11核苷酸代谢
第十一章 核苷酸代谢
续;
叶酸结构类似物
阅读:
氨甲蝶呤是一类重要的抗肿瘤药物,对急性白血病、绒 毛膜上皮癌等有一定疗效。这类药物能够抑制肿瘤细胞 核酸的合成,但对正常细胞亦有影响,故毒性较大,限 制了临床上的运用;
作为二氢叶酸还原酶特异抑制剂,在实验室可用于配制
选择培养基,筛选抗性基因或鉴定胸腺嘧啶核苷激酶基
因,十分有用。
UMP是胞苷酸(CMP)和胸苷酸(TMP)的前体; 合成嘧啶核苷酸时首先形成嘧啶环(与嘌呤核苷酸不
同),再与PRPP结合成为UMP;
关键中间化合物 —— 乳清酸;
生物利用CO2、NH3、Asp、PRPP首先合成尿苷酸(UMP)
P240图11-9
UMP是胞苷酸(CMP)和胸苷酸(TMP)的前体
P240图11-10194 Nhomakorabea年 结论:DNA是生命的遗传物质
更有说服力的噬菌体实验
1952 年 , Hershey 和 Chase 病毒(噬菌体) 放射性同位素 35S标记病毒 的蛋白质外壳, 32P标记病 毒的DNA内核,感染细菌。 新复制的病毒,检测到了 32P标记的DNA,没有检测到 35S标记的蛋白质, DNA在病毒和生物体复制或 繁殖中的关键作用。 8年的时间
结果说明:加热杀死的S型肺炎球菌中一定有某种特 殊的生物分子或遗传物质,可以使无害的R型肺炎球 菌转化为有害的S型肺炎球菌 这种生物分子或遗传物质是什么呢?
纽约洛克非勒研究所
Avery
从加热杀死的S型肺炎球菌将蛋白质、核酸、多糖、脂 类分离出来,分别加入到无害的R型肺炎球菌中,
结果发现,惟独只有核酸可以使无害的R型肺炎球菌转 化为有害的S型肺炎球菌。
生化要点11.核苷酸代谢
---------------------------------------------------------------最新资料推荐------------------------------------------------------生化要点11.核苷酸代谢第十一单元核苷酸代谢一、核酸的分解代谢(一)核酸的酶促降解核酸是核苷酸以 3'、 5' -磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。
根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。
根据酶的作用方式分:内切酶、外切酶。
1. 核糖核酸酶只水解 RNA 磷酸二酯键的酶(RNase),不同的 RNase 专一性不同。
牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3' -磷酸与其它核苷酸间的连接键。
核糖核酸酶T1(RNaseT1),作用位点是 3' -鸟苷酸与其它核苷酸的 5' -OH 间的键。
2. 脱氧核糖核酸酶只能水解 DNA 磷酸二酯键的酶。
DNase 牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链 DNA。
产物是以 5' -磷酸为末端的寡核苷酸。
牛胰脱氧核糖核酸酶(DNaseⅠ ),降解产物为 3' -磷酸为末端的寡核苷酸。
限制性核酸内切酶:1 / 10细菌体内能识别并水解外源双源 DNA 的核酸内切酶,产生 3'-OH 和 5' -P。
PstⅠ 切割后,形成 3' -OH 单链粘性末端。
EcoRⅠ 切割后,形成 5' -P 单链粘性末端。
3. 非特异性核酸酶既可水解 RNA,又可水解 DNA 磷酸二酯键的核酸酶。
小球菌核酸酶是内切酶,可作用于RNA 或变性的 DNA,产生 3'-核苷酸或寡核苷酸。
蛇毒磷酸二酯酶和牛脾磷酸二脂酶属于外切酶。
蛇毒磷酸二酯酶能从 RNA 或 DNA 链的游离的 3' -OH 逐个水解,生成 5' -核苷酸。
第十一章核酸的降解与核苷酸代谢
(3)5-磷酸核糖胺在ATP参与下与甘氨酸 合成甘氨酰胺核苷酸。催化此反应的酶 是甘氨酰胺核苷酸合成酶。
(4)甘胺酰胺核苷酸在甘胺酰胺核苷酸甲 酰基转移酶作用下生成甲酰甘胺酰胺核 苷酸。
(5)甲酰甘胺酰胺核苷酸与谷氨酰胺、 ATP作用,闭环之前在第3位上加上氮原 子。催化此反应的酶是甲酰甘氨咪唑核 苷酸合成酶。
(6)闭环
在氨基咪唑核苷酸合成酶作用下生成5氨基咪唑核苷酸。
(7)六员环的合成开始
在氨基咪唑核苷酸羧化酶催化下, 5氨基咪唑核苷酸与二氧化碳生成5-氨基 咪唑-4-羧酸核苷酸。
(8)嘌呤环的第1位氮的固定
在氨基咪唑琥珀酸氨甲酰核苷酸合成 酶催化下, 5-氨基咪唑-4-羧酸核苷酸与 天冬氨酸和ATP生成5-氨基咪唑-4-琥珀 酸甲酰胺核苷酸。
途径二:
尿嘧啶 + 5-磷酸核糖焦磷酸 UMP磷酸核糖转移酶
尿嘧啶核苷酸+PPi
胞苷酸
胞苷磷酸化酶
胞嘧啶 + 1-磷酸核糖
胞嘧啶核苷 + Pi
尿苷激酶
胞嘧啶核苷 + ATP
胞嘧啶核苷酸 + ADP
二 脱氧核糖核苷酸的合成
(一)、 二磷酸脱氧核糖核苷的生成:
即:dADP、dGDP、dCDP、dUDP 需一步完成,dTDP需二步完成。 在生物体内,A、G、C、U四种核糖核苷酸均可被还原成相应的脱氧核糖核
一、核糖核苷酸的生物合成
