6.3基因工程
高中生物选修三基因工程知识点总结
高中生物选修三基因工程知识点总结
高中生物选修三(基因工程)知识点总结如下:
1. 基因工程的基本步骤:
- 分离基因:从目标DNA序列中分离特定的基因。
- 转录:将分离得到的基因转录成RNA。
- 修饰:对转录后的基因进行修饰,使其更具表达效果。
- 克隆:用适当的载体将修饰过的基因导入目标细胞中。
- 表达:使目标细胞中导入的基因表达。
2. 基因工程的主要方法:
- 重组DNA技术:包括文库制备、扩增和筛选。
- 外源DNA片段导入技术:包括限制性内切酶消化、连接、转化、融合等。
- 自组织培养技术:包括离心、培养基选择、细胞培养等。
- 基因编辑技术:包括CRISPR/Cas9、CRISPR-Cas13a等。
3. 基因工程的应用:
- 细胞治疗:通过基因工程手段治疗一些遗传性疾病。
- 农业育种:通过基因工程技术改良作物品质和产量。
- 生物恐怖袭击防御:通过基因工程技术检测和防御生物恐怖袭击。
- 环境污染治理:通过基因工程技术处理污染物。
4. 基因工程的限制:
- 伦理和道德问题:基因工程技术可能会带来未知的伦理和道德
问题。
- 技术成本:基因工程技术相对其他技术更为复杂,成本较高。
- 技术安全:基因工程技术的安全性需要持续进行研究和维护。
5. 基因工程的安全性问题:
- 基因突变:基因工程过程中可能会引发基因突变,导致不良后果。
- 质量控制:基因工程技术的产品需要进行质量控制,以确保其质量和稳定性。
基因工程制药工艺
YIp酵母整合载体:选择标记和MCS,无自主复制序
列,有整合序列。同源重组整合到酵母染色体,随同染色 体一起复制和遗传。
YCp酵母着丝粒载体:着丝粒序列和自主复制序列。
可自主复制,拷母复制载体:酵母基因组DNA复制序列,可独
载体:安全、无毒 营养缺陷选择外来质粒 培养条件简单,大规模培养技术成熟 亚细胞器分化,进行蛋白质的翻译后正确修饰和 加工,并具有良好的蛋白质分泌能力 缺点: 酿酒酵母发酵产生乙醇,制约了高密度发酵 修饰的蛋白质糖基化侧链过长,会引起副作用
4、应用
1981年,Nature,Hitzeman等在酵母中表 达人干扰素 激素类:67种人胰岛素及1种突变体,尿酸 水解酶和水蛭素 细胞因子:GM-CSF和血小板衍生生长因子 多肽类:高血糖素 2种乙肝疫苗等
生物制药工程
主讲教师: 刘 凯 liukai_1982@ 山东农业大学生命科学学院微生物系
第六章 基因工程制药工艺
6.1 基因工程制药微生物表达系统 6.2 基因工程大肠杆菌的构建 6.3 基因工程菌的发酵培养与控制
基因工程药物生产的基本过程
基因工程药物的生产分为上游和下游两个阶段: 上游阶段:实验室内完成
生长繁殖迅速,倍增期约2 h
酿酒酵母有17条染色体 1996年完成其全基因组测序,遗传背景相对清楚 基因组:120.68 Mbp,5887个ORF,编码约 6000个基因
表达载体—穿梭载体
含有复制起始序列或整合序列、选择标记 以及由启动子、终止子和信号肽序列构成 的表达盒序列。 四种类型
YIp酵母整合载体 YCp酵母着丝粒载体 YRp酵母复制载体 YEp酵母附加载体
3、质粒载体
生物选修三基因工程知识点总结
生物选修三基因工程知识点总结随着现代科技的飞速发展,生物技术一直处于不断创新和进步的状态。
而基因工程作为一项重要的技术手段,已经成为了当今社会不可或缺的一部分。
在生物学选修三中,我们学习了基因工程的相关知识,下面将对其中的重点知识做一个总结。
1. 基因工程的概念基因工程是在DNA技术的基础上,通过改造DNA序列,使其具有某种特定的性状或功能的技术。
基因工程技术的应用包括基因克隆、基因修饰和基因转移等。
通过基因工程技术,可以在不同生物体之间进行基因互换,或是将外源基因组合到原有基因中,使生物体产生某种特定的性状或功能。
2. 基因克隆技术基因克隆技术是基于DNA重组技术,通过分离、扩增和定位目标基因,将其插入到接受体中,从而实现外源基因的人工插入和复制。
基因克隆技术使用的重要工具包括PCR、限制性内切酶、DNA序列分析和DNA重组技术。
3. 基因修饰技术基因修饰技术是通过改变DNA序列,使生物体产生某种新的表型或功能的技术。
在基因修饰技术中,常用的方法包括点突变、分子修剪和CRISPR-Cas9技术等。
通过基因修饰技术,科学家可以精准地改变某些基因的表达和功能,进而实现人造种子生产、基因治疗等一系列应用。
4. 基因转移技术基因转移技术是将特定基因从一种生物体转移到另一种生物体中的技术。
基因转移技术可以用于创建转基因生物,也可作为基因治疗的手段。
其中,主要的技术包括基因枪法和电穿透法等。
5. 转基因生物的应用转基因生物作为一种新生物体,具有一系列特定的基因和表型特征,被广泛应用于生物医学研究、农业生产和环境保护等领域。
转基因生物包括转基因作物、转基因动物和基因治疗等,这些应用使人类可以更好地掌握生命科学的知识和应用价值,为人类的生存和发展带来了更多的可能。
6. 基因编辑技术基因编辑技术是一种新型基因工程技术,其通过切除、增加或修复目标基因序列的方法,改变生物体基因组结构和功能的技术。
其中,CRISPR-Cas9是目前应用最广泛的基因编辑技术。
基因工程知识点总结
基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。
下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。
一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。
其实现的基本原理包括基因定位、基因克隆和基因传递。
1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。
常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。
2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。
常用的方法有限制酶切、连接酶切和DNA合成等。
3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。
常用的方法有基因枪、电穿孔和冷冻贮存等。
二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。
1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。
通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。
2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。
通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。
基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。
此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。
3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。
通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。
