小学数学应用题种类型类
小学数学典型应用题归类总结(30种)
小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学常考的10种应用题类型_考前必看
小学数学常考的10种应用题类型_考前必看今天小编给大家带来小学数学常考的10种应用题类型,希望可以帮助到大家。
一、归一问题1.含义在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
2.数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数3.解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
二、归总问题1.含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
人教版3年级上册数学四种应用题
人教版3年级上册数学四种应用题一、题型及特点人教版3年级上册数学共包含四种应用题,分别是加法应用题、减法应用题、乘法应用题和除法应用题。
这些应用题均贴近学生的日常生活,内容简单直观,能够帮助学生将数学知识与实际生活相结合,培养他们的逻辑思维能力和解决问题的能力。
二、加法应用题加法应用题主要是让学生通过实际问题的描述,运用加法原理解决问题。
其中,题目的特点如下:1、题目主要以日常生活中的例子为背景,例如购物、运动比赛等,让学生更容易理解。
2、加法式子的形式简单易懂,常为“数字+数字=结果”的形式,方便学生掌握。
3、通过加法应用题,能够帮助学生培养逻辑思维能力,提高他们的观察和解决问题能力。
三、减法应用题减法应用题主要是让学生通过实际问题的描述,运用减法原理解决问题。
题目的特点如下:1、题目仍以日常生活中的例子为背景,例如买东西找零、体育比赛中的排名等,让学生更容易理解。
2、减法式子的形式简单易懂,常为“数字-数字=结果”的形式,方便学生掌握。
3、通过减法应用题,能够帮助学生巩固减法的基本原理,培养他们的逻辑思维能力和解决问题的能力。
四、乘法应用题乘法应用题主要是让学生通过实际问题的描述,运用乘法原理解决问题。
题目的特点如下:1、题目仍以日常生活中的例子为背景,例如分组、购物计算等,让学生更容易理解。
2、乘法式子的形式也是以“数字*数字=结果”的形式呈现,方便学生理解和掌握。
3、通过乘法应用题,能够帮助学生理解乘法的基本原理,培养他们的逻辑思维能力和解决问题的能力。
五、除法应用题除法应用题主要是让学生通过实际问题的描述,运用除法原理解决问题。
题目的特点如下:1、题目仍以日常生活中的例子为背景,例如分苹果、分糖果等,让学生更容易理解。
2、除法式子的形式一般以“数字/数字=结果”的形式呈现,让学生理解除法运算的基本原理。
3、通过除法应用题,能够帮助学生巩固除法的基本原理,培养他们的逻辑思维能力和解决问题的能力。
小学三年级数学应用题分类及解法
小学三年级数学应用题分类及解法一、引言小学三年级是学生们开始接触数学应用题的初始阶段。
这一阶段的学习对于学生来说至关重要,因为它不仅为学生打下了数学基础,还培养了他们解决问题的能力。
本文将数学应用题分为几类,并给出相应的解题方法。
二、分类1、计算类应用题:这类应用题主要考察学生的计算能力,如加减乘除、分数、小数等。
例如:“小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?”这类问题的解决方法主要是通过正确的计算步骤得出答案。
2、比较类应用题:这类应用题通过比较两个或多个数量或数值来考察学生的比较能力。