(一)嘌呤核糖核苷酸的合成
1、从头合成路线
原料:CO2、甲酸盐、甘氨酸、天冬氨酸、谷 氨酰胺
核糖碳架来源:5—P核糖+ATP 核糖—1—焦磷酸 (PRPP)
5—磷酸
过程:先直接合成次黄嘌呤核苷酸(IMP,肌 苷酸),不先形成嘌呤环,再转变为腺苷酸AMP、 黄苷酸XMP、尿苷酸GMP。
核苷酸代谢产物_概述及解释说明
核苷酸代谢产物概述及解释说明1. 引言1.1 概述核苷酸代谢产物是在细胞内核苷酸代谢途径中生成的一系列化合物,它们在生物体内扮演着重要的角色。
核苷酸是构成DNA和RNA等核酸分子的基本组成单位,通过与其他化合物发生相互转化,核苷酸代谢产物参与到多个生物过程中。
了解核苷酸代谢产物及其功能对于揭示生命科学和疾病发生机制具有重要意义。
1.2 文章结构本文将从以下几个方面对核苷酸代谢产物进行概述与解释说明。
首先,我们将介绍核苷酸代谢产物的定义与分类,包括其在细胞内的形成过程以及不同类型的核苷酸代谢产物。
接着,我们将阐述核苷酸代谢产物在生物体内的作用与功能,包括能量传递、细胞信号传导和蛋白质合成等方面。
此外,本文还将探讨核苷酸代谢异常与疾病关联的研究进展,并介绍新药开发和靶向治疗的相关内容。
最后,我们将对核苷酸代谢产物的重要性和多样性进行总结,并展望其在生命科学和医学领域未来的研究方向以及应用前景。
1.3 目的本文旨在全面介绍核苷酸代谢产物的概念、分类、作用与功能,以及其与疾病关联的研究进展。
通过对这些内容的探讨,旨在增进读者对核苷酸代谢产物的理解,并为相关领域的研究提供有益参考。
同时,本文也希望能够引起更多科学家和医生们对核苷酸代谢产物研究的重视,促进该领域的发展与应用。
2. 核苷酸代谢产物的定义与分类2.1 核苷酸代谢概述核苷酸是生物体内重要的小分子化合物,由核糖/脱氧核糖(ribose/deoxyribose)、碱基和磷酸组成。
它们在细胞中起着诸多重要的功能,包括能量传递、信号传导、DNA和RNA合成等。
2.2 核苷酸代谢产物的定义核苷酸代谢产物是指在核苷酸代谢过程中生成或消耗的中间产物。
它们可以通过各种代谢途径进行进一步转化,并参与细胞内复杂而精确的调控网络。
常见的核苷酸代谢产物包括AMP(腺苷酸)、GMP(鸟嘌呤核苷酸)、IMP(肌苷酸)等。
2.3 核苷酸代谢产物的分类和特点根据不同的分类方法和功能特点,核苷酸代谢产物可以分为以下几类:1. 能量相关核苷酸:ATP (三磷酸腺苷)和ADP (二磷酸腺苷)是细胞内重要的能量分子。
第十一章核苷酸代谢
H2N
N
鸟苷
Pi 核糖-1-磷酸 OH
N N
N
核苷磷
N
酸化酶 H2N
N
N H
Ribose
鸟嘌呤
OH
+H2O, NH3
N
N
鸟嘌呤酶
HO
N
黄嘌呤氧化酶
N H
+O2 +H2O -H2O2
黄嘌呤
OH
尿酸(醇式)
N
H N
O
HO
N
N H
治痛风的药-别嘌呤醇
OH
N
N
N
N H
次黄嘌呤
OH
N
N
HO
N
N H
黄嘌呤
OH
嘌呤核苷酸合成起始阶段的PRPP合成酶和 PRPP酰胺转移酶可被合成产物IMP、AMP 及GMP等抑制,从核糖胺-5-磷酸到IMP之 间未发现调节步骤
(d) NTP + ADP
脱氧核苷酸的合成
O
O
碱基
H2O
O
O
碱基
-O P O P O
O-
O-
O
H
H
NDP还原酶
-O P O P O
O-
O-
O
H
H
H OH
H
OH
SH
硫氧还蛋白
S 硫氧还蛋白
H OH
H H
SH
S
硫氧还原蛋白
还原酶
NADP+
NADPH + H+
NDP还原酶
NDP还原酶催化机理
N
1
O
N O
甲酰甘氨酸核苷酸 四氢叶酸
IMP的合成
生物化学核苷酸代谢
生物化学核苷酸代谢核苷酸代谢是生物体内重要的生化过程,涉及到核酸合成、降解、修复、信号传递等多个方面。
核苷酸由碱基、糖和磷酸组成,其代谢在细胞中是高度调控和平衡的。
核苷酸合成主要通过转氨基树酸循环和核苷酸分子的合成反应进行。
在转氨基树酸循环中,核苷酸前体物质首先被转化为碱基,然后与多磷酸核糖(PRPP)反应生成核苷酸。
在核苷酸分子的合成过程中,磷酸化反应是关键步骤。
首先,核苷酸前体物质通过化学反应与其他辅助分子发生磷酸化,生成亲核试剂;然后亲核试剂与其他原子或分子发生进一步反应,最终形成核苷酸分子。
核苷酸降解是核酸的代谢终点。
核苷酸降解主要通过核苷酸酶和核酸酶的作用进行。
核苷酸首先被分解为核苷和糖酸,然后再被分解为碱基、磷酸和其他代谢产物。
核苷酸的降解产物在细胞中可以被重新利用,参与核酸合成或其他代谢途径。
核苷酸修复是为了纠正核苷酸中的损伤或错误。
核酸在细胞中会受到化学、物理和生物性的损伤。
这些损伤可能导致突变和疾病的发生。
核苷酸修复过程中的多个酶参与到检测和修复核酸中的损伤。
例如,碱基切割酶可以识别含有损伤碱基的DNA链,然后切割并去除这些损伤碱基。
然后,DNA聚合酶、连接酶和重排序酶等修复酶可以填补被切割的DNA链,并确保修复后的DNA链的完整性。
核苷酸在细胞中还扮演着重要的信号传递和调控作用。
一些核苷酸可以作为二级信使,传递细胞内外的信号,调控细胞的生理和代谢过程。