此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。
三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。
基因工程名词解释
基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。
两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。
BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。
平末端(blunt ends): DNA片段的末端是平齐的。
星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
易产生星活性的内切酶用*标记。
如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。
连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。
基因工程知识点总结
基因工程知识点总结基因工程知识点是生物的学科,那么,基因工程知识点总结是小编为大家整理的,在这里跟大家分享一下。
基因工程知识点总结(一)生物基因工程简介基因工程又称基因拼接技术和DNA重组技术。
所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。
重组DNA:重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
因此,供体、受体、载体是重组DNA技术的三大基本元件。
(二)生物基因工程特征1)跨物种性外源基因到另一种不同的生物细胞内进行繁殖。
2)无性扩增外源DNA在宿主细胞内可大量扩增和高水平表达。
优点:基因工程最突出的优点是打破了常规育种难以突破的物种之问的界限,可以使原核生物与真核生物之间、动物与植物之间,甚至人与其他生物之间的遗传信息进行重组和转移。
人的基因可以转移到大肠杆菌中表达,细菌的基因可以转移到植物中表达。
(三)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E•coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E•coliDNA连接酶来源于T4噬菌体,只能将双链DNA 片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
基因工程高三知识点
基因工程高三知识点基因工程是现代生物学中的一项重要技术,通过改变生物体的遗传物质(DNA)来创造新的基因组合或改变生物体的性状。
在高中生物学课程中,学生需要掌握基因工程的基本原理、应用以及相关的伦理和社会问题。
以下是基因工程的一些高三知识点。
一、基因工程的基本原理基因工程是利用DNA技术改变生物体的遗传信息,主要包括以下几个步骤:1. DNA提取:从感兴趣的生物体中提取DNA,通常使用PCR 技术扩增目标DNA片段。
2. DNA剪切:利用限制酶切割目标DNA,产生特定的切口。
3. DNA连接:将DNA片段连接到载体DNA上,形成重组DNA。
4. DNA转化:将重组DNA导入目标细胞中,使其具有新的遗传特性。
5. PCR扩增:使用聚合酶链反应扩增目标DNA的数量。
二、基因工程的应用领域1. 农业领域:基因工程可以用于改良作物,包括提高抗病虫害能力、增加产量、提高品质等。
2. 医学领域:基因工程可以用于制备重组蛋白药物,如胰岛素、生长激素等。
3. 环境领域:基因工程可以用于环境修复,包括通过基因修复技术降解污染物。
4. 科研领域:基因工程可以用于基因功能研究、疾病模型建立等。
三、基因工程的风险与伦理问题1. 生物安全风险:基因工程可能导致基因剥离和转基因生物的释放,风险包括基因污染、基因流动等。
2. 伦理问题:基因工程涉及到修改生物的基因组,可能引发对自然与人类的伦理关切,如人类基因改造、人类克隆等。
四、国际和国内基因工程的监管措施1. 国际监管:1992年生物安全议定书规定,转基因生物的跨国转运需要进行风险评估和合格证明。
2. 国内监管:我国设立了生物安全管理委员会,建立了转基因食品的安全管理体系。
五、基因工程的前景与挑战基因工程作为一种重要的生物技术,将会继续在农业、医学、环境等领域发挥重要作用。
但同时也面临着风险与挑战,需要加强监管、推动科学研究和公众教育。
总结:基因工程作为现代生物学的重要分支,已经在农业、医学、环境等领域取得了巨大的进展和应用。
基因工程知识点全
第一章基因工程概述1.什么是基因工程,基因工程的基本流程基因工程Genetic engineering原称遗传工程;从狭义上讲,基因工程是指将一种或多种生物体供体的基因与载体在体外进行拼接重组,然后转入另一种生物体受体内,使之按照人们的意愿遗传并表达出新的性状;因此,供体、受体和载体称为基因工程的三大要素;1.分离目的基因2.限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5.选择、筛选含目的基因的克隆6.培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件➢具有对受体细胞的可转移性或亲和性;➢具有与特定受体细胞相适应的复制位点或整合位点;➢具有多种单一的核酸内切酶识别切割位点;➢具有合适的筛选标记;➢分子量小,拷贝数多;➢具有安全性;2. 质粒载体有什么特征,有哪些主要类型1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建1删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量;一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定;2灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数3加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞;4在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头Polylinker,便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入;5根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件;4. 什么是人工染色体载体将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体5. 什么是穿梭载体人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体;6.