一元一次不等式和一元一次不等式组基础练习

合集下载

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题
A. B. Cห้องสมุดไป่ตู้ D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
②购买多少本书法练习本时,两种方案所花费的钱是一样多?
③购买多少本书法练习本时,按方案二付款更省钱?
18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
故答案为:5x+200,4.5x+225;
②依题意可得,5x+200=4.5x+225,
解得:x=50.
答:购买50本书法练习本时,两种方案所花费的钱是一样多;
③依题意可得,5x+200>4.5x+225,
解得:x>50.
答:购买超过50本书法练习本时,按方案二付款更省钱
18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;

初一数学一元一次不等式练习题汇总(复习用)含答案

初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x<0,x________2;3. 若>0,则xy_________0;4. 代数式的值不大于零,则x__________;5. a、b关系如下图所示:比较大小|a|______b,-6. 不等式13-3x>0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x≠y,则x2+|y|_________0;9. 不等式组的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m≠n,则|m|≠|n|; (B)若a+b=0,则ab>0;(C)若ab<0,且a<b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若,则x的取值范围是( ).(A)x>1; (B)x≤1;(C)x≥1; (D)x<1.三、解答题1.解不等式(组),并在数轴上表示它们的解集.(1)(x-1)≥1; (2);(3)(4)2. x取什么值时,代数式的值不小于代数式的值.3. K取何值时,方程=5(x-k)+1的解是非负数.4. k为何值时,等式|-24+3a|+中的b是负数?参考答案一、1.-3>-π,-22 <(-0.2)2; 2.x>2; 3.xy>0; 4.X≥2; 5.|a|>b,-,-b<-; 6.1,2,3,4; 7.x≤y; 8.x2+|y|>0; 9.无解.二、1.A; 2.C; 3.D 4.D; 5.B.三、1.(1)x≤-3;(2)x<1;(3)2≤x<8;(4)x<0;2.x≤-;3.k≥;4.k>-48.一元一次不等式能力测试题一、填空题(每空3分,共27分)1.(1)不等式的解集是________;(2)不等式的非负整数解是________;(3)不等式组的解集是______________;(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.3.已知,且,那么ab________b2(填“>”“<”“=”).4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.5.若不等式的解集为,则m的值为________.6.若不等式组无解,则m的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( )A.B.C.D.m为任意有理数8.如果方程有惟一解,则( )A.B.C.D.9.下列说法①是不等式的一个解;②当时,;③不等式恒成立;④不等式和解集相同,其中正确的个数为( )A.4个 B.3个 C.2个 D.1个10.下面各个结论中,正确的是( )A.3a一定大于2a B.一定大于aC.a+b一定大于a-b D.a2+1不小于2a11.已知-1<x<0,则x、x2、三者的大小关系是( )A.B.C.D.12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A.x>1 B.x<4 C.x>1或x<4 D.1<x<4三、解答题13.解下列不等式(组).(12分)(1)(2)14.已知满足不等式的最小正整数是关于x的方程的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)一元一次不等式能力测试题参考答案一、填空题1. (1)(2)0,1,2 (3)(4)2.k>-13.>4.5.6.二、选择题7.C 8.D 9.A 10.D 11.D 12.D三、解答题13.(1)(2)x<2 14.15.18千米/时 16.15人功16人一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是()A; B; C; D;2、“x大于-6且小于6”表示为()A -6<x<6;B x>-6,x≤6;C -6≤x≤6; D -6<x≤6;3、解集是x≥5的不等式是()A x+5≥0B x–5≥0C –5–x ≤0D 5x–2 ≤–94、不等式组的解是( )A、x≤2B、x≥2C、-1<x≤2D、x>-15、不等式组的解集在数轴上表示正确的是()6、下列不等式组无解的是()A.B.C.D.7、不等式组的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8、等式组的解集是,则m的取值范围是()A.m ≤2 B.m≥2 C.m≤1 D. m>19、关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()A m=2B m>2C m<2 Dm≤210、ax>b的解集是()A.; B.; C.; D.无法确定;二、填空题(每题4分,共20分)1、不等式的解集是:;不等式的解集是:;2、不等式组的解集为 . 不等式组的解集为 .3、不等式组的解集为 . 不等式组的解集为 .4、当x 时,3x-2的值为正数;x为时,不等式的值不小于7;5、已知不等式组无解,则的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)(2)(3)(4)三、根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:四、解答题:(每题7分,共14分)1、若方程组的解、的值都不大于1,求的取值范围。

第二章 一元一次不等式和一元一次不等式组复习题---填空题(含解析)

第二章 一元一次不等式和一元一次不等式组复习题---填空题(含解析)

北师大版数学八下第二章一元一次不等式与不等式组---填空题一.填空题1.(2018•锡山区校级四模)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是.2.(2018春•开封期末)若不等式(a﹣2)x<1,两边除以a﹣2后变成x<,则a的取值范围是.3.(2018•龙岩二模)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.4.(2018春•岳麓区校级期末)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b的解集是.5.(2018春•新野县期中)使不等式x2<|x|成立的x的取值范国是6.(2018春•徽县期末)若不等式组无解,则a b(用“<,>,≤,≥和=”填)7.(2018春•海港区期末)已知不等式组的解集是x≤1,则m的取值范围是.8.(2018春•襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于.9.(2018春•阜平县期末)若不等式组无解,则a的取值范围是.10.(2018秋•沙坪坝区校级月考)已知关于x的不等式﹣1≥的解集为x≤1,则a的值是.11.(2018秋•沙坪坝区校级月考)已知x=3是关于x的不等式3x﹣的解,则a的取值范围是.12.(2018秋•沙坪坝区校级月考)已知关于x的方程的解为非负数,则m的取值范围是.13.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.14.(2018秋•沙坪坝区校级月考)不等式3x﹣2≤5x+6的最大负整数解为.15.(2018春•南岗区校级期中)关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是.16.(2018春•微山县期末)不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是17.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.(2018春•南岗区校级期中)甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过元时,在甲商场购物花费少.19.(2018春•信丰县期末)商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.20.(2018春•咸安区期末)某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为元/千克.21.(2018春•东城区期末)小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买支冰激凌.22.(2018春•开江县期末)一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.23.(2018春•新野县期中)小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买支钢笔.24.(2018春•天心区校级期末)步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打折.25.(2018春•岚山区期末)在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是场.26.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.27.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为.28.(2018•兰州)不等式组的解集为29.(2018•盘锦)不等式组的解集是.30.(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是.31.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是.32.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.33.(2018•黑龙江)不等式组有3个整数解,则a的取值范围是.34.(2018•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是.35.(2018•包头)不等式组的非负整数解有个.36.(2018•黑龙江)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.37.(2018•安顺)不等式组的所有整数解的积为.38.(2018春•东明县期中)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有件玩具.39.(2018春•江岸区校级月考)安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为.40.(2018春•武城县期末)学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有间宿舍,名女生.41.(2018春•滦南县期末)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费元.42.(2018春•如皋市期末)运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是.43.(2018春•安庆期末)下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是.44.(2018春•三亚期末)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有棵.45.(2018春•南山区期末)如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个.根据以上信息可以判定一共有个儿童.46.(2018春•郾城区期末)把m个练习本分给n个学生,如果每人分3本,那么余8本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为.47.(2018春•滕州市期中)初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.48.(2018春•章丘区期末)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.北师大版数学八下第二章一元一次不等式与不等式组---填空题参考答案与试题解析一.填空题1.(2018•锡山区校级四模)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是x≤.【分析】通过找到临界值解决问题.【解答】解:由题意知,令3x﹣1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.2.(2018春•开封期末)若不等式(a﹣2)x<1,两边除以a﹣2后变成x<,则a的取值范围是a>2.【分析】根据不等式的性质得出不等式,求出不等式的解集即可.【解答】解:∵不等式(a﹣2)x<1,两边除以a﹣2后变成x<,∴a﹣2>0,∴a>2,故答案为:a>2.3.(2018•龙岩二模)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=9.【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a=3推出c的最小值与a的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;∴c=3时y最小,即y最小=12,即n=12;∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;∴a=9时y最大,即y最大=21,即m=21;∴m﹣n=21﹣12=9,故答案为:94.(2018春•岳麓区校级期末)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b的解集是x<.【分析】根据不等式的解集,先确定5a﹣2b与0、a与b的关系,代入不等式并求出不等式的解集.【解答】解:∵(5a﹣2b)x>3b﹣a的解集是x<,∴5a﹣2b<0∴x<∴=即24b﹣8a=5a﹣2b∴a=2b当a=2b时,∵5a﹣2b<0即8b<0,∴b<0当a=2b时,不等式6ax>7b可变形为:12bx>7b∴x<故答案为:x<.5.(2018春•新野县期中)使不等式x2<|x|成立的x的取值范国是﹣1<x<0或0<x<1【分析】由已知x2<|x|可以判断出|x|与1的大小关系,从而确定x的范围.【解答】解:∵不等式x2<|x|成立,而x2和|x|都是正数,∴|x2|<|x|,∴|x|×|x|<|x|,∴|x|<1且x≠0,∴﹣1<x<0或0<x<1.故答案是:﹣1<x<0或0<x<1.6.(2018春•徽县期末)若不等式组无解,则a≤b(用“<,>,≤,≥和=”填)【分析】根据“大大小小无解了”求解可得.【解答】解:∵不等式组无解,∴a≤b,故答案为:≤.7.(2018春•海港区期末)已知不等式组的解集是x≤1,则m的取值范围是m≥1.【分析】根据“同小取小”求解可得.【解答】解:∵不等式组的解集是x≤1,∴m≥1,故答案为:m≥1.8.(2018春•襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于2或3.【分析】根据已知不等式组和不等式组的解集得出关于a的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集是3<x<a+2,∴,解得:1<a≤3,∵a为整数,∴a=2或3,故答案为:2或3.9.(2018春•阜平县期末)若不等式组无解,则a的取值范围是a≤﹣3.【分析】不等式组中两不等式整理求出解集,根据不等式组无解,确定出a的范围即可.【解答】解:因为不等式组无解,所以a≤﹣3,故答案为:a≤﹣310.(2018秋•沙坪坝区校级月考)已知关于x的不等式﹣1≥的解集为x≤1,则a的值是2.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据不等式的解集得方程,求出a的值.【解答】解:不等式的两边都乘2,得x+5﹣2≥ax+2即(1﹣a)x≥﹣1,当1﹣a>0,即a<1时,x≥,∵原不等式的解集为x≤1,∴1﹣a<0,即a>1时,∴x≤∴=1,解得a=2故答案为:2.11.(2018秋•沙坪坝区校级月考)已知x=3是关于x的不等式3x﹣的解,则a的取值范围是a<4.【分析】将x=3代入不等式,再求a的取值范围.【解答】解:∵x=3是关于x的不等式3x﹣的解,∴9﹣>2,解得a<4.故a的取值范围是a<4.故答案为:a<4.12.(2018秋•沙坪坝区校级月考)已知关于x的方程的解为非负数,则m的取值范围是m≥.【分析】先求出方程的解,根据题意得出不等式,求出不等式的解集即可.【解答】解:解方程得:x=,∵方程的解为非负数,∴≥0,则4m﹣5≥0,∴4m≥5,∴m≥,故答案为:m≥.13.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.14.(2018秋•沙坪坝区校级月考)不等式3x﹣2≤5x+6的最大负整数解为x=﹣1.【分析】解不等式求出x的范围即可得.【解答】解:∵3x﹣2≤5x+6,∴3x﹣5x≤6+2,﹣2x≤8,则x≥﹣4,∴不等式的最大负整数解为x=﹣1,故答案为:x=﹣1.15.(2018春•南岗区校级期中)关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是6<m≤8.【分析】先表示出不等式3x﹣2m<x﹣m的解集,再由正整数解为1、2、3,可得出3<≤4,解出即可.【解答】解:解不等式得:x<,∵不等式的正整数解为1、2、3,∴3<≤4解得:6<m≤8,故答案为6<m≤8.16.(2018春•微山县期末)不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是4≤m<6【分析】首先确定不等式组的解集,先利用含m的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:解不等式2x﹣m≤0,得:x≤,∵不等式2x﹣m≤0的非负整数解只有3个,∴不等式得非负整数解为0、1、2,则2≤<3,解得:4≤m<6,故答案为:4≤m<6.17.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5518.(2018春•南岗区校级期中)甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过150元时,在甲商场购物花费少.【分析】设李红的累积购物金额为x元,根据“在甲商场购物实际花费<在乙商场购物实际花费”列不等式求解可得.【解答】解:设李红的累积购物金额为x元,根据题意得,100+0.8(x﹣100)<50+0.9(x﹣50),解得:x>150,答:当李红的累计购物金额超过150元时,在甲商场购物花费少.故答案为:150.19.(2018春•信丰县期末)商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为20元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.20.(2018春•咸安区期末)某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为5元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣0%)≥4.5,解得,x≥5,故为避免亏本,商家把售价应该至少定为每千克5元.故答案为:5.21.(2018春•东城区期末)小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买5支冰激凌.【分析】设他买了x支冰激凌,根据“矿泉水的总钱数+冰激凌的总钱数≤30”列不等式求解可得.【解答】解:设他买了x支冰激凌,根据题意,得:6×2+3.5x≤30,解得:x≤,∵x为整数,∴他最多能买5支冰激凌,故答案为:5.22.(2018春•开江县期末)一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.23.(2018春•新野县期中)小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买12支钢笔.【分析】首先设小聪买了x支钢笔,则买了(15﹣x)本笔记本,根据题意可得不等关系:购买钢笔的花费+购买笔记本的花费≤100元,根据不等关系列出不等式即可求解.【解答】解:设小聪买了x支钢笔,由题意得:7x+5(15﹣x)≤100,解得:x≤12.5,∵x为整数,∴x的最大值为12,故答案为:12.24.(2018春•天心区校级期末)步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打7折.【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x折,则售价是1200x元.根据利润率不低于5%就可以列出不等式,求出x的范围.【解答】解:设至多可打x折,则1200×﹣800≥800×5%,解得x≥7,即至多可打7折.故答案为:7.25.(2018春•岚山区期末)在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是7场.【分析】设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据总积分=3×获胜场数+1×平局场数结合总积分不少于21分,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论.【解答】解:设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据题意得:3x+(9﹣1﹣x)≥21,解得:x≥.∵x为整数,∴x的最小值为7.故答案为:7.26.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为﹣3<x<0.【分析】先把不等式x(kx+b)<0化为或,然后利用函数图象分别解两个不等式组.【解答】解:不等式x(kx+b)<0化为或,利用函数图象得为无解,的解集为﹣3<x<0,所以不等式x(kx+b)<0的解集为﹣3<x<0.故答案为﹣3<x<0.27.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.28.(2018•兰州)不等式组的解集为﹣1<x<3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.29.(2018•盘锦)不等式组的解集是0<x≤8.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0.8,∴不等式组的解集为0.8<x≤8,故答案为:0.8<x≤8.30.(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是a≥2.【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【解答】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.31.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是a≤﹣6.【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集,再判断即可.【解答】解:∵解不等式①得:x>﹣,解不等式②得:x>﹣a+2,∴不等式组的解集为x>﹣a+2,∵不等式x﹣5>0的解集是x>5,又∵不等式组的解集中的任意x,都能使不等式x﹣5>0成立,∴﹣a+2≥5,解得:a≤﹣6,故答案为:a≤﹣6.32.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.33.(2018•黑龙江)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.34.(2018•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是3≤a<4.【分析】根据不等式的正整数解为1,2,3,即可确定出正整数a的取值范围.【解答】解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1、2、3,则3≤a<4,故答案为:3≤a<4.35.(2018•包头)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.36.(2018•黑龙江)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是﹣3≤a<﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.37.(2018•安顺)不等式组的所有整数解的积为0.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.38.(2018春•东明县期中)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有25件玩具.【分析】设小朋友的人数为x人,玩具数为n件,则n=3x+4,0<n﹣4(x﹣1)<3,且n,x都是正整数,将n=3x+4代入0<n﹣4(x﹣1)<3求出x、n的值,当求出x的值后,求n的值时,根据实数的运算法则求值.【解答】解:设小朋友的人数为x人,玩具数为n件,由题意可得:n=3x+4,0<n﹣4(x﹣1)<3,即:0<3x+4﹣4(x﹣1)<3,解得5<x<8,由于x的是正整数,所以x的取值为6人或7人,当x=6时,n=3x+4=22件;当x=7时,n=3x+4=25件.故最多有25件玩具.故答案为:25.39.(2018春•江岸区校级月考)安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为8或9或10.【分析】设宿舍有x间,则学生有(4x+15)人,根据题意条件建立不等式组求出x的值即可.【解答】解:设宿舍有x间,则学生人数为(4x+15)人根据题意得:0<(4x+15)﹣6(x﹣1)<6解得:<x<且x为正整数∴x=8或9或10故答案为8或9或1040.(2018春•武城县期末)学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有5间宿舍,30名女生.【分析】根据题意可得:女生人数=5+所有宿舍人数,可列方程.根据有一间房有人住但不满可列不等式.【解答】解:设有x间宿舍,有y名女生根据题意得:∴<x<7且x为正整数∴x=5或6∴y=30或35且该班女生少于35人∴x=5,y=30故答案为:5,3041.(2018春•滦南县期末)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费6元.【分析】根据题意可知,早上9:00到当天11:30一共是2.5个小时,则收费为1+2+3=6元.【解答】解:由题意得:11:30﹣9:00=2.5小时,故第一个小时为1元,第二个小时为2元,第三个不足1小时按1小时计算应该交3元,故小明应付租车费为:1+2+3=6元,故答案为:6.42.(2018春•如皋市期末)运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是<x≤8.【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【解答】解:由题意得,解不等式①得x≤8,解不等式②得,x>,则x的取值范围是<x≤8.故答案为:<x≤8.43.(2018春•安庆期末)下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是4≤x<11.【分析】输入x,经过第一次运算,结果为3x﹣1<32,经过第二次运算,结果为3(3x﹣1)﹣1≥32,两个不等式联立,形成一元一次不等式组求解,即可得到答案.【解答】解:根据题意得:,解得:4≤x<11,即输入的x的取值范围为:4≤x<11,故答案为:4≤x<11.44.(2018春•三亚期末)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有121棵.【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【解答】解:设共有x人,则有4x+37棵树,由题意得:,解之得:20<x<,∴x=21,∴4x+37=121 (棵),答:这批树苗共有121棵,故答案为:12145.(2018春•南山区期末)如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个.根据以上信息可以判定一共有7个儿童.【分析】根据题意,儿童和橘子都为整数,列出不等式,从而求解出多少儿童.【解答】解:设共有x个儿童,则共有(4x+9)个橘子,则0<4x+9﹣6(x﹣1)<3∴6<x<7.5所以共有7个儿童,故答案为:746.(2018春•郾城区期末)把m个练习本分给n个学生,如果每人分3本,那么余8本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为5或6.【分析】由每人分3本、余8本知练习本的总数为3n+8,再利用“0<练习本总数﹣每人5本时前(n ﹣1)人练习本总数<5”列出关于n的不等式组,解之可得.【解答】解:如果每人分3本、余8本,那么练习本的总数为3n+8,根据题意,得:,解得:4<n<6.5,∵n为整数,∴n=5或6,故答案为:5或6.47.(2018春•滕州市期中)初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为至少6人.【分析】首先依据题意得出不等关系即平均每人分摊的钱不足1.5元,由此列出不等式,进而解决问题.【解答】解:设参加合影的同学人数为x人,则有5+0.5x<1.5x,解得x>5,。