例如,环磷酸腺苷(cAMP)和磷腺苷酸(cGMP)是细胞内常见的二级信使,它们通过激活蛋白激酶A、蛋白激酶G等酶的信号通路,参与细胞的增殖、分化、凋亡等生理过程。
总结起来,核苷酸代谢是生物体内重要的生化过程,它涉及核酸的合成、降解、修复以及信号传递等多个方面。
核苷酸代谢的平衡和调控对细胞活动的正常进行至关重要,异常的核苷酸代谢可能导致疾病的发生。
因此,对核苷酸代谢的深入研究,有助于揭示生命活动的机制和疾病发生的原因,也为药物研发和治疗提供了理论基础。
核苷酸代谢生物化学
核苷一磷酸的分解
核苷一磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成 相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
核苷二磷酸的分解
核苷二磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
04
核苷酸代谢的调控
酶的调节
01
酶的激活与抑制
酶的活性可以通过共价修饰(如磷酸化、去磷酸化)、变构效应、与配
体的结合等方式进行激活或抑制,从而调节核苷酸代谢的速度和方向。
Hale Waihona Puke 02酶的浓度调节酶的合成和降解可以调节其在细胞内的浓度,进而影响核苷酸代谢的速
率。
核苷酸的分解代谢
嘌呤核苷酸的分解
嘌呤核苷酸首先在核苷酸酶的作用下 ,将其中的特殊化学键转移给特殊化 学物质,生成相应的嘌呤衍生物和磷 酸核糖。
嘌呤衍生物进一步分解为尿酸,而磷 酸核糖则进一步发生代谢。
嘧啶核苷酸的分解
嘧啶核苷酸在核苷酸酶的作用下,将 其中的特殊化学键转移给特殊化学物 质,生成相应的嘧啶衍生物和磷酸核 糖。
合成过程包括脱氧、磷酸化等步骤,最终 形成脱氧核苷酸。
脱氧核苷酸是DNA的重要组成部分,对 维持生物体的遗传信息具有重要意义。
核苷三磷酸的合成
核苷三磷酸是由核苷二磷酸在激酶催化下 合成的。
合成过程需要消耗能量,如ATP等。
核苷三磷酸是RNA的重要组成部分,对 维持生物体的正常代谢具有重要意义。
03
细胞信号转导的调节
信号转导蛋白
细胞内的信号转导蛋白可以感知 核苷酸代谢产物的浓度,进而调 节核苷酸代谢酶的活性。
11章核苷酸代谢
二、嘧啶核苷酸的生物合成
嘧啶环原子的来源
4 3 2
NH3 CO2
C
N C
1
5
C
天冬氨酸
6
C
N
嘧啶环原子来源:NH3、CO2、Asp 特点: 先利用小分子化合物形成嘧啶环,再与核糖 磷酸(PRPP提供)结合成乳清酸,(与嘌呤核苷 合成的区别)然后生成UMP。其他嘧啶核苷酸由 尿苷酸转变而成。
此过程主要在肝细胞的胞液中进行。除了二氢乳清酸脱 氢酶位于线粒体内膜上外,其余均位于胞液中。
嘌呤的各个原子是在PRPP的C1上逐渐加上 去的(由Asp、Gln、 Gly、甲酸、CO2 提供N和 C)。
PP-1-R-5-P
5’-磷酸核糖-1’-焦磷酸
AMP ATP PRPP合成酶
(5-磷酸核糖)
R-5-P
PRPP
酰胺转移酶
谷氨酰胺
谷氨酸 在谷氨酰胺、甘氨酸、一 碳单位、二氧化碳及天冬 氨酸的逐步参与下
二、嘌呤核苷酸的从头合成 嘌呤环上原子的来源
甘氨酸
天冬氨 酸
甲 酸 或甲酰基
甲 酸 谷 酰 氨 胺
嘌呤环原子来源:Asp、Gln、 Gly、甲酸、CO2 合成部位:胞液 特点: 嘌呤最初不是以游离碱基的形式合成,而 是从5-磷酸核糖-1-焦磷酸(PRPP) 开始,经一系 列酶促反应,先生成次黄嘌呤核苷酸(肌苷酸, IMP),然后再转变为AMP和GMP。
甲酰甘氨脒核苷酸FGAM
-5′-P
磷酸核糖甲酰 甘氨脒合成酶
-5′-P
⑤甲酰甘氨脒核苷酸FGAM
5-氨基咪唑核苷酸(AIR)
-5′-P
氨基咪唑核 苷酸合成酶
-5′-P
⑥ ⑦ 5-氨基咪唑-4-羧酸核苷酸的生成:
细胞生物学中的核苷酸代谢途径
细胞生物学中的核苷酸代谢途径细胞是生物体的基本单位,其中核酸是构成核糖体和DNA序列的关键组成部分。
核酸由核苷酸单元组成,核苷酸代谢是维持细胞正常功能的重要过程。
这一过程涉及到核苷酸的合成、降解和再利用,为了维持细胞正常的功能和稳态,细胞需要控制核苷酸代谢途径的平衡。
本文将探讨细胞生物学中的核苷酸代谢途径,包括核苷酸合成、降解和再利用等方面的内容。
一、核苷酸合成途径核苷酸合成是细胞中核苷酸代谢的重要组成部分,它涉及到细胞中氮代谢途径和葡萄糖代谢途径。
核苷酸的合成途径不同于降解途径,它是通过一系列酶催化的反应来完成的。
首先,核苷酸合成途径需要合成核苷酸的前体物质。
在动物细胞中,核苷酸的合成起始物质包括核碱基、糖和磷酸。
细胞通过葡萄糖、胱氨酸和甲硫氨酸等原料,经过一系列的酶催化反应,合成核苷酸的前体物质。
其次,核苷酸合成途径需要核苷酸的合成酶。
核苷酸的合成酶是完成核苷酸合成的催化剂。
不同类型的核苷酸合成酶以及参与核苷酸合成的酶协同作用,使细胞能够有效地合成各种类型的核苷酸。
最后,核苷酸合成途径需要能量和NADPH供给。
核苷酸的合成需要大量的能量和还原物质NADPH。
细胞通过葡萄糖代谢途径中的糖酵解和线粒体的呼吸链来提供能量和NADPH。
总之,核苷酸合成途径是细胞为了维持正常功能所需的重要过程。