入-噬菌体载体及构建-DNA为线状双链DNA分子,长度为,在分子两端各有12个碱基的单链互补粘性末端;➢1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点➢引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性➢灭活某些与裂解周期有关基因;➢使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现象的发生;➢加装选择标记,便于重组体的检测单链噬菌体DNA载体➢过定点诱变技术封闭重复的重要限制性酶切口;➢引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列lacZ’的乳糖操纵子片段lac、组氨酸操纵子片段his以及抗生素抗性基因等;➢将人工合成的多克隆位点接头片段插在 lacZ’标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体 DNA 的混浊噬菌斑呈蓝色;➢4在多克隆位点接头片段的两侧区域改为统一的 DNA 测序引物序列,使得重组 DNA 分子的单链形式经分离纯化后,可直接进行测序反应;8. II类限制性内切核酸酶的特点限制性核酸内切酶 Restriction endonucleases是一类能在特异位点上催化双链DNA 分子的断裂,产生相应的限制性片段的核酸水解酶;➢识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成的特定序列靶序列;➢识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构;➢切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称可形成粘性末端或平末端的DNA分子;同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶;同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶Isocandamers:识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶;9.甲基化酶Ⅱ类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识别序列内使某位碱基甲基化,从而封闭该酶切口;甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口➢甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内切酶的切割;➢甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点;连接酶连接作用的特点:①DNA连接酶需要一条DNA链的3’末端有一个游离的羟基-OH,另一条DNA链的5’末端有一个磷酸基-P的情况下,只有在这种情况下,才能发挥连接DNA分子的作用;②只有当3’-OH和5’-P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键;③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是双螺旋DNA分子的一部分;④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口nick,而不能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口gap;⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连接反应时,还需要提供一种能源分子NAD+或ATP11.大肠杆菌 DNA聚合酶和Klenow大片段各有什么作用DNA聚合酶作用的特点:➢要有底物4种dNTP为前体催化合成DNA;➢接受模板指导;➢需要有引物3’羟基的存在;➢不能起始合成新的DNA链;➢催化dNTP加到生长中的DNA链3’-OH末端;➢催化DNA的合成方向是5’→3’;Klenow酶的基本性质:➢大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个氨基酸残基片段,即Klenow酶;分子量为76kDa;➢Klenow酶仍拥有5’→3’的DNA聚合酶活性和5’→3’的核酸外切酶活性,但失去了5’→3’的核酸外切酶活性;Klenow酶的基本用途:➢修复由限制性核酸内切酶造成的 3’凹端,使之成为平头末端;➢以含有同位素的脱氧核苷酸为底物,对DNA片段进行标记;➢用于催化 cDNA 第二链的合成;➢用于双脱氧末端终止法测定 DNA 的序列;聚合酶T4-DNA聚合酶酶的基本特性:➢有3’→5’的核酸外切酶活性和5’→3’的DNA聚合酶活性;➢在无dNTP时,可以从任何3’-OH端外切;➢在只有一种dNTP时,外切至互补核苷酸;➢在四种dNTP均存在时,聚合活性占主导地位;T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的3’粘性末端13. 影响连接效率的因素有:➢温度最主要的因素离子浓度➢ATP的浓度 10μM - 1μM➢连接酶浓度平末端较粘性末端要求高➢反应时间通常连接过夜➢插入片段和载体片段的摩尔比➢DNA末端性质➢DNA片段的大小14.如何将不同DNA分子末端进行连接1.相同粘性末端的连接如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA分子 2.平头末端的连接T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用;3.不用粘性末端的连接3’端的粘性末端用T4-DNA聚合酶切平5’端的粘性末端用klenow酶补平,或者用S1核酸酶切平最后用T4-DNA连接酶进行平末端连接15. 碱性磷酸酶有什么作用1.该酶用于载体 DNA的5’末端除磷操作,以提高重组效率;2.用于外源DNA片段的5’端除磷,则可有效防止外源 DNA 片段之间的连接;16. 末端脱氧核苷酸转移酶有哪些作用➢给载体或目的DNA加上互补的同聚物尾;➢DNA片段3’末端的同位素标记;17. 2、细菌转化的步骤:∙感受态的形成;感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、切割及加工;感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质如细菌溶素的合成,使细菌胞壁部分溶解,局部暴露出细胞膜上的 DNA 结合蛋白和核酸酶等;∙转化因子的结合;受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA结构特异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上;∙转化因子的吸收;双链 DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中;∙整合复合物前体的形成;进入受体细胞的单链 DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,并将其引导至受体菌染色体DNA处;∙转化因子单链DNA的整合;供体单链DNA片段通过同源重组,置换受体染色体DNA的同源区域,形成异源杂合双链 DNA结构;+诱导转化原理:①在0℃的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态;②Ca2+能与加入的DNA分子结合,形成抗DNA酶DNase的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上;当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道;③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细胞,可以提高DNA的转化效率;∙但该法要求条件高,对外界污染物极为敏感,通常很少采用;介导细菌的原生质体转化∙PEG是乙二醇的多聚物, 存在不同分子量的多聚体,它可改变各类细胞的膜结构, 使两细胞相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两细胞的胞质沟通成为可能,从而造成细胞之间发生融合;20.