两点间的距离是()A.4个单位长度B.3个单位长度C.2个单位长度D.1个单位长度10.五子棋深受广大小朋友的喜爱,它的规则如下:在正方形棋盘中,由黑方先行,轮流摆子,在任意方向(横向、竖向或斜向)上先连成五枚棋子者获胜,下图是小明和小亮的部分对弈图,若黑色棋子A的坐标为(3,1),白色棋子B 的坐标为(2,2),则黑色棋子C的坐标为()A.(4,-1) B.(-1,-4)C.(-1,4) D.(-4,1)二、填空题(每题3分,共15分)11.如果用(9,2)表示九年级2班,那么八年级4班可表示成________.12.点(-5,3)到y轴的距离是________.13.在平面直角坐标系中,点A(-2,1),B(2,4),C(x,y),BC∥y轴,当线段AC最短时,则此时点C的坐标为________.14.在平面直角坐标系中,点P(a-1,2a+1)在x轴上,则a的值是________.15.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且A 的坐标是(-2,0),B的坐标是(1.5,-2),则点D的坐标是________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.已知点P的坐标为(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过点A(2,-3),且与x轴平行的直线上.17.如图,已知等腰三角形ABC的腰长AB为5,底边BC的长为6,试建立适当的平面直角坐标系来表示等腰三角形ABC各顶点的坐标.18.下图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一会儿后回到家里,用线段顺次连接李明家和他在路上经过的地点,你能得到什么图形?19.如图,在平面直角坐标系中,△ABC的位置如图所示(每个方格的边长均为1个单位长度).(1)写出图中A,B,C三点的坐标;(2)若△ABC各顶点的纵坐标不变,横坐标都乘-1,请在同一平面直角坐标系中找出对应的点A′,B′,C′,并依次连接这三个点,从图象可知△ABC与△A′B′C′有怎样的位置关系?20.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)21.在平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+”是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3.(1)求点A(-2,4),B(2+3,2-3)的勾股值[A],[B];(2)若点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.22.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系式|a-2|+(b-3)2=0和(c-4)2≤0;(1)求a,b,c的值;(2)如果在第二象限内有一点P(m,13),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等,若存在,求出点P的坐标;若不存在,请说明理由.23.问题情境:在平面直角坐标系xOy中有不重合的两点,A(x1,y1)和B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1-y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1-x2|.应用:(1)如果点A(-1,1)、B(2,1),那么AB∥x轴,AB的长度为________.(2)如果点C(1,0),且CD∥y轴,且CD=2,那么点D的坐标为________.拓展:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1-x2|+|y1-y2|.例如:图1中,点M(-1,1)与点N(1,-2)之间的折线距离为d(M,N)=|-1-1|+|1-(-2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(-1,-2),则d(E,F)=________;(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=________.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=________.答案一、1. C 2. C 3. D 4. D 5. B 6. B7. D8. C9. B10. C二、11. (8,4)12. 513. (2,1)14. -1 215. (0,3.5)三、16. 解:(1)因为点P的纵坐标比横坐标大3,所以a-1-(2a+3)=3,解得a=-7,所以2a+3=-11,a-1=-8,所以点P的坐标为(-11,-8).(2)因为点P在过点A(2,-3),且与x轴平行的直线上,所以a-1=-3,解得a=-2,所以2a+3=-1,所以点P的坐标为(-1,-3).17. 解:如图,以B点为原点,BC边所在直线为x轴,过点B且垂直于BC边的直线为y轴建立平面直角坐标系,过点A作AD⊥BC于点D,因为等腰三角形ABC的底边BC的长为6,AD⊥BC,所以BD=DC=3,∠ADB=90°,又因为AB=5,所以AD=25-9=4,所以A点坐标为(3,4),C点坐标为(6,0),B点坐标为(0,0).(答案不唯一)18. 解:(1)建立平面直角坐标系如图1:学校的坐标为(1,3);邮局的坐标为(0,-1).(2)如图2,用线段顺次连接李明家和他在路上经过的地点,得到的图形是帆船.19. 解:(1)A 点坐标为(3,3),B 点坐标为(1,1),C 点坐标为(4,2).(2)如图.△ABC 和△A ′B ′C ′的位置关系是关于y 轴对称.20. 解:(1)A (-2,1),B (-3,-2),C (3,-2),D (1,2).(2)S 四边形ABCD =3×3+2×12×1×3+12×2×4=16. 21. 解:(1)因为点A (-2,4),B (2+3,2-3),所以[A ]=|-2|+|4|=2+4=6,[B ]=|2+3|+|2-3|=2+3+3-2=2 3.(2)点M 的坐标为(-1,2)或(1,2)或(-2,1)或(2,1)或(0,3).22. 解:(1)由已知|a -2|+(b -3)2=0,(c -4)2≤0可得a -2=0,b -3=0,c -4=0,解得a =2,b =3,c =4.(2)因为a =2,b =3,c =4,所以A (0,2),B (3,0),C (3,4),所以OA=2,OB=3,因为S△ABO=12×2×3=3,S△APO=12×2×(-m)=-m,所以S四边形ABOP=S△ABO+S△APO=3+(-m)=3-m.(3)存在,若S四边形ABOP =S△ABC,则3-m=12×4×3=6,解得m=-3,所以存在点P(-3,13),使得S四边形ABOP=S△ABC.23. 解:应用:(1)3(2)(1,2)或(1,-2)拓展:(1)5(2)2或-2(3)4或8。

第三章 位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)

第三章 位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)

第三章位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图所示,点A的坐标是 ( )A.(3,2)B.(3,3)C.(3,-3)D.(-3,-3)2、若点A(2,n)在x轴上,则点B(n+2,n-5)在().A.第一象限B.第二象限C.第三象限D.第四象限3、在平面直角坐标系中,以点O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,则这个平行四边形的第四个顶点坐标不可能是()A.(2,﹣1)B.(﹣2,1)C.(﹣3,1)D.(4,1)4、如图,若在象棋盘上建立直角坐标系,使“将”位于点(0,﹣1),“象”位于(2,﹣1),则“炮”位于点()A.(﹣3,2)B.(﹣4,3)C.(﹣3,0)D.(1,﹣1)5、如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)6、如图,在平面直角坐标系中,点A在第一象限,⊙A与轴相切于B,与轴交于C(0,1),D(0,4)两点,则点A的坐标是()A. B. C. D.7、如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A.(3,5)B.(4,3)C.(3,4)D.(5,3)8、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A. B. C. D.29、在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是()A.(﹣2,3)B.(﹣1,2)C.(0,4)D.(4,4)10、如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2019与点A2020之间的距离是()A.2021B.2020C.2019D.201811、如图,已知A(1,3),将线段OA绕原点O顺时针旋转90°后得到OA′,则OA′的长度是()A. B.3 C.2 D.112、如图,在3×3的正方形网格中有4个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.则原点是()A.点AB.点BC.点CD.点D13、若x轴上的点p到y轴的距离为5,则点的坐标为()A.(5,0)B.(5,0)(-5,0)C.(0,5)D.(0,5)或(0,-5)14、已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5)C.(2,1)D.(2,﹣1)15、如图所示,矩形的两边、分别在x轴、y轴上,点C与原点重合,点A的坐标为(-1,2),将矩形沿x轴向右翻滚,经过第1次翻滚点A对应点记为,经过第2次翻滚点对应点记为……依此类推,经过第5次翻滚后点A对应点记为的坐标为( )A.(5,2)B.(6,0)C.(8,1)D.(8,0)二、填空题(共10题,共计30分)16、已知点P(﹣2,3),Q(n,3)且PQ=6,则n=________.17、若点与关于原点对称,则________.18、若点P(m+3,m+1)在x轴上,则点P的坐标为________.19、在平面直角坐标系中,菱形的对角线交于原点,点的坐标为,点的坐标为,则点的坐标为________.20、如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P 是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:①线段MN的长始终为1;②△PAB的周长固定不变;③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.其中正确的说法是________.21、如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为________.22、若点在轴上;则________.23、如图,在直角坐标系中,点、点、,则外接圆的半径为________.24、在平面直角坐标系中,已知点M(m-1,2m+3)在y轴上,则m=________.25、如图,在坐标平面内A(1,1),正方形CDEF的DE边在x轴上,C,F分别在OA和AB边上,连接OF,若△OEF和以E,F,B为顶点的三角形相似,则B点坐标为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

北师大版数学八年级上册第三章《位置与坐标》单元测试试卷含答案

北师大版数学八年级上册第三章《位置与坐标》单元测试试卷含答案

北师大版数学八上第三章《位置与坐标》单元测试试卷及答案一、选择题(共 12 小题;共 36 分) 1. 如图是“欢欢游乐城”的平面示意图,如果用表示入口处的位置,那么表示的地点是A. 太空秋千B. 梦幻艺馆C. 童趣花园D. 球幕电影2. 如图是小刚画的一张脸,他对妹妹说:如果我用 示成表示左眼,用表示右眼,那么嘴的位置可以表A.B.C.D.3. 点 A.与坐标原点、 B.围成的三角形的面积为 C.4. 如图,在平面直角坐标系中,,,则D. 的面积为A.B.C.D.5. 平面直角坐标系中,点关于 轴对称的点的坐标为A.B.C.D.6. 若点在第二象限,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列说法正确地有(1)点 线上,则一定在第四象限;(2)坐标轴上的点不属于任一象限;(3)若点 ;(4)直角坐标系中,在 轴上且到原点的距离为 的点的坐标是在坐标轴的角平分 .A. 个B. 个C. 个D. 个8. 点 是图 中三角形上一点,坐标为 坐标为,图 经过变化形成图 ,则点 在图 中的对应点 的A.B.C.D.9. 在平面直角坐标系 A.中,若 点坐标为, 点坐标为B.C.,则 D.的面积为10. 如图,的顶点坐标分别为,,.若点 的对应点 的 坐标是,那么点,沿某一直线作 的对应点 的坐标是的对称图形,得到A.B.C.D.11. 课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成A.B.C.D.12. 已知点在 轴的负半轴上,则点A. 第一象限B. 第二象限在 C. 第三象限D. 第四象限二、填空题(共 6 小题;共 24 分)13. 如图所示的象棋盘上,若帅位于点标是.上,相位于点上,则炮所在点的坐14. 点和点关于 轴对称,而点 与点 ,点 和点 的位置关系是15. 已知点,,,则点 在第关于轴对称,那么 .象限.16. 如图,平面直角坐标系中,的顶点都在网格点上,其中, 点坐标为为平方单位.,则, 的面积17. 在平面直角坐标系中,点 的坐标是 的对称点,得到点 ,则点 的坐标是,作点关于 轴的对称点,得到 ,再作点 .关于 轴18. 如图, , , , 四点都在方格图的格点上,若点 的坐标为坐标为,则点 的坐标为.,点 的坐标为,点 的三、解答题(共 7 小题;共 60 分)19. (8 分)七年级一班的同学在校内组织了一次寻宝游戏,如图网格中每个小正方形的边长为 ,小正方形的顶点叫做格点,已知校园内一标志物 在格点上且坐标为,所藏的宝物 的坐标是,的坐标是,请利用网格画一张寻宝图,要求先建立并画出直角坐标系,然后标出点 、 的位置.20. (8 分)如图,请作出关于 轴对称的,并写出三个顶点的坐标.21. (10 分)如图:(1)画出关于 轴对称的(其中 , , 分另提 , , 的对应点,不写画法)(2)直接写出 , , 三点的坐标;(3)在 轴上找一点 使得最小,画出点 所在的位置(保留作图痕迹,不写画法).22. (8 分)如图,在平面直角坐标系中画出以下各点:,,,.(1)顺次连接 , , , ,得到四边形.(2)计算四边形的面积.23. (8 分)如图所示是某市街道示意图,从 到 必须经过 ,用表示由 到 的一条最短的路径(不能走“回头路”),请再写出一条这样的最短路径.24. (10 分)问题背景:在中, , , 三边的长分别为 , , ,求这个三角形的面积 .小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为 ),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图 1 所示.这样不需求的高,而借用网格就能计算出它的面积.(1)请你将的面积直接填写在横线上.(2)画, , , 三边的长分别为 , , .①判断三角形的形状,说明理由.②求这个三角形的面积.25(. 8 分) 如图,在直角坐标系中,四边形个四边形的面积.各个顶点的坐标分别是,,,,求这第一部分1. D2. A3. B4. A5. A6. A7. A8. A9. D10. A11. D12. A第二部分13.14., ,关于原点对称15. 三16.17.18.第三部分答案19. 由题可得,如下图所示20. 如图,即为所求,三个顶点的坐标为21. (1) 如图即为所求.,,.(2),,.(3) 如图点 即为所求.【解析】作点 关于 轴的对称点 ,连接 22. (1) 画图交 轴于 ,点 即为所求.(2) 过 作 垂直 轴于点 .四边形梯形23. .(答案不唯一)24. (1)【解析】如图,;(2) ①如图2所示, 为直角三角形;因为,所以 为直角三角形.② . 答: 的面积为 .25. 过点 , 分别作 , 垂直于 轴,垂足分别为 ,.四边形梯形。

北师大版八年级上第三章位置与坐标单元测试含答案解析

北师大版八年级上第三章位置与坐标单元测试含答案解析

《第3章位置与坐标》一、选择题1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,3)B.(﹣5,3)或(5,3)C.(3,5)D.(﹣3,5)或(3,5)2.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在( )A.第一象限B.第二象限;C.第三象限D.第四象限3.若,则点P(x,y)的位置是( )A.在数轴上B.在去掉原点的横轴上C.在纵轴上D.在去掉原点的纵轴上4.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)5.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是( )A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是( )A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)8.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为( )A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定9.如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为( )A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)二、填空题11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示______.12.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为______.13.点P(a,b)与点Q(1,2)关于x轴对称,则a+b=______.14.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的______的方向上.15.已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=______,y=______.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.17.已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是______.18.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是______.三、解答题19.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?20.如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼______、湖心岛______、金凤广场______、动物园______.21.一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?22.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?23.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)24.如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.25.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.《第3章位置与坐标》参考答案一、选择题1.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,3)B.(﹣5,3)或(5,3)C.(3,5)D.(﹣3,5)或(3,5)【解答】解:∵点距离x轴5个单位长度,∴点M的纵坐标是±5,又∵这点在x轴上侧,∴点M的纵坐标是5;∵点距离y轴3个单位长度即横坐标是±3,∴M点的坐标为(﹣3,5)或(3,5).故选D.2.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在( )A.第一象限B.第二象限;C.第三象限D.第四象限【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴﹣m>0,|n|>0,∴点B在第一象限.3.若,则点P(x,y)的位置是( )A.在数轴上B.在去掉原点的横轴上C.在纵轴上D.在去掉原点的纵轴上【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.4.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.5.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是( )A.横坐标相等 B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【解答】解:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.7.A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是( )A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)【解答】解:由题意可得:A(﹣3,2)关于y轴的对称点是B(3,2),B关于x轴的对称点是C(3,﹣2).故选:C.8.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为( )A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.9.如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为( )A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)【解答】解:如图,设AD与y轴的交点为E,在直角梯形ABCD中,∵点A的坐标为(﹣2,7),∴OB=2,OE=7,∵AD=5,∴DE=5﹣2=3,∴点D的坐标为(3,7).故选C.10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选B.二、填空题11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示 10排15号 .【解答】解:∵“8排4号”记作(8,4),∴(10,15)表示10排15号.故答案为:10排15号.12.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为 (6,3) .【解答】解:如图,点N的位置可表示为(6,3).故答案为(6,3).13.点P(a,b)与点Q(1,2)关于x轴对称,则a+b= ﹣1 .【解答】解:∵点P(a,b)与点Q(1,2)关于x轴对称,∴a=1,b=﹣2,即a+b=﹣1.14.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的 南偏西30° 的方向上.【解答】解:由图可得,灯塔B在小岛A的南偏西30°的方向上.15.已知点A(x,2),B(﹣3,y),若AB∥y轴,则x= ﹣3 ,y= 不等于2的任意实数 .【解答】解:∵点A(x,2),B(﹣3,y),AB∥y轴,∴x=﹣3,y不等于2的是任意实数.故答案为:﹣3,不等于2的任意实数.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是 ±4 .【解答】解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴点a的值是4或﹣4.故答案为:±4.17.已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是 (4,4)或(12,﹣12) .【解答】解:由点P到两坐标轴的距离相等,得3+x=﹣2x+6或3+x+(﹣2x+6)=0,解得x=1或x=9,点P的坐标(4,4)或(12,﹣12),故答案为:(4,4)或(12,﹣12).18.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是 (4,﹣1)或(﹣1,3)或(﹣1,﹣1) .【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三、解答题19.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?【解答】解:(1)点B(0,﹣2)和点E(0,2)关于x轴对称;(2)点B(0,﹣2)与点E(0,2),点C(2,﹣1)与点D(2,1),它们的横坐标相同纵坐标互为相反数.20.如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼 (0,0) 、湖心岛 (﹣1.5,1) 、金凤广场 (﹣2,﹣1.5) 、动物园 (7,3) .【解答】解:以光月楼为坐标原点建立直角坐标系,如图,所以光岳楼的坐标为(0,0)、湖心岛的坐标为(﹣1.5,1)、金凤广场的坐标为(﹣2,﹣1.5)、动物园的坐标为(7,3).故答案为(0,0),(﹣1.5,1),(﹣2,﹣1.5),(7,3).21.一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?【解答】解:如右图所示,∠BAC=75°﹣30°=45°,∠ABC=30°+60°=90°,∴∠C=90°﹣45°=45°,∴∠BAC=∠C,∴△ABC是等腰直角三角形,∴BC=AB=1km,答:走私地点C离B处是1km.22.如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.23.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.24.如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.【解答】解:(1)由图可知四边形ABCD的对角线互相垂直,并且长都是6,所以面积=×6×6=18平方单位;(2)A′(﹣6,4),B′(﹣3,1),C(0,4),D′(﹣3,7);(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.25.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.【解答】解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,∵A(2,﹣1),B(4,3),C(1,2),∴EF=BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC=S矩形BDEF﹣S△BDC﹣S△CEA﹣S△BFA=BD•DE﹣•DC•DB﹣•CE•AE﹣AF•BF,=12﹣1.5﹣1.5﹣4=5.(本题也可先由勾股定理的逆定理,判别出△ABC为直角三角形,再求面积).。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测(答案解析)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测(答案解析)

一、选择题1.点()1,2-关于y 轴对称的点的坐标是( )A .()1,2-B .()2,1-C .()1,2--D .()1,2 2.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 4.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8865.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°6.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1) 7.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位8.如图,在平面直角坐标系上有点()1,0A ,点A 第一次跳至点()11,1A -,第二次向右跳动3个单位至点()22,1A ,第三次跳至点()32,2A -,第四次向右跳动5个单位至点()43,2A , ...依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .()50,50B .()51,50C .()50,51D .()49,509.A(-2,-3)到x 轴的距离为( )A .-2B .-3C .3D .210.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),……,按这样的运动规律,经过2020次运动后,动点P 的坐标是( )A .(2020,2020)B .(505,505)C .(1010,1010)D .(2020,2021) 11.已知(4,2)P a +在第一象限内,且点P 到两坐标轴的距离相等,则a 的值为( ) A .2 B .3 C .-6 D .2或-6 12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).14.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.15.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.16.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.17.已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.18.如图,将正整数按如图所示规律排列下去,若用有序数对(m ,n )表示m 排从左到右第n 个数,如(4,3)表示9,则(15,4)表示______.19.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.20.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________.三、解答题21.如图,在平面直角坐标系中,每个小方格的边长都是1个单位长度.(1)画出ABC 关于y 轴对称的A B C ''';(2)写出点A '、B '、C '的坐标;(3)求出ABC 的面积.22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.23.已知ABC ,顶点A ,B ,C 的坐标分别为()4,1-,()1,2--,()3,2-.(1)请在平面直角坐标系中画出ABC 关于x 轴对称的111A B C △;(2)在y 轴上找到一点D ,使得CD BD +的值最小(在图中标出D 点位置即可,保留作图痕迹).24.已知点()5,12A a a --,解答下列问题:(1)若点A 到x 轴和y 轴的距离相等,求点A 的坐标;(2)若点A 向右平移若干个单位后,与点()2,3B --关于x 轴对称,求点A 的坐标. 25.如图,在平面直角坐标系xOy 中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出ABC 的面积.(2)在图中作出ABC 关于y 轴的对称图形111A B C △.(3)写出点A 1,B 1,C 1的坐标.26.如图,ABC 的坐标分别是()0,2A -、()2,5B -、()5,3C -.(1)如图1,画出ABC 关于x 轴对称的图形111A B C △;(2)如图2,在x 轴上找出点P ,使PA PC +最小,并直接写出P 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据关于y 轴对称的点的坐标的变化特征求解即可.【详解】解:关于y 轴对称的点的坐标变化规律是:纵坐标不变,横坐标变为原来的相反数, 所以,点()1,2-关于y 轴对称的点的坐标是(-1,-2),故选:C .【点睛】本题考查了关于y 轴对称点的坐标变化规律,解题关键是树立数形结合思想,掌握坐标变化规律.2.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】-,∵点()3,4-在第二象限,∴点()3,4故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).3.B解析:B【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 5.B解析:B【分析】 根据12PBC ABC S S ∆∆=得出点P 到BC 的距离等于AD 的一半,即点P 在过AD 的中点且平行于BC 的直线l 上,则此问题转化成在直线l 上求作一点P ,使得点P 到B 、C 两点距离之和最小,作出点C 关于直线l 的对称点C ’,连接BC ’,然后根据条件证明△BCC ’是等腰直角三角形即可得出∠PBC 的度数.【详解】解:∵12PBC ABC S S ∆∆=, ∴点P 到BC 的距离=12AD , ∴点P 在过AD 的中点E 且平行于BC 的直线l 上,作C 点关于直线l 的对称点C ’,连接BC ’,交直线l 于点P ,则点P 即为到B 、C 两点距离之和最小的点,∵AD ⊥BC ,E 为AD 的中点,l ∥BC ,点C 和点C ’关于直线l 对称,∴CC ’=AD =BC ,CC ’⊥BC ,∴三角形BCC ’是等腰直角三角形,∴∠PBC =45°.故选B .【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P 在过AD 的中点E 且平行于BC 的直线l 上是解决此题的关键.6.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】 本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.7.A解析:A【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x 轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x 轴对称.故选:A .【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.B解析:B【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),故第100次跳动至点的坐标是(51,50).故选:B.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.9.C解析:C【分析】平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.【详解】解:点A(-2,-3)到x轴的距离为|-3|=3.故选C.【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.10.C解析:C【分析】观察不难发现,偶次运动到的点的横纵坐标都是次数的12,据此解答即可.【详解】解:由图可知,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),第四次运动到点(2,2),第二次接着运动到点(2,3),第三次接着运动到点(3,3),……,不难发现,偶次运动到的点的横纵坐标都是次数的12,∴经过2020次运动后,动点P的坐标是2020202022(,),即(1010,1010).故选:C.【点睛】本题是点的坐标的规律变化的考查,准确识图,观察出偶次运动到的点的横纵坐标都是次数的12是解题的关键.11.A解析:A【分析】本题可通过横坐标为4确定点P到纵轴距离,继而根据点P到坐标轴距离相等列方程求解.【详解】由已知得:24a+=,因为点P在第一象限,故:24a+=,解得:2a=.故选:A.【点睛】本题考查平面直角坐标系、一元一次方程、绝对值的化简,易错点在于若坐标含有未知数,考查距离问题时需要加绝对值或者分类讨论,确保结果不重不漏.12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】 AC=222222+=,如图,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,则AP+PC=AP+PC′=AC′,此时AP+PC 2226210+=所以△PAC 周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质. 15.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2, ∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.16.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.或【分析】本题根据两点在同一平行于轴的直线上确定点N 的纵坐标继而根据两点距离确定点N 的横坐标【详解】由已知得:点N 的纵坐标为设点N 的横坐标为则MN 的距离可表示为∵∴求解得:或故点N 坐标为或故填:或【 解析:(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.18.109【分析】每排数据的个数等于排号数则可计算出前14排共有105个数然后再往后数4个数即可【详解】解:前14排共有1+2+3+…+14=105个数所以第15排的第4个数为109即(154)表示10解析:109【分析】每排数据的个数等于排号数,则可计算出前14排共有105个数,然后再往后数4个数即可.【详解】解:前14排共有1+2+3+…+14=105个数,所以第15排的第4个数为109,即(15,4)表示109.故答案为109.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.19.(-43)【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A 的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.20.【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】∵点P 在第四象限且点P 到x 轴和y 轴的距离分别为68∴点P 的横坐标是8纵坐标是-6即点P 的坐标为故答案为【点睛】此题考查点 解析:(8,6)-【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P 在第四象限,且点P 到x 轴和y 轴的距离分别为6、8,∴点P 的横坐标是8,纵坐标是-6,即点P 的坐标为(8,6)-.故答案为(8,6)-.【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.三、解答题21.(1)答案见解析;(2)()3,2A '、()4,3B '-、()1,1C '-;(3)132. 【分析】(1)首先根据关于y 轴对称的点的特点找到相应的,,A B C ''',然后顺次连接,,A B C '''即可;(2)直接根据A B C '''在坐标系中的位置即可写出各标点的坐标; (3)用所在ABC 的长方形的面积减去三个小三角形的面积即可.【详解】解:(1)如图所示,A B C '''即为所求;(2)由图可知,()3,2A '、()4,3B '-、()1,1C '-.(3)A B C '''的面积为11113352323152222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查作图能力,掌握轴对称图形的作法是解题的关键.22.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O CB A O 的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.试题b-=(1)∵a、b60.∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.23.(1)见详解;(2)见详解【分析】(1)找出ABC关于x轴的对应点A1,B1,C1,再顺次连接起来,即可;(2)作出点B关于y轴的对称点B′,连接CB′,交y轴于点D,即可.【详解】(1)如图所示;(2)作出点B关于y轴的对称点B′,连接CB′,交y轴于点D,即为所求.【点睛】本题主要考查坐标与图形-轴对称,掌握“马饮水”模型,是解题的关键.24.(1)点A 的坐标为()3,3--或()9,9-;(2)()6,3-.【分析】(1)分别根据点A 的位置列方程求解即可;(2)根据平移规律求解即可.【详解】解:(1)若点A 在第一象限或第三象限,512a a -=-,解得2a =,5123a a -=-=-.∴点A 的坐标为()3,3--,若点A 在第二象限或第四象限,5120a a -+-=,解得4a =-,59a -=-,129a -=,∴点A 的坐标为()9,9-.综上所述,点A 的坐标为()3,3--或()9,9-.(2)∵若点A 向右平移若干个单位,其纵坐标不变,为()12a -,又∵点A 向右平移若干个单位后与点()2,3B --关于x 轴对称,∴()1230a -+-=,∴1a =-,∴5156a -=--=-,()121213a -=-⨯-=,即点A 的坐标为()6,3-.【点睛】此题主要考查了关于x 轴对称的点的坐标特征,关键是掌握点的坐标变化规律. 25.(1)152;(2)见解析;(3)A 1(1,5),B 1(1,0),,C 1(4,3) 【分析】(1)利用面积公式直接计算求出答案;(2)根据轴对称的性质确定点A 1,B 1,C 1的位置,顺次连线即可得到图形;(3)根据(2)直接解答即可.【详解】(1)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB ∥y 轴,AB=5-0=5,AB 边上的高为-1-(-4)=3, ∴1532ABC S=⨯⨯=152; (2)如图:(3)A 1(1,5),B 1(1,0),,C 1(4,3).【点睛】此题考查轴对称的性质,轴对称作图,直接坐标系中点的坐标,正确理解轴对称的性质作出图形是解题的关键.26.(1)见解析;(2)见解析,点P 的坐标为(2,0).【分析】(1)作出A ,B ,C 关于x 轴对称点A 1,B 1,C 1即可;(2)作点A 关于x 轴 对称点A′,连接CA′交x 轴于点P ,点P 即为所求.【详解】解:(1)△A 1B 1C 1如图所示.(2)作点A关于x轴对称点A′,连接CA′交x轴于点P,点P即为所求,点P的坐标为(2,0).【点睛】本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章位置与坐标本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,已知点P(2,-3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为()A.M(-1,2),N(3,1)B.M(2,-1),N(3,1)C.M(-1,2),N(1,3)D.M(2,-1),N(1,3)3.如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012次相遇点的坐标是 ()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为一切实数B.m=0,n<0C.m为一切实数,n=0D.m<0,n=06.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向上平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度7.已知点M (3,-4) ,在x轴上有一点B,B点与M点的距离为5,则点B的坐标为()A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)8.点A(a,4),点B(3,b)关于x轴对称,则(a+b)2013的值为()A.0B.-1C.1D.720139.如果点A(m,n)在第二象限,那么点B(-m,|n|)在()A.第一象限B.第二象限C.第三象限D.第四象限10.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依次类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除余数是1时,则向右走1个单位长度,当n被3除余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每小题4分,共32分)11.点P(-2,3)关于x轴对称的点P'的坐标为.12.点P(1,-2)关于y轴对称的点P'的坐标为.13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是.14.在平面直角坐标系中,点A(2,m2+1)一定在第象限.15.点A(a,b)和点B关于x轴对称,而点B与点C(2,3)关于y轴对称,那么a=,b=,点A和点C的位置关系是.16.在电影院里7排5号可以用(7,5)表示,那么(6,2)表示的是排号.17.如图所示,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为.18.已知点M(a,-1)和N(2,b)不重合.(1)当点M,N关于对称时,a=2,b=1;(2)当点M,N关于原点对称时,a=,b=.三、解答题(共58分)19.(8分)在平面直角坐标系中,点A关于y轴的对称点为点B,点B关于x轴的对称点为点C.(1)若点A的坐标为(1,2),请你在给出的坐标系中画出ΔABC,设AB与y轴的交点为D,求的值;(2)若点A的坐标为(a,b)(ab≠0),判断ΔABC的形状.20.(8分)如图所示,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(写出一种做法即可)(2)如果把A,B,C,D各点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?21.(10分)如图所示,在直角坐标系中,RtΔAOB的两条直角边OA,OB 分别在x轴的负半轴和y轴的负半轴上,且OA=2,OB=1.将RtΔAOB绕点O按顺时针方向旋转90°,再把所得的三角形沿x轴正方向平移1个单位长度,得ΔCDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.22.(10分)如图所示,正方形ABCD的边长为10,连接各边的中点E,F,G,H得到正方形EFGH,请你建立适当的直角坐标系,分别写出A,B,C,D,E,F,G,H的坐标.23.(10分)在如图所示的直角坐标系中,四边形OABC各个顶点的坐标分别为O(0,0),A(2,3),B(5,4),C(8,2).(1)试确定图中四边形OABC的面积;(2)请作出四边形OABC关于x轴对称的图形.24.(12分)(1)在平面直角坐标系中,将点A(-3,4)向右平移5个单位长度到点A1,再将点A1绕坐标原点顺时针旋转90°到点A2,求点A1,A2的坐标;(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位长度得到第一象限内的点B1,再将点B1绕坐标原点顺时针旋转90°到点B2,写出点B1,B2的坐标;(3)在平面直角坐标系中,将点P(c,d)沿水平方向平移n个单位长度到点P1,再将点P1绕坐标原点顺时针旋转90°到点P2,写出点P2的坐标.【答案与解析】1.D(解析:因为横坐标为正,纵坐标为负,所以点P(2,-3)在第四象限.故选D.)2.A(解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号特征是解题的关键,四个象限点的坐标符号分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).) 3.D(解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1∶2.由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇,此时甲、乙回到出发点,则每相遇三次,两点回到出发点.因为2012÷3=670……2,所以两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即在DE边相遇,此时相遇点的坐标为(-1,-1).故选D.)4.D(解析:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4.当a=-1时,点P的坐标为(3,3);当a=-4时,点P的坐标为(6,-6).)5.D(解析:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.又因为点A位于原点的左侧,所以横坐标小于0,即m<0,所以m<0,n=0.故选D.)6.D7.D(解析:过点M作MD⊥x轴于点D,则点D的坐标为(3,0).因为点M 到x轴的距离为4,所以MD=4.又因为BM=5,所以由勾股定理得BD==3,所以点B的坐标为(6,0)或(0,0).故选D.)8.B(解析:因为点A(a,4)与点B(3,b)关于x轴对称,所以a=3,b=-4,所以(a+b)2013=(3-4)2013=-1.)9.A(解析:因为点A在第二象限,所以m<0,n>0,所以-m>0,|n|>0,因此点B在第一象限.)10.C(解析:在1至100这100个数中:能被3整除的有33个,故向上走了33个单位长度;被3除余数为1的数有34个,故向右走了34个单位长度;被3除余数为2的数有33个,故向右走了66个单位长度.故总共向右走了34+66=100个单位长度,向上走了33个单位长度.所以走完第100步时所处位置的横坐标为100,纵坐标为33.故选C.)11.(-2,-3)(解析:关于x轴对称的点的横坐标相等,纵坐标互为相反数,所以点P(-2,3)关于x轴对称的点P'的坐标为(-2,-3).)12.(-1,-2)(解析:关于y轴对称的点的横坐标互为相反数,纵坐标相等,故点P(1,-2)关于y轴对称的点的坐标为(-1,-2).)13.(3,2)(解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2).)14.一(解析:因为m2≥0,1>0,所以纵坐标m2+1>0,又因为点A的横坐标2>0,所以点A一定在第一象限.)15.-2-3关于原点对称(解析:因为点A(a,b)和点B关于x轴对称,所以点B的坐标为(a,-b);因为点B与点C(2,3)关于y轴对称,所以点B的坐标为(-2,3),所以a=-2,b=-3,点A和点C关于原点对称.)16.6 217.(3,5)(解析:因为正方形ABCD的边长为4,点A的坐标为(-1,1),AB 平行于x轴,所以点C的横坐标为4-1=3,点C的纵坐标为4+1=5,所以点C的坐标为(3,5).)18.(1)x轴(2)-21(解析:两点关于x轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.) 19.解:(1)如图所示,. (2)直角三角形.20.解:(1)80,可分割成直角三角形和长方形求面积.(答案不唯一) (2)80.21.解:(1)点A的坐标是(-2,0),点C的坐标是(1,2). (2)如图所示,连接AC,在RtΔACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=.22.提示:答案不唯一,如:以EG所在直线为x轴,以FH所在直线为y 轴,建立如图所示的直角坐标系,则A(-5,-5),B(5,-5),C(5,5),D(-5,5),E(-5,0),F(0,-5),G(5,0),H(0,5).23.提示:(1)14. (2)略.24.解:(1)∵将点A(-3,4)向右平移5个单位长度到点A1,∴点A1的坐标为(2,4),∵又将点A1绕坐标原点顺时针旋转90°到点A2,∴A2的坐标为(4,-2). (2)根据(1)中的规律,得B1的坐标为(a+m,b),B2的坐标为(b,-a-m).(3)分两种情况:①当把点P(c,d)沿水平方向向右平移n个单位长度到点P1时,P1的坐标为(c+n,d),P2的坐标为(d,-c-n);②当把点P(c,d)沿水平方向向左平移n个单位长度到点P1时,P1的坐标为(c-n,d),然后将点P1绕坐标原点顺时针旋转90°到点P2,则P2的坐标为(d,-c+n).。

相关文档
最新文档