一元一次不等式和一元一次不等式组测试题及答案

一元一次不等式和一元一次不等式组测试题及答案

一元一次不等式和一元一次不等式组一.填空题:(每小题2分,共20分)1.若x&lt;y,则x?2 y?2;(填“&lt;、&gt;或=”号)ab??,则3a_____b;(填“&lt;、&gt;或=”号) 3.不等式2x≥x?2的解集是_________;393?2y4.当y_______时,代数式的值至少为1;5.不等式6?12x?0的解集是______ ___;42.若?6.不等式7?x?1的正整数解为:;7.若一次函数y?2x?6,当x___ __时,y?0;8.x的3与12的差不小于6,用不等式表示为__________________; 59.不等式组??2x?3?0的整数解是______________;?3x?2?0?3x?2y?p?1的解满足x&gt;y,则P的取值范围是_________; 4x?3y?p?1?b10.若关于x的方程组?二.选择题:(每小题3分,共30分) 11.若a&gt;,则下列不等式中正确的是()(A) a?b?0 (B) ?5a??5b (C) a?8?b?8 (D) ab? 4412. 关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B.-3C. -2D.-1 ( 第12题)13.已知两个不等式的解集在数轴上如图表示,那么这个解集为()(A) x≥?1 (B) x?1(C) ?3?x??1 (D) x??3?x?8?4x-1,14.如果不等式组?的解集是x?3,那么m的取值范围是( )?x?mA. m≥3B. m≤3C.m=3D. m&lt;315.下列不等式求解的结果,正确的是()(A)不等式组??x??3?x??5的解集是x??3 (B)不等式组?的解集是x??5?x??5?x??4?x?5?x?10(C)不等式组?无解(D)不等式组?的解集是?3?x?10?x??7?x??316.把不等式组??x?1?0的解集表示在数轴上,正确的是图中的()?x?1?01。

京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习试题(含答案解析)

京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习试题(含答案解析)

七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1B .a <-1C .a >1D .a >-12、若a >b ,则下列不等式一定成立的是( ) A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +13、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( ) A .5B .2C .4D .64、下列判断不正确的是( ) A .若a b >,则33a b +>+ B .若a b >,则33a b -<- C .若22a b >,则a b >D .若a b >,则22ac bc >5、如果a b <,那么下列不等式中正确的是( )A .22a b < B .11a b ->- C .a b -<-D .22a b -+<-+6、不等式组3x x a>⎧⎨>⎩的解是x >a ,则a 的取值范围是( )A .a <3B .a =3C .a >3D .a ≥37、如果关于x 的方程ax ﹣3(x +1)=1﹣x 有整数解,且关于y 的不等式组31252130y a y +⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a 的个数为( ) A .3B .4C .5D .68、某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x 题,可得式子为( ) A .10x ﹣3(30﹣x )>70 B .10x ﹣3(30﹣x )≤70 C .10x ﹣3x ≥0D .10x ﹣3(30﹣x )≥709、不等式34x x ≥+的解集在数轴上表示正确的是( ) A .B .C .D .10、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( ) A .n >1-B .n <1-C .n >2D .n <2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1﹣3<2x 的解集是 ___.2、如果关于x的不等式组3020x ax b-≥⎧⎨-≤⎩的整数解只有1,2,3,那么a的取值范围是______,b的取值范围是______.3、不等式组121aa a-<⎧⎨>-⎩的解集为____________.4、若不等式组9433x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为__________.5、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式4x﹣1>3x;(2)解不等式组3(1)5(1)21531123x xx x-≤+-⎧⎪-+⎨>-⎪⎩.2、解不等式1226123x x++≥-,并将解集在数轴上表示;3、由于传染病防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?4、某厨具店购进A型和B型两种电饭煲进行销售,其进价与售价如表:(1)一季度,厨具店购进这两种电饭煲共30台,用去了5600元,问该厨具店购进A,B型电饭煲各多少台?(2)为了满足市场需求,二季度厨具店决定用不超过9560元的资金采购两种电饭煲共50 台,且A 型电饭俣的数量不少于B型电饭煲数量,问厨具店有哪几种进货方案?(3)在(2)的条件下,全部售完,请你通过计算判断,哪种进货方案厨具店利润最大,并求出最大利润.5、阅读下列材料:根据绝对值的定义,||x表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=12||.x x根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M是数轴上一个动点,表示数m.(1)AB = 个单位长度;(2)若48m m ++-=20,求m 的值;(写过程)(3)若关于x 的方程|1||1||5|x x x a -+++-=无解,则a 的取值范围是 .---------参考答案----------- 一、单选题 1、B 【解析】 【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围. 【详解】解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变, 10a ∴+<,1a ∴<-,故选:B . 【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变. 2、A【解析】 【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可. 【详解】 解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >,∴1133a b +>+,故本选项不符合题意; 故选:A . 【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 3、C 【解析】 【分析】先求出3﹣2x =3(k ﹣2)的解为x 932k-=,从而推出3k ≤,整理不等式组可得整理得:1x x k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.4、D【解析】【分析】根据不等式得性质判断即可. 【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误; 故选:D . 【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变. 5、A 【解析】 【分析】根据不等式的性质解答. 【详解】解:根据不等式的性质3两边同时除以2可得到22a b <,故A 选项符合题意; 根据不等式的性质1两边同时减去1可得到11a b -<-,故B 选项不符合题意;根据不等式的性质2两边同时乘以-1可得到a b ->-,故C 选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到22a b -+>-+,故D 选项不符合题意;故选:A.【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变.6、D【解析】【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.7、C【解析】【分析】先解关于y的不等式组可得解集为2133ay+≤≤,根据关于y的不等式组有解可得2133a+≤,由此可得4a≤,再解关于x的方程可得解为42xa=-,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得42a-的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:31252130ya y+⎧≤⎪⎨⎪+-≤⎩①②,解不等式①,得:3y≤,解不等式②,得:213ay+≥,∴不等式组的解集为2133ay+≤≤,∵关于y的不等式组有解,∴2133a+≤,解得:4a≤,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵4a≤,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.【解析】【分析】根据得分−扣分不少于70分,可得出不等式.【详解】解:设答对x题,答错或不答(30−x),则10x−3(30−x)≥70.故选:D.【点睛】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.9、A【解析】【分析】先解不等式,再利用数轴的性质解答.【详解】解:34≥+x x解得2x≥,∴不等式34≥+的解集在数轴上表示为:x x故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.【解析】【分析】先根据新运算的定义和3✬4=2将m用n表示出来,再代入5✬8>2可得一个关于n的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n+=,解得243nm-=,由5✬8>2得:582m n+>,将243nm-=代入582m n+>得:5(24)823nn-+>,解得1n>-,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.二、填空题1、6x>-.【解析】【分析】先移项,然后系数化为1,即可求出不等式的解集.【详解】32x-<,23x -<,∴2)3x <, ∴x∴2)x >-,∴6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.2、 03a ≤< 68b ≤<【解析】【分析】 先解不等式组可得解集为:,32a b x ≤≤再利用整数解只有1,2,3,列不等式01,34,32a b ≤≤<< 再解不等式可得答案.【详解】解:3020x a x b -≥⎧⎨-≤⎩①② 由①得:,3a x ≥ 由②得:,2bx ≤ 因为不等式组有整数解,所以其解集为:,32ab x ≤≤又整数解只有1,2,3,01,34,32a b ∴≤≤<< 解得:03,68,a b ≤≤<<故答案为:03,68a b ≤≤<<【点睛】本题考查的是一元一次不等式组的解法,一元一次不等式组是整数解问题,解题过程中注意确定字母取值范围时的“等于号”的确定是解题的关键.3、132a <<【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式12a -<得: 3a <解不等式1a a 得:12a >∴原不等式组的解集为132a << 故答案为:132a <<【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.4、1k ≥-【解析】【分析】先解一元一次不等式组中的两个不等式,再根据解集为2x <,可得32k +≥,从而可得答案.【详解】解:9433x x x k +>+⎧⎨-<⎩①② 由①得:36x ->-2x ∴<由②得:3x k <+不等式组9433x x x k +>+⎧⎨-<⎩的解集为2x <, 32k ∴+≥1∴≥-k故答案为:1k ≥-【点睛】本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.5、20~45【解析】【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg ,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.三、解答题1、(1)1x>;(2)133x-≤<.【解析】【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x﹣1>3x;431x x->解得1x>;(2)3(1)5(1)21531123x xx x-≤+-⎧⎪⎨-+>-⎪⎩①②解不等式①得:3x≥-,解不等式②得:13 x<∴不等式组的解集为133x -≤< 【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.2、7x ≥-,数轴表示见解析【解析】【分析】先去分母,然后再求解一元一次不等式即可.【详解】 解:1226123x x ++≥- 去分母得:()()3162226x x +≥-+,去括号得:336452x x +≥--,移项、合并同类项得:749x ≥-,系数化为1得:7x ≥-;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.3、(10)10;(2)4【解析】【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤,∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.4、(1)厨具店购进A ,B 型电饭煲各10台,20台;(2)有四种方案:①购买A 型电饭煲25台,购买B 型电饭煲25台;②购买A 型电饭煲26台,购买B 型电饭煲24台;③购买A 型电饭煲27台,购买B 型电饭煲23台,④购买A 型电饭煲28,购买B 型电饭煲22台;(3)购买A 型电饭煲28,购买B 型电饭煲22台时,橱具店赚钱最多.【解析】【分析】(1)设橱具店购进A 型电饭煲x 台,B 型电饭煲y 台,根据橱具店购进这两种电饭煲共30台且用去了5600元,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,即可;(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据橱具店决定用不超过9560元的资金采购电饭煲和电压锅共50个且A型电饭俣的数量不少于B型电饭煲数量,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.【详解】解:(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,根据题意得:302001805600x yx y+=⎧⎨+=⎩,解得:1020xy=⎧⎨=⎩,答:厨具店购进A,B型电饭煲各10台,20台;(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据题意得:() 20018050956050a aa a⎧+-≤⎨≥-⎩,解得:25≤a≤28.又∵a为正整数,∴a可取25,26,27,28,故有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;(3)设橱具店赚钱数额为w元,当a=25时,w=25×100+25×80=4500;当a=26时,w=26×100+24×80=4520;当a=27时,w=27×100+23×80=4540;当a=28时,w=28×100+22×80=4560;综上所述,当a=28时,w最大,即购买A 型电饭煲28,购买B 型电饭煲22台时,橱具店赚钱最多.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据数量关系,列出关于a 的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.5、(1)12;(2)m =-8或12;(3)6a <【解析】【分析】(1)根据题中所给数轴上两点距离公式可直接进行求解;(2)由题意可分当4m <-,48m -≤≤,8m >三种情况进行分类求解即可;(3)由题意可分当1x <-,11x -≤≤,15x <≤,5x >四种情况进行分类求解,然后根据方程无解可得出a 的取值范围.【详解】解:(1)由题意得:()8412AB =--=;故答案为12;(2)由题意得:①当4m <-时,则有:4820m m ---+=,解得:8m =-;②当48m -≤≤时,则有4820m m +-+=,方程无解;③当8m >时,则有4820m m ++-=,解得:12m =,综上所述:m =-8或12;(3)由题意得:①当1x <-时,则有115x x x a -+---+=,解得:53a x -=, ∵方程无解, ∴513a -≥-,解得:8a ≤;②当11x -≤≤时,则有115x x x a -+++-+=,解得:7x a =-,∵方程无解,∴71a -<-或71a ->,解得:8a >或6a <;③当15x <≤时,则有115x x x a -++-+=,解得:5x a =-,∵方程无解,∴51a -≤或55a ->,解得:10a >或6a ≤;④当5x >时,则有115x x x a -+++-=,解得:53a x +=, ∵方程无解, ∴553a +≤,解得:10a ≤; 综上所述:当关于x 的方程|1||1||5|x x x a -+++-=无解,则a 的取值范围是6a <;故答案为6a <.【点睛】本题主要考查数轴上两点距离、一元一次不等式的解法及一元一次方程的解法,熟练掌握数轴上两点距离、一元一次不等式的解法及一元一次方程的解法是解题的关键.。

北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)

北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)

【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是 .(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a= ,b= .(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 ( ) A .m >8 B.m ≥8 C.m <8 D.m ≤8(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是( ).A .m≤3 B . m≥3 C .m=3 D .m <3(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是 .【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来;(2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为4.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打多少折?解:◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( )x <y B .x >yC .x ≤yD .x ≥y 解答题:(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

(完整版)一元一次不等式各题型练习

(完整版)一元一次不等式各题型练习

一元一次不等式各题型练习例一.解不等式组-+<-+-≥⎧⎨⎪⎩⎪21113121x x x 31151235x x x x +>-≤-⎧⎨⎪⎪⎩⎪⎪ -<-<1232x例二.若||()x x y m -+--=4502,求当y ≥0时,m 的取值范围。

例三.班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?甲同学说:如果有x 个篮球,550x <.乙同学说:650x >.丙同学说:6(1)50x -<.你明白他们的意思吗?例四.3.若不等式组的解集为−1<x<1,求(a+1)(b −1)的值.例五.用不等式表示:x 的2倍与1的和大于-1为__________,y 的13与t 的差的一半是负数为_________。

例六.x 为何值时,代数式5123--+x x 的值是非负数?例七.已知:关于x 的方程m x m x =--+2123的解是非正数,求m 的取值范围.一.填空:1、有下列数学表达:①30<;②450x +>;③3x =;④2x x +;⑤4x ≠-; ⑥21x x +>+.其中是不等式的有________个.2. 学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分;大饼直径40cm ,售价40分.你更愿意买 饼,原因是 .3.若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 4.用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23; (3)如果15x >-2,那么x______-10; (4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 5.有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a ,b 的不等式表示为 .6、有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。

10一元一次不等式组(基础) 知识讲解及其练习 含答案

10一元一次不等式组(基础) 知识讲解及其练习 含答案

一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20, 所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三: 【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x xx +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.一元一次不等式组(基础)巩固练习【巩固练习】一、选择题1.下列选项中是一元一次不等式组的是( )A .B .C .D .2.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为 ( ).3.(•来宾)已知不等式组的解集是x≥1,则a 的取值范围是( ) A .a <1 B .a ≤1C .a ≥1D .a >1 4.不等式32015x -<≤的整数解有( ). A .4个 B .3个 C .2个 D .1个5.现用甲、乙两种运输车将46t 抗旱物资运往灾区,甲种运输车载重5t ,乙种运输车载重4t ,安排车辆不超过10辆,则甲种运输车至少应安排( ).A .4辆B .5辆C .6辆D .7辆6.如果|x+1|=1+x ,|3x+2|=-3x-2,那么x 的取值范围是( ).A .213x -≤≤-B .1x ≥-C .23x ≤-D .213x -≤≤- 二、填空题7.如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 8.(•广东)不等式组x x x x --⎧⎪⎨-⎪⎩1222132≤>的解集是 . 9.不等式组34125x +-≤<的所有整数解的和是______. 10. 如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围为 .11.从彬彬家步行到学校的路程是2400米,如果彬彬7时离家,要在7时30分至40分间到达学校,那么步行的速度x (米/分)的范围是________.12. 在△ABC 中,三边为a 、b 、c ,如果a 3x =,b 4x =,c 28=,那么x 的取值范围是 .三、解答题13.解下列不等式组,并将其解集在数轴上表示出来.(1)2(1)31134x x x x +≤-⎧⎪+⎨<⎪⎩;(2)1<3x-2<4;14.若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求m 的取值范围.15.郑老师想为希望小学四年级(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【答案与解析】一、选择题1. 【答案】D ;【解析】解:A 、含有两个未知数,错误;B 、未知数的次数是2,错误;C 、含有两个未知数,错误;D 、符合一元一次不等式组的定义,正确;故选D.2. 【答案】A ;【解析】解不等式组可得:1,2x x >≥且.3. 【答案】A ;4. 【答案】B ;【解析】32053215x x -⎧<⎪⎪⎨-⎪≤⎪⎩,解得:312x -≤<,所以整数解:-1,0,1. 5. 【答案】C ;【解析】设甲种运输车安排x 辆,5x+4(10-x )≥46,x≥6,故至少要甲种运输车6辆.6. 【答案】A ;【解析】由10320x x +≥⎧⎨--≥⎩,解得213x -≤≤-. 二、填空题7. 【答案】x >2,无解;8. 【答案】﹣3<x≤1;【解析】解不等式①得:x≤1,解不等式②得:x >-3,所以不等式组的解集是:﹣3<x≤1.9. 【答案】-5;【解析】所有整数解:-3,-2,-1,0,1,所以和为-5.10.【答案】1<m <2;【解析】由第一幅图得m >1,由第二幅图得m <2,故1<m <211.【答案】60<x <80; 【解析】设步行速度为x 米/分,依题意可得:3240042400x x <⎧⎨>⎩,得60<x <80 12.【答案】4<x <28;【解析】4x-3x <28<4x+3x ,即4<x <28.三、解答题13.【解析】解:(1)由①得解集为x ≥3,由②得解集为x <3,在数轴上表示①、②的解集,如图, 所以不等式组无解.(2)不等式组的解集为1<x <2,表示在数轴上如图:14.【解析】 解:,①+②得2x=4m ﹣2,解得x=2m ﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x 的值为负数,y 的值为正数, ∴,∴﹣4<m <.15.【解析】解:(1)设每个书包的价格为x 元,则每本词典的价格为(x-8)元.根据题意得:3x+2(x-8)=124解得:x =28.∴ x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y 个,则购买词典(40-y)本.根据题意得:1000[2820(40)]1001000[2820(40)]120y y y y -+-≥⎧⎨-+-≤⎩, 解得:10≤y ≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.。

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析1. 不等式组{x>−1x≤1的解集是( )A. x<1B. x≥1C. −1<x≤1D. 1≤x<−12. 不等式组{x+2<0x+3<0的解集是( )A. x<−2B. x<−3C. −3<x<−2D. x>−23. 下列各式中一元一次不等式是( )A. x≥5xB. 2x>1−x2C. x+2y<1D. 2x+1≤3x4. 若代数式2a+7的值不大于3则a的取值范围是( )A. a≤4B. a≤−2C. a≥4D. a≥−25. 已知a>b>0则下列不等式不一定成立的是( )A. ab>b2B. a+c>b+cC. 1a <1bD. ac>bc6. 不等式4x−511<1的正整数解为( )A. 1个B. 3个C. 4个D. 5个7. 不等式组{x+1≤02x+3<5的解集是( )A. x≤−1或x>1B. −1≤x<1C. x≤−1D. x>18. 亮亮准备用自己节省的零花钱买一台英语复读机他现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.设x个月后他至少有300元则可以用于计算所需要的月数x的不等式是( )A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3009. 关于x的不等式组{x+43>x2+1x+a<0的解集为x<2则a的取值范围是( )A. a≤−2B. a≥−2C. a≤2D. a≥210. 如果a<b<0下列不等式中错误的是( )A. ab>0B. a+b<0C. ab<1 D. a−b<011. 不等式12x>−3的解集是______.12. 不等式x+2>12x的负整数解______.13. 不等式组:{x−1<0x>0的解集是______.14. 不等式组{2x+1>x−1x+8>4x−1的正整数解是______.15. 某生物兴趣小组要在温箱里培养A B两种菌苗A种菌苗的生长温度x(℃)的范围是35≤x≤38 B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)d的范围是______.16. 已知不等式3x −a ≤0的正整数解只有1 2 3 那么a 的取值范围是______.17. 若不等式组{x −a >2b −2x >0的解集是−1<x <1 则(a +b)2014等于______. 18. 已知关于x 的不等式组{5−2x ≥1x −a ≥0无解 则a 的取值范围是______. 19. 一位老师说 他班学生的一半在学数学 四分之一的学生在学音乐 七分之一的学生在学外语 还剩不足6名同学在操场上踢足球 则这个班的学生最多有______人.20. 几个小朋友分糖块 如果每人分4块糖 则多余8块糖 如果每人分8块糖 则有一人分到了糖块但不足8块 请你猜想 共有______位小朋友______块糖.21. 解下列不等式 并把它们的解集在数轴上表示出来.(1)−3(1−x)+6>1+4x(2)x −12+1≥x. 22. 解下列不等式组:(1){3x −1<52x +6>0(2){3(x +1)>5x +4x −12≤2x −13. 23. 已知关于x 的方程5x −2m =3x −6m +1的解为x 满足−3<x ≤2 求m 的整数值.24. 某软件公司开发一种图书软件 前期投入的开发、广告宣传费用共50000元 且每售出一套软件 软件公司还需支付安装调试费200元.如果每套定价700元 软件公司至少要售出多少套才能确保不亏本?25. 一本科普读物共98页 晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了.已知小敏平均每天比晓芬多读3页 那么晓芬平均每天读多少页?(答案取整数)26. 扬州火车站有某公司待运的甲种货物1530吨 乙种货物1150吨 现计划用50节A 、B 两种型号的车厢将这批货物运至北京、已知每节A 型货厢的运费是0.5万元 每节B 型货厢的运费是0.8万元 甲种货物35吨和乙种货物15吨可装满一节A 型货厢 甲种货物25吨和乙种货物35吨可装满一节B 型货厢 按此要求安排A 、B 两种货厢的节数 共有几种方案?请你设计出来 并说明哪种方案的运费最少 最少运费是多少?参考答案与解析1.【答案】C【解析】解:把解集表示在数轴上如下:所以不等式组的解集是−1<x ≤1.故选:C.把两个解集表示在数轴上 再找公共部分即可.本题考查一元一次不等式组的解集 熟练掌握在数轴上表示不等式的解集是解题关键.2.【答案】B【解析】解:{x +2<0①x +3<0②由①得:x <−2由②得:x <−3则不等式组的解集为x <−3.故选:B.分别求出不等式组中两不等式的解集 找出两解集的公共部分即可.此题考查了解一元一次不等式组 熟练掌握不等式组的解法是解本题的关键.3.【答案】D【解析】解:A 、不是整式 不符合题意B 、未知数的最高次数是2 不符合题意C 、含有2个未知数 不符合题意D 、是只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式 符合题意故选D.找到只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式即可.考查一元一次不等式的定义:只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式叫做一元一次不等式.4.【答案】B【解析】解:依题意得2a +7≤32a ≤−4a≤−2.故选:B.根据题意列出不等式利用不等式的性质来求a的取值范围.本题考查了解一元一次不等式.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.【答案】D【解析】解:A、ab>b2成立B、a+c>b+c成立C、1a <1b成立D、ac<bc不一定成立.故选:D.根据不等式的性质分析判断.不等式两边同时乘以或除以同一个数或式子时一定要注意不等号的方向是否改变.6.【答案】B【解析】解:解不等式得x<4则不等式4x−511<1的正整数解为123共3个.故选:B.首先利用不等式的基本性质解不等式然后找出符合题意的正整数解.本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.【答案】C【解析】解:解不等式x+1≤0得:x≤−1解不等式2x+3<5得:x<1则不等式组的解集为x≤−1故选C.分别求出每一个不等式的解集根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.8.【答案】B【解析】解:x个月可以节省30x元根据题意得30x+45≥300.故选:B.此题中的不等关系:现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.至少即大于或等于.本题主要考查简单的不等式的应用解题时要注意题目中的“至少”这类的词.9.【答案】A【解析】解:根据题意得:x<2x+a<0∴x<−a∴a=−2或a<−2∴a≤−2故选A.根据题意知道不等式组的解集为x<2再由x+a<0直接求出a的取值范围.本题考查了不等式的解集解题的关键是根据题意及不等式的解集直接求出a的取值范围.10.【答案】C【解析】解:A、如果a<b<0则a、b同是负数因而ab>0故A正确B、因为a、b同是负数所以a+b<0故B正确C、a<b<0则|a|>|b|则ab >1也可以设a=−2b=−1代入检验得到ab<1是错误的.故C错误D、因为a<b所以a−b<0故D正确故选:C.根据不等式的性质分析判断.利用特殊值法验证一些式子错误是有效的方法.11.【答案】x>−6【解析】解:去分母得故答案为:x>−6.直接把不等式的两边同时乘以2即可得出结论.本题考查的是解一元一次不等式熟知不等式的基本性质是解答此题的关键.12.【答案】−3−2−1【解析】解:不等式x +2>12xx −12x >−2 12x >−2 解得x >−4故不等式x +2>12x 的负整数解有−3、−2、−1.故答案为:−3、−2、−1.首先利用不等式的基本性质解不等式 再从不等式的解集中找出非负整数解即可.本题考查了一元一次不等式的整数解 正确解不等式 求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】0<x <1【解析】解集:由(1)得 x <1由(2)得 x >0所以不等式组{x −1<0x >0的解集是0<x <1. 分别求出两个不等式的解集 求其公共解集.求不等式的公共解集 要遵循以下原则:同大取较大 同小取较小 小大大小中间找 大大小小解不了.14.【答案】1 2【解析】解:{2x +1>x −1①x +8>4x −1②解不等式①得:x >−2解不等式②得:x <3∴原不等式组的解集为:−2<x <3∴该不等式组的正整数解为:1 2故答案为:1按照解一元一次不等式组的步骤 进行计算可得−2<x <3 然后再找出此范围内的正整数即可. 本题考查了一元一次不等式组的整数解 准确熟练地进行计算是解题的关键.15.【答案】35≤t ≤36【解析】解:由题意可得不等式组{35≤x ≤3834≤y ≤36根据求不等式解集的方法可知温箱里的温度t ℃应该设定在35≤t ≤36故答案为:35≤t ≤36.温箱里的温度T ℃应该设定在能使A B 两种菌苗同时满足的温度 即35≤x ≤38与34≤y ≤36的公共部分.此题考查的是不等式的解集.求不等式组的解集 应注意:同大取较大 同小取较小 小大大小中间找 大大小小解不了.16.【答案】9≤x <12【解析】解:不等式的解集是:x ≤a 3∵不等式的正整数解恰是1 2 3∴3≤a 3<4 ∴a 的取值范围是9≤a <12.故答案为:9≤a <12.首先确定不等式组的解集 利用含a 的式子表示 再根据整数解的个数就可以确定有哪些整数解 然后根据解的情况可以得到关于a 的不等式 从而求出a 的范围.本题考查了一元一次不等式的整数解 正确解出不等式的解集 正确确定a 3的范围 是解决本题的关键.解不等式时要用到不等式的基本性质.17.【答案】1【解析】解:{x −a >2①b −2x >0②解不等式①得 x >2+a解不等式②得 x <b 2所以 不等式组的解集是2+a <x <b 2∵不等式组的解集是−1<x <1∴{2+a =−1b 2=1 解得{a =−3b =2所以故答案为:1.先去用a 、b 表示出不等式组的解集 然后根据不等式组的解集列出关于a 、b 的方程组并求出a 、b 最后代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法 难点在于用a 、b 表示出不等式组的解集再列出方程组.18.【答案】a>2【解析】解:解不等式5−2x≥1得:x≤2解不等式x−a≥0得:x≥a∵不等式组的无解∴a>2故答案为:a>2.分别求出每一个不等式的解集根据口诀:大大小小找不到并结合不等式组的解集可得答案.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.19.【答案】28【解析】解:设这个班的学生共有x人依题意得:x−12x−14x−17x<6解之得:x<56又∵x为2、4、7的公倍数∴这个班的学生最多共有28人.本题考查一元一次不等式的应用将现实生活中的事件与数学思想联系起来读懂题列出不等关系式即可求解.解决问题的关键是读懂题意找到关键描述语找到所求的量的等量关系.20.【答案】3 20【解析】解:设x个小朋友y块糖由题意可知y−4x=81≤y−8(x−1)<8∴y=8+4x代入不等式可知2<x≤154∵x为整数所以x为3则y为20所以共有3位小朋友20块糖.故答案为3可以设x个小朋友y块糖列出不等式从而根据条件求解x和y的值.本题考查了一元一次不等式的应用解决问题的关键是读懂题意根据实际情况依题意列出不等式进行求解.21.【答案】解:(1)−3(1−x)+6>1+4x−3+3x+6>1+4x3x−4x>1+3−6−x >−2x <2将解集表示在数轴上如图所示:(2)x −12+1≥x x −1+2≥2xx −2x ≥1−2−x ≥−1x ≤1..【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得 然后在数轴上表示出解集即可.本题主要考查解一元一次不等式的基本能力 严格遵循解不等式的基本步骤是关键 尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.【答案】解:(1){3x −1<5①2x +6>0②解不等式①得:x <2解不等式②得:x >−3则不等式组的解集为−3<x <2(2){3(x +1)>5x +4①x −12⩽2x −13② 解不等式①得:x <−12解不等式②得:x ≥−1则不等式组的解集为−1≤x <−12.【解析】分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.23.【答案】解:解方程5x −2m =3x −6m +1 得x =12−2m.∵−3<x ≤2∴{12−2m ≤212−2m>−3解得−34≤m <134∴m 的整数值是0 1. 【解析】先用m 的式子表示x 再根据−3<x ≤2 列出不等式组 求出不等式组的解集 再从中找出m 的整数值.此题考查的是一元一次不等式组的解法和一元一次方程的解 根据x 的取值范围 得出a 的整数解.24.【答案】解:设软件公司要售出x 套软件才能确保不亏本则有:700x ≥50000+200x解得:x ≥100.答:软件公司至少要售出100套软件才能确保不亏本.【解析】要使公司不赔本 那么销售软件的收入≥投资的总费用 然后得出自变量的取值范围.本题考查一元一次不等式的应用 将现实生活中的事件与数学思想联系起来 读懂题列出不等式关系式即可求解.25.【答案】解:设晓芬平均每天读x 页 则小敏平均每天读(x +3)页依题意得:{7x <987(x +3)>98解得:11<x <14又∵x 为整数∴x =12或13.答:晓芬平均每天读12页或13页.【解析】设晓芬平均每天读x 页 则小敏平均每天读(x +3)页 根据“晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了” 即可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再取其中的整数值即可得出结论.本题考查了一元一次不等式组的应用 根据各数量之间的关系 正确列出一元一次不等式组是解题的关键.26.【答案】解:设A 型货厢的节数为x 则B 型货厢的节数为(50−x)节.{35x +25(50−x)≥153015x +35(50−x)≥1150解得:28≤x ≤30.∵x 为正整数∴x 可为28 29∴方案为①A型货厢28节B型货厢22节②A型货厢29节B型货厢21节③A型货厢30节B型货厢20节总运费为:0.5x+0.8×(50−x)=−0.3x+40∵−0.3<0∴x越大总运费越小∴x=30最低运费为:−0.3×30+40=31万元.答:A型货厢30节B型货厢20节运费最少最少运费是31万元.【解析】关系式为:A型货厢装甲种货物吨数+B型货厢装甲种货物吨数≥1530A型货厢装乙种货物吨数+B型货厢装乙种货物吨数≥1150把相关数值代入可得一种货厢节数的范围进而求得总运费的等量关系根据函数的增减性可得最少运费方案及最少运费.考查一元一次不等式组的应用及方案的选择问题得到所运货物吨数的两个关系式及总运费的等量关系是解决本题的关键。

第二章 一元一次不等式与一元一次不等式组测试题(含答案)

第二章 一元一次不等式与一元一次不等式组测试题(含答案)

第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。

第8章 一元一次不等式(基础篇)-七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(基础篇)-七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(基础篇)一、单选题(本大题共10小题,每小题3分,共30分) 1.下列式子是一元一次不等式的是( ) A .0x y +<B .20x >C .32xx >+ D .10x< 2.由a b ≥得到am bm ≤,则需要的条件是( ) A .0m >B .0m ≠C .0m ≥D .0m ≤3.不等式()322x x +>的最小整数解为( ) A .6x =-B .5x =-C .=0xD .=1x4.关于x 的不等式415x a+≥的解集如图所示,则a 的值是( )A .9B .﹣9C .5D .﹣55.不等式组()()41211132x x a x x ⎧-≤-⎪⎨--<-⎪⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<<-C .65a -<≤-D .65a -≤≤-6.小明要制作一个长方形的相片框架,这个框架的长为25cm ,面积不小于2500cm ,则宽的长度xcm 应满足的不等式组为( )A .2550025x x ≥⎧⎨<⎩B .2550025x x ≥⎧⎨>⎩C .2550025x x >⎧⎨<⎩D .2550025x x <⎧⎨>⎩7.某商品每件为a 元,买50件这样的商品的总费用不高于342元,则可得关于a 的不等式为( )A .50a ≤342B .50a <342C .50a >342D .50a ≥3428.关于x ,y 的方程组2232x y k x y k -=-⎧⎨-=⎩的解中x 与y 的和不小于5,则k 的取值范围为( )A .8k ≥B .8k >C .8k ≤D .8k <9.下列说法中,①若m >n ,则ma 2>na 2;①x >4是不等式8﹣2x <0的解集;①不等式两边乘(或除以)同一个数,不等号的方向不变;①12x y =-⎧⎨=-⎩是方程x ﹣2y =3的唯一解;①不等式组11x x ≤⎧⎨≥⎩无解.正确的有( )A .0个B .1个C .2个D .3个10.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a 、b 、c ,则三角形的面积S 可由公式S =其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足3a =,5b c +=,则此三角形面积的最大值为( )A .2B .3CD 二、填空题(本大题共8小题,每小题4分,共32分)11.若23411m x -+>-是关于x 的一元一次不等式,则m =__________. 12.写出一个不等式,使它的正整数解为1、2、3:__________________ 13.选择适当的不等号填空:若a b <,则2a -______2b -.14.不等式1x +>+的解集是_______.15.若关于x 的一元一次不等式组3x x m <⎧⎨<⎩,x 的解集是x <3,则满足条件的m 的一个值可以是___________.16.已知二元一次方程25x y +=-,当1x >-时,y 的取值范围是______.17.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm ,已知以后此树树围平均每年增长3cm ,若生长x 年后此树树围超过90cm ,则x 满足的不等式为___________.18.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作进行了两次就停止,则x 的取值范围是______.三、解答题(本大题共6小题,共58分)19.(8分)解不等式:(1) 5313x x-<+;(2) 1121 23x x++≤+.20.(8分)利用数轴,解下列一元一次不等式组:(1)240120xx+<⎧⎨->⎩(2)3142944637xxx x+⎧>-⎪⎨⎪+≥+⎩21.(10分)已知关于x,y的方程组325x y ax y a-=+⎧⎨+=⎩的解x,y都为正数.(1)求a的取值范围;(2)是否存在这样的整数a,使得不等式|a|+|2﹣a|<5成立?若成立,求出a的值;若不成立,并说明理由.22.(10分)(1)解一元一次不等式组24010xx-<⎧⎨+≥⎩①②,请结合题意填空,完成本题解答.步骤一:解不等式①,得2x<;步骤二:解不等式②,得___________;步骤三:把不等式①,②的解集在数轴上表示出来;步骤四:所以原不等式组的解集为___________.(2)求多项式2x x+-的差.对于任意实数x,比较这两个多项+-与多项式255254x x式的大小.23.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?24.(12分)某文具店购进A、B两种文具进行销售.若每个A种文具的进价比每个B种文具的进价少2元,且用900元正好可以购进50个A种文具和50个B种文具,(1)求每个A种文具和B种文具的进价分别为多少元?(2)若该文具店购进A种文具的数量比购进B种文具的数量的3倍还少5个,购进两种文具的总数量不超过95个,每个A种文具的销售价格为12元,每个B种文具的销售价格为15元,则将购进的A、B两种文具全部售出后,可使总利润超过371元,通过计算求出该文具店购进A、B两种文具有哪几种方案?参考答案1.C【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.解:A .含有2个未知数,不是一元一次不等式,选项不符合题意; B .最高次数是2次,不是一元一次不等式,选项不符合题意; C .32xx >+是一元一次不等式,选项符合题意; D .1x不是整式,则不是一元一次不等式,选项不符合题意.故选C .【点拨】本题考查不等式的定义,一元一次不等式中必须只含有一个未知数,未知数的最高次数是一次,并且不等式左右两边必须是整式.2.D【分析】根据不等式的性质,两边同时乘以一个负数,不等号方向改变求解即可. 解:①a b ≥,当0m ≤时,有am bm ≤, 故选:D .【点拨】本题考查了不等式的性质,解题关键是牢记不等式的性质. 3.B【分析】先去括号,移项解不等式得到不等式的解集,再求解最小正整数解即可. 解:①()322x x +>, ①632,x x +> ①6,x ->①不等式的最小整数解为5,x =- 故选B .【点拨】本题考查的是一元一次不等式的解法,求解不等式的最小整数解,掌握“解一元一次不等式的方法与步骤”是解本题的关键.4.A【分析】去分母,移项,合并同类项,系数化为1解出不等式,然后根据数轴图找出不等式解集,进而求出a 的值.解:去分母得:45x a +≥,移项得:45x a ≥﹣, 系数化为1得:54ax -≥, 根据数轴图知解集为1x ≥-, ①514a-=-, ①9a =. 故选:A .【点拨】本题考查一元一次不等式的解法,解题关键是熟知一元一次不等式的解法并能根据数轴图写出解集.5.C【分析】先求出不等式组的解集,再根据不等式组有3个整数解得出关于a 的不等式组,求出即可.解:()()41211132x x a x x ⎧-≤-⎪⎨---⎪⎩①<② 解不等式①得:x ≤2﹣a , 解不等式①得:x >4,①不等式组的解集是4<x ≤2﹣a ,①不等式组()()41211132x x a x x ⎧-≤-⎪⎨---⎪⎩<有3个整数解,①3个整数解是5,6,7, ①7≤2﹣a <8, 解得:﹣6<a ≤﹣5, 故选:C .【点拨】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能根据题意求出关于a 的不等式组.6.A【分析】根据长方形的宽小于长和长方形的面积不小于2500cm 列出不等式即可. 解:由题意可知2550025x x ≥⎧⎨<⎩故选A .【点拨】此题考查的是根据题意,列不等式组,掌握长方形的宽小于长和长方形的面积公式是解决此题的关键.7.A【分析】设商品的单价为a 元,根据买50件这样的商品的总费用不高于342元,可列出不等式.解:设商品的单价为a 元,依题意得, 50a ≤342. 故选A .【点拨】本题考查由实际问题抽象出一元一次不等式,关键是根据不等关系列不等式. 8.A【分析】由两式相减,得到3x y k +=-,再根据x 与 y 的和不小于5列出不等式即可求解.解:把两个方程相减,可得3x y k +=-, 根据题意得:35k -≥, 解得:8k ≥.所以k 的取值范围是8k ≥. 故选:A .【点拨】本题考查二元一次方程组、不等式,将两式相减得到x 与y 的和是解题的关键. 9.B【分析】利用不等式的基本性质,解集与解的定义判断即可. 解:①若m >n 且a≠0,则ma 2>na 2,不正确,不符合题意; ①x >4是不等式8﹣2x <0的解集,符合题意;①不等式两边乘(或除以)同一个数(不为0),不等号的方向不变,故不符合题意; ① 12x y =-⎧⎨=-⎩是方程x ﹣2y =3的一组解,不是唯一解,故不符合题意;①不等式组11x x ≤⎧⎨≥⎩ 的解集为x =1,故不符合题意.所以正确的个数是:1个 故选:B .【点拨】本题考查了二元一次方程的解、解一元一次不等式组.熟悉二元一次方程的解,以及一元一次不等式组的解集是解题的关键.10.B【分析】由题意得,计算p 的值,代入2S 中,利用不等式求出它的最大值. 解:①a =3,b +c =5, ①p =()()1135422a b c ++=+=; ()()()()2443444416S b c bc b c =⨯-⨯-⨯-=-++⎡⎤⎣⎦=4(bc -4)24()42b c +⎡⎤≤⨯-⎢⎥⎣⎦=944⨯=9,当且仅当b =c =2.5时取等号, ①3S ≤,①这个三角形的面积的最大值是3. 故选:B .【点拨】本题考查了三角形的面积公式和基本不等式的应用问题,也考查了运算求解能力,解题的关键是列出不等式.11.2【分析】根据一元一次不等式的定义:含一个未知数且未知数的最高次数是1次,不等式的左右两边都是整式.可得:231m -=,求解即可.解:根据题意得:231m -=, 解得:2m =. 故答案为:2.【点拨】本题考查一元一次不等式的定义.解题的关键是知道23m -是未知数x 的次数,根据次数等于1列出方程求解即可.12.x <4等,答案不唯一.【分析】可借助数轴,把它的正整数解在数轴上找到,据此写出不等式即可. 解:根据题意,把不等式的正整数解在数轴上表示为如图所示,故满足条件的不等式有x <4等.【点拨】此题答案不唯一,有无数个,但只要写出其中一个即可,本题属于开放类型题,逆向考查了不等式解集的概念,这是本题的创新之处.13.>【分析】根据不等式的性质,即可解答. 解:①a b <, ①22a b ->-, 故答案为:>.【点拨】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.14.<1x【分析】根据解一元一次不等式的方法求解即可.解:1x +>+移项得,>1x --合并同类项得,(1>1x --系数化为1得,<1x . 故答案为:<1x .【点拨】此题考查了解一元一次不等式,解题的关键是熟练掌握解一元一次不等式的步骤.15.5(答案不唯一)【分析】根据不等式组3x x m <⎧⎨<⎩,x 的解集是x <3,确定出m 的取值范围,再写出满足条件的m 的一个值即可.解:①关于x 的一元一次不等式组3x x m <⎧⎨<⎩,x 的解集是x <3,所以m ≥3,①满足条件的m 的一个值可以是5(答案不唯一) 故答案为:5(答案不唯一).【点拨】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键. 16.2y <-【分析】先求出x =−2y−5,然后根据x >−1,列不等式求解. 解:由x +2y =−5得,x =−2y−5, 由题意得,−2y−5>−1, 解得:y <−2. 故答案为:y <−2.【点拨】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质: (1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变; (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 17.10390x +>【分析】直接利用生长年数310⨯+大于90,进而得出答案. 解:根据题意可得:10390x +>. 故答案为:10390x +>.【点拨】本题主要考查了由实际问题抽象出一元一次不等式,解题的关键是正确表示树围增加的长度.18.29.549x ≤<.【分析】表示出第一次、第二次的输出结果,再由第二次输出结果可得出不等式,解出即可.解:第一次的结果为:2x ﹣10,没有输出,则2x ﹣10≤88, 解得:x ≤49;第二次的结果为:2(2x ﹣10)-10=4x -30,输出,则4x -30>88, 解得:x >29.5;综上可得:29.549x ≤<. 故答案为:29.549x ≤<.【点拨】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.19.(1) 2x <(2) 5x ≥-【分析】(1)不等式移项,合并同类项,把x 系数化为1,即可求出解集;(2)不等式去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解集. 解:(1)解:移项得:5313x x -<+,合并同类项得:24x <,解得:2x <;(2)去分母得:3(1)2(12)6x x +≤++,去括号得:33246x x +≤++,移项得:34263x x -≤+-,合并同类项得:5x -≤,解得:5x ≥-.【点拨】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键. 20.(1) 数轴见分析,<2x - (2) 数轴见分析,110x ≤<【分析】(1)求出每个不等式的解集,并表示在数轴上,得到不等式组的解集即可;(2)求出每个不等式的解集,并表示在数轴上,得到不等式组的解集即可.(1)解:240120x x +<⎧⎨->⎩①② 解不等式①得,<2x -,解不等式①得,12x <, 把两个不等式的解集在数轴上表示出来,如下,①不等式组的解集是<2x -;(2)3142944637x x x x +⎧>-⎪⎨⎪+≥+⎩①②解不等式①得,10x <,解不等式①得,1x ≥,把两个不等式的解集在数轴上表示出来,如下,①不等式组的解集是110x ≤<.【点拨】此题考查了一元一次不等式组,熟练掌握一元一次不等式组的解法是解题的关键.21.(1)a >2;(2)存在,3【分析】(1)先利用加减消元法解方程组得到得212x a y a =+⎧⎨=-⎩,则21020a a +>⎧⎨->⎩,然后解不等式组即可;(2)利用a >2去绝对值得到a+a ﹣2<5,解得a <72,从而得到2<a <72,然后确定此范围内的整数即可.解:(1)解方程组得212x a y a =+⎧⎨=-⎩, ①x >0,y >0,①21020a a +>⎧⎨->⎩, 解得a >2;(2)存在.①a >2,而|a|+|2﹣a|<5,①a+a ﹣2<5,解得a <72, ①2<a <72, ①a 为整数,①a =3.【点拨】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.22.(1)1x ≥-,12x -≤<;(2)大于【分析】(1)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.(2)把两式相减判断出差的符号即可.(1)解:解不等式①,得2x <;解不等式②,得:1x ≥-;把不等式①和②的解集在数轴上表示出来:所以原不等式组的解集为12x -≤<.故答案为:112x x ≥--≤<,. (2)解:依题意得:2225455x x x x +--+-()(), 21x =+,对于任意实数210x x +>,,∴多项式2254x x +-大于255x x +-.【点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)方程见分析,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)可能是2元或者6元【分析】(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.解:(1)设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支, 根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了(2)设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-, 整理,得13942x a =+, 因为010a <<,x 随a 的增大而增大,所以19.522x <<,①x 取整数,①20,21x =.当20x 时,420782a =⨯-=,当21x =时,421786a =⨯-=,所以笔记本的单价可能是2元或者6元.【点拨】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.24.(1)每个A 种文具的进价为8元,每个B 种文具的进价为10元;(2)该五金商店有两种进货方案:①购进A 种文具67个,B 种文具24个;①购进A 种文具70个,B 种文具25个.【分析】(1)设每个A 种文具的进价为x 元,每个B 种文具的进价为y 元,根据“每个A 种文具的进价比每个B 种文具的进价少2元,且用900元正好可以购进50个A 种文具和50个B 种文具”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进B 种文具m 个,则购进A 种文具()35m -个,根据购进两种文具的总数量不超过95个且销售两种文具的总利润超过371元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数即可得出各进货方案.解:(1)设每个A 种文具的进价为x 元,每个B 种文具的进价为y 元,依题意,得:25050900y x x y -=⎧⎨+=⎩解得:810x y =⎧⎨=⎩. 答:每个A 种文具的进价为8元,每个B 种文具的进价为10元;(2)设购进B 种文具m 个,则购进A 种文具()35m -个,依题意,得:3595(128)(35)(1510)371m m m m +-≤⎧⎨--+->⎩解得:2325m <≤.①m 为整数,①24m =或25,3567m -=或70,①该五金商店有两种进货方案:①购进A 种文具67个,B 种文具24个;①购进A 种文具70个,B 种文具25个.故答案为(1)每个A 种文具的进价为8元,每个B 种文具的进价为10元;(2)该五金商店有两种进货方案:①购进A 种文具67个,B 种文具24个;①购进A 种文具70个,B 种文具25个.【点拨】本题考查二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

一元一次不等式(组)计算类练习(带解析)

一元一次不等式(组)计算类练习(带解析)

一元一次不等式(组)计算类练习(带解析)1.解不等式组.2.解不等式:.2.解不等式(组):(1)解不等式2x+3>7;(2)解不等式组.3.解下列不等式(组):(1)3x﹣4>2;(2).5.解下列一元一次不等式组,并把不等式组的解在数轴上表示出来.6.解不等式(组):(1)2x+3>﹣5;(2).7.解不等式组并把解集在数轴上表示出来.8.解不等式组:.9.解下列不等式(组):(1)2x﹣1>x﹣3;(2).10.解下列不等式(组):(1)3x﹣6≥x;(2).11.解下列不等式(组):(1)5x+3<3(2+x)(2)12.解不等式组,并求出它的非负整数解.13.解下列不等式(组),并把解集在数轴上表示出来.(1)解不等式:5x+3<3(2+x).(2)解不等式组:.14.求不等式组的最大整数解.15.解不等式组,并将解集在数轴上表示出来.16.求不等式组的正整数解.17.解不等式组,并把解集在数轴上表示.18.解不等式组:,并把解集在数轴上表示出来.19.解不等式(组):(1);(2).19.(1)解不等式≥1;(2)解不等式组.21.解一元一次不等式组,并把解表示在数轴上.22.解不等式组:.23..24..25.解不等式(组),并把解集在数轴上表示出来.(1)1+2(x﹣1)≤5;(2).26.解下列不等式和不等式组:(1)2(x+1)>3x﹣4;(2).27.解下列不等式(组):(1)10﹣5(2x﹣1)≥3﹣x;(2).28.(1)解不等式;(2)解不等式组:,并把它的解集在数轴上表示出来.29.解不等式组,并写出它所有的整数解.30.解不等式组:,并把不等式组的解集表示在数轴上.31.解不等式组:,并求出不等式组的整数解.32.解不等式组.33.解不等式组,并写出它的所有整数解.34.解不等式组,并写出这个不等式组的非负整数解.35.解不等式组:,并写出它的最大整数解.36.解不等式组.(1)将不等式组的解集在数轴上表示出来;(2)求出最小整数解与最大整数解的和.。

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。

一元一次不等式(组)专题训练

一元一次不等式(组)专题训练

一元一次不等式(组)一、 一元一次不等式(组)的解A 、 已知不等式(组)的解(集),求参数的值或取值范围 例1:不等式-<+mx 23x 4的解集是63x m >-,求m 的取值范围。

练习:1、若关于x 的不等式a(1)x 12a x ->+-的解集是1x <-求a 的取值范围。

2、若关于x 的不等式(1)x 5a a -<+的解集和24x <的解集相同,求a 的取值。

3、不等式475x a x ->+的解集是1x <-求a 的取值4、若关于x 的不等式2132x a a ->-的解集和2x a <的解集相同,求a 的取值例2:若不等式组3x x a >⎧⎨>⎩的解集是x a >则a 的取值范围是 练习:1、(1)若不等式组5x x m <⎧⎨>⎩ 无解,则a 的取值范围是 (2)若无解,则a 的取值范围是2、已知不等式组x a x b <⎧⎨>⎩无解,求不等式组11x a x b >-⎧⎨<-⎩的解3、当a 满足什么条件时,不等式组131x a x a >+⎧⎨<-⎩无解4、如果2a <,那么不等式组2x x a >⎧⎨>⎩的解集为 ,2x x a <⎧⎨<⎩的解集为 例3:若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<求(a 3)(b 3)-+ 的值。

练习:1、一元一次不等式组13x a x -≤⎧⎨+>⎩的解集为x a ≥-,求a 的取值范围。

2、一元一次不等式组221x a b x a a -≥⎧⎨-<+⎩的解集为35x ≤<,求b a3、一元一次不等式组213(x 1)x x m ->-⎧⎨<⎩的解集为2x <,求m 的取值范围。

4、不等式组26x x x m-+<-⎧⎨>⎩的解集为4x >,求m 的取值范围B :已知不等式(组)的整数解的个数,求参数的取值范围例4:已知不等式30x a -≤ 的正整数解有三个,1,2,3求a 的取值范围。

一元一次不等式(苏教版)基础练习(一).docx

一元一次不等式(苏教版)基础练习(一).docx

实用文案一元一次不等式基础练习(一)一.选择题(共24 小题)1.下列不等式变形正确的是()A.由 a>b ,得 ac> bc B.由 a>b ,得 a﹣2<b ﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b2.若 a>b ,则下列各式中一定成立的是()A. a+2 <b+2 B. a﹣ 2< b ﹣2 C.> D .﹣ 2a >﹣ 2b3.如图,是关于x 的不等式 2x ﹣a≤﹣1 的解集,则 a 的取值是()A. a≤﹣1 B.a≤﹣2 C.a= ﹣1 D .a= ﹣24.小聪用 100 元钱去购买笔记本和钢笔共15 件,已知每本笔记本 5 元,每支钢笔 7 元,小聪最多能买()支钢笔.A.10 B.11 C.12 D.135.甲、乙两人从相距24km 的 A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在 2 小时以内相遇,则甲的速度()A.小于 8km/h B.大于 8km/h C.小于 4km/h D.大于 4km/h6.某市出租车的收费标准是:起步价8 元(即行驶距离不超过 3 千米都需付 8元车费),超过 3千米以后,每增加 1千米,加收 2.6元(不足 1 千米按 1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为 21.5 元,那么 x 的最大值是()A.11 B.8 C.7 D.57.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.不等式组的解集是()A. x>﹣ 3 B.x <﹣ 3 C.x>2 D .无解9.如果不等式组恰有3个整数解,则a的取值范围是()A. a≤﹣1 B.a<﹣ 1 C.﹣ 2≤a<﹣ 1 D .﹣ 2<a≤﹣110 .不等式组的最小整数解是()A.0 B.﹣1 C.﹣ 2 D.311 .如果不等式 ax> 1 的解集是,则()A. a≥0B.a≤0C.a>0 D .a<012 .如果( a+1 )x<a+1 的解集是 x >1,那么 a 的取值范围是()A. a< 0B.a<﹣ 1C. a>﹣ 1 D . a 是任意有理数13 .如果 m < n< 0 ,那么下列结论错误的是()A. m ﹣9 <n ﹣9 B.2m >2n C.﹣ m >﹣ n D .>114 .如果 x<y ,那么下列各式中正确的是()A. x﹣1 > y﹣ 1 B.﹣ 2x <﹣ 2y C.﹣ x>﹣ y D.>15 .已知 a、b 为任意实数, a>b ,则下列变形一定正确的是()....A. a﹣ 1> b﹣ 1B.﹣ a>﹣ b C.|a| >|b| D .﹣>﹣16 .解不等式的变形过程中,正确的是()A.不等式﹣ 2x > 4 的两边同时除以﹣ 2 ,得 x> 2B.不等式 1﹣ x> 3 的两边同时减去1,得 x>2C.不等式 4x ﹣ 2< 3﹣ x 移项,得 4x+x < 3﹣ 2D.不等式<1﹣去分母,得2x<6﹣3x17 .若不等式( a+1 )x >2 的解集为 x<,则a的取值范围是()A. a< 1B.a>1C.a<﹣ 1 D .a>﹣ 118 .不等式 2x ﹣1 ≥3x﹣ 3 的正整数解的个数是()A.1 个B.2 个 C.3 个D.4 个19 .若三个连续正奇数的和不大于27 ,则这样的奇数组有()A.3 组B.4 组 C.5 组D.6 组20 .在“人与自然”知识竞赛中,共有25 道选择题,对于每道题,答对者得4分,不答或答错者倒扣 2 分,得分不低于 60 分者得奖,那么要得奖至少应答对的题数是()A.18 B.19 C.20 D.2121 .式子:① 2 > 0;② 4x+y ≤1 ;③ x+3=0 ;④ y ﹣7 ;⑤ m ﹣2.5 > 3.其中不等式有()A.1 个B.2 个 C.3 个D.4 个22 .下列说法中,错误的是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>﹣ 5 的负整数解集有限个C.不等式﹣ 2x<8 的解集是 x<﹣ 4D.﹣ 40 是不等式 2x <﹣ 8 的一个解23 .已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.24 .如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.二.填空题(共9 小题)25 .不等式组:的解集是.26 .如果不等式 3x ﹣ m ≤0 的正整数解是 1,2 ,3 ,那么 m 的范围是.27 .已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.28 .写出不等式组的解集为.29 .若不等式组的解集为﹣1<x<1,则a=,b=.30 .不等式 5 ( x﹣2 )+8 < 6( x﹣ 1) +7 的最小整数解为.31 .不等式组的解集是.32 .不等式组的解集是.33 .若 a> 1 ,则 a+20162a+2015 .(填“>”或“<”)三.解答题(共7 小题)34 .若不等式组的解集为1<x<6,求a,b的值.35.解下列不等式,并把它的解集在数轴上表示出来.4﹣2 (x﹣3 )≥4( x+1 )36 .已知整数 x 满足不等式 3x ﹣4≤6x ﹣2 和不等式﹣1<.并且满足方程 3 (x+m )﹣ 5m+2=0,求m的值.37 .解不等式﹣1≤,并把解集在数轴上表示出来.38 .解不等式组:.39 .解不等式组:.40 .解不等式组,并把解集在数轴上表示出来.一元一次不等式基础练习(一)参考答案与试题解析一.选择题(共24 小题)1.(2017 ? 宝丰县一模)下列不等式变形正确的是()A.由 a>b ,得 ac> bc B.由 a>b ,得 a﹣2<b ﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b【分析】分别利用不等式的基本性质判断得出即可.【解答】解: A、由 a>b ,得 ac> bc (c>0 ),故此选项错误;B、由 a>b ,得 a﹣2 >b ﹣2 ,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由 a>b ,得 c﹣a<c﹣b ,此选项正确.故选: D.【点评】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.2.(2017 ? 乐清市模拟)若 a>b ,则下列各式中一定成立的是()A. a+2 <b+2 B. a﹣ 2< b ﹣2 C.> D .﹣ 2a >﹣ 2b【分析】根据不等式的性质即可求出答案.【解答】解:(A)a+2 >b+2 ,故 A 错误;( B) a﹣ 2>b ﹣2 ,故 B 错误;(D)﹣ 2a <﹣ b ,故 D 错误;故选( C)【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.3.(2017 ? 威海一模)如图,是关于x 的不等式 2x ﹣a≤﹣1 的解集,则 a 的取值是()A. a≤﹣1 B.a≤﹣2 C.a= ﹣1 D .a= ﹣2【分析】先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a 的方程,求出 a 的取值范围即可.【解答】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤﹣1,解不等式 2x ﹣ a≤﹣1 得, x≤,即= ﹣ 1,解得 a= ﹣ 1.故选 C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.(2017 ? 杭州模拟)小聪用 100 元钱去购买笔记本和钢笔共15 件,已知每本笔记本 5 元,每支钢笔 7 元,小聪最多能买()支钢笔.A.10 B.11 C.12 D.13【分析】设小聪买了x 支钢笔,则买了( 15 ﹣x)本笔记本,根据总价 = 单价×数量结合总钱数不超过100 元,即可得出关于x 的一元一次不等式,解之取最大的正整数即可得出结论.【解答】解:设小聪买了 x 支钢笔,则买了( 15 ﹣x)本笔记本,根据题意得: 7x+5 ( 15 ﹣x )≤100 ,解得: x≤.故选 C.【点评】本题考查了一元一次不等式的应用,根据总价= 单价×数量结合总钱数不超过 100 元列出关于 x 的一元一次不等式是解题的关键.5.(2017 ? 贾汪区一模)甲、乙两人从相距 24km 的 A、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于 8km/h B.大于 8km/h C.小于 4km/h D.大于 4km/h【分析】设甲的速度为xkm/h ,则乙的速度为x km/h ,根据两地相距24km以及二人 2 小时以内相遇即可得出关于x 的一元一次不等式,解不等式即可得出结论.【解答】解:设甲的速度为xkm/h ,则乙的速度为xkm/h ,由已知得: 2×(x+x)> 24 ,解得: x>8.故选 B.【点评】本题考查了一元一次不等式的应用,解题的关键是根据数量关系得出不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式是关键.6.(2017 ? 石家庄模拟)某市出租车的收费标准是:起步价8 元(即行驶距离不超过 3 千米都需付 8 元车费),超过 3 千米以后,每增加 1 千米,加收 2.6 元(不足 1 千米按 1 千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为 21.5元,那么 x 的最大值是()A.11 B.8 C.7 D.5【分析】根据出租车费≥ 8+2.6 ×超出 3 千米的路程结合出租车费为21.5 元,即可得出关于 x 的一元一次不等式,解之即可得出 x 的取值范围,取其整数即可得出结论.【解答】解:根据题意得:8+2.6 (x﹣3 )≤21.5 ,解得: x≤8.19 ,∵不足 1 千米按 1 千米计,∴x 的最大值是 8 .故选 B.【点评】本题考查了一元一次不等式的应用,根据出租车费≥8+2.6 ×超出 3 千米的路程结合出租车费为21.5 元列出关于 x 的一元一次不等式是解题的关键.7 .( 2017 ? 耒阳市模拟)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:解不等式 3x+2 >﹣ 4,得x>﹣ 2,解不等式﹣( x﹣4)≥1,得x≤3 ,∴不等式组的解集为﹣ 2 <x≤3 ,把不等式的解集在数轴上表示为:故选: B.【点评】本题主要考查对解一元一次不等式(组),不等式的性质,在数轴上表示不等式的解集等,能根据不等式的解集找出不等式组的解集是解此题的关键.8.(2017 ? 宜兴市一模)不等式组的解集是()A. x>﹣ 3 B.x <﹣ 3 C.x>2 D .无解【分析】根据一元一次不等式组的解法即可求出x 的解集【解答】解:①﹣ 2x< 6x>﹣ 3②x﹣ 2>0 x>2∴不等式组的解集为: x>2故选( C)【点评】本题考查不等式组的解法,解题的关键是熟练一元一不等式的解法,本题属于基础题型.9.(2017 ? 东明县二模)如果不等式组恰有3个整数解,则a的取值范围是()A. a≤﹣1 B.a<﹣ 1 C.﹣ 2≤a<﹣ 1 D .﹣ 2<a≤﹣1【分析】首先根据不等式恰好有 3 个整数解求出不等式组的解集为﹣1 ≤x< 2,继而可得 a 的取值范围.【解答】解:如图,由图象可知:不等式组恰有 3 个整数解,需要满足条件:﹣ 2≤a<﹣ 1 .故选 C.【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10 .(2017 ? 茂县一模)不等式组的最小整数解是()A.0 B.﹣1 C.﹣ 2 D.3【分析】首先解不等式组确定不等式组的解集,即可确定不等式组的最小整数解.【解答】解:解不等式( 1)得: x>﹣,则不等式组的解集是:﹣<x≤3,故最小的整数解是:﹣ 1.故选 B.【点评】本题主要考查了不等式组的整数解的确定,关键是正确解得不等式组的解集.11 .(2017 春 ? 简阳市期中)如果不等式 ax> 1 的解集是,则()A. a≥0B.a≤0C.a>0 D .a<0【分析】根据不等式的性质解答,由于不等号的方向发生了改变,所以可判定a 为负数.【解答】解:不等式 ax >1 两边同除以 a 时,若 a>0 ,解集为 x>;若 a<0 ,则解集为 x;故选 D.【点评】本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.12 .(2017 春 ? 定安县期中)如果( a+1 ) x< a+1 的解集是 x>1 ,那么 a 的取值范围是()A. a< 0B.a<﹣ 1C. a>﹣ 1 D . a 是任意有理数【分析】根据不等式的性质 3 ,可得答案.【解答】解:如果( a+1 )x <a+1 的解集是 x >1,得 a+1 <0 ,a<﹣ 1,故选: B.【点评】本题考查了不等式的性质,不等式的两边都乘以或除以同一个负数,不等号的方向改变.13 .(2017 春 ? 东明县期中)如果 m <n < 0,那么下列结论错误的是()A. m ﹣9 <n ﹣9 B.2m >2n C.﹣ m >﹣ n D .>1【分析】 A:等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可;B:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可;C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可;D:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.【解答】解:因为 m < n< 0 ,所以 m ﹣ 9 <n ﹣9,A 正确;因为 m < n <0 ,所以 2m < 2n ,B 错误;因为 m < n <0 ,所以﹣ m >﹣ n ,C 正确;因为 m < n <0 ,所以,D 正确.故选: B.【点评】此题主要考查了不等式的基本性质:(1 )不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2 )不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3 )等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.14 .(2017 春 ? 山亭区期中)如果 x<y ,那么下列各式中正确的是()A. x﹣1 > y﹣ 1 B.﹣ 2x <﹣ 2y C.﹣ x>﹣ y D.>【分析】根据不等式的性质,可得答案.【解答】解: A、不等式的两边都减1,不等号的方向不变,故 A 错误;B、不等式的两边都乘以﹣2,不等号的方向改变,故 B 错误;C、不等式的两边都乘以﹣1,不等号的方向改变,故 C 正确;D、不等式的两边都除以2,不等号的方向不变,故 D 错误;故选: C.【点评】本题考查了不等式的基本性质,“0 ”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0 ”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.15 .(2017 春 ? 漳浦县期中)已知 a、b 为任意实数, a>b ,则下列变形一定正...确的是().A. a﹣ 1> b﹣ 1B.﹣ a>﹣ b C.|a| >|b| D .﹣>﹣【分析】根据不等式的性质即可求出答案.【解答】解:(B)﹣ a<﹣ b,故 B 错误;(C)若 a=0 ,b= ﹣1,则 |a|<|b| ,故 C 错误;(D)﹣<﹣,故 D 错误;故选( A)【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.16 .(2017 春 ? 太原期中)解不等式的变形过程中,正确的是()A.不等式﹣ 2x > 4 的两边同时除以﹣ 2 ,得 x> 2B.不等式 1﹣ x> 3 的两边同时减去1,得 x>2C.不等式 4x ﹣ 2< 3﹣ x 移项,得 4x+x < 3﹣ 2D.不等式<1﹣去分母,得2x<6﹣3x【分析】根据不等式的性质即可求出答案.【解答】解:( A )不等式﹣ 2x >4 的两边同时除以﹣ 2 ,得 x<﹣ 2 ,故 A 错误;(B)不等式 1 ﹣x>3 的两边同时减去 1,得﹣ x>2 ,故 B 错误;(C)不等式 4x ﹣2 <3﹣x 移项,得 4x+x < 3+2 ,故 C 错误;故选( D)【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.17 .(2017 春 ? 仁寿县期中)若不等式( a+1 )x >2 的解集为 x<,则a的取值范围是()A. a< 1B.a>1C.a<﹣ 1 D .a>﹣ 1【分析】根据不等式的性质可得a+1 < 0 ,由此求出 a 的取值范围.【解答】解:∵不等式( a+1 )x>2 的解集为 x<,∴不等式两边同时除以( a+1 ))时不等号的方向改变,∴a+1 <0 ,∴a<﹣ 1.故选: C.【点评】本题考查了不等式的性质:在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变.本题解不等号时方向改变,所以a+1 <0 .18 .( 2017 春 ? 南安市期中)不等式 2x ﹣ 1 ≥3x ﹣3 的正整数解的个数是()A.1 个B.2 个 C.3 个D.4 个【分析】移项、合并同类项,然后系数化成 1 即可求得不等式组的解集,然后确定正整数解即可.【解答】解:移项,得: 2x﹣3x ≥﹣3+1 ,合并同类项,得:﹣ x≥﹣2 ,则 x≤2.则正整数解是: 1, 2.故选 B.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.19 .(2017春?薛城区期中)若三个连续正奇数的和不大于27 ,则这样的奇数组有()A.3 组B.4 组 C.5 组D.6 组【分析】设中间的正奇数为x,则另外两个正奇数为x﹣1 ,x+1 ,根据三个数之和不大于 27 ,列不等式,求出符合题意的奇数.【解答】解:设中间的奇数为x,则另外两个奇数为x﹣1 , x+1 ,由题意得, x+x ﹣1+x+1 ≤27 ,解得: x≤9 ,∵三个奇数都为正,∴x﹣1 >0 ,x>0,x+1 >0 ,即 x>1 ,则奇数 x 的取值范围为: 1< x ≤9,则 x 可取 3 ,5,7 ,9 共 4 组.故选 B.【点评】本题考查一元一次不等式的应用,与数学思想联系起来,读懂题列出不等式关系式即可求解.20 .(2017 春 ? 黄岛区期中)在“人与自然”知识竞赛中,共有25 道选择题,对于每道题,答对者得 4 分,不答或答错者倒扣 2 分,得分不低于 60 分者得奖,那么要得奖至少应答对的题数是()A.18 B.19 C.20 D.21【分析】设要得奖应答对的题数为x 道,则不答或答错的题数为(25 ﹣x)道,根据总分 =4 ×答对题目数﹣ 2×答错(或不答)题目数结合得分不低于60 分者得奖,即可得出关于 x 的一元一次不等式,解不等式即可得出x 的取值范围,取其内的最小整数即可.【解答】解:设要得奖应答对的题数为x 道,则不答或答错的题数为(25 ﹣ x)道,根据题意得: 4x ﹣2 (25 ﹣x)≥60 ,解得: x≥18,∵x 为整数,∴x≥19 .故选 B.【点评】本题考查了一元一次不等式的应用,根据总分=4 ×答对题目数﹣ 2×答错(或不答)题目数结合得分不低于60 分者得奖,列出关于x 的一元一次不等式是解题的关键.21 .(2017 春 ? 昌平区月考)式子:① 2 >0 ;② 4x+y ≤1 ;③ x+3=0 ;④ y ﹣7;⑤ m ﹣2.5 >3 .其中不等式有()A.1 个B.2 个 C.3 个D.4 个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共 3 个,故选 C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.22 .(2017 春 ? 崇仁县校级月考)下列说法中,错误的是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>﹣ 5 的负整数解集有限个C.不等式﹣ 2x<8 的解集是 x<﹣ 4D.﹣ 40 是不等式 2x <﹣ 8 的一个解【分析】正确解出不等式的解集,就可以进行判断.【解答】解: A、正确;B、不等式 x>﹣ 5 的负整数解集有﹣ 4,﹣ 3 ,﹣ 2,﹣ 1 .C、不等式﹣ 2x<8 的解集是 x>﹣ 4D、不等式 2x <﹣ 8 的解集是 x<﹣ 4 包括﹣ 40 ,故正确;故选 C.【点评】解答此题的关键是要会解不等式,明白不等式解集的意义.注意解不等式时,不等式两边同时除以同一个负数时,不等号的方向改变.23 .(2016 ? 东营)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得: x>3 ,解不等式②得: x≥﹣1 ,∴不等式组的解集为: x>3 ,在数轴上表示不等式组的解集为:故选: B.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.24 .(2016 ? 河池)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.【解答】解:由①得, x>﹣ 2,由②得, x≤2 ,故此不等式组的解集为:﹣2<x≤2.故选: B.【点评】本题考查了在数轴上表示不等式的解集.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二.填空题(共9 小题)25 .(2017 ? 绍兴模拟)不等式组:的解集是x >5.【分析】分别解两个不等式得到x> 1 和 x>5 ,然后根据同大取大确定不等式组的解集.【解答】解:,解①得 x> 1,解②得 x> 5,所以不等式组的解集为x> 5.故答案为 x>5 .【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.26 .(2017 ? 仁寿县模拟)如果不等式 3x ﹣m ≤0 的正整数解是 1 ,2,3 ,那么m 的范围是9 ≤m < 12.【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式 3x ﹣m ≤0 得到: x≤,∵正整数解为 1,2,3,∴3≤<4,解得 9 ≤m < 12 .故答案为: 9≤m <12 .【点评】本题考查了一元一次不等式的整数解,根据x 的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.27 .(2017 ? 南城县校级模拟)已知不等式组的解集是2<x<3,则关于 x 的方程 ax+b=0的解为﹣.【分析】根据不等式组的解集即可得出关于a、b 而愿意方程组,解方程组即可得出 a、b 值,将其代入方程ax+b=0中,解出方程即可得出结论.【解答】解:∵不等式组的解集是2<x<3,∴,解得:,∴方程 ax+b=0为2x+1=0,解得: x= ﹣.故答案为:﹣.【点评】本题考查了解一元一次不等式以及一元一次方程的解,解题的关键是求出 a、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.28 .( 2017 ? 东昌府区一模)写出不等式组的解集为﹣1≤x<3.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集【解答】解:不等式①的解集为x<3 ,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣1≤x<3.故答案为:﹣ 1≤x <3.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29 .(2017 春 ? 东港市期中)若不等式组的解集为﹣1<x<1,则a=1, b= ﹣2 .【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出解集,根据已知的解集即可得到 a 与 b 的值.【解答】解:,由①解得: x<,由②解得: x>2b+3 ,∴不等式解集为: 2b+3 <x<,可得 2b+3= ﹣1 ,=1 ,则 a=1 , b= ﹣2.故答案为: 1;﹣ 2【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.30 .(2017 春 ? 章丘市校级月考)不等式5(x﹣2 )+8 <6 (x﹣1)+7 的最小整数解为﹣2.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式 5 ( x﹣2) +8 < 6( x﹣ 1) +7 ,整理得, x>﹣ 3,其最小整数解是﹣ 2;∴不等式的最小整数解是﹣ 2.故答案为:﹣ 2.【点评】此题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.31 .(2016 ? 呼伦贝尔)不等式组的解集是x> 3.【分析】分别解出题中两个不等式组的解,然后根据口诀求出x 的交集,就是不等式组的解集.【解答】解:由( 1)得, x> 2由( 2)得, x> 3所以解集是: x>3.【点评】此题主要考查了一元一次不等式组的解法,比较简单.32 .(2016 ? 抚顺)不等式组的解集是﹣7<x≤1.【分析】分别解出不等式组中两个不等式的解,合在一起即可得出不等式组的解集.【解答】解:.解不等式①,得x≤1;解不等式②,得x>﹣ 7 .∴不等式组的解集为﹣ 7 <x≤1 .故答案为:﹣ 7<x≤1.【点评】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法.本题属于基础题,难度不大,解集该题型题目时,熟练掌握解不等式(或不等式组)的方法是关键.33 .(2016 ? 高邮市一模)若 a>1,则 a+2016<2a+2015 .(填“>”或“<”)【分析】先在不等式 a>1 两边都加 a,再两边都加 2015 ,即可得出 2a+2015>2016+a .【解答】解:∵a>1 ,∴两边都加 a,得2a >1+a两边都加 2015 ,得2a+2015 >2016+a ,即 2016+a <2a+2015 .故答案为:<【点评】本题主要考查了不等式的基本性质,解题时注意:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三.解答题(共7 小题)34 .(2017 ? 河北区校级模拟)若不等式组的解集为1<x<6,求a,b 的值.【分析】先把 a、 b 当作已知把 x 的取值范围用 a、b 表示出来,再与已知解集相比较得到关于a、b 的二元一次方程组,再用加减消元法或代入消元法求出a、b的值.【解答】解:原不等式组可化为∵它的解为 1<x<6 ,∴,解得.【点评】本题考查的是解一元一次不等式组及二元一次方程组,根据题意得到关于 a、b 的二元一次方程组是解答此题的关键.35 .(2017 春 ? 资中县期中)解下列不等式,并把它的解集在数轴上表示出来.4﹣2 (x﹣3 )≥4( x+1 )【分析】去分母,然后移项、合并同类项,系数化成 1 即可求解.【解答】解:去括号,得: 4﹣2x+6 ≥4x+4 ,移项,得:﹣ 2x ﹣4x ≥4 ﹣4 ﹣ 6,合并同类项,得:﹣ 6x ≥﹣6,系数化成 1 得: x≤1..【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.36 (.2017 春 ? 全椒县期中)已知整数 x 满足不等式 3x ﹣4≤6x﹣2 和不等式﹣ 1<.并且满足方程3( x+m )﹣ 5m+2=0,求m的值.【分析】求得两个不等式的公共部分,从而求得整数 x 的值,代入方程 3(x+m )﹣5m+2=0 ,即可求得 m 的值.【解答】解:两不等式组成不等式组:∵解不等式①得: x≥﹣,解不等式②得: x<1,∴整数 x=0 ,∴3 (0+m )﹣ 5m+2=0,3m ﹣ 5m+2=0,m=1 .【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集,难度适中.37 .(2016 ? 宁德)解不等式﹣1≤,并把解集在数轴上表示出来.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时× 6 得: 3x ﹣ 6≤14 ﹣2x ,移项得: 5x≤20 ,解得: x≤4 .将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.38 .(2016 ? 莆田)解不等式组:.【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.【解答】解:.由①得 x≤1;由②得 x< 4;所以原不等式组的解集为:x≤1.【点评】考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).39 .(2016 ? 丹东模拟)解不等式组:.【分析】本题可根据不等式组分别求出x 的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交集,则不等式无解.【解答】解:不等式组可以转化为:,在坐标轴上表示为:∴不等式组的解集为 x<﹣ 7.【点评】求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40 .( 2016 ? 广州一模)解不等式组,并把解集在数轴上表示出来.【分析】先求出不等式组组中的不等式①、②的解集,它们的交集就是该不等式组的解集;然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将解集在数轴上表示出来.【解答】解:由①得 x>2 (2 分)由②得 x< 3( 4 分)∴不等式组的解集为 2<x<3 (7 分)把解集在数轴上表示(9 分)【点评】本题考查了一元一次不等式组的解法、在数轴上表示不等式的解集.不实用文案等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” ,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.标准文档。

第四章 一元一次不一次不等式组 二一元一次不等式专题练习2022-2023学年京改版七年级数学下册

第四章 一元一次不一次不等式组 二一元一次不等式专题练习2022-2023学年京改版七年级数学下册

第四单元 一元一次不等式和一元一次不等式组 二一元一次不等式专题练习班级:________ 姓名:________一、单选题(共 10 小题)1、随看科技的进步,我们可以通过手机APP 实时查看公交车到站情况.小明想乘公交车,可又不想静静地等在A 站.他从A 站往B 站走了一段路,发现他与公交车的距离为720m (如图),此时有两种选择:(1)与公交车相向而行,到A 公交站去乘车;(2)与公交车同向而行,到B 公交站去乘车. 假设小明的速度是公交车速度的15,若要保证小明不会错过这辆公交车,则A 、B 两公交站之间的距离最大为( )A .240mB .300mC .320mD .360m2、不等式()32150x x --≥的解在数轴上表示正确的是( )A .B .C .D .3、我市某初中举行知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,那么小军至少要答对( )道题?A .17B .18C .19D .20 4、不等式12x +>223x +﹣1的正整数解的个数是( ) A .1个B .2个C .3个D .4个 5、不等式131722x x -≤-的解集在数轴上表示为( )A .B .C .D .6、如图,天平左盘中物体A 的质量为mg ,,天平右盘中每个砝码的质量都是1g,则m 的取值范围在数轴上可表示为A .B .C .D .7、不等式360+≤x 的解集是( )A .2x ≤-B .2x ≤C .12x ≥D .2x ≥-8、对于任何有理数a ,b ,c ,d ,规定| a c b d =ad -bc .若2| 1x - 21-<8,则x 的取值范围是( ) A .x <3 B .x >0 C .x >-3D .-3<x <09、不等式12x -≥的解集在数轴上表示正确的是( )A .B .C .D .10、某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入到最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为a ,b ,c (a >b >c 且a ,b ,c 均为正整数);选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是( )A .每场比赛的第一名得分a 为4B .甲至少有一场比赛获得第二名C .乙在四场比赛中没有获得过第二名D .丙至少有一场比赛获得第三名二、填空题(共 10 小题)1、不等式362x x -<-的解集是_______.2、有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元.要使总收入不低于15.6万元,则最多只能安排_______人种茄子.3、某甜品店会员购买本店甜品可享受八折优惠.“五一”期间该店又推出购物满200元减20元的“满减”活动.说明:①“满减”是指购买的甜品标价总额达到或超过200元时减20元.“满减”活动只享受一次; ②会员可按先享“满减”优惠再享八折优惠的方式付款,也可按先享八折优惠再享“满减”优惠的方式付款小红是该店会员.若购买标价总额为220元的甜品,则最少需支付_____________元;若购买标价总额为x 元的甜品,按先享八折优惠再享“满减”优惠的方式付款最划算,则x 的取值范围是__________.4、如果23x +的值不是正数,则x ________.5、如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①23xx≥⎧⎨>-⎩;②23xx≤⎧⎨<-⎩;③23xx≥⎧⎨<-⎩;④23xx≤⎧⎨>-⎩中的_____(只填写序号)6、某商品的标价比进价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足__________.7、用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位/千克)600 100原料价格(元/千克)8 4现配制这种饮料10千克,要求至少含有4200单位的维生素C,若所需甲种原料的质量为x千克,则x应满足的不等式为_____.8、上学期学校举办了“SD杯古诗词”竞赛.小宇、小尧、小非三位同学进入了最后冠军的角逐.决赛共分六轮,规定:每轮分别决出第1,2,3名(不并列),对应名次的得分都分别为a,b,c(a b c>>且a,b,c均为正整数);选手最后得分为各轮得分之和,得分最高者为冠军.下表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,第一轮第二轮第三轮第四轮第五轮第六轮最后得分小宇 a a 26小尧 a b c 11小非 b b 11第一轮第二轮第三轮第四轮第五轮第六轮最后得分判断下列说法一定错误的是________.①小宇可能有一轮比赛获第二名;②小尧有三轮比赛获第三名;③小非可能有一轮比赛获第一名;④每轮比赛第一名得分a为5.9、某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元10、一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打___折.三、解答题(共 6 小题)1、求不等式213x+≤325x-+1的非负整数解.2、当x取何正整数时,代数式32x+与213x-的值的差大于13、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?4、解不等式组:313213xx-->⎧⎨+<⎩,并把不等式组的解集用数轴表示出来.5、解下列不等式,并分别在数轴..上画出解集. (1)()()2341x x x +-<-- (2)30.52123x x +-≤-6、2020年春节前夕,突如其来的新型冠状病毒肺炎疫情造成口罩紧缺,为满足社会需求,某工厂现需购买一批材料,用于生产甲、乙两种型号的口罩,已知生产乙型口罩所需的材料费比生产甲型口罩所需的材料费每件多100元,且生产甲型口罩40件和生产乙型口罩30件需购买材料的费用相同.(1)求生产甲、乙两种型号口罩所需的材料费每件各多少元?(2)若工厂购买这批材料的资金不超过135000元,且需生产两种口罩共400件,求至少能生产甲种口罩多少件?。

一元一次不等式练习题(精华版)

一元一次不等式练习题(精华版)

一元一次不等式1、下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ;2.下列各式中,是一元一次不等式的是( ) A 。

5+4>8 B 。

2x -1 C.2x ≤5D 。

1x-3x ≥0 3. 下列各式中,是一元一次不等式的是( )(1)2x<y (2) (3) (4)4.用“〉”或“〈”号填空. 若a 〉b,且c ,则:(1)a+3______b+3; (2)a —5_____b —5; (3)3a____3b ; (4)c —a_____c-b (5); (6)5。

若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 。

不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 。

不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .三. 解下列不等式,并在数轴上表示出它们的解集.(1) 8223-<+x x 2. x x 4923+≥-(3)。

)1(5)32(2+<+x x (4). 0)7(319≤+-x (5)31222+≥+x x (6) 223125+<-+x x(7) 7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x(9)1215312≤+--x x (10) 215329323+≤---x x x (11)11(1)223x x -<- (12) )1(52)]1(21[21-≤+-x x x(13)41328)1(3--<++x x (14) ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组,并在数轴上表示它的解集 1. ⎩⎨⎧≥-≥-.04,012x x2。

一元一次不等式单元检测 (简单)基础巩固 答案

一元一次不等式单元检测 (简单)基础巩固 答案

第三章、一元一次不等式单元测试(难度:简单)参考答案与试题解析一.选择题(共10小题)1.在下列数学表达式:①﹣2<0,②2y﹣5>1,③m=1,④x2﹣x,⑤x≠﹣2,⑥x+1<2x ﹣1中,是不等式的有()A.2个B.3个C.4个D.5个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≠,所以不等式有:①②⑤⑥,等式有:③.故选:C.【点评】本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.2.把不等式组(b<a<0)的解集表示在数轴上,正确的是()A.B.C.D.【分析】先根据b<a<0,在数轴上表示﹣a和﹣b,再把不等式组的解集在数轴上表示出来,找出符合条件的选项即可.【解答】解:∵b<a<0,∴﹣b>﹣a>0,∴不等式组的解集表示在数轴上为.故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知a<b,则下列不等式一定成立的是()A.<B.﹣2a<﹣2b C.a﹣1>b﹣1D.a+3>b+3【分析】根据不等式的性质分析判断.【解答】解:A、不等式a<b的两边同时除以3,不等号的方向不变,即,故此选项符合题意;B、不等式a<b的两边同时乘﹣2,不等号的方向改变,即﹣2a>﹣2b,故此选项不符合题意;C、不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,故此选项不符合题意;D、不等式a<b的两边同时加上3,不等号的方向不变,即a+3<b+3,故此选项不符合题意.故选:A.【点评】本题主要考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.把一些书分给同学,设每个同学分x本.若____;若分给11个同学,则书有剩余.可列不等式8(x+6)>11x,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.分给8个同学,则每人可多分6本D.分给6个同学,则每人可多分8本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式8(x+6)>11x,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选:C.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.用适当的符号表示“x的2倍加上5不大于x的3倍减去4”,正确的是()A.2(x+5)≤3(x﹣4)B.2(x+5)<3(x﹣4)C.2x+5<3x﹣4D.2x+5≤3x﹣4【分析】根据题意列出不等式即可.【解答】解:“x的2倍加上5不大于x的3倍减去4”表示为:2x+5≤3x﹣4.故选:D.【点评】本题考查了由实际问题抽象出一元一次不等,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.6.每年的6月5日为世界环境日.中国生态环境部将“共建清洁美丽世界”作为今年环境日的主题,旨在促进全社会增强生态环境保护意识,投身生态文明建设.某校学生会积极响应国家号召,组织七年级和八年级共100名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?设参加活动的八年级学生x名,由题意得()A.15x+20(100﹣x)≥1800B.15x+20(100﹣x)>1800C.20x+15(100﹣x)≥1800D.20x+15(100﹣x)≤1800【分析】设至少需要x名八年级学生参加活动,则参加活动的七年级学生为(100﹣x)名,由收集塑料瓶总数不少于1800个建立不等式即可.【解答】解:设八年级有x名学生参加活动,则七年级参加活动的人数为(100﹣x)名,根据题意,得:15(100﹣x)+20x≥1800,故选:C.【点评】本题考查了列一元一次不等式解实际问题的运用和解一元一次不等式,解答时由收集塑料瓶总数不少于1800个建立不等式是解题的关键.7.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.已知关于x的不等式组的解集中至少有5个整数解,则整数a的最小值为()A.2B.3C.4D.5【分析】表示出不等式组的解集,由解集中至少有5个整数解,确定出a的范围,进而求出整数a的最小值即可.【解答】解:不等式组整理得:,解得:﹣<x<a,∵不等式组解集中至少有5个整数解,即至少5个整数解为﹣1,0,1,2,3,∴a>3,则整数a的最小值为4.故选:C.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.9.若定义一种新的取整符号[],即[x]表示不超过x的最大整数.例如:[2.3]=2,[−1.6]=−2,则下列结论正确个数是()①[﹣2.1]+[0.1]=﹣3;②[x]+[−x]=0;③方程x﹣[x]=的解有无数多个;④若[x+1]=2,则x的取值范围是3≤x<4;A.1B.2C.3D.4【分析】①根据取整函数的定义,直接求出值;②取特殊值验证,证实或证伪;③在0到1的范围内,找到一个特殊值,进而可以找到无数个解;④把方程问题转化为不等式问题;【解答】解:对于①,[﹣2.1]+[0.1]=﹣3+0=﹣3,正确;对于②,由[0.5]+[﹣0.5]=0﹣1=﹣1,不正确;对于③,当x=,1,2,...时,方程均成立,正确;对于④,由[x+1]=2,得2≤x+1<3,即1≤x<2,不正确;故选:B.【点评】本题考查取整函数与一元一次不等式.解题的关键在于能够把取整函数的等式,转化为一元一次不等式问题去解决.10.已知关于x的不等式组有且只有三个整数解,且关于y的一元一次方程ay﹣4=2y有整数解,则所有满足条件的整数a值之和是()A.﹣1B.0C.1D.2【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据不等式组有且只有三个整数解,确定a的取值范围,再解一元一次方程,根据方程有整数解确定满足条件的a的值,从而求和.【解答】解:,解不等式5x﹣4<4﹣a,得:x<,∴不等式组的解集为﹣2<x<,又∵该不等式组有且只有三个整数解,∴1<≤2,解得:﹣2≤a<3,ay﹣4=2y,移项,得:ay﹣2y=4,合并同类项,得:(a﹣2)y=4,系数化1,得:y=,∵该方程有整数解,且a﹣2≠0,∴符合条件的整数a有﹣2、0、1,∴满足条件的整数a值之和是﹣2+0+1=﹣1.故选:A.【点评】本题考查解一元一次不等式组,解一元一次方程,理解解一元一次不等式组和解一元一次方程的步骤,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题(共6小题)11.不等式2x<﹣12的解集是x<﹣6.【分析】直接把未知数的系数化“1”即可.【解答】解:2x<﹣12,解得:x<﹣6,故答案为:x<﹣6.【点评】本题考查的是一元一次不等式的解法,掌握“解一元一次不等式的步骤”是解本题的关键.12.若a<b,那么﹣2a>﹣2b(填“>”“<”或“=”).【分析】根据不等式的性质3得出答案即可.【解答】解:∵a<b,∴﹣2a>﹣2b,故答案为:>.【点评】本题考查了不等式的性质,能熟记不等式的性质3(不等式的两边都乘同一个负数,不等号的方向改变)是解此题的关键.13.已知(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,则k+1 不是(填“是”或“不是”)不等式x+2<2x﹣1的解.【分析】先根据二元一次方程的定义求出k的值,再求出不等式的解集即可判断.【解答】解:∵(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,∴,解得k=﹣5;解不等式x+2<2x﹣1,得x>3,∵k+1=﹣5+1=﹣4<3,∴k+1不是不等式x+2<2x﹣1的解.故答案为:不是.【点评】本题考查了二元一次方程的定义以及不等式的解集,掌握二元一次方程的定义是解答本题的关键.14.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是2<x≤4.【分析】根据第二次运算结果不大于28,且第三次运算结果要大于28,列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:依题意得:,解得:2<x≤4,故答案为:2<x≤4.【点评】本题考查一元一次不等式组的应用,解题的关键是理解题意,能列出不等式组.15.我国《劳动法》对劳动者的加班工资作出了明确规定,“五一”长假期间,前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资.小屈由于工作需要,今年5月2日、3日、4日共加班三天,已知小屈的日工资标准为247元,则小屈“五一”长假加班三天的加班工资应不低于1976元.【分析】设小屈“五一”长假加班三天的加班工资应不低于x元,由“前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资”,列出一元一次不等式,解不等式即可.【解答】解:设小屈“五一”长假加班三天的加班工资应不低于x元,由题意得:x≥2×247×300%+247×200%,解得:x≥1976(元),故答案为:1976.【点评】本题考查了一元一次不等式的应用,找准对应关系,列出一元一次不等式是解题的关键.16.已知三个实数a,b,c,满足a+2b+3c=9,2a﹣b﹣4c=﹣2,且a≥0,b≥0,c≥0,则4a+3b+c的最小值为17.【分析】有两个已知等式a+2b+3c=9,2a﹣b﹣4c=﹣2,可用其中一个未知数表示另两个未知数得,然后由条件:a、b、c均是非负数,可求出第一个未知数c的取值范围,代入m=3a+b﹣7c,即可得解.【解答】解:联立,解得,由题意知:a、b、c均是非负数,则,解得﹣1≤c≤2,所以4a+3b+c=4(1+c)+3(4﹣2c)+c=4+4c+12﹣6c+c=16﹣c当c=﹣1时,4a+3b+c有最小值,即4a+3b+c=16﹣(﹣1)=17.故答案为:17.【点评】此题主要考查不等式的性质、解三元一次方程组、代数式求值,涉及的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.三.解答题(共7小题)17.解下列不等式:(1);(2).【分析】根据解一元一次不等式的步骤解不等式即可.【解答】解:(1)两边同时乘以6得:6﹣2(8+x)≥3x,去括号得:6﹣16﹣2x≥3x,移项得:﹣2x﹣3x≥﹣6+16,合并同类项得:﹣5x≥10,把未知数系数化为1得:x≤﹣2;(2)两边同时乘以6得:2(2x+1)﹣(2﹣x)>3(x﹣1),去括号得:4x+2﹣2+x>3x﹣3,移项得:4x+x﹣3x>﹣3﹣2+2,合并同类项得:2x>﹣3,把未知数系数化为1得:x>﹣.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的一般步骤.18.解不等式组:,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,再取公共解集即可.【解答】解:,解不等式①得:x<3,解不等式②得:x≥2,∴2≤x<3,把解集表示在数轴上:【点评】本题考查解一元一次不等式组,解题的关键是掌握取不等式公共解集的方法.19.下面是小虎同学解不等式的过程,请认真阅读并完成相应任务.解:去分母,得3(1+x)﹣2(2x+1)≤6………第一步去括号,得3+3x﹣4x﹣2≤6……………………………第二步移项,得3x﹣4x≤6﹣3+2………………………………第三步合并同类项,得﹣x≤5…………………………………第四步两边都除以﹣1,得x≤﹣5………………………………第五步任务:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)请直接写出该不等式的正确解集.【分析】(1)观察解不等式第二步的步骤即可求解;(2)观察解不等式的步骤,找出出错的步骤,分析其原因即可;(3)写出不等式正确解集即可.【解答】解:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;故答案为:乘法分配律;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);故答案为:五,不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)去分母,得3(1+x)﹣2(2x+1)≤6………第一步,去括号,得3+3x﹣4x﹣2≤6……………………………第二步,移项,得3x﹣4x≤6﹣3+2………………………………第三步,合并同类项,得﹣x≤5…………………………………第四步,两边都除以﹣1,得x≥﹣5………………………………第五步.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.20.某文教用品商店用1200元购进了甲、乙两种圆珠笔.已知甲种笔进价为每支12元,乙种笔进价为每支10元.文教店在销售时甲种笔售价为每支15元,乙种笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种笔各多少支;(2)若该文教商店以原价再次购进甲、乙两种笔,且购进甲种笔的数量不变,而购进乙种笔的数量是第一次的2倍,乙种笔按原售价销售,而甲种笔降价销售,当两种笔销售完毕时,要使再次购进的笔获利不少于340元,甲种笔最低售价每支应为多少元?【分析】(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,根据其进价和利润建立等量关系列出方程组求出其解即可.(2)设甲种圆珠笔每只的售价为m元,就可以求出甲种圆珠笔每只的利润,表示出甲种圆珠笔的总利润再加上乙种圆珠笔的总利润就是两种圆珠笔销售完后的总利润,由题意就可以建立不等式.从而求出其解.【解答】解:(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,由题意得,,解得.答:这个商店购进甲种圆珠笔50支,乙种圆珠笔60支.(2)设甲种笔每只的最低售价为m元,由题意得,50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.∵m为整数,∴m的最小值为14,故甲种笔每只的最低售价为每支14元.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等式是解题关键.21.已知方程组的解x为非负数,y为非正数,求a的取值范围.【分析】解方程组得,根据“x为非负数,y为非正数”得出,解之即可.【解答】解:解方程组得,由题意知,,解得a≥3.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.冰墩墩(如图)是2022年北京冬季奥运会的吉祥物.某商店购进冰墩墩手办和冰墩墩装饰扣若干个,已知每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元.(1)冰墩墩装饰扣和冰墩墩手办的进价各多少元?(2)若商店以相同的价格1200元分别购进冰墩墩装饰扣和冰墩墩手办若干个,其中冰墩墩装饰扣的售价要比冰墩墩手办的售价少30元,且销售完毕后获利不低于1100元,问每个冰墩墩手办的售价至少是多少元?【分析】(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,根据“每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用数量=总价÷单价,可求出购进冰墩墩装饰扣及冰墩墩手办的数量,设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,利用总利润=销售单价×销售数量﹣进货总价,结合销售完毕后获利不低于1100元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,依题意得:,解得:.答:冰墩墩装饰扣的进价为40元,冰墩墩手办的进价为60元.(2)购进冰墩墩装饰扣的数量为1200÷40=30(个),购进冰墩墩手办的数量为1200÷60=20(个).设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,依题意得:20m+30(m﹣30)﹣1200﹣1200≥1100,解得:m≥88,∴m的最小值为88.答:每个冰墩墩手办的售价至少为88元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.若不等式(组)只有n个正整数解(n为自然数),则称这个不等式(组)为n阶不等式(组).我们规定:当n=0时,这个不等式(组)为0阶不等式(组).例如:不等式x+1<6只有4个正整数解,因此称其为4阶不等式.不等式组只有3个正整数解,因此称其为3阶不等式组.请根据定义完成下列问题:(1)x<是0阶不等式;是1阶不等式组;(2)若关于x的不等式组是4阶不等式组,求a的取值范围;(3)关于x的不等式组的正整数解有a1,a2,a3,a4,…其中a1<a2<a3<a4<…如果是(m﹣3)阶不等式组,且关于x的方程2x﹣m=0的解是的正整数解a3,请求出m的值以及p的取值范围.【分析】(1)根据题目中的定义进行分析;(2)根据题目中的定义进行分析,可知整数解为1,2,3,4,从而可得出a的范围;(3)分析题意,可以利用特殊值法,看(m﹣3)是从第几个整数开始的,从而求解.【解答】解:(1)∵x<没有正整数解,∴x<是0阶不等式;由得1<x<3,∴有1个正整数解,∴是1阶不等式组,故答案为:0,1;(2)解不等式组得:1≤x<2a,由题意得:x有4个正整数解,为:1,2,3,4,∴4<2a≤5,解得:2<a≤2.5;(3)由题意得,m是正整数,且p≤x<m有(m﹣3)个正整数解,∴2<p≤3,=5,∴m=10.【点评】本题考查了一元一次不等式组的正整数解,理解题中的新定义是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式和一元一次不等式组基础练习
一. 填空题
1. 用不等式表示:x 的2倍与1的和大于-1为__________,y 的1
3与t 的差的一半是负数为_________。

2. 有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。

b 0 a
(1)a +3______b +3;(2)b -a_______0
(3)-
a 3______-
b 3;(4)a +b________0 3. 若0<a<1,则a a a 21,,按从小到大排列为________。

4. 在数轴上表示数x 的点与原点的距离不超过5,则x 满足的不等式(组)为_______
5. 当x_______时,代数式3x +4的值为正数。

6. 要使方程52321x m x m -=-+()的解是负数,则m________
7. 若||2112x x -=-,则x___________
8. 已知a<b ,则不等式组x a x b
><⎧⎨⎩的解集是____________ 9. 若不等式组2123
x a x b -<->⎧⎨⎩的解集是-<<11x ,则()()a b +-11的值为___________
10. 如果不等式20x m -≥的负整数解是-1,-2,则m 的取值范围是_________
二. 选择题(每小题3分,共24分)
11. 若a>b ,则下列不等式中一定成立的是( )
A. b a <1
B. a b
>1 C. ->-a b D. a b ->0 12. 与不等式3251-≤-x 的解集相同的是( ) A. 325-≥x B. 325-≤x C. 235x -≥ D. x ≤4
13. 不等式x x --<-32
1313的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个
14. 不等式组1241323-<-≤-⎧⎨⎪⎩⎪x x x 的整数解的和是( )
A. 1
B. 0
C. -1
D. -2
15. 下列四个不等式:(1)ac>bc ;(2)-<-ma mb ;(3)ac bc 22>;(4)
-≤-ac bc 22中,能推出a>b 的有( )
A. 1个
B. 2个
C. 3个
D. 4个
16. 如果不等式()a x a +>+11的解集为x <1,那么a 满足的条件是( )
A. a>0
B. a<-2
C. a>-1
D. a<-1
17. 若不等式组x x t
-<->⎧⎨⎩10的解集是x <1,则t 的取值范围是( ) A. t<1 B. t>1 C. t ≤-1 D. t ≥1
18. 若方程组x y x y a -=+=-⎧⎨⎩323
的解是负数,则a 的取值范围为( ) A. -<<36a B. a <6 C. a <-3 D. 无解
三. 解下列不等式或不等式组(每4题6分,共24分)
19. x x 2131--≥ 20. -<-<1232x
21. -+<-+-≥⎧⎨⎪⎩⎪2111
312
1x x x 22. 311512
35x x x x +>-≤-⎧⎨⎪⎪⎩⎪⎪
四. 解答题(23题5分,其余每题9分共50分)
23. 若||()x x y m -+--=4502,求当y ≥0时,m 的取值范围。

24. 已知A 、B 两地相距80km ,甲、乙两人沿同一条公路从A 地出发到B 地,甲骑摩托车,乙骑电动自行车,PC 、OD 分别表示甲、乙两人离开A 的距离s (km )与时间t (h )的函数关系。

根据图象,回答下列问题: (1)_________比_______先出发________h ; (2)大约在乙出发______h 时两人相遇, 相遇时距离A 地______km ; (3)甲到达B 地时,乙距B 地还有___________km ,乙还需__________h 到达B 地; (4)甲的速度是_________km/h ,乙的 速度是__________km/h 。

25. 甲、乙两旅行社假期搞组团促销活动,甲:“若
领队买一张全票,其余可半价优惠”。

乙“包括领队在内,一律按全票价的六折优惠”。

已知全票价为120元,你认为选择哪家旅行社更优惠?
26. 某工厂有甲种原料360kg ,乙种原料290kg ,计划用这两种原料生产A 、B 两种产品共50件。

已知生产一件A 种产品,需用甲种原料9kg ,乙种原料3kg ,可获利润700元:生产一件B 种产品,需用甲种原料4kg ,乙种原料10kg ,可获利润1200元。

(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来。

(2)设生产A 、B 两种产品获总利润W (元),采用哪种生产方案获总利润最大?
最大利润为多少?
27. 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A、B、C三类;A类年票每张120元,持票者进入园林时,无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入园林时,需再购买门票每次3元。

(1)如果你只选择一种购买门票的方式,并且你计划在年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林次数最多的购票方式。

(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。

相关文档
最新文档