电穿孔法是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法;P52 接合转化,入噬菌体感染未归纳21.转化率的影响因素.载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同;载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体; 插入片段大小:对质粒载体而言,插入片段越大,转化效率越低;重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响22.转化细胞的扩增转化细胞的扩增操作:指转化完成之后细胞的短时间培养;在实验时,扩增操作往往与转化操作偶联在一起,如:∙Ca2+诱导转化后的37℃培养一个小时∙原生质体转化后的再生过程∙λ噬菌体转染后的30℃培养等,均属扩增操作扩增操作的目的∙增殖转化细胞,使得有足够数量的转化细胞用于筛选程序;∙扩增和表达载体分子上的标记基因,便于筛选;∙表达外源基因,便于筛选和鉴定;23.抗药性筛选法这是利用载体DNA分子上的抗药性选择标记进行的筛选方法;抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcr将外源DNA片段插在BamHI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcs抗药性筛选法的基本操作:先将转化液涂布含有Ap的平板再将Ap平板上的转化子影印至含有Tc的平板上在Ap平板上生长,但在Tc平板上不长的转化子即为重组子 P56抗药性标记插入失活选择法∙经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子;为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选;如果外源基因插入在载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性重组子;24. 什么是蓝白斑筛选法这种方法是根据组织化学的原理来筛选重组体;主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷X-gal平板上形成浅蓝色的噬菌斑;外源基因插人lac或lac基因部分被取代后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 X-gal平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑;筛选法利用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR,通过对PCR产物的电泳分析,确定目的基因是否插入到载体中;由于在载体DNA分子中,外源DNA插入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子;第三章基因工程的常规技术1. 探针有哪些类型探针标记有哪些方法类型:同源或部分同源探针cDNA探针人工合成的寡核苷酸探针标记方法:①5’端标记法②反转录标记法③缺刻前移标记法④ABC标记法4.什么是ABC荧光显色酶标记法ABC 标记法;∙A为Avidin生物素抗性蛋白,每个Avidin分子可结合3 - 4个生物素分子;∙B为Biotin生物素,每个Biotin分子可结合2个Avidin分子;∙C为Complex,首先将Biotin共价结合在探针分子上,荧光胺标记在Avidin上,两者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光;如果将某一生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术5.亚克隆法∙亚克隆:是将克隆片段进一步片段化后再次进行的克隆;∙一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子;此时,该重组分子中的无关DNA区域以被大量删除;6. 菌落嗜菌斑原位杂交的基本原理、流程∙该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落;∙操作步骤:∙①菌落生长∙②转移到NC膜上∙③DNA释放和变性∙变成单链DNA:∙ 10%SDS NaOH∙④中和 Tris-HCl pH∙⑤固定 80 ℃ 120’∙⑥杂交包括预杂交,加探针DNA杂交∙⑦放射自显影∙⑧对照比较,选出重组克隆7.鸟枪法∙鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的 DNA 片段,分别连接到载体 DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子;鸟枪法制备目的基因的主要步骤∙①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端;原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达100Kb以上;全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切:片段长度可控,含有粘性末端,目的基因完整;∙②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体;∙③重组DNA分子导入受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞;∙④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法筛选模型的建立;∙⑤目的基因的定位利用鸟枪法获得的期望重组子只是含有目的基因的 DNA 片段,必须通过次级克隆或插入灭活,在已克隆的 DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列;法酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因;这种方法以目的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA,即cDNA,然后在DNA聚合酶的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA克隆; 的分离纯化绝大多数的真核生物mRNA在其3’端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱即可分离10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;过程:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火复性:模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍;11. 