细胞通过合成核苷酸的前体物质、核苷酸的合成酶、能量和还原物质来完成核苷酸的合成过程。
二、核苷酸降解途径核苷酸降解是细胞中的另一个核苷酸代谢途径。
核苷酸的降解途径通常发生在葡萄糖代谢途径的线粒体中。
首先,核苷酸降解途径需要核苷酸酶。
核苷酸酶是完成核苷酸降解的催化剂。
不同类型的核苷酸酶以及参与核苷酸降解的酶协同作用,使细胞能够有效地降解各种类型的核苷酸。
其次,核苷酸降解途径需要核苷酸降解的前体物质。
核苷酸降解会产生一些化合物,如尿素和氨基酸等。
这些化合物可以进一步参与细胞的代谢途径,如氮代谢途径和葡萄糖代谢途径。
最后,核苷酸降解途径还需要能量供给。
第十一章 核苷酸代谢
第十一章核苷酸代谢一、名词解释1、核苷酸的从头合成2、核苷酸的补救合成3、核酸酶4、限制性核酸内切酶二、填空1、嘌呤、嘧啶核苷酸合成过程中共同需要的酶是______。
2、嘌呤核苷酸合成的原料是CO2、______、______、甘氨酸、______和5-磷酸核糖,嘧啶核苷酸合成的原料是CO2、______、______。
3、嘌呤核苷酸从头合成的第一个核苷酸是,嘧啶核苷酸从头合成的第一个核苷酸是。
4、嘌呤核苷酸的合成中由IMP可转变成和,过量的ATP导致GMP合成,过量的GTP导致AMP合成。
5、人体内嘌呤核苷酸分解代谢的终产物是。
6、嘧啶碱分解最终产物为______、______、______或______。
7、参与嘌呤核苷酸合成的氨基酸有、和。
8、尿苷酸转变为胞苷酸是在水平上进行的。
9、生物体中的脱氧核苷酸的合成是由还原生成的。
在动物细胞中,还原反应以为还原剂,以为底物。
10、在嘌呤核苷酸的合成中,腺苷酸的C-6氨基来自;鸟苷酸的C-2氨基来自。
11、对某些碱基顺序有专一性的核酸内切酶称为。
12、核苷水解的产物是和;核苷磷酸解的产物是和。
三、单项选择题1、合成嘌呤和嘧啶都需要的一种氨基酸是:A.Asp B.Gln C.Gly D.Asn2、生物体嘌呤核苷酸合成途径中首先合成的核苷酸是:A.AMP B.GMP C.IMP D.XMP3、人类和灵长类嘌呤代谢的终产物是:A.尿酸B.尿囊素C.尿囊酸D.尿素4、动植物从核糖核苷酸生成脱氧核糖核苷酸的反应发生在:A.一磷酸水平B.二磷酸水平C.三磷酸水平D.以上都不是5、在嘧啶核苷酸的生物合成中不需要下列哪种物质:A.氨甲酰磷酸B.天冬氨酸C.谷氨酰氨D.核糖焦磷酸6、嘧啶合成需要:A. 氨基甲酰磷酸合成酶IB. 氨基甲酰磷酸合成酶IIC. HMG-CoA还原酶D. HMG-CoA裂解酶7、关于嘌呤核苷酸的合成描述正确的是:A.利用氨基酸、一碳单位和CO2为原料,首先合成嘌呤环再与5-磷酸核糖结合而成B.核-5-磷酸为起始物,在酶的催化下与ATP作用生成PRPP,再与氨基酸、CO2和一碳单位作用,逐步形成嘌呤核苷酸C.在氨基甲酰磷酸的基础上,逐步合成嘌呤核苷酸D.首先合成黄嘌呤核苷酸(XMP),再转变成AMP和GMP8、由dUMP转变成dTMP的甲基化反应中,甲基供给体是:A.S-腺苷甲硫氨酸B.S-腺苷同型半胱氨酸C.N5,N10-亚甲基四氢叶酸D.N5-甲基四氢叶酸9、体内脱氧核苷酸由核糖核苷酸还原生成时,其供氢体是:A. FADH2 B.NADH+H+ C.FMNH2 D.NADPH+ H+10、下列哪种物质不是嘌呤核苷酸从头合成的直接原料?A.甘氨酸B.天冬氨酸C.谷氨酸D.CO211、GMP和AMP分解过程中产生的共同中间产物是:A.XMP B.X C.IMP D.A12、dTMP合成的直接前体是:A.dUMP B.TMP C.TDP D.dUDP13、下列转变哪项不能直接进行?A.IMP→AMP B.AMP→IMP C.AMP→GMP D.IMP→XMP 14、合成嘌呤和嘧啶环的共同原料是:A.一碳单位B.甘氨酸C.谷氨酸D.天冬氨酸15、嘌呤核苷酸从头合成时,嘌呤环第4和第5位碳原子来自:A.甘氨酸B.谷氨酰胺C.CO2D.一碳单位16、人体内嘌呤核苷酸分解代谢的主要终产物是:A.尿素B.肌酸C.尿酸D.β-丙氨酸17、胸腺嘧啶的甲基来自:A.N l0-CHO -FH4B.N5,N l0=CH-FH4 C.N5,N l 0-CH2-FH4D.N5-CH3-FH4 18、磷酸核糖焦磷酸的英文缩写是:A.IMP B.PRPP C.PRA D.GAR19、嘧啶核苷酸合成特点是:A.在5-磷酸核糖上合成碱基 B. 由四氢叶酸提供一碳单位C.甘氨酸完整地掺入分子中 D. 先合成氨基甲酰磷酸20、为嘌呤环C8提供碳原子的是:A.N5-CH3-FH4 B.N5,N10-CH2-FH4 C.N5,N10=CH-FH4 D.N10-CHO-FH4 21、在哺乳动物,嘧啶核苷酸从头合成的主要调节酶是:A.PRPP合成酶B.乳清酸酶C.氨基甲酰磷酸合成酶II D.天冬氨酸氨基甲酰转移酶四、是非判断题()1、尿嘧啶的分解产物β-丙氨酸能转化成脂肪酸。
核苷酸代谢
第十章核苷酸代谢核苷酸是组成核酸的单位,此外尚具有其他功能。
与组成蛋白质的氨基酸不同,无论是核糖核苷酸或脱氧核糖核苷酸主要都是在体内利用一些简单原料从头合成的,所以本章的重点是介绍核苷酸的合成代谢。
核苷酸不是营养必需物质。