例如:“一斤苹果的价格是5元,一斤香蕉的价格是3元,哪种水果更便宜?”解决这类问题,学生需要掌握比较的方法,并能够确定哪个数量或数值更大或更小。
3、图形类应用题:这类应用题通过图形或几何问题来考察学生的空间观念和推理能力。
例如:“一个长方形的长是5厘米,宽是3厘米,请问这个长方形的面积是多少?”解决这类问题,学生需要理解图形的性质和相关的几何公式。
4、逻辑推理类应用题:这类应用题通过一系列的信息或条件,要求学生推断出某种结论或结果。
例如:“在1,2,3,4,5,6,7,8,9中,不重复的三个数字可以组成一个三位数,请问有多少种可能的组合方式?”解决这类问题,学生需要运用逻辑推理的能力,从给定的信息中推导出正确的答案。
三、解题方法对于每一类应用题,我们都有相应的解题方法:1、计算类应用题:首先要理解题目中的数学表达式或方程,然后使用正确的计算步骤得出答案。
如果遇到困难,可以重新阅读题目或寻求帮助。
2、比较类应用题:首先需要确定哪个数量或数值更大或更小,然后通过比较得出答案。
如果遇到困难,可以重新阅读题目或寻求帮助。
3、图形类应用题:首先需要理解图形的性质和相关的几何公式,然后使用这些公式来解决问题。
如果遇到困难,可以借助模型或重新阅读题目。
4、逻辑推理类应用题:首先需要仔细阅读题目,理解所有的信息和条件,然后使用逻辑推理的方法得出答案。
四年级数学期末必考六大类型应用题
四年级数学上册满赠问题专项类型一每件便宜多少钱1、每棵树苗16元,买3棵送1棵。
一次买3棵,每棵便宜多少钱?16÷(3+1)=4(元)答:每棵便宜4元。
2、商场搞了一次促销活动,每袋洗衣粉20元,买4袋送一袋,妈妈买了4袋,每袋便宜多少元?20÷(1+4)=4(元)答:每袋便宜4元。
3、健力宝每瓶2元4角,买3瓶送一瓶,一次买3瓶,每瓶便宜多少钱?24÷(3+1)=6(角)答:每瓶便宜6角。
4、一束鲜花35元,买5束花送2束,茵苗一次买5束,每束花便宜多少钱?35-35×5÷(5+2)=10(元)答:每束花便宜10元。
类型二:最多可以买多少件1、面包每个7元,面包店搞促销活动买3个送1个,63元钱,最多能买几个这样的面包?63÷7=9(个) 9÷3=3(组) 9+3=12(个)答:最多能买12个这样的面包。
2、超市的盒装纸促销,买3盒送1盒,每盒4元。
156元最多买多少盒这样的纸巾?156÷4=39(盒) 39÷3=13(组) 39+13=52(盒)答:最多可以买52盒这样的纸巾。
3、某种饮料37元1瓶,64元2瓶,茵苗有320元,最多可以买多少瓶?还剩多少钱?320÷64=5(组) 5×2=10(瓶)答:最多可以买10瓶,没有剩钱。
4、商店里衬衫的价格是50元一件,90元两件。
王叔叔有610元,最多可以买几件?还剩多少元?610÷90=6(组)…… 70(元)6×2=12(件)70÷50=1(件)…… 20(元)12+1=13(件)答:最多可以买13件,还剩20元。
5、学校准备500元,准备购置一些书包(26元/个,46元/2个)作为奖品,最多可以买多少个书包,还剩多少钱?500÷46=10(组)……40(元)10×2=20(个)40÷26=1(个)……14(元)20+1=21(个)答:最多可以买21个书包,还剩14元钱6、服装店进了一批衣服,为了吸引顾客,推出了3种购买方案,妈妈带了218元钱,最多可以买多少件?还剩多少钱?(28元/件,48元/2件,买3赠1)买法1:218÷48=4(组)……26(元)4×2=8(件)买法2:218÷28=7(件)……22(元)7÷3=2(组)……1(件)7+2=9(件)答:妈妈最多可以买9件,还剩22元钱。