什么是基因组文库其构建方法是怎样的是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库;基因组文库构建的一般步骤①载体的选择和制备;②高纯度、大分子量基因组 DNA 的提取;③基因组 DNA 的部分酶切与分级分离;④载体与DNA片段的连接;⑤转化或侵染宿主细胞;⑥筛选鉴定基因组及保存;12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA文库应具备下列条件:∙重组克隆的总数不宜过大,以减轻筛选工作的压力∙载体的装载量最好大于基因的长度,避免基因被分隔克隆;∙克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序;∙克隆片段易于从载体分子上完整卸下;∙重组克隆能稳定保存、扩增、筛选;基因文库的构建通常采用鸟枪法和cDNA法13.外源DNA片段的切割原则片段之间要有一定的重叠序列片段大小要均一文库构建的步骤∙细胞总RNA的提取和mRNA的分离∙第一链cDNA合成∙第二链cDNA合成∙双链cDNA的分级分离∙双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖∙重组体的筛选与鉴定第四章基因在大肠杆菌、酵母的高效表达1. 启动子∙启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20~300个碱基,是控制基因转录的重要调控元件;在一定条件下mRNA的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达;∙启动子的特征:①序列特异性②方向性③位置特性④种属特异性2.启动子类型∙组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异;∙组织特异启动子:又称器官特异性启动子;在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性;∙诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平;目前已经分离了光诱导表达基因启动子、热诱导表达基因启动子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子等;3.终止子终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA的一部分,并形成特殊的二级结构,由此终止基因的转录;序列SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从起始密码子处开始5.密码子不同生物对密码子的偏爱性1.生物体基因组中的碱基含量2.密码子与反密码子的相互作用的自由能3.细胞内tRNA的含量6. 密码子偏爱性对外源基因表达的影响∙由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择;一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:∙外源基因全合成∙同步表达相关tRNA编码基因7. 包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体8. 包涵体的形成机理∙①折叠状态的蛋白质集聚作用;∙②非折叠状态的蛋白质集聚作用∙③蛋白折叠中间体的集聚作用;9. 包涵体的分离检测∙包涵体的分离主要包括菌体破碎、离心收集以及清洗三大操作步骤;10. 分泌型目的蛋白表达系统的构建∙包括大肠杆菌在内的绝大多数革兰氏阴性菌不能将蛋白质直接分泌到胞外,但有些革兰氏阴性菌能将细菌的抗菌蛋白细菌素分泌到培养基中,这一过程严格依赖于细菌素释放蛋白,它激活定位于内膜上的磷酸酯酶A,导致细菌内外膜的通透性增大∙因此,只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞;此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌;11融合蛋白表达质粒的构建原则:∙受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化;。
6.3 变异的本质——基因突变
Cncnc-micro
三者根本区别在于DNA转移的方式不同
转化: 供体DNA片断→注入受体细胞,通过细胞膜 杂交: 供体和受体融合
转导: 供体DNA片断通过媒介-噬菌体携带进入受体
Cncnc-micro
总 结
• • • • • • 中心法则 遗传信息的传递 变异的本质 诱变的机制 基因重组的三种方式 区别 基因工程的步骤 三大要素 三大技术
转 化 (transformation)
受体细胞直接吸收了来自供体细胞的 DNA片断,并把它整合到自己的基因组 中,细胞部分遗传性状发生变化的现 象叫转化。
Cncnc-micro
转化 过程
转化的特点 不需两个细胞直接接触,供体 DNA提取出来,注入受体即可。
Cncnc-micro
转导(transduction)
6.3 变异的本质——基因突变
Cncnc-micro
基因突变( Mutation)
基因突变的定义 基因突变:是指一个 基因内部可以遗传的结构 改变;是基因分子内部在 某种条件作用下所发生的 一个或几个核苷酸的改变, 导致结构蛋白或酶的改变; 从而影响有机体的大小、 品质、颜色、结构和生长 率等性状的改变。
造成突变点以后全部遗传密码转录与转释发生错误
染色体畸变
某些理化因子,如X射线,紫外线, 亚硝 酸等,除能引起点突变外,还会引起DNA分 F 子大损伤,包括染色体易位,倒位,缺失, 重复等,即为染色体畸变。
Cncnc-micro
染色体畸变
紫外线诱变作用机理
可使DNA链裂断,破坏核糖和磷酸间的键联
引起胞嘧啶和尿嘧啶产生水合作用造成氢键断裂 能使胸腺嘧啶成二聚体,使DNA结构发生改变
酮式
基因工程知识点超全
基因工程一、基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在DNA分子水平上进行设计和施工的额,因此又叫做DNA重组技术。
二、基因工程的基本工具1、限制性核酸内切酶“分子手术刀”2、DNA连接酶-----"分子缝合针”3、基因进入受体细胞的载体“分子运输车”1.“分子手术刀”计计限制性核酸内切酶(限制酶)(1)存在:主要存在于原核生物中。
(2)特性:特异性,一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。
(3)切割部位:磷酸二酯键(4)作用:能够识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