食物中的核酸多以核蛋白的形式存在,核蛋白经胃酸作用,分解成蛋白质和核酸(RNA和DNA)。
核酸经核酸酶、核苷酸酶及核苷酶的作用,可逐级水解成核苷酸、核苷、戊糖、磷酸和碱基。
这些产物均可被吸收,磷酸和戊糖可再被利用,碱基除小部分可再被利用外,大部分均可被分解而排出体外。
第一节嘌呤核苷酸的合成代谢体内嘌呤核苷酸的合成有两条途径。
第一,由简单的化合物合成嘌呤环的途径,称从头合成(de novo synthesis)途径。
第二,利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成(或重新利用)(salvage pathway)途径。
肝细胞及多数细胞以从头合成为主,而脑组织和骨髓则以补救合成为主。
一、嘌呤核苷酸的从头合成(一)原料核素示踪实验证明嘌呤环是由一些简单化合物合成的,如图10-1所示,甘氨酸提供C-4、C-5及N-7;谷氨酰胺提供N-3、N-9; N10-甲酰四氢叶酸提供C-2, N5,N10-甲炔四氢叶酸提供C-8;CO2提供C-6。
磷酸戊糖则来自糖的磷酸戊糖旁路,当活化为5-磷酸核糖-1-焦磷酸(PRPP)后, 可以接受碱基成为核苷酸。
其活化的反应式如下。
(二)过程合成的主要特点是在磷酸核糖的基础上把一些简单的原料逐步接上去而成嘌呤环。
而且首先合成的是次黄嘌呤核苷酸(IMP),由后者再转变为腺嘌呤核苷酸(AMP)和鸟嘌呤核苷酸(GMP)。
如图10-2及图10-3所示。
1. IMP的合成嘌呤核苷酸的从头合成的起始或定向步骤是谷氨酰胺提供酰胺基取代5-磷酸核糖-1-焦磷酸(PRPP)C-1的焦磷酸基,从而形成5-磷酸核糖胺(PRA),催化此反应的酶为谷氨酰胺磷酸核糖酰胺转移酶(glutamine phosphoribosyl amidotransferase),此酶是一种别构酶,是调节嘌呤核苷酸合成的重要酶。
核苷酸的代谢PPT课件
尿嘧啶核苷 + ATP 尿苷激酶
胸苷激酶
胸腺嘧啶核苷 + ATP
UMP +ADP TMP +ADP
第三节 核苷酸的分解代谢
一、嘌呤核苷酸经分解代谢最终生成尿酸
部位:肝、小肠、肾
核苷酸酶
核苷酸
Pi 核苷
核苷磷酸化酶
1-磷酸核糖 碱基
尿酸的生成
尿酸 (嘌呤分解的终产物)
尿酸的排泄
以钠/钾盐形式从肾排泄, 血尿酸:,男女
碱基
戊糖
戊糖代谢
核苷酸的生物学功用
1. 作为核酸合成的原料 最主要功能 2. 体内能量的利用形式 ATP----主要形式;GTP----蛋白质合成;UTP-
---糖原合成;CTP----磷脂合成
3. 参与信号转导、代谢和生理调节 cAMP, cGMP:信号转导第二信
使; ADP诱导血小板的聚集,导致血栓形成;腺苷调节冠状动脉血流量等。
4. 组成辅酶 NAD,FAD,CoA的组成成分 5. 活化中间代谢物 活化中间代谢物的载体:SAM(S腺苷甲硫氨酸,甲
基的载体);UDP葡萄糖(合成糖原、糖蛋白的原料)。
6. 参与酶活性的快速调节 变构抑制剂或者变构激活剂 (谷氨酸脱氢酶:
ADP/GDP; ATP/GDP);在酶的磷酸化修饰中提供磷酸基。
1. 嘌呤核苷酸的抗代谢物
• 嘌呤核苷酸的抗代谢物是一些嘌呤、 氨基酸或叶酸等的类似物。
嘌呤类似物 氨基酸类似物 叶酸类似物
6-巯基嘌呤
氮杂丝氨酸等 氨蝶呤
6-巯基鸟嘌呤
氨甲蝶呤等
8-氮杂鸟嘌呤等
• 6-巯基嘌呤的结构
次黄嘌呤 (H)
6-巯基嘌呤 (6-MP)
11 第十二章 核苷酸代谢作业及参考答案
班级学号姓名第十二章核苷酸代谢作业及参考答案一.解释1.核苷酸的从头合成,2.核苷酸的补救合成,3.核苷酸的抗代谢物,4.核苷酸合成的反馈调节二.填空题1.嘌呤核苷酸从头合成的原料有磷酸核糖、________、CO2、Gln、Asp和Gly。
2.PRPP是嘌呤核苷酸从头合成、嘧啶核苷酸的从头合成和_________________的重要中间代谢物。
3.对嘌呤核苷酸生物合成产生反馈抑制作用的有GMP、______和IMP。
4.HGPRT除受GMP反馈抑制外,还受______核苷酸的反馈抑制。
5.氨甲蝶呤可用于治疗白血病的原因是___________________________________。
6.在NDP→dNDP的反应过程中,需要硫氧化还原蛋白还原酶,该酶的辐酶是______。
7.嘧啶从头合成途径首先合成的核苷酸为__________。
8.作为嘧啶合成过程的第一个多功能酶,•它除了具有氨基甲酰磷酸合成酶和天冬氨酸氨基甲酰转移酶外,还有__________________功能。
9.当IMP→AMP时,Asp的碳链可直接转变为___________。
10.当IMP→GMP时,嘌呤环上的C2所连接的侧链NH2来源于__________。
11.嘌呤核苷酸合成和嘧啶核苷酸合成共同需要的物质是___________。
12.嘌呤环中第4位和第5位碳原子来自__________。
13.5-FU的抗癌作用机理为抑制_________________________酶的合成,因而抑制了DNA的生物合成。
14.核苷酸抗代谢物中,常用嘌呤类似物是__________;常用嘧啶类似物是__________。
15.嘌呤核苷酸从头合成的调节酶是__________和__________。
16.在嘌呤核苷酸补救合成中HGPRT催化合成的核苷酸是__________和__________。
17.核苷酸抗代谢物中,叶酸类似物竞争性抑制__________酶,从而抑制了__________的生成。
基础生物化学-核苷酸代谢
①核苷磷酸化酶(nucleoside phosphorylase)广 泛存在于生命机体中,催化反应可逆;
②核苷水解酶(nucleoside hydrolase)主要存在 于植物、微生物体内,只作用于核糖核苷, 催化反应不可逆。
戊糖和戊糖-1-磷酸可进入糖代谢分解或重新利 用,嘌呤和嘧啶也可以继续分解。
11.3 核苷酸的生物合成
11.3.1 核糖核苷酸的合成
核苷酸是核酸合成的原料,所有的生物通常都 能合成各种核苷酸。合成途径有从头合成和 救补途径。
从头合成(de nove synthesis):利用氨基酸、磷 酸戊糖等简单的化合物合成核苷酸。
救补途径(salvage pathway):利用核酸降解或 进食等从外界补充的含氮碱基或核苷合成新 的核苷酸。
⑵GMP和AMP的合成
IMP由天冬氨酸提供氨基转移到C6位上生成 AMP。
IMP经过脱氢酶催化的脱氢反应,由NAD+接 受脱下的氢,IMP生成黄嘌呤核苷酸(XMP), 再由谷氨酰胺提供酰胺上的氨,ATP供能, XMP转变成GMP。
嘌呤核苷酸生物合成过程的阐明对于临床医学 及生产实践有重要意义。在了解核苷酸合成 途径的基础上,可设计有效的核苷衍生物作 为治癌药物,可以指导有关核苷酸生产的菌 种选育等。
动物中,合成场所是肝脏。从氨甲酰磷酸合成 开始,到尿嘧啶核苷酸生成为止共需6个步 骤。
儿童有一种生长异常的遗传性疾病——巨红细 胞贫血症,患者排泄大量的乳清酸,这是由 于患者体内乳清酸核苷5-磷酸脱羧酶和乳清 酸磷酸核糖转移酶的活力较低。当用尿嘧啶 核苷等嘧啶核苷来供给这些儿童食用时,贫 血症可得到改善,并且乳清酸的排出减少。 可能是尿嘧啶核苷经磷酸化变成UMP,然后 UMP可能变为其他嘧啶核苷酸使核酸和蛋白 质的合成重新恢复正常。
生物化学_核苷酸代谢
生物化学_核苷酸代谢核苷酸是生物体内重要的代谢产物和信号分子,参与了细胞的许多生理活动。
核苷酸代谢是指从核苷酸的合成到降解的过程。
核苷酸合成主要发生在细胞的核糖体内,而降解则发生在细胞质中。
核苷酸代谢是一个复杂的过程,涉及许多酶的参与和调节。
核苷酸的合成一般分为两个部分:碱基合成和糖磷酸合成。
碱基合成是指通过一系列酶催化反应将无机盐和二氧化碳转化为核苷酸中的碱基。
碱基合成的过程中需要ATP提供能量,并且还需要其他物质作为辅助因子。
例如,嘌呤核苷酸的合成需要甲硫氨酸、腺苷酸、尿苷酸和腺苷酸等物质参与。
嘌呤核苷酸的合成主要发生在细胞核中,具体包括腺苷酸合成、纯化核苷酸合成和底物识别。
嘌呤核苷酸的合成是一个反应级联,涉及多个酶的参与和调控。
嘌呤核苷酸的合成过程是一个调控复杂的过程,它受到多种酶的调控以及许多物质的调节。
糖磷酸合成是指通过一系列酶催化反应将碱基与糖磷酸结合形成核苷酸。
例如,嘧啶核苷酸的合成主要发生在细胞质中,主要包括嘧啶核苷酸合成和底物识别。
嘧啶核苷酸合成是一个反应级联,也涉及多个酶的参与和调控。
嘧啶核苷酸的合成过程也受到多种酶的调控以及许多物质的调节。
核苷酸的降解主要发生在细胞质中。
核苷酸的降解是一个逆反应,通过一系列酶催化反应将核苷酸转化为底物,最终分解为无机盐和二氧化碳。
例如,嘌呤核苷酸的降解主要发生在肝脏和肾脏中,主要包括核苷酸降解和底物识别。
嘌呤核苷酸的降解是一个反应级联,涉及多个酶的参与和调控。
嘌呤核苷酸的降解过程也受到多种酶的调控以及许多物质的调节。
核苷酸代谢是一个复杂的过程,涉及多个酶的参与和调控。
核苷酸的合成和降解过程需要消耗能量,并且还需要其他物质作为辅助因子。
核苷酸代谢酶的异常表达或活性异常都可能导致核苷酸代谢紊乱,进而影响细胞的生理活动。
核苷酸代谢异常与许多疾病有关,如肿瘤、免疫系统疾病和遗传代谢病等。
因此,研究核苷酸代谢的调控机制和相关疾病的发生机制对于疾病的预防和治疗具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一单元核苷酸代谢一、核酸的分解代谢(一)核酸的酶促降解核酸是核苷酸以3'、5'-磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。
根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。
根据酶的作用方式分:内切酶、外切酶。
1.核糖核酸酶只水解RNA磷酸二酯键的酶(RNase),不同的RNase专一性不同。
牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3'-磷酸与其它核苷酸间的连接键。
核糖核酸酶T1(RNaseT1),作用位点是3' -鸟苷酸与其它核苷酸的5'-OH间的键。
2.脱氧核糖核酸酶只能水解DNA磷酸二酯键的酶。
DNase 牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链DNA。
产物是以5'-磷酸为末端的寡核苷酸。
牛胰脱氧核糖核酸酶(DNaseⅠ),降解产物为3'-磷酸为末端的寡核苷酸。
限制性核酸内切酶:细菌体内能识别并水解外源双源DNA的核酸内切酶,产生3'-OH和5'-P。
PstⅠ切割后,形成3'-OH 单链粘性末端。
EcoRⅠ切割后,形成5'-P单链粘性末端。
3.非特异性核酸酶既可水解RNA,又可水解DNA磷酸二酯键的核酸酶。
小球菌核酸酶是内切酶,可作用于RNA或变性的DNA,产生3'-核苷酸或寡核苷酸。
蛇毒磷酸二酯酶和牛脾磷酸二脂酶属于外切酶。
蛇毒磷酸二酯酶能从RNA或DNA 链的游离的3'-OH逐个水解,生成5'-核苷酸。
牛脾磷酸二脂酶从游离的5'-OH开始逐个水解,生成3'核苷酸。
二、核苷酸的降解1.核苷酸酶(磷酸单脂酶)水解核苷酸,产生核苷和磷酸。
非特异性磷酸单酯酶:不论磷酸基在戊糖的2'、3'、5',都能水解下来。
特异性磷酸单酯酶只能水解3'核苷酸或5'核苷酸(3'核苷酸酶、5'核苷酸酶)。
2.核苷酶两种:①核苷磷酸化酶:广泛存在,反应可逆。
②核苷水解酶:主要存在于植物、微生物中,只水解核糖核苷,不可逆。
三、嘌呤碱的分解首先在各种脱氨酶的作用下水解脱氨,脱氨反应可发生在嘌呤碱、核苷及核苷酸水平上。
不同种类的生物分解嘌呤碱的能力不同,因此,终产物也不同。
排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类排尿囊素动物:哺乳动物(灵长类除外)、腹足类排尿囊酸动物:硬骨鱼类排尿素动物:大多数鱼类、两栖类某些低等动物能将尿素进一步分解成NH3和CO2排出。
植物分解嘌呤的途径与动物相似,产生各种中间产物(尿囊素、尿囊酸、尿素、NH3)。
微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲酸、乙酸、乳酸、等)。
四、嘧啶碱的分解人和某些动物体内脱氨基过程有的发生在核苷或核苷酸上。
脱下的NH3可进一步转化成尿素排出。
五、嘌呤核苷酸的合成(一)从头合成由5'-磷酸核糖-1'-焦磷酸(5'-PRPP)开始,先合成次黄嘌呤核苷酸,然后由次黄嘌呤核苷酸(IMP)转化为腺嘌呤核苷酸和鸟嘌呤核苷酸。
嘌呤环合成的前体:CO2、甲酸盐、Gln、Asp、Gly,Gln提供-NH2:N9, Gly:C4、C5、N7,5,10-甲川FHFA:C8,Gln提供-NH2:N3,CO2:C6,Asp提供-NH2:N1,10-甲酰THFA:C2。
1.次黄嘌呤核苷酸(IMP)的合成(1)磷酸核糖焦磷酸转酰胺酶(转氨)5-磷酸核糖焦磷酸+ Gln → 5-磷酸核糖胺 + Glu + ppi使原来α-构型的核糖转化成β构型。
(2)甘氨酰胺核苷酸合成酶5-磷酸核糖胺+Gly+ATP → 甘氨酰胺核苷酸+ADP+Pi(3)甘氨酰胺核苷酸转甲酰基酶甘氨酰胺核苷酸 + N 5 N 10-甲川FH4 + H2O → 甲酰甘氨酰胺核苷酸 + FH4甲川基可由甲酸或氨基酸供给。
(4)甲酰甘氨脒核苷酸合成酶甲酰甘氨酰胺核苷酸 + Gln + ATP + H2O → 甲酰甘氨脒核苷酸 + Glu + ADP + pi 此步反应受重氮丝氨酸和6-重氮-5-氧-正亮氨酸不可逆抑制,这两种抗菌素与Gln 有类似结构。
(5)氨基咪唑核苷酸合成酶甲酰甘氨脒核苷酸+ ATP → 5-氨基咪唑核苷酸 + ADP + Pi(6)氨基咪唑核苷酸羧化酶5-氨基咪唑核苷酸+CO2→ 5-氨基咪唑-4羧酸核苷酸(7)氨基咪唑琥珀基氨甲酰核苷酸合成酶5-氨基咪唑-4-羧酸核苷酸+Asp+ATP → 5-氨基咪唑4-(N-琥珀基)氨甲酰核苷酸(8)腺苷酸琥珀酸裂解酶5-氨基咪唑-4-(N-琥珀基)氨甲酰核苷酸→ 5-氨基咪唑-4-氨甲酰核苷酸+延胡索酸(9)氨基咪唑氨甲酰核苷酸转甲酰基酶5-氨基咪唑-4-氨甲酰核苷酸+N10-甲酰FH4 → 5-甲酰胺基咪唑-4-氨甲酰核苷酸+FH4(10)次黄嘌呤核苷酸环水解酶5-甲酰胺基咪唑-4-氨甲酰核苷酸→次黄嘌呤核苷酸+H2O总反应式:5-磷酸核糖 + CO2 + 甲川THFA + 甲酰THFA + 2Gln + Gly + Asp + 5ATP →IMP + 2THFA + 2Glu + 延胡索酸 + 4ADP + 1AMP + 4Pi + PPi2.腺嘌呤核苷酸的合成(AMP)从头合成:CO2、2个甲酸盐、2个Gln、1个Gly、(1+1)个Asp、(6+1)个ATP,产生2个Glu、(1+1)个延胡索酸。
Asp的结构类似物羽田杀菌素,可强烈抑制腺苷酸琥珀酸合成酶的活性,阻止AMP 生成。
3.鸟嘌呤核苷酸的合成4.AMP、GMP生物合成的调节5-磷酸核糖焦磷酸转酰胺酶是关键酶,可被终产物AMP、GMP反馈抑制。
AMP过量可反馈抑制自身的合成。
GMP过量可反馈抑制自身的合成。
5.药物对嘌呤核苷酸合成的影响筛选抗肿瘤药物,肿瘤细胞核酸合成速度快,药物能抑制。
①羽田杀菌素,与Asp竞争腺苷酸琥珀酸合成酶,阻止次黄嘌呤核苷酸转化成AMP。
②重氮乙酰丝氨酸、6-重氮-5-氧正亮氨酸,是Gln的结构类似物,抑制Gln参与的反应。