小学二年级下册数学十种应用题题型
小学二年级下册数学十种应用题题型1. 问题解决:小明有5个苹果,小华有3个苹果,他们一共有多少个苹果?2. 双倍计算:如果小明的年龄是6岁,那么他的爷爷多大年纪?3. 加减混合运算:小红有8个糖果,她吃了3个,还剩下多少个?4. 比较大小:小明的家离学校1公里,而小华的家离学校2公里,谁离学校更近?5. 分组问题:班级有20个学生,老师要把他们分成4组,每组有多少个学生?6. 乘法计算:小明有3个篮球,每个篮球价值5元,他总共花了多少钱?7. 位置问题:小华面前有6只蓝色的球,他把其中的2只拿走了,还剩下几只?8. 面元计算:小明要买5块巧克力,每块巧克力要2元,他一共需要多少元?9. 分数计算:小红有7个糖果,她分给小明和小华各2个,她还剩下几个?10. 总数计算:小华花了3分钟做作业,小明花了5分钟,他们一共花了多少分钟?这些数学题目涵盖了小学二年级下册中常见的应用题题型,帮助学生巩固和应用所学的数学知识。
当小学二年级的孩子们学习数学时,他们会逐渐接触到各种有趣的应用题。
这些题型不仅让他们巩固基本的计算技巧,还能培养他们解决实际问题的能力。
下面,让我们一起来看看小学二年级下册的数学应用题有哪些。
第一种题型是问题解决。
在这种题型中,孩子们需要根据问题的描述,使用相应的运算方法来解决问题。
比如:小明有5个苹果,小华有3个苹果,那么他们一共有多少个苹果?这个问题可以通过加法来解决,即5+3=8,所以他们一共有8个苹果。
第二种题型是双倍计算。
在这种题型中,孩子们需要根据已知条件,计算出相应的双倍或倍数。
例如:如果小明的年龄是6岁,那么他的爷爷多大年纪?这个问题需要孩子们将小明的年龄乘以2,即6×2=12,所以他的爷爷是12岁。
第三种题型是加减混合运算。
在这种题型中,孩子们需要根据题目给出的条件,进行加法和减法运算。
例如:小红有8个糖果,她吃了3个,还剩下多少个?这个问题需要孩子们将小红拥有的糖果减去她吃掉的糖果,即8-3=5,所以她还剩下5个糖果。
小学数学典型应用题归纳总结汇总30种题型
小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。
3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
三年级数学题应用题类型归纳
三年级数学题应用题类型归纳
三年级数学题应用题主要是通过解决实际问题,让学生运用数学知识解决生活中的问题,提高学生的实际应用能力和解决问题的能力。
以下是三年级数学题应用题类型的归纳:
1. 加减法应用题:通过实际情境,让学生运用加减法解决问题。
例如:小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?
2. 乘除法应用题:通过实际情境,让学生运用乘除法解决问题。
例如:小明有10个糖果,他想把它们平均分给他的4个朋友,每个朋友能得到几个糖果?
3. 时间应用题:通过实际情境,让学生运用时间概念解决问题。
例如:妈妈早上7点出门,晚上8点回家,她在外面待了多久?
4. 长度、面积、体积应用题:通过实际情境,让学生运用长度、面积、体积等概念解决问题。
例如:一个长方形花坛的长是12米,宽是5米,它的面积是多少平方米?
5. 单位换算应用题:通过实际情境,让学生运用单位换算解决问题。
例如:小明的身高是130厘米,他的体重是30千克,他的体重是他身高的几倍?
6. 图表应用题:通过图表,让学生运用数据分析解决问
题。
例如:某超市一周的销售额为20万元,每天的销售额是多少?
以上是三年级数学题应用题类型的归纳,不同类型的应用题主要考查学生的数学思维能力、实际应用能力和解决问题的能力。
小学数学应用题13种类型解题方法
小学数学应用题13种类型解题方法
以下是小学数学应用题13种类型解题方法:
1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”
2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”
3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”
4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”
5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”
6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”
7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”
8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”
9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”
11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”
13. 百分比类型:确定一个数值的百分比,例如“如果一个物品原价是120元,打8折后的价格是多少?”。
小学数学常考的12种应用题+详解
小学数学常考的12种应用题+详解1归一问题应用题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买16支同样的铅笔,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
2倍比问题应用题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1100千克油菜籽可以榨油40千克,现在有油菜将3700千克,可以榨油多少?解:(1)3700千克是100千克的多少倍?3700÷100=37(2)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(干克)答:可以榨油1480千克。
小学数学孩子一看就懂的三十类图解应用题
十九、“牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。
这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。
例1: 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。
问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。
求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理 1×15×10=原有草量+10天内生长量由此可知(20-10)天内草的生长量为1×10×20-1×15×10=50因此,草每天的生长量为 50÷(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1×15×10-5×10=100(3)求5 天内草总量5 天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。
因此5天吃完草需要牛的头数 125÷5=25(头)答:需要25头牛5天可以把草吃完。
例2: 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。
如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。
求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。
与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。
小学数学典型应用题归纳汇总30种题型
小学数学典型应用题归纳汇总30种题型小学数学典型应用题归纳汇总30种题型1.归一问题归一问题是指在解题时,先求出一份的数量(即单一量),然后以单一量为标准,求出所要求的数量。
解决这类问题需要使用以下数量关系公式:总量÷份数=1份数量,1份数量×所占份数=所求几份的数量,另一总量÷(总量÷份数)=所求份数。
解题思路和方式是先求出单一量,然后以单一量为标准,求出所要求的数量。
例如,如果买5支铅笔需要元钱,那么买一样的铅笔16支需要多少钱?首先,我们需要求出单支铅笔的价格,即 ÷5=(元)。
然后,我们可以使用公式 1份数量×所占份数=所求几份的数量,计算出买16支铅笔需要多少钱,即 ×16=(元)。
最后列成综合算式÷5×16=×16=(元),得出需要元。
2.归总问题归总问题是指在解题时,常常先找出“总数量”,然后再按照其他条件算出所求的问题。
所谓“总数量”可以是货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
解决这类问题需要使用以下数量关系公式:1份数量×份数=总量,总量÷1份数量=份数,总量÷另一份数=另一每份数量。
解题思路和方式是先求出总数量,再按照题意得出所求的数量。
例如,如果服装厂原来做一套衣服用布米,改良裁剪方式后,每套衣服用布米。
原来做791套衣服的布,此刻可以做多少套?首先,我们需要求出这批布总共有多少米,即 ×791=(米)。
然后,我们可以使用公式总量÷1份数量=份数,计算出此刻可以做多少套衣服,即 ÷=904(套)。
最后列成综合算式×791÷=904(套),得出此刻可以做904套。
3.和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少。
解决这类问题需要使用以下数量关系公式:大数=(和+差)÷2,小数=(和-差)÷2.解题思路和方式是对于简单的题目可以直接套用公式,对于复杂的题目需要变通后再使用公式。
小学数学应用题的21种类型
1【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。
3【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
小学二年级下册数学十种应用题题型
小学二年级下册数学十种应用题题型第一种应用题题型:求和问题小明一共有3个苹果,小红一共有4个苹果,他们一共有多少个苹果?第二种应用题题型:相加问题小草有3朵花,小鸟来了,又飞走了,现在小草有几朵花?第三种应用题题型:相减问题小狗有6根骨头,它吃了几根骨头后还剩3根?第四种应用题题型:相乘问题小明有2个篮球,小红有3个篮球,他们一共有多少个篮球?第五种应用题题型:相除问题小明有6只糖果,他想分给小红,每人分3只,他们各能分到几只糖果?第六种应用题题型:购物问题小明去超市买了一盒苹果,一盒橙子,一共花了10元,苹果5元每盒,橙子3元每盒,他买了几盒苹果和几盒橙子?第七种应用题题型:找零问题小红去商店买了一支笔,给了20元,笔的价格是12元,收银员要找回她几元?第八种应用题题型:面积问题一个长方形的长是5米,宽是2米,它的面积是多少平方米?第九种应用题题型:体积问题一个正方体的边长是3厘米,它的体积是多少立方厘米?第十种应用题题型:平均数问题小明考试得了80分,小红考试得了90分,他们两个人的平均成绩是多少分?应用题是数学学习中非常重要的一部分,通过解答应用题,可以帮助我们将数学知识应用于实际生活中,培养解决问题的能力。
下面将详细介绍小学二年级下册数学的十种应用题题型。
第一种应用题题型是求和问题。
例如,小明一共有3个苹果,小红一共有4个苹果,他们一共有多少个苹果?这种题型要求我们将给定的数进行相加,得到最终的结果。
解题的过程是将3个苹果加上4个苹果,即3+4=7,所以他们一共有7个苹果。
第二种应用题题型是相加问题。
例如,小草有3朵花,小鸟来了,又飞走了,现在小草有几朵花?这种题型要求我们在一个基础上进行相加,得到最后的结果。
解题的过程是将小草原有的3朵花加上来的花朵,即3+0=3,所以现在小草有3朵花。
第三种应用题题型是相减问题。
例如,小狗有6根骨头,它吃了几根骨头后还剩3根?这种题型要求我们在一个基础上进行相减,得到最后的结果。
小学所有应用题类型100道附答案(完整版)
小学所有应用题类型100道附答案(完整版)类型一:加法应用题题目1:小明有5 个苹果,小红有3 个苹果,他们一共有几个苹果?答案:5 + 3 = 8(个)解析:将小明和小红的苹果数相加。
题目2:学校图书馆有20 本故事书,15 本科技书,一共有多少本书?答案:20 + 15 = 35(本)解析:故事书和科技书的数量相加。
类型二:减法应用题题目3:妈妈买了10 个梨,小明吃了3 个,还剩下几个梨?答案:10 - 3 = 7(个)解析:用总数减去吃掉的数量。
题目4:盒子里有18 颗糖,拿走了5 颗,盒子里还剩几颗糖?答案:18 - 5 = 13(颗)解析:原有的糖数量减去拿走的。
类型三:乘法应用题题目5:每个文具盒5 元,买3 个文具盒需要多少钱?答案:5 ×3 = 15(元)解析:单价乘以数量。
题目6:一行有6 个同学,5 行一共有多少个同学?答案:6 ×5 = 30(个)解析:每行的同学数乘以行数。
类型四:除法应用题题目7:把12 个苹果平均分成3 份,每份有几个苹果?答案:12 ÷ 3 = 4(个)解析:总数除以份数。
题目8:20 元钱可以买4 个笔记本,每个笔记本多少钱?答案:20 ÷ 4 = 5(元)解析:总价除以数量得到单价。
类型五:比较多少应用题题目9:小明有8 支铅笔,小红有12 支铅笔,小红比小明多几支铅笔?答案:12 - 8 = 4(支)解析:大数减小数。
题目10:果园里有15 棵苹果树,20 棵梨树,苹果树比梨树少几棵?答案:20 - 15 = 5(棵)解析:梨树数量减去苹果树数量。
类型六:倍数应用题题目11:小白兔有6 只,小灰兔的数量是小白兔的3 倍,小灰兔有几只?答案:6 ×3 = 18(只)解析:小白兔数量乘以倍数。
题目12:爸爸的年龄是小明的4 倍,小明8 岁,爸爸多少岁?答案:8 ×4 = 32(岁)解析:小明年龄乘以倍数。
小学数学三十类图解应用题
上月盈利=(30-12)÷(2-1)=18(万元) 本月盈利=18+30=48(万元) 答:上月盈利是18万元,本月盈利是48万元。
例4 粮库有94吨小麦和138吨玉米,如果每天运出 小麦和玉米各是9吨,问几天后剩下的玉米是小麦的 3倍?
3.2×791÷2.8=904(套) 答:现在可以做904套。
例2 小华每天读24页书,12天读完了 《红岩》一书。小明每天读36页书,几天 可以读完《红岩》?
解 (1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式:
24×12÷36=8(天) 答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃 50千克,30天慢慢消费完这批蔬菜。后来 根据大家的意见,每天比原计划多吃10千 克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式:
50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。
6、倍比问题
【含义】
有两个已知的同类量,其中一个量是另一个量的若干倍, 解题时先求出这个倍数,再用倍比的方法算出要求的数, 这类应用题叫做倍比问题。
【数量关系】
总量÷一个数量=倍数 另一个数量×倍数=另一总量
【解题思路和方法】
先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现 在有油菜籽3700千克,可以榨油多少?
小学数学30种典型应用题
小学数学30种典型应用题小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。
高中数学网为大家归纳了以下30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、牛吃草问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量份数=1份数量1份数量所占份数=所求几份的数量另一总量(总量份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6 5=0.12(元)(2)买16支铅笔需要多少钱?0.12 16=1.92(元)列成综合算式0.6 5 16=0.12 16=1.92(元) 答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90 3 3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10 5 6=300(公顷)列成综合算式90 3 3 5 6=10 30=300(公顷) 答:5台拖拉机6 天耕地300公顷。
小学数学必考的21类应用题(含例题解析+解题思路)
小学数学必考的21类应用题(含例题解析+解题思路)小学21类应用题宝典1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学五年级数学应用题4大类
小学五年级数学应用题4大类01一般应用题一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。
● 要点:从条件入手?从问题入手?从条件入手分析时,要随时注意题目的问题从问题入手分析时,要随时注意题目的已知条件。
● 例题如下:某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。
剩下的如果平均每天生产150个,还需几天完成?● 思路分析:已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。
已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。
02典型应用题用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。
(一)求平均数应用题● 解答求平均数问题的规律是:总数量÷对应总份数=平均数注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。
● 例题如下:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?● 思路分析:要求这天平均每小时碾米约多少千克,需解决以下三个问题:1、这一天总共碾了多少米?(一天包括上午、下午)。
2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。
3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。
)(二) 归一问题● 归一问题的题目结构是:题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。
● 解题规律先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。
● 例题如下:6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?● 思路分析:先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学应用题的21种类型类,讲解详细,内容全面,例题经典1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱解(1)买1支铅笔多少钱0.6÷5=0.12(元)(2)买16支铅笔需要多少钱0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套解(1)这批布总共有多少米3.2×791=2531.2(米)(2)现在可以做多少套2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。
3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
4、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵解(1)杏树有多少棵248÷(3+1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:杏树有62棵,桃树有186棵。
5、差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵解(1)杏树有多少棵124÷(3-1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
6、倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少解(1)3700千克是100千克的多少倍3700÷100=37(倍)(2)可以榨油多少千克40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
7、相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇解392÷(28+21)=8(小时)答:经过8小时两船相遇。
8、追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马解(1)劣马先走12天能走多少千米75×12=900(千米)(2)好马几天追上劣马900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。
9、植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
10、年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍明年呢解35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。
11、行船问题【含义】行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)船的逆水速为25-15=10(千米)船逆水行这段路程的时间为320÷10=32(小时)答:这只船逆水行这段路程需用32小时。
12、列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。
这列火车长多少米解火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米900×3=2700(米)(2)这列火车长多少米2700-2400=300(米)列成综合算式900×3-2400=300(米)答:这列火车长300米。
13、时钟问题【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。
时钟问题可与追及问题相类比。
【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】变通为“追及问题”后可以直接利用公式。
例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。
每分钟分针比时针多走(1-1/12)=11/12格。
4点整,时针在前,分针在后,两针相距20格。
所以分针追上时针的时间为20÷(1-1/12)≈22(分)答:再经过22分钟时针正好与分针重合。
14、盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。
问有多少小朋友有多少个苹果解按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人(11+1)÷(4-3)=12(人)(2)有多少个苹果3×12+11=47(个)答:有小朋友12人,有47个苹果。
15、工程问题【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。