(5)识别序列的特点:瓠腿沛外林蔚黔睫混日龄睫GC G C用处题挪班岫如」「肿第 CCCG 切割后末端的种类醐帆DNA 分子经限珊片段末端通常有两 种形式产产在它识别序列的条链分别切开时,和平末端。
当限制酶中轴线两侧将DNA的两产生的是黏性末端,当限制酶在它识别序列的 中轴线处切开时,产生的则是平末端。
£coRIGAA {在G与ACTT 之间切割)TTC AAG中轴线CCC :GGG CTTAA黏性末端CCC AATTCGGG Sma I(在G 与C 之间切割)GGG|CCCGGGGCC3.分子运输车载体 ⑴载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一个至多个限制酶切点,供外源DNA 片③具有标记基因,供重组DNA 的鉴定和选择。
(2)最常用的载体是质粒,它是能力的双链环状DNA 分子。
⑶其他载体:九噬菌体的衍生物、动植物病毒。
(4)载体的作用:①作为运载工具,将目的基因送入受体细胞。
②在受体细胞内对目的基因进行大量复制。
【解题技巧】(1)限制酶是一类酶,而不是一种酶。
独立分配定律名词解释
独立分配定律名词解释1. 引言独立分配定律(Law of Independent Assortment)是遗传学中的重要概念,它描述了在杂交过程中两个或多个基因的分离是独立进行的。
该定律的提出对于理解基因的遗传传递和遗传变异具有重要意义。
本文将对独立分配定律进行详细解释,并探讨其在生物学研究中的应用和意义。
2. 独立分配定律的定义独立分配定律是指在一个个体的配子形成过程中,来自母体的两个或多个基因的分离是独立进行的。
也就是说,基因的组合方式是随机的,与其他基因无关。
3. 随机分配独立分配定律的核心概念之一是随机分配。
随机分配指的是在杂交过程中,基因按照一定的概率分配到不同的配子中,从而产生不同的基因组合。
随机分配的原则是:不同基因座上的等位基因在配子形成过程中相互独立分配,基因之间没有相互影响。
这意味着,一个个体可以产生多种不同的配子组合。
4. 孟德尔的豌豆实验独立分配定律最早由奥地利植物学家孟德尔(Gregor Mendel)在19世纪中叶通过豌豆实验提出。
孟德尔通过对豌豆的自交和杂交实验,观察了豌豆形状、颜色等性状的遗传规律,发现了独立分配定律。
孟德尔的豌豆实验中,他选取了几个性状呈现明显的对立形态(比如圆形和皱缩形、黄色和绿色等),并进行了自交和杂交实验。
通过分析实验结果,孟德尔发现了遗传物质的两个基本定律,其中之一就是独立分配定律。
5. 独立分配定律的实验证据除了孟德尔的豌豆实验,许多其他的实验证据也支持了独立分配定律。
5.1 飞蛾的眼睛颜色一项实验观察了飞蛾的眼睛颜色,发现这一性状与其翅膀的斑点颜色是相互独立的。
通过对多代飞蛾的观察,研究人员发现,无论是眼睛颜色还是翅膀斑点颜色,都能符合独立分配定律。
5.2 人类血型的遗传人类的血型是由三个基因座上的等位基因决定的。
通过对家系和人群的调查,科学家们发现,不同基因座上的等位基因之间的组合是随机的,符合独立分配定律。
6. 独立分配定律的意义和应用独立分配定律的发现对于理解遗传规律和进行基因工程等方面具有重要的意义和应用价值。
人教版高中生物选修3专题一基因工程详细知识点
人教版高中生物选修3专题一基因工程详细知识点生物选修三易考知识点背诵专题1基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)主要是从原核生物(微生物)中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端(中心轴线的两侧)和平末端(中心轴线)大肠杆菌的一种限制酶(EcoRⅠ)能识别GAATTC序列,SmaI识别CCCGGG序列:他们识别的核苷酸序列不同,但是切点都是在G↓C之间。
(4)比较有关的DNA酶(1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基(2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。
留意:使DNA解成两条长链的方法除用解旋酶之外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。
(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。
(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。
留意比较DNA聚合酶和DNA连接酶的异同点。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:4DNA连接酶来自T4噬菌体,能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
基因工程的流程
基因工程的流程
基因工程是一种人工改造生物体基因的技术,其流程可以分为以下几个步骤:
1.选取目标基因:根据需求选取要进行改造的目标基因,可以是来源于同一物种的不同个体的基因,也可以是来自不同物种的基因。
2.克隆目标基因:将目标基因从生物组织中分离并扩增,一般采用PCR技术或者基因文库筛选的方法。
3.构建载体:将目标基因引入载体,一般选择质粒或病毒作为载体,通过连接酶将目标基因与载体DNA进行连接。
4.转化宿主细胞:将构建好的载体引入宿主细胞中,一般采用电穿孔或者化学转化方法。
5.筛选转化细胞:将转化后的细胞进行筛选,通过选择筛选标记基因或者特定培养条件来选择带有目标基因的转化细胞。
6.验证目标基因:通过PCR、Southern印迹、Western印迹或者其他生物学实验手段来确认转化细胞中的目标基因是否已经被成功修改。
7.表达目标基因:将转化后的细胞进行培养、分离、纯化,使目标基因表达出来,一般采用原核或真核表达系统。
总之,基因工程的流程需要经过多个环节的操作和实验验证,旨在使目标基因得到成功改造并表达出来,为生物科技应用提供理论和实践支持。
基因工程讲解
基因工程讲解基因工程是一项涉及基因的科学技术,通过在生物体的基因组中修改、操控和转移基因,从而改变生物体的遗传特性。
它使人类能够更深入地理解基因的功能和作用,并有望为人类带来巨大的医学和农业进步。
本文将从基因工程的基本概念、原理和应用方面进行详细讲解。
一、基因工程的基本概念基因工程,又称遗传工程,是指通过改变生物体的遗传物质,使其具备特定的性状和功能。
基因工程技术是细胞和分子生物学、遗传学等多学科的交叉应用,它利用遗传物质(DNA、RNA)进行基因的克隆、修饰和转移,使其能够产生有益的变化。
基因工程技术已经广泛应用于药物研发、农业改良和环境保护等领域。
二、基因工程的原理基因工程的主要原理是通过DNA重组技术,将想要的外源基因导入到目标生物体中,并使其能够在目标生物体内表达出来。
DNA重组技术包括DNA的分离、切割、连接和转染等步骤。
首先,从源生物体或合成DNA样本中分离出目标基因;然后,利用限制性内切酶或PCR方法对DNA进行切割;接着,将切割好的目标基因与载体(如质粒)连接起来,形成重组DNA;最后,将重组DNA导入到目标生物体中,使其能够在目标生物体内表达出来。
三、基因工程的应用基因工程技术在医学、农业和环境保护等领域都有广泛的应用。
在医学领域,基因工程技术可以用于疾病的诊断和治疗。