③氨基蝶呤、氨甲蝶呤是叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,阻止FH4的生成,从而抑制FH4参与的各种一碳单位转移反应。
(二)补救途径利用已有的碱基和核苷合成核苷酸。
1.磷酸核糖转移酶途径(重要途径)嘌呤碱和5-PRPP在特异的磷酸核糖转移酶的作用下生成嘌呤核苷酸。
2.核苷激酶途径(但在生物体内只发现有腺苷激酶)腺嘌呤在核苷磷酸化酶作用下转化为腺嘌呤核苷,后者在核苷磷酸激酶的作用下与ATP反应,生成腺嘌呤核苷酸。
嘌呤核苷酸的从头合成与补救途径之间存在平衡。
Lesch-Nyan综合症就是由于次黄嘌呤:鸟嘌呤磷酸核糖转移酶缺陷,AMP合成增加,大量积累尿酸,肾结石和痛风。
六、嘧啶核苷酸的合成(一)从头合成与嘌呤核苷酸合成不同,在合成嘧啶核苷酸时,首先合成嘧啶环,再与磷酸核糖结合,生成尿嘧啶核苷酸,最后由尿嘧啶核苷酸转化为胞嘧啶核苷酸和胸腺嘧啶脱氧核苷酸。
1.尿嘧啶核苷酸的合成氨甲酰磷酸的合成→天冬氨酸转氨甲酰酶→二氢乳清酸酶→二氢乳清酸脱氢酶(辅基FAD、FMN)→乳清苷酸焦磷酸化酶→乳清苷酸脱羧酶。
2.胞嘧啶核苷酸的合成尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(植物)反应,生成胞嘧啶核苷三磷酸。
3.嘧啶核苷酸生物合成的调节(大肠杆菌)氨甲酰磷酸合成酶:受UMP反馈抑制;天冬氨酸转氨甲酰酶:受CTP反馈抑制;CTP 合成酶:受CTP反馈抑制。
4.药物对嘧啶核苷酸合成的影响有多种嘧啶类似物可抑制嘧啶核苷酸的合成。
5-氟尿嘧啶抑制胸腺嘧啶脱氧核苷酸的合成。
5-氟尿嘧啶在人体内转变成相应的核苷酸,再转变成脱氧核苷酸,可抑制脱氧胸腺嘧啶核酸合成酶,干扰尿嘧啶脱氧核苷酸经甲基化生成脱氧胸苷的过程,DNA合成受阻。
(二)补救途径1.嘧啶核苷激酶途径(重要途径)嘧啶碱与1-磷酸核糖生成嘧啶核苷,然后由尿苷激酶催化尿苷和胞苷形成UMP和CMP。
2.磷酸核糖转移酶途径(胞嘧啶不行)七、脱氧核苷酸的合成脱氧核糖核苷酸是由相应的核糖核苷酸衍生而来的。
腺嘌呤、鸟嘌呤和胞嘧啶核糖核苷酸经还原,将核糖第二位碳原子的氧脱去,即成为相应的脱氧核糖核苷酸。
胸腺嘧啶脱氧核糖核苷酸:先由尿嘧啶核糖核苷酸还原形成尿嘧啶脱氧核糖核苷酸,然后尿嘧啶再经甲基化转变成胸腺嘧啶。
1.核糖核苷酸的还原ADP、GDP、CDP、UDP均可分别被还原成相应的脱氧核糖核苷酸:dADP、dGDP、dCDP、dUDP等,其中dUDP甲基化,生成dTDP。
还原反应一般在核苷二磷酸(NDP)水平上进行,ATP、dATP、dTTP、dGTP是还原酶的变构效应物,个别微生物(赖氏乳菌杆菌)在核苷三磷酸水平上还原(NTP)。
2.核苷酸还原酶系由硫氧还蛋白、硫氧还蛋白还原酶和核苷酸还原酶(B1、B2)三部分组成。
B1、B2亚基结合后,才具有催化活性。
B1上的巯基和B2上的酪氨酸残基是活性中心的催化基因。
另外核苷酸还原酶所需的还原当量还可来自谷胱甘肽。
3.核苷酸还原酶结构模型及催化机理(1)结构模型B1亚基上有两个调节部位,一个影响整个酶的活性(一级调节部位),另一个调节对底物的专一性(底物结合部位)。
一级调节部位:ATP是生物合成的信号分子,而dATP是核苷酸被还原的信号。
底物调节部位:①与ATP结合,可促进嘧啶类的UDP、CDP还原成dUDP、dCDP;②与dTTP或dGTP结合,可促使GDP(ADP)还原成dGDP(dADP)(2)催化机理自由基催化转换模型。
3.脱氧核苷酸的补救(脱氧核苷激酶途径)脱氧核苷酸也能利用已有的碱基或核苷进行合成(补救途径),但只有脱氧核苷激酶途径,不存在类似的磷酸核糖转移酶途径4.胸腺嘧啶脱氧核苷酸的合成由尿嘧啶脱氧核苷酸(dUMP)经甲基化生成。
Ser提供甲基,NADPH提供还原当量。
四氢叶酸是一碳的载体,参与嘌呤核苷酸和胸腺嘧啶脱氧核苷酸的合成。
氨基嘌呤、氨甲蝶呤是叶酸的类似物,能与二氢叶酸还原酶不可逆结合,阻止FH4的生成,从而抑制FH4参与的一碳单位的转移。
可用于抗肿瘤。
八、辅酶核苷酸的生物合成1.烟酰胺核苷酸的合成(NAD 、NADP)NAD、NADP是脱氢辅酶,在生物氧化还原系统中传递氢。
合成途径:(1)烟酸单核苷酸焦磷酸化酶,(2)脱酰胺-NAD 焦磷酸化酶,(3)NAD合成酶。
NADP的合成:NAD激酶催化NAD与ATP反应,使NAD的腺苷酸残基的核糖2’-OH磷酸化,生成NADP。
2.黄素核苷酸的合成(FMN、FAD)核黄素+ ATP → FMN + ADP(黄素激酶)FMN + ATP → FAD + PPi(FAD焦磷酸化酶)3.辅酶A的合成泛酸+ ATP → 4'-磷酸泛酸 + ADP(激酶)4'-磷酸泛酸 + 半胱氨酸 + ATP(CTP)→4'-磷酸泛酰半胱氨酸 + ADP(CDP)(合成酶)4'-磷酸泛酰半胱氨酸+ ATP → 4'-磷酸泛酰巯基乙胺 + CO2(脱羧酶)4'-磷酸泛酰巯基乙胺+ ATP → 脱磷酸辅酶A + PPi(焦磷酸化酶)脱磷酸辅酶A + ATP → 辅酶A + ADP (激酶)。