例如,基因工程技术可以通过克隆和表达人类蛋白质来生产药物,如重组人胰岛素和重组人生长激素等。
此外,基因工程技术还可以用于基因治疗,即将正常基因导入患者体内,以纠正基因缺陷所导致的疾病。
在农业领域,基因工程技术可以用于农作物的改良和耐病性的提高。
通过转基因技术,科学家们可以将具有抗虫、抗病等特性的基因导入作物中,使其能够抵御病虫害的侵袭,提高农作物的产量和品质。
同时,基因工程技术也可以改善作物的营养组分,使其更加丰富和有益于人类健康。
在环境保护方面,基因工程技术可以用于生物修复和生物监测。
生物修复是指利用基因工程技术改良生物体的代谢途径,使其具备降解有害物质的能力,从而清除环境中的污染物。
基因工程复习笔记
基因工程复习笔记第一章一、电泳电泳(eletrophorosis) :带电荷的分子在电场中以一定的速率向与其电荷性质相反的电极移动.移动速度称为电泳迁移率。
影响因素:1 电泳迁移率同电场的强度和分子本身所带的净电荷数目成正比。
2. 电泳迁移率同分子与介质的摩擦系数成反比。
3当电场强度一定,电泳介质相同,电荷相同的分子在电场中迁移的速度主要取决于分子本身的大小和形状(构型)。
4分子形状相似的分子的迁移速度主要与分子量相关: 分子量越大,移动越慢。
指示剂:溴酚蓝(Bb):常用指示剂。
分子量670,分子筛效应小,近似于自由电泳,呈蓝紫色。
二甲苯青(Xc):分子量554.6,呈蓝色,迁移速度比Bb慢。
染料:溴化乙锭(EB)1、聚丙烯酰胺凝胶电泳优点:比琼脂糖凝胶的分辨率高的多;回收DNA样品纯度高,无色透明,韧性好,银染的凝胶干燥后可长期保存;能装载的DNA量大,达每孔10μgDNA。
2 、SDS-PAGE 原理:SDS是蛋白质的变性剂,使煮沸变性的蛋白质维持线性状态,并与蛋白质结合,使蛋白质带上相同密度负电荷。
SDS与蛋白质结合使蛋白质构象改变,成为形状近似雪茄状的长椭圆棒,SDS-蛋白质复合物短轴相同,而长轴与蛋白质的分子量成正比。
蛋白质-SDS复合物电泳的迁移率不受蛋白质原有电荷和形状的影响,只与椭圆棒的长度,即蛋白质分子量有关。
二、PCR技术定义:聚合酶链式反应(Polymerase Chain Reaction,PCR)技术,以DNA为模板,在引物、dNTPs、Taq酶的作用下,经变性-退货-延伸反复循环,使某个基因在体外特异性地扩增。
PCR法的原理也是利用人工合成带突变位点的诱变引物,通过PCR 扩增而获得定点突变的基因或DNA片段。
影响因素:(1)Taq DNA聚合酶(具有5’→3’聚合酶活性和5’→3’外切酶活性,但没有3’→5’外切酶活性因此不能修复错误的碱基配对)。
(2)引物(primer)一般引物设计为长15—30bp;位置与待扩增的模板DNA区段的两3’端序列互补(5‘端相同)的短DNA;引物的碱基组成:尽可能提高G+C含量,避免连续相同碱基排列或内部回文序列,避免形成引物二聚体。
人教版高中生物选择性必修第3册 基因工程 基因工程(6)
教案1.纤维素酶的作用机理师生共同回顾选修1中所学的纤维素酶的作用机理。
我们首先回顾一下有关纤维素酶的内容。
纤维素酶是降解纤维素生成葡萄糖的一组酶的总称。
纤维素酶根据催化功能的不同分为内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶三类。
[3]我们来一起了解一下纤维素酶的作用机理。
图1从图1中我们可以看出,内切葡聚糖酶和外切葡聚糖酶在发挥催化功能时,切断纤维素的β-1,4糖苷键,将纤维素多糖的长链切成短链,进而产生纤维二糖、纤维糊精等产物。
之后β-葡萄糖苷酶将纤维二糖等继续水解为葡萄糖。
不同种类的生物产生的纤维素酶会有一些差别。
2.纤维素酶在实践中的应用遇到的问题教师提出问题1:从生物体中提取的纤维素酶是否可以直接用于生产呢?教师提供资料:生产中应用纤维素酶时的实际实验资料。
图2这张曲线图2,体现的是纤维二糖对纤维素水解的影响。
由此可见,在实际生产中,外切葡聚糖酶催化纤维素水解产生的产物纤维二糖会抑制酶的活性,从而减少小分子糖的生成速率。
出现这样的问题,限制了天然的纤维素酶在生产中的应用。
3.纤维素酶的改造教师提出问题2:如果要找出产物抑制酶活性的原因,你有什么思路呢?教师适当给出思考方向:纤维素酶有怎样的结构,产物和酶结构之间有怎样的相互作用?怎样去除纤维二糖等等。
图3图4图3中左侧是外切葡聚糖酶的结构图,外切葡聚糖酶是蛋白质,是由氨基酸脱水缩合形成的肽链构成的,肽链盘曲、折叠,形成有一定空间结构的蛋白质分子。
右侧是外切葡聚糖酶的结构简图。
从图中我们可以看出,外切葡聚糖酶分为催化区域、纤维素结合区域、以及二者的连接区三个主要部分。
进一步的了解一下外切葡聚糖酶的催化区域的结构。
图4中灰色的部分代表外切葡聚糖酶催化区域的肽链,黄色的结构代表酶催化区域的第248位的精氨基酸和第385位酪氨酸的侧链基团(R基),橙色分子代表产物纤维二糖。
右侧是精氨酸和酪氨酸的结构图,观察两种氨基酸的R基,如果二者的侧链基团接近,就会产生相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 第三节
基因工程与转基因生物
转基因产品的安全性 2、转基因食品是否对生态环境造成影响
(3)诱发病虫产生抗性。 诱发病虫产生抗性。 具有抗虫功能的转基因植物,其体内产 具有抗虫功能的转基因植物, 生的抗虫蛋白可能使害虫产生抗性, 生的抗虫蛋白可能使害虫产生抗性,使害 虫变得更加难以防治。 虫变得更加难以防治。
转基因产品的安全性 基因一旦被改动, 基因一旦被改动,一方面可能引起 生物体内一系列未知的结构与功能的变 另一方面, 化;另一方面,转基因操作对生物体的 影响会通过遗传传递。 影响会通过遗传传递。
第六章 第三节
基因工程与转基因生物
转基因产品的安全性 英国“普兹台事件” 1998年 英国“普兹台事件”:1998年,英国罗伊 特研究所普兹台教授说他的实验证明, 特研究所普兹台教授说他的实验证明,幼鼠 食用转基因土豆会使内脏和免疫系统受损。 食用转基因土豆会使内脏和免疫系统受损。
第六章 第三节
基因工程与转基因生物
基因工程过程所需三种主要工具 化学剪刀” 1、“化学剪刀”:限制性内切酶 化学浆糊” DNA连接酶 2、“化学浆糊”:DNA连接酶 分子运输车” 3、“分子运输车”:质粒 基因工程的三种操作工具的发现 和使用,促成基因工程的诞生。 和使用,促成基因工程的诞生。
第六章 第三节
第六章 第三节
基因工程与转基因生物
转基因产品的安全性 2、转基因食品是否对生态环境造成影响
(1)转基因植物演变成农田杂草的可能性。 转基因植物演变成农田杂草的可能性。 a.科学家赋予了转基因植物某些全新的性状, a.科学家赋予了转基因植物某些全新的性状, 科学家赋予了转基因植物某些全新的性状 增强了它们与其他生物的生存竞争能力, 增强了它们与其他生物的生存竞争能力,它 可能会使本地区本来生活力就很纤弱的个体 或物种加速从地球上消失。 或物种加速从地球上消失。即转基因植物可 能会成为某一地区新的优势种,成为“ 能会成为某一地区新的优势种,成为“入侵 生物而成为杂草”。 生物而成为杂草”
第六章 第三节
基因工程与转基因生物
4.中心法则揭示了生物遗传信息由DNA向蛋白质 中心法则揭示了生物遗传信息由DNA向蛋白质 DNA 传递与表达的过程。请回答下列问题。 传递与表达的过程。请回答下列问题。
(1)a、b、c、d所表示的四个过程依次分别 是 、 、 、 。 需要tRNA tRNA和核糖体同时参与的过程是 (2)需要tRNA和核糖体同时参与的过程是 。 在真核细胞中, (3)在真核细胞中,a和b两个过程发生的主要场所是 。 能特异性识别信使RNA RNA上密码子的分子是 (4)能特异性识别信使RNA上密码子的分子是 ,后者所携 带的分子是 。 RNA病毒的遗传信息传递与表达的途径有 病毒的遗传信息传递与表达的途径有( (5)RNA病毒的遗传信息传递与表达的途径有(用类似本题图 中的形式表述): ):① 中的形式表述):① ;② 。
第六章 第三节
基因工程与转基因生物
转基因产品的安全性
墨西哥的“玉米事件” 墨西哥政府曾经规定, 墨西哥的“玉米事件”:墨西哥政府曾经规定, 不种转基因玉米。但是,后来由于种种原因, 不种转基因玉米。但是,后来由于种种原因,美 国转基因玉米到了墨西哥,数量还不少( 国转基因玉米到了墨西哥,数量还不少(有些是 作为救济物资进入的)。 )。玉米的基因污染在该国 作为救济物资进入的)。玉米的基因污染在该国 两个州之间的一些地区终于发生了。 两个州之间的一些地区终于发生了。 美国科学家在《自然》 美国科学家在《自然》杂志上发表了基因污染的 分子证据,此后,在该杂志上, 分子证据,此后,在该杂志上,科学家之间展开 了激烈的争论。2002年 了激烈的争论。2002年,墨西哥环境部门公布了 一份报告,确认了基因污染的事实,其中, 一份报告,确认了基因污染的事实,其中,有些 地区玉米的基因污染比例达到了35 35%。 地区玉米的基因污染比例达到了35%。
基因工程
第六章 第三节
基因工程与转基因生物
操作的基本过程
把基因从一种生物细胞中提取出来 拼接到特定的DNA分子中 拼接到特定的DNA分子中 DNA 把重组DNA导入到另一种生物的细胞中 把重组DNA导入到另一种生物的细胞中 DNA 使之产生符合人类需要的新的遗传特性, 使之产生符合人类需要的新的遗传特性, 或创造出新的生物类型。 或创造出新的生物类型。
第六章 第三节
基因工程与转基因生物
第六章 第三节
基因工程与转基因生物
“化学剪刀”:限制性内切酶 化学剪刀” 化学剪刀 发现: 发现: 种类: 种类: 特点: 特点: 微生物(大肠杆菌) 微生物(大肠杆菌) 已发现的有200 已发现的有200多种 200多种 一种限切酶只能识别一种特定的 核苷酸序列,并在特定切点切割。 核苷酸序列,并在特定切点切割。 酶具有专一性
第六章 第三节
基因工程与转基因生物
3.下图为真核生物染色体上DNA分子复制过程示意图, 下图为真核生物染色体上DNA分子复制过程示意图, DNA分子复制过程示意图 有关叙述错误的是
A.图中DNA分子复制是从多个起点同时开始的 图中DNA分子复制是从多个起点同时开始的 DNA B.图中DNA分子复制是边解旋边双向复制的 图中DNA分子复制是边解旋边双向复制的 DNA C.真核生物DNA分子复制过程需要解旋酶 真核生物DNA分子复制过程需要解旋酶 DNA D.真核生物的这种复制方式提高了复制速率
第六章 第三节
基因工程与转基因生物
“分子运输车”:质粒 分子运输车” 分子运输车
质粒存在于许多细菌 和酵母菌等生物中, 和酵母菌等生物中,是 细菌DNA DNA之外的能够自 细菌DNA之外的能够自 主复制的很小的双链 环状DNA分子。 DNA分子 环状DNA分子。
ห้องสมุดไป่ตู้ 第六章 第三节
基因工程与转基因生物
(1)有毒物质 抗性选择标记基因可能编码出对人体有直接毒 性的蛋白质, 性的蛋白质,或者编码出的蛋白质所具有的催化功 能对宿主的代谢具有潜在毒性作用, 能对宿主的代谢具有潜在毒性作用,并出现滞后效 应或长期效应。 应或长期效应。 (2)过敏性物质 转基因植物可能会表达出过敏蛋白, 转基因植物可能会表达出过敏蛋白,可能会对 过敏体质的人产生过敏反应。 过敏体质的人产生过敏反应。
练习
1.有关DNA分子结构的叙述,正确的是(多选) 1.有关DNA分子结构的叙述,正确的是(多选) 有关DNA分子结构的叙述 A.DNA分子由 分子由4 A.DNA分子由4种脱氧核苷酸组成 B.DNA单链上相邻碱基以氢键连接 B.DNA单链上相邻碱基以氢键连接 C.碱基与磷酸基相连接 C.碱基与磷酸基相连接 D.磷酸与脱核糖交替连接构成 磷酸与脱核糖交替连接构成DNA D.磷酸与脱核糖交替连接构成DNA 链的基本骨架
第六章 第三节
基因工程与转基因生物
基因工程
指依据预先设计的蓝图, 指依据预先设计的蓝图,用人工方法 将某种生物的基因, 将某种生物的基因,接合到另一种生 物的基因组DNA中并使其表达, DNA中并使其表达 物的基因组DNA中并使其表达,使后者 获得新的遗传性状, 获得新的遗传性状,产生出人类所需 要的产物, 要的产物,或创造出新的生物类型的 现代生物技术。 现代生物技术。
第六章 第三节
基因工程与转基因生物
转基因产品的安全性 2、转基因食品是否对生态环境造成影响
(2)基因漂移到近缘野生种的可能性 比如:加拿大有一种转基因作物, 比如:加拿大有一种转基因作物,是耐除草剂的油 菜。这种油菜才种植几年,当地就发现了无人种植 这种油菜才种植几年, 的抗多种除草剂的油菜,有人称之为“超级杂草” 的抗多种除草剂的油菜,有人称之为“超级杂草”, 要杀死它们比较困难。这个事实说明, 要杀死它们比较困难。这个事实说明,在转基因食 品上,基因漂移经常发生,特别是在同一物种、 品上,基因漂移经常发生,特别是在同一物种、不 同品种之间。 同品种之间。
第六章 第三节
基因工程与转基因生物
转基因产品的安全性 2、转基因食品是否对生态环境造成影响
(1)转基因植物演变成农田杂草的可能性。 转基因植物演变成农田杂草的可能性。 b. 抗除草剂基因等可能会通过花粉传播或 近缘杂交进入到杂草或半驯化植物中,结果 近缘杂交进入到杂草或半驯化植物中, 产生出超级杂草。 产生出超级杂草。 事例: 事例:美国俄亥俄州大学的科学家们就发 如果野草与转基因农作物杂交, 现,如果野草与转基因农作物杂交,将令野 草长得更茁壮,产籽更多。 草长得更茁壮,产籽更多。
第六章 第三节
基因工程与转基因生物
2.有关蛋白质合成的叙述,正确的是(多选) 2.有关蛋白质合成的叙述,正确的是(多选) 有关蛋白质合成的叙述 A.终止密码子不编码氨基酸 A.终止密码子不编码氨基酸 B.每种tRNA只运转一种氨基酸 每种tRNA B.每种tRNA只运转一种氨基酸 C.tRNA的反密码子携带了氨基酸序列的遗传信息 C.tRNA的反密码子携带了氨基酸序列的遗传信息 D.核糖体可在mRNA上移动 核糖体可在mRNA D.核糖体可在mRNA上移动
第六章 第三节
基因工程与转基因生物
如何管理转基因食品
基于转基因食品潜在安全的不确定 性,世界各国政府都加强对转基因食品 进行管理。主要原则是: 进行管理。主要原则是: 执行严格的安全评价制度; 一、执行严格的安全评价制度; 标识制度, 二、标识制度,即在转基因食品包装上 加贴标识。 加贴标识。
第六章 第三节
“分子运输车”:质粒 分子运输车” 分子运输车 1、能够在宿主细胞中 能够在宿主细胞中 复制并稳定地保存 保存。 复制并稳定地保存。 2、具有多个限制酶切 具有多个限制酶切 点(每种限制酶切点最 ),以便与 好只有一个), 好只有一个),以便与 外源基因连接 连接。 外源基因连接。 3、具有标记基因,便 具有标记基因 标记基因, 于进行筛选。 于进行筛选。
这个特点说明了: 这个特点说明了: