一元一次不等式与一元一次不等式组练习及答案
一元一次不等式组 专题练习(含答案解析)
一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。
北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)
12.【2019·常德】某生态体验园推出了甲、乙两种消费卡, 设入园次数为x时所需费用为y元,选择这两种卡消费时, y与x的函数关系如图所示,解答下列问题: (1)分别求出选择这两种卡消费时,y关于x的函数表达式;
解:设y甲=k1x,根据题意得5k1=100, 解得k1=20,∴y甲=20x; 设y乙=k2x+100, 将点(20,300)的坐标代入得20k2+100=300, 解得k2=10.∴y乙=10x+100.
4.如图,直线y1=x+b与y2=kx-1相交于点P,点 P的横坐标为-1,则关于x的不等式x+b>kx-1 的解集在数轴上表示正确的是( A )
*5.如图,已知正比例函数 y1=ax 与一次函数 y2=12x+b 的图象交于点 P.下面有四个结论:①a<0;②b<0; ③当 x>0 时,y1>0;④当 x<-2 时,y1>y2.其中正 确的是( ) A.①② B.②③ C.①③ D.①④
(2)该药店四月份计划一次性购进两种型号的口罩共10 000 只,其中B型口罩的进货量不超过A型口罩的1.5倍,设 购进A型口罩m只,这10 000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?
解:根据题意得, W=0.5m+0.6(10 000-m)=-0.1m+6 000, 由题知10 000-m≤1.5m,解得m≥4 000. ∵-0.1<0,∴W随m的增大而减小. ∴当m=4 000时,W取最大值, W最大=-0.1×4 000+6 000=5 600, 即药店购进A型口罩4 000只、B型口罩6 000只,才能使 销售总利润最大,最大总利润为5 600元.
【点拨】由图象知,对于 y1=ax,y1 随 x 的增大而减小, ∴a<0,故①正确;直线 y2=12x+b 与 y 轴交于正半轴, ∴b>0,故②错误;当 x>0 时,y1<0,故③错误;当 x<-2 时,直线 y1=ax 在直线 y2=12x+b 的上方,
(完整版)一元一次不等式和一元一次不等式组(经典难题)
一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。
2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。
(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。
3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。
4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。
7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。
北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题(解析版)
北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题一、单选题1.(2022·北京十一学校一分校模拟预测)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m<m<2m ;②若m>1,则1m <2m <m ;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( ) A .①③B .①④C .②③D .③④2.(2022·北京·东直门中学模拟预测)实数a 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .1a >B .<1a -C .10a +>D .11a<- 3.(2022·北京市三帆中学模拟预测)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .-4B .-2C .2D .44.(2022·北京·九年级专题练习)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a <-B .a b <C .a b -<-D .0ab >5.(2021·北京东城·一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列式子正确的是( )A .b +c >0B .a -b >a -cC .ac >bcD .ab >ac6.(2021·北京海淀·一模)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .4B .2C .0D .2-7.(2021·北京丰台·二模)若a b >,则下列不等式一定成立的是( ) A .33a b -<- B .22a b -<- C .44a b< D .22a b <8.(2020·北京·北理工附中一模)不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .二、填空题9.(2022·北京市三帆中学模拟预测)已知三个实数a 、b 、c 满足20a b c -+=,20a b c ++<,则:①0b >,②0b <,③240b ac -≤,④20b ac -≥,以上4个结论中正确的是__________(写出正确的序号).10.(2022·北京·九年级专题练习)不等式组3021x x -<⎧⎨-<⎩的解集是______.11.(2022·北京·九年级专题练习)小琦跟几位同学在某快餐厅吃饭,如下为此快餐厅的菜单、若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了______份A 套餐(用含x 或y 的代数式表示);(2)若6x =,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案.12.(2022·北京·九年级专题练习)用一组a 、b 、c 的值说明命题“若a >b ,则ac >bc ”错误的,这组值可以是a = ,b= ,c = .13.(2021·北京西城·一模)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.14.(2021·北京朝阳·一模)某校初三年级共有8个班级的190名学生需要进行体检,各班学生人数如下表所示:若已经有7个班级的学生完成了体检,且已经完成体检的男生、女生的人数之比为4:3,则还没有体检的班级可能是_____.15.(2021·北京房山·二模)已知a b <,且实数c 满足ac bc >,请你写出一个符合题意的实数c 的值___. 16.(2020·北京密云·二模)已知“若a b >,则ac bc <”是真命题,请写出一个满足条件的c 的值是__________. 17.(2020·北京四中模拟预测)某校初三年级84名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为___________元.三、解答题18.(2022·北京·中考真题)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.(2022·北京十一学校一分校模拟预测)解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩ 20.(2022·北京市第十九中学三模)解不等式组:1251635341x x x x +-⎧>+⎪⎨⎪+≥-⎩,并写出其中的正整数解.21.(2022·北京·中国人民大学附属中学朝阳学校一模)解不等式组()4126{533x x x x +≤+--<,并写出它的所有非负..整数解.... 22.(2021·北京·中考真题)解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩ 23.(2021·北京门头沟·一模)解不等式组:213(1)532x x xx ->-⎧⎪⎨-<+⎪⎩ 24.(2021·北京朝阳·二模)解不等式232(4)x x -≥-,并把它的解集在数轴上表示出来. 25.(2021·北京石景山·二模)解不等式113x x -≤-,并把它的解集在数轴上表示出来.26.(2021·北京顺义·一模)解不等式()3125x x -≥-,并把它的解集在数轴上表示出来.参考答案:1.B【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例. 【详解】解:①若-1<m <0,则1m<m<2m ,成立,是真命题; ②若m >1,取m=2时,m 2=4, m <m 2,原命题不成立; ③若m<1m <2m ,取m=-12时,1m =-2,m >1m ,原命题不成立; ④2m <m<1m,则0<m<1,成立,是真命题; 成立的有①④, 故选:B .【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质. 2.A【分析】直接利用a 在数轴上位置进而通过绝对值的几何意义:绝对值表示一个点与原点的距离,及不等式的性质分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 正确;因为a <-1,不等号两边同时乘以-1,改变不等号方向,得1a ->,故选项B 错误; 因为a <-1,不等号两边同时加1,得10a +<,故选项C 错误;因为a <-1,不等号两边同时除以a ,0a <,∴改变不等号方向,得11a->,不等号两边同时除以-1,改变不等号方向,得11a-<,故选项D 错误;故选:A .【点睛】此题主要考查了绝对值的几何意义、不等式的性质,结合数轴分析各选项,掌握不等式的性质是解题关键. 3.D【分析】将x =1代入不等式求出b 的取值范围即可得出答案. 【详解】解:∵x =1是不等式2x -b <0的解, ∴2-b <0, ∴b >2, 故选:D .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D【分析】先根据数轴的性质可得20a b -<<<,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.【详解】解:由数轴的性质得:20a b -<<<. A 、2a >-,此项错误,不符题意; B 、a b >,此项错误,不符题意; C 、a b ->-,此项错误,不符题意; D 、0ab >,此项正确,符合题意; 故选:D .【点睛】本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键. 5.A【分析】先根据数轴的定义可得0a c b <<<,再根据不等式的基本性质逐项判断即可得. 【详解】由数轴的定义得:0a c b <<<, A 、0b c +>,此项正确,符合题意; B 、b c >,b c ∴-<-,a b a c ∴-<-,此项错误,不符题意;C 、,0a b c <>,ac bc ∴<,此项错误,不符题意;D 、,0b c a ><,ab ac ∴<,此项错误,不符题意;故选:A .【点睛】本题考查了数轴、不等式的基本性质,熟练掌握数轴的定义是解题关键. 6.A【分析】把x 的值代入不等式,求出b 的取值范围即可得解. 【详解】解:∵1x =是不等式20x b -<的解, ∴20b -<, 解得,2b >所以,选项A 符合题意, 故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 7.B【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、不等式的两边都减去3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以−2,不等号的方向改变,故B 正确; C 、不等式的两边都除以4,不等号的方向不变,故C 错误; D 、当a =1,b =-1时,a 2=b 2,故D 错误; 故选:B .【点睛】本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 8.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:21512x x ①②->⎧⎪⎨+≥⎪⎩ 解不等式①可得x <1, 解不等式②得x≥-3,则不等式组的解集为:-3≤x <1, 由此可知用数轴表示为:故选B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键 9.②④##④②【分析】根据条件得出b 的符号,再将2a cb +=代入,根据完全平方式的非负性即可进行判断. 【详解】解:20a bc -+=,2a c b ∴+=, 20a b c ++<,40b ∴<, 0b ∴<,∴①选项不符合题意,②选项符合题意;2a c b +=,2a cb +=∴, 0b <,0a c ∴+<,222()164()424a c a c acb ac ac ++-∴-=-=, ac 的符号不能确定,24b ac ∴-的符号不能确定,∴③选项不确定,222()()024a c a cb ac ac +--=-=≥,∴④选项符合题意,故答案为:②④.【点睛】本题考查了不等式与因式分解的综合,根据条件得出b 的符号以及b 的表达式是解题的关键. 10.13x <<【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找到解集即可.【详解】解:3021x x -<⎧⎨-<⎩①②,解不等式①可得3x <, 解不等式②可得1x >, ∴不等式组的解集为13x <<, 故答案为:13x <<.【点睛】本题考查解一元 一次不等式组,掌握不等式组的解法是解决本题的关键. 11. (10-y ) 5【分析】(1)由三种套餐中均包含盖饭且只有A 套餐中不含凉拌菜,即可得出他们点了(10-y )份A 套餐; (2)由三种套餐中均包含盖饭且只有B 套餐中不含凉拌菜,即可得出他们点了4份B 套餐.设他们点了m 份A 套餐,则点了(10-4-m )份C 套餐,由A ,C 套餐均至少点了1份,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出点餐方案的个数.【详解】解:(1)∵B,C套餐中均含一份凉拌菜,且A套餐中不含凉拌菜,∴他们点了(10-y)份A套餐.故答案为:(10-y) .(2)∵A,C套餐均含一杯饮料,且B套餐中不含饮料,∴他们点了4份B套餐.设他们点了m份A套餐,则点了(10-4-m)份C套餐,依题意得:11041 mm≥⎧⎨--≥⎩解得:1≤m≤5.又:m为正整数,∴m可以取1,2,3,4,5,最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式组的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含y的代数式表示出他们点A套餐的数量;(2)根据各数量之间的关系,正确列出一元一次不等式组.12.1;﹣1,0.(答案不唯一)【分析】根据题意选择a、b、c的值即可.【详解】解:当a=1,b=﹣1,c=0时,1>﹣1,而1×0=0×(﹣1),∴命题“若a>b,则ac>bc”是错误的,故答案为1;﹣1,0.(答案不唯一)【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.购买24块彩色地砖,60块单色地砖或购买27块彩色地砖,55块单色地砖【分析】设购买x块彩色地砖,购买单色地砖y块,进而由题意得到2x<y<3x,再根据总费用为1500元,且x、y均为正整数,将y用x的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x块彩色地砖,购买单色地砖y块,则2x<y<3x,25x+15y=1500,∴1500255100(1)153xy x,又已知有:23x y x,∴510033510023x x x x⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x, 又x 为正整数,且30021.414,30027.311,∴x =22,23,24,25,26,27; 由(1)式中,x y ,均为正整数, ∴x 必须是3的倍数, ∴24x =或27x =,当24x =时,单色砖的块数为15002425=6015;当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖. 【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况. 14.1班或5班【分析】设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,根据题意和结合表格数据得19≤190﹣7x≤29,解之即可解答.【详解】解:设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,由题意,19≤190﹣7x ≤29, 解得:23≤x ≤3247,∵x 为整数, ∴x =23或24,当x =23时,190﹣7x =29, 当x =24时,190﹣7x =22,所以,还没有体检的班级可能是1班或5班, 故答案为:1班或5班.【点睛】本题考查统计表、一元一次不等式组的应用,理解题意,正确列出一元一次不等式组是解答的关键. 15.-3【分析】根据不等式的性质解答即可.<,【详解】解:∵a b<,∴当c>0时,ac bc>,当c<0时,ac bc故答案为:-3(答案不唯一).【点睛】此题考查不等式的性质,熟记不等式的性质是解题的关键.16.1-(答案不唯一,负数即可)【分析】当a b>,要使符号变号,则只需不等式两边同时乘同一个负数c即可.<成立,即不等式两边同时乘一个c符号会变号,则使c是负数即可,则可使【详解】当a b>,要使ac bcc=-.1【点睛】本题考查了真命题和不等式的性质知识点,不等式符号要变号,就使不等式两边同时乘或除同一个负数即可,这一性质是解题的关键.17.3800【分析】将84名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.【详解】解:依题意得:租车费用最低的前题条件是将84名师生同时送到目的地,其方案如下:①全部一种车型:小巴车23座最少4辆,其费用为:4×1000=4000元,中巴车39座最少3辆,其费用为:3×1800=5400元,大巴车55座最少2辆,其费用为:2×2400=4800元∵4000<480<5400,∴同种车型应选取小巴车4辆费用最少.②搭配车型:2辆23座小巴车和1辆39座中巴车,其费用为:1000×2+1800=3800元,1辆39座中巴车和1辆55座大巴车,其费用为:1800+2400=4200元,∵3800<4200,∴搭配车型中2辆23座小巴车和1辆39座大巴车最少.综合①、②两种情况,费用最少为3800元.故答案为:3800.【点睛】本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.18.14<<x【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.12x ≤<【分析】分别求得各不等式的解集,然后求得公共部分即可. 【详解】解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①② 解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.543x -≤<;正整数解为1. 【分析】分别求出两个不等式得解集,找出两个解集的公共部分即可得不等式组得解集,再找出解集中得正整数解即可得答案. 【详解】1251635341x x x x +-⎧>+⎪⎨⎪+-⎩ 解不等式125163x x +->+得:53x <, 解不等式5341x x +≥-得:4x ≥-,∴不等式组得解集为543x -≤<, ∴不等式组的正整数解为:1.【点睛】本题考查解一元一次不等式组及求不等式组得正整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.不等式组的解集为1x ,所有非负整数解为0,1【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有非负整数解即可.【详解】解:原不等式组为4(1)26,53.3x x x x +≤+⎧⎪⎨--<⎪⎩①②解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为1x .∴原不等式组的所有非负整数解为0,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.24x <<【分析】根据一元一次不等式组的解法可直接进行求解. 【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①② 由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.23.123x -<< . 【分析】先分别求解两个不等式的解集,再求两个解集的公共部分即得.【详解】解:()2131532x x x x ⎧->-⎪⎨-<+⎪⎩①②, 解不等式①得:2x <,解不等式②得:13x >-, ∴这个不等式的解集为123x -<< . 【点睛】本题考查了一元一次不等式组求解,解题关键是根据不等式的性质将不等式去分母、去括号、移项、合并同类项和系数化为1.24.2x ≤,数轴见解析【分析】按照解一元一次不等式的一般步骤解答,并把解集规范的表示在数轴上即可.【详解】解:2328x x -≥-.2328.x x --≥--510.x -≥-2.x ≤不等式的解集在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.1x ≥,数轴见解析【分析】正确解不等式,后根据大于向右,小于向左,有等号,实心圆,无等号,空心圆表示出来即可.【详解】解:去分母:133x x -≤-.移项,合并同类项:22x ≤.解得,1x ≥.【点睛】本题考查了不等式的解法,规范按照解不等式的基本步骤,扎实求解,理解数轴表示的符号意义是解题的关键.26.x ≥-2,在数轴上表示见解析【分析】去括号,移项,合并同类项,再在数轴上表示出不等式的解集即可.【详解】解:3(x −1)≥2x −5,去括号,得3x -3≥2x -5,移项,得3x -2x ≥-5+3,合并同类项,得x ≥-2,在数轴上表示不等式的解集为:.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.。
【最新试题库含答案】一元一次不等式组练习题(有答案)
一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。
一元一次不等式和一元一次不等式组测试题及答案
一元一次不等式和一元一次不等式组一.填空题:(每小题2分,共20分)1.若x<y,则x?2 y?2;(填“<、>或=”号)ab??,则3a_____b;(填“<、>或=”号) 3.不等式2x≥x?2的解集是_________;393?2y4.当y_______时,代数式的值至少为1;5.不等式6?12x?0的解集是______ ___;42.若?6.不等式7?x?1的正整数解为:;7.若一次函数y?2x?6,当x___ __时,y?0;8.x的3与12的差不小于6,用不等式表示为__________________; 59.不等式组??2x?3?0的整数解是______________;?3x?2?0?3x?2y?p?1的解满足x>y,则P的取值范围是_________; 4x?3y?p?1?b10.若关于x的方程组?二.选择题:(每小题3分,共30分) 11.若a>,则下列不等式中正确的是()(A) a?b?0 (B) ?5a??5b (C) a?8?b?8 (D) ab? 4412. 关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B.-3C. -2D.-1 ( 第12题)13.已知两个不等式的解集在数轴上如图表示,那么这个解集为()(A) x≥?1 (B) x?1(C) ?3?x??1 (D) x??3?x?8?4x-1,14.如果不等式组?的解集是x?3,那么m的取值范围是( )?x?mA. m≥3B. m≤3C.m=3D. m<315.下列不等式求解的结果,正确的是()(A)不等式组??x??3?x??5的解集是x??3 (B)不等式组?的解集是x??5?x??5?x??4?x?5?x?10(C)不等式组?无解(D)不等式组?的解集是?3?x?10?x??7?x??316.把不等式组??x?1?0的解集表示在数轴上,正确的是图中的()?x?1?01。
2022年最新京改版七年级数学下册第四章一元一次不等式和一元一次不等式组章节测试练习题(含详解)
七年级数学下册第四章一元一次不等式和一元一次不等式组章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a ,b 为实数,下列说法:①若0ab <,且a ,b 互为相反数,则1a b=-;②若0a b +<,0ab >,则|23|23a b a b +=--;③若||0a b a b -+-=,则b a >;④若||||a b >,则()()a b a b +⨯-是正数;⑤若a b <,0ab <且|3||3|a b -<-,则6a b +>,其中正确的说法有( )个.A .2 B .3 C .4 D .52、把不等式36x ≥-的解集在数轴上表示正确的是( )A .B .C .D .3、关于x 的分式方程231x mx -=+的解是正数,则字母m 的取值范围是( ) A .3m <-B .3m <C .3m >且2m ≠D .3m >-且2m ≠4、不等式2x ﹣1<3的解集在数轴上表示为( ) A .B .C .D .5、不等式054ax ≤+≤的整数解是1,2,3,4.则实数a 的取值范围是( ) A .514a -≤<-B .1a ≤-C .54a ≤-D .54a ≥-6、如果a b <,那么下列不等式中正确的是( ) A .22a b < B .11a b ->- C .a b -<-D .22a b -+<-+7、把不等式组123x x >-⎧⎨+≤⎩的解集在数轴上表示,正确的是( )A .B .C .D .8、下列变形中,错误的是( ) A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x > 9、如果 0,<<c b a , 那么下列不等式中不成立的是( ) A .a c b c +<+ B .ac bc > C .11ac bc -+<-+D .22ac bc >10、在数轴上表示不等式组﹣1<x ≤3,正确的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m >n ,则m ﹣n _______0(填“>”或“=”或“<”).2、按下面的程序计算,若开始输入的值x 为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当2x =时,输出结果=____.若经过2次运算就停止,则x 可以取的所有值是____.3、 “x 的3倍减去4-的差是一个非负数”,用不等式表示为_____________.4、若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.5、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________. 三、解答题(5小题,每小题10分,共计50分)1、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x ﹣6=0的解为x =3,不等式组205x x -⎧⎨⎩><的解集为2<x <5.因为2<3<5.所以称方程2x ﹣6=0为不等式组205x x -⎧⎨⎩><的相伴方程.(1)若关于x 的方程2x ﹣k =2是不等式组3641410x xx x --⎧⎨-≥-⎩>的相伴方程,求k 的取值范围;(2)若方程2x+4=0,213x-=-1都是关于x的不等式组()225m x mx m⎧--⎨+≥⎩<的相伴方程,求m的取值范围;(3)若关于x的不等式组2122x xx n--+⎧⎨≤+⎩>的所有相伴方程的解中,有且只有2个整数解,求n的取值范围.2、解不等式组:3451233x xxx-<-⎧⎪⎨-≤-⎪⎩,并把其解集在数轴上表示出来.3、解下列一元一次不等式组:(1)21112xx+≥-⎧⎪⎨⎪⎩<;(2)() 35221322.542x x xx x⎧---⎪⎨-≤-⎪⎩<.4、已知x<y,比较下列各对数的大小.(1)8x-3和8y-3;(2)516x-+和516y-+;(3)x-2和y-1.5、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).---------参考答案----------- 一、单选题 1、C 【解析】 【分析】①除0外,互为相反数的商为1-,可作判断;②由两数之和小于0,两数之积大于0,得到a 与b 都为负数,即23a b +小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;③由-a b 的绝对值等于它的相反数,得到-a b 为非正数,得到a 与b 的大小,即可作出判断; ④由a 绝对值大于b 绝对值,分情况讨论,即可作出判断;⑤先根据a b <,得33a b -<-,由0ab <和有理数乘法法则可得0a <,0b >,分情况可作判断. 【详解】解:①若0ab <,且a ,b 互为相反数,则1a b=-,本选项正确;②若0ab >,则a 与b 同号,由0a b +<,则0a <,0b <,则|23|23a b a b +=--,本选项正确; ③||0a b a b -+-=,即||()a b a b -=--,0a b ∴-,即a b ,本选项错误;④若||||a b >,当0a >,0b >时,可得a b >,即0a b ->,0a b +>,所以()()a b a b +⋅-为正数; 当0a >,0b <时,0a b ->,0a b +>,所以()()a b a b +⋅-为正数; 当0a <,0b >时,0a b -<,0a b +<,所以()()a b a b +⋅-为正数; 当0a <,0b <时,0a b -<,0a b +<,所以()()a b a b +⋅-为正数,本选项正确; ⑤a b <,33a b -<-∴, 0ab <,0a ∴<,0b >,当03b <<时,|3||3|a b -<-,33a b ∴-<-,不符合题意;所以3b ,|3||3|a b -<-,33a b ∴-<-,则6a b +>, 本选项正确;则其中正确的有4个,是①②④⑤. 故选:C . 【点睛】本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键. 2、D 【解析】 【分析】解一元一次不等式求出不等式的解集,由此即可得出答案. 【详解】解:不等式36x ≥-的解集为2x ≥-,在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.3、A【解析】【分析】解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可.【详解】解:231x mx-=+方程两边同时乘以(x+1),得到233x m x-=+ 3x m∴=--+10x≠1x∴≠-31m∴--≠-2m∴≠-因为分式方程的解是正数,x∴>30m∴-->故选:A . 【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键. 4、D 【解析】 【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可. 【详解】解:由2x ﹣1<3得:x <2,则不等式2x ﹣1<3的解集在数轴上表示为,故选:D . 【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键. 5、A 【解析】 【分析】先确定0,a ≠ 再分析0a >不符合题意,确定0,a < 再解不等式,结合不等式的整数解可得:101545a a ⎧-≤⎪⎪⎨⎪≤-⎪⎩<<,从而可得答案.解: 054ax ≤+≤51ax ∴-≤≤-显然:0,a ≠当0a >时,不等式的解集为:51x a a-≤≤-, 不等式没有正整数解,不符合题意, 当0a <时,不等式的解集为:15,x a a-≤≤-不等式054ax ≤+≤的整数解是1,2,3,4,101545a a ⎧-≤⎪⎪∴⎨⎪≤-⎪⎩<①<②由①得:1,a ≤- 由②得:51,4a -≤<-所以不等式组的解集为:5 1.4a -≤<- 故选A 【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键. 6、A 【解析】 【分析】根据不等式的性质解答.解:根据不等式的性质3两边同时除以2可得到22a b <,故A 选项符合题意; 根据不等式的性质1两边同时减去1可得到11a b -<-,故B 选项不符合题意;根据不等式的性质2两边同时乘以-1可得到a b ->-,故C 选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到22a b -+>-+,故D 选项不符合题意;故选:A . 【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变. 7、D 【解析】 【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解. 【详解】解:123x x >-⎧⎨+≤⎩①②,解不等式②,得:1x ≤ , 所以不等式组的解集为11x -<≤ 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.8、B【解析】【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以32-,不等号的方向改变得到32x<-,故B符合题意;C、不等式的两边都乘以(﹣5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.9、D【解析】【分析】根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.解:A 、∵0,<<c b a ,∴a c b c +<+,选项正确,不符合题意;B 、∵0,<<c b a ,∴ac bc >,选项正确,不符合题意;C 、∵0,<<c b a ,∴11ac bc -+<-+,选项正确,不符合题意;D 、∵0,<<c b a ,∴22ac bc <,选项错误,符合题意.故选:D .【点睛】此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.10、C【解析】【分析】把不等式组的解集在数轴上表示出来即可.【详解】解:13x -<,∴在数轴上表示为:【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则.二、填空题1、>【解析】【分析】根据不等式的性质即可得出结论.【详解】解:∵m >n ,∴m ﹣n >0,故答案为:>【点睛】本题考查了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变即如果a >b ,那么a±c >b ±c .2、 11, 2或3或4.【解析】【分析】根据题意将2x =代入求解即可;根据题意列出一元一次不等式组即可求解.【详解】解:当2x =时,第1次运算结果为2215⨯+=,第2次运算结果为52111⨯+=,∴当2x =时,输出结果11=,若运算进行了2次才停止,则有()2121102110xx⎧+⨯+>⎨+<⎩,解得:74.54x<<.x可以取的所有值是2或3或4,故答案为:11,2或3或4.【点睛】此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.3、3(4)0x--≥【解析】【分析】根据题中的不等量关系列出不等式即可.【详解】解:根据题意列不等式为:3(4)0x--≥,故答案为:3(4)0x--≥.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据题中所给的不等量关系列出一元一次不等式.4、1【解析】【分析】根据一元一次不等式的定义可得:211m-=且20m-≠,求解即可.【详解】解:根据一元一次不等式的定义可得:211m-=且20m-≠解得1m=故答案为1【点睛】此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念.5、5只和23颗或6只和26颗.【解析】【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,0385(1)5x x<+--<,解得,1342x<<,因为x为整数是,所以,5x=或6x=,花生的颗数为颗35823⨯+=或36826⨯+=颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.三、解答题1、(1)3<k≤4;(2)2<m≤3;(3)4≤n<6.【解析】【分析】(1)首先求出方程2x﹣k=2的解和不等式组3641410x xx x--⎧⎨-≥-⎩>的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+4=0,213x-=-1的解,然后分m<2和m>2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组2122x xx n--+⎧⎨≤+⎩>的解集,然后根据题意列出关于n的不等式组求解即可.【详解】解:(1)∵不等式组为3641410x xx x--⎧⎨-≥-⎩>,解得532x≤<,∵方程为2x﹣k=2,解得x22k+ =,∴根据题意可得,523 22k+≤<,∴解得:3<k≤4,故k取值范围为:3<k≤4.(2)∵方程为2x+4=0,2113x-=-,解得:x=﹣2,x=﹣1;∵不等式组为225m x mx m--⎧⎨+≥⎩()<,当m<2时,不等式组为15xx m⎧⎨≥-⎩>,此时不等式组解集为x>1,不符合题意,应舍去;∴当m>2时不等式组解集为m﹣5≤x<1,∴根据题意可得,252mm⎧⎨-≤-⎩>,解得2<m≤3;故m取值范围为:2<m≤3.(3)∵不等式组为2122x xx n--+⎧⎨≤+⎩>,解得1<x22n+≤,根据题意可得,3242n+≤<,解得4≤n<6,故n取值范围为4≤n<6.【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解.2、﹣1.5<x≤1,图见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.【详解】解:3451233x xxx-<-⎧⎪⎨-≤-⎪⎩解不等式3x﹣4<5x﹣1,得:x>﹣1.5,解不等式233xx-≤-,得:x≤1,则不等式组的解集为﹣1.5<x≤1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.3、(1)-3≤x<2(2)12<x≤125【解析】【分析】(1)分别求出各不等式的解集,再求出其公共解集即可.(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】(1)解21 112xx+≥-⎧⎪⎨⎪⎩①<②解不等式①得x≥-3;解不等式②得x<2;∴不等式组的解集为-3≤x<2;(2)解() 35221322.542x x xx x⎧---⎪⎨-≤-⎪⎩<①②.解不等式①得x>12;解不等式②得x≤125; ∴不等式组的解集为12<x≤125. 【点睛】 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.4、(1)8x -3<8y -3;(2)551166x y -+>-+;(3)x -2<y -1【解析】【分析】(1)根据不等式的基本性质:不等式两边同时乘以一个正数,不等号不变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(2)根据不等式的基本性质:不等式两边同时乘以一个负数,不等号变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(3)根据不等式的基本性质:不等式两边同时加上或减去一个数,不等号方向不变,即可得.【详解】解:(1)∵ x y < ,∴ 88x y <,∴ 8383x y -<-;(2)∵ x y <,∴ 5566x y ->-,∴ 551166x y -+>-+;(3)∵ x y <,∴ 22x y -<-,而21y y -<-,∴ 21x y -<-.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的各个性质是解题关键.5、(1)60件;(2)6天;(3)A 型机器前2天租3台,第3天租2台;B 型机器每天租3台【解析】【分析】(1)设每箱装x 件产品,根据“每台A 型机器比每台B 型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A型机器8台次,B型机器9台次费用最省,如:A型机器前两天租3台,第3天租2台,B型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A型机器9台次,B型机器8台次;3天中共租A型机器8台次,B型机器9台次;3天中共租A型机器7台次,B型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
第二章 一元一次不等式与一元一次不等式组(提高卷)(解析版)
《阳光测评》2020-2021学年下学期八年级数学单元提升卷【北师大版】第二章一元一次不等式与一元一次不等式组(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0,其中不等式有()A.2个B.3个C.4个D.5个【答案】C【分析】不等式就是含有不等号,表示不等关系的式子,据此即可判断.【解答】解:其中是不等式的有:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0.共4个.故选:C.【知识点】不等式的定义2.下列不等式的变形中,不正确的是()A.若a>b,则a+1>b+1B.若﹣a>﹣b,则a<bC.若﹣x<y,则x>﹣3y D.若﹣3x>a,则x>﹣a【答案】D【分析】根据不等式的基本性质,逐项判断即可.【解答】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵﹣a>﹣b,∴a<b,∴选项B不符合题意;∵﹣x<y,∴x>﹣3y,∴选项C不符合题意;∵﹣3x>a,∴x>﹣a,∴选项D符合题意.故选:D.【知识点】不等式的性质3.不等式5x﹣1≤2x+5的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:不等式移项合并得:3x≤6,解得:x≤2,表示在数轴上,如图所示:,故选:D.【知识点】在数轴上表示不等式的解集、解一元一次不等式4.如图,L1:y=x+2与L2:y=ax+b相交于点P(m,4),则关于x的不等式x+2≥ax+b的解集为()A.x≥2B.x≤2C.x≤4D.x≥4【答案】A【分析】首先把P(m,4)代入y=x+2可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.【解答】解:把P(m,4)代入y=x+2得:m=2,则P(2,4),根据图象可得不等式x+2≥ax+b的解集是x≥2,故选:A.【知识点】两条直线相交或平行问题、一次函数与一元一次不等式5.对有理数x,y定义运算:x※y=ax+by,其中a,b是常数.如果2※(﹣1)=﹣4,3※2>1,那么a,b的取值范围是()A.a<﹣1,b>2B.a>﹣1,b<2C.a<﹣1,b<2D.a>﹣1,b>2【答案】D【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:2a﹣b=﹣4①,3a+2b>1②由①得:b=2a+4③∴3a+2(2a+4)>1,解得a>﹣1,把a>﹣1代入得,b>2,∴a>﹣1,b>2故选:D.【知识点】解一元一次不等式、有理数的混合运算6.已知一次函数y=kx+b(k≠0,k,b为常数),x与y的部分对应值如下表所示,x﹣2﹣10123y3210﹣1﹣2则不等式kx+b<0的解集是()A.x<1B.x>1C.x>0D.x<0【答案】B【分析】由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.【解答】解:当x=1时,y=0,根据表可以知道函数值y随x的增大而减小,故不等式kx+b<0的解集是x>1.故选:B.【知识点】一次函数的性质、一次函数与一元一次不等式7.不等式组的解集为()A.x≥2B.﹣3≤x≤2C.x<﹣3D.﹣3<x≤2【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+1>0,得:x>﹣3,解不等式2﹣x≥0,得:x≤2,则不等式组的解集为﹣3<x≤2,故选:D.【知识点】解一元一次不等式组8.不等式组有3个整数解,则a的取值范围是()A.﹣2≤a≤﹣1B.﹣2<a≤﹣1C.﹣2≤a<﹣1D.﹣2<a<﹣1【答案】C【分析】先求出不等式组的解集,根据不等式组的整数解即可得出答案.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,∴不等式组的解集是a<x<2,∵不等式组有3个整数解,∴﹣2≤a<﹣1,故选:C.【知识点】一元一次不等式组的整数解9.对于整数a、b、c、d,符号表示运算ac﹣bd,已知关于x的不等式组有4个整数解,则a的取值范围为()A.﹣≤a≤﹣B.﹣3<a<﹣C.﹣3≤a≤﹣D.﹣≤a<﹣【答案】D【分析】先变形,再求出不等式组的解集,再得出关于a的不等式组,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵不等式组有4个整数解,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:D.【知识点】有理数的混合运算、一元一次不等式组的整数解10.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.【知识点】一元一次不等式组的应用二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.不等式组有2个整数解,则实数a的取值范围是.【答案】8≤a<13【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【知识点】一元一次不等式组的整数解12.今年4月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t的取值范围是.【答案】2≤t≤8【分析】这一天的气温应该大于或等于最低气温而小于或等于最高气温.【解答】解:因为最低气温是2℃,所以2≤t,最高气温是8℃,t≤8,则今天气温t(℃)的范围是2≤t ≤8.故答案为:2≤t≤8.【知识点】不等式的定义13.非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.【答案】9【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a=3推出c的最小值与a 的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;∴c=3时y最小,即y最小=12,即n=12;∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;∴a=9时y最大,即y最大=21,即m=21;∴m﹣n=21﹣12=9,故答案为:9【知识点】不等式的性质14.若关于x的一元一次不等式组有解,则m的取值范围为﹣.【答案】m>-1.5【分析】求得不等式①和不等式②的解集,然后根据不等式组有解以及不等式组解集的判断口诀求解即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥﹣2m.∵不等式组有解,∴﹣2m<3.解得:m>﹣1.5.故答案为:m>﹣1.5.【知识点】不等式的解集15.关于x的方程3k﹣5x=9的解是非负数,则k的取值范围是.【答案】k≥3【分析】求出方程的解,根据题意得出≥0,求出不等式的解集即可.【解答】解:3k﹣5x=﹣9,﹣5x=﹣9﹣3k,x=,∵关于x的方程3k﹣5x=﹣9的解是非负数,∴≥0,解不等式得:k≥3,∴k的取值范围是k≥3.故答案是:k≥3.【知识点】一元一次方程的解、解一元一次不等式16.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.【答案】x<3【分析】观察函数图象得到当x<3时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.【知识点】一次函数与一元一次不等式三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.若关于x、y的方程组的解满足x+y≤6,求k的取值范围.【分析】先把k当作已知表示出x、y的值,再根据x+y≤6列出不等式,求出k的取值范围即可.【解答】解:解方程组得,,∵x+y≤6,∴3k+1﹣k﹣2≤6,解得k≤.∴k的取值范围为k≤.【知识点】二元一次方程组的解、解一元一次不等式18.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组19.(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.【分析】(1)先在x>y的两边同乘以﹣3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)根据题意,在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【解答】解:(1)∵x>y,∴不等式两边同时乘以﹣3得:(不等式的基本性质3)﹣3x<﹣3y,∴不等式两边同时加上5得:5﹣3x<5﹣3y;(2)∵x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.即a的取值范围是a<3.【知识点】不等式的性质、整式的加减20.如图,已知直线y=x+5与x轴交于点A,直线y=﹣x+b与x轴交于点B(1,0),且这两条直线交于点C.(1)求直线BC的解析式和点C的坐标;(2)直接写出关于x的不等式x+5>﹣x+b的解集.【分析】(1)将点B的坐标代入y=﹣x+b即可求得直线BC的解析式,然后联立两个函数求得交点C的坐标即可;(2)根据函数的图象确定不等式的解集即可.【解答】解:(1)∵直线y=﹣x+b与x轴交于点B(1,0),∴﹣1+b=0 解得:b=1,∴直线BC的解析式为y=﹣x+1,,解得:,∴C(﹣2,3)(2)∵直线y=﹣x+b与y=﹣x+1,交于点C(﹣2,3),∴根据图象得到关于x的不等式x+5>﹣x+b的解集x>﹣2.【知识点】一次函数与一元一次不等式、待定系数法求一次函数解析式、两条直线相交或平行问题21.已知:x,y满足3x﹣4y=5.(1)用含x的代数式表示y,结果为;(2)若y满足﹣1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.【答案】3x-54【分析】(1)解关于y的方程即可;(2)利用y满足﹣1<y≤2得到关于x的不等式,然后解不等式即可;(3)解方程组得由x>2y得不等式,解不等式即可.【解答】解:(1)y=;故答案为:;(2)根据题意得﹣1<≤2,解得<x≤;(3)解方程组得∵x>2y,∴>2×,解得a<10.【知识点】不等式的性质、列代数式22.(1)解方程组:;(2)解不等式组:,并将不等式组的解集在数轴上表示出来.【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1),①×3+②,得:5x=10,解得x=2,将x=2代入①,得:2+y=1,解得y=﹣1,则方程组的解为;(2)解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式>x﹣1,得:x<2,则不等式组的解集为﹣1≤x<2,将解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解二元一次方程组、解一元一次不等式组23.如图,直线y=﹣x+m与x轴交于点B(4,0),与y轴交于点A,点C为x轴上一点,且已知S△ABC=4.又直线y=x+b与直线AB交于点M,M点横坐标为2.(1)求直线AB的解析式;(2)求C点坐标;(3)结合图形写出不等式x+b≥﹣x+m的解集.【分析】(1)先把B点坐标代入y=﹣x+m求出m的值,从而得到直线AB的解析式为y=﹣x+4,(2)求出A点坐标,接着利用三角形面积公式计算出BC,即可得到C(2,0)或(6,0);(3)根据图象即可求得;【解答】解:(1)把B(4,0)代入y=﹣x+m得﹣4+m=0,解得m=4,所以直线AB的解析式为y=﹣x+4;(2)当x=0时,y=﹣x+4=4,则A(0,4),∵S△ABC=4,∴BC•4=4,解得BC=2,∴C(2,0)或(6,0);(3)由图象可知,不等式x+b≥﹣x+m的解集为x≥2.【知识点】待定系数法求一次函数解析式、两条直线相交或平行问题、一次函数与一元一次不等式24.在抗击新冠肺炎疫情期间,市场上防护口罩岀现热销,某药店售出一批口罩.已知3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个.(1)求儿童口罩和成人口罩的每包各是多少个?(2)某家庭欲购进这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个,①有哪几种购买方案?②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?【分析】(1)设儿童口罩每包x个,成人口罩每包y个,根据:“3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个”列方程组求解即可;(2)①设购买儿童口罩m包,根据“这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个”列出不等式组,确定m的取值,进而解决问题;②分别求出每个方案的费用即可解决问题.【解答】解:(1)设儿童口罩每包x个,成人口罩每包y个,根据题意得,,解得,,∴儿童口罩每包2个,成人口罩每包10个;(2)①设购买儿童口罩m包,则购买成人口罩(5﹣m)包,根据题意得,,解得,2≤m≤3,∵m为整数,∴m=2或m=3,∴共有两种购买方案:方案一:购买儿童口罩2包,则购买成人口罩3包;方案二:购买儿童口罩3包,则购买成人口罩2包.②方案一的总费用为:2×8+3×25=91元;方案二的总费用为:3×8+2×25=74元.∵91>74,∴方案二的总费用最少.【知识点】一元一次不等式组的应用、二元一次方程组的应用25.哈六十九中校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求本次乙种笔记本最多购买多少个?【分析】(1)首先设甲种笔记本的单价是x元,乙种笔记本的单价是y元,根据题意可得:①20个甲种笔记本的价格+10个乙种笔记本的价格=110元;②甲种笔记本30个的价格+10=乙种笔记本20个的价格,根据等量关系列出方程组,再解即可;(2)设乙种笔记本购买a个,由题意得不等关系:3×甲种笔记本的数量+5×乙种笔记本的数量≤320元,根据不等关系列出不等式,再解即可.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元,由题意得:,解得.答:甲种笔记本的单价是3元;乙种笔记本的单价是5元;(2)设乙种笔记本购买a个,由题意得:3(2a﹣10)+5a≤320,解得:,∵a为整数,∴a取31.答:本次乙种笔记本最多购买31个.【知识点】一元一次不等式的应用、二元一次方程组的应用。
初中数学《七下》第九章 不等式与不等式组-一元一次不等式 考试练习题
初中数学《七下》第九章不等式与不等式组-一元一次不等式考试练习题姓名:_____________ 年级:____________ 学号:______________l 知识点:一元一次不等式【答案】(1 )y1=100+10x,y2=18x;(2 )办VIP不划算,理由见解析;(3 ) 13【分析】(1 )先求出打折后单次的价格,再根据方案一、方案二,表示题中的数量关系,即可列出函数关系式;(2 )将x=10 代入(1 )中的函数关系式,即可求出方案一及方案二的费用,继而判断是否需要办VIP;(3 )根据题意可得 100+10x<18x,进而解不等式即可求得答案.【详解】解:(1 )根据题意可得:20×50% = 10 (元 / 次),20×90% = 18 (元 / 次),∴y1=100+10x,y2=18x,(2 )办VIP不划算,理由如下:当x=10 时,方案一的费用为y1=100+10×10 = 200 ,方案二的费用为y2=18×10 = 180 ,∵200 > 180 ,∴y1>y2,∴ 办VIP不划算;(3 )由题意可得:y1<y2,∴100+10x<18x,解得:x>12.5 ,∴x的最小整数解为13 ,∴ 去俱乐部健身至少 13 次办VIP卡才合算,故答案为:13 .【点睛】本题考查了一次函数与一元一次不等式的实际应用,体现了数学来源于生活又服务于生活,考查了学生的运算能力,应用能力等,本题关键在于能够用函数关系式表示量与量之间的关系,并进行比较,做出独立判断.2、解不等式组请结合题意填空,完成本题的解答.(1 )解不等式① ,得 _______________ ;(2 )解不等式② ,得 ________________ ;(3 )把不等式① 和② 的解集在数轴上表示出来:(4 )原不等式组的解集为 ____________.知识点:一元一次不等式【答案】(1 );(2 );(3 )见解析;(4 ).【分析】直接解一元一次不等式组即可得解.【详解】解:解不等式① ,得,;解不等式② ,得;把不等式① 和② 的解集在数轴上表示如解图:原不等式组的解集为:.故答案为:(1 );(2 );(3 )见上图;(4 ).【点睛】本题考查的知识点是解一元一次不等式组,属于容易题目,失分原因:(1 )移项时未变号导致出错;(2 )解不等式时出错;(3 )在数轴上表示解集时,未能掌握“<” 和“>” 在数轴上表示为空心圆圈,“≤” 和“≥” 在数轴上表示为实心圆点;(4 )不会确定不等式组的解集.3、不等式组的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:解不等式① ,得:x ≥-1 ,解不等式② ,得:x<2 ,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x<2 ,故选:D .【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.4、若三角形的两边长分别为3 和 5 ,则第三边m的值可能是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,列出不等式组,进而结合选项求得第三边的值.【详解】三角形的两边长分别为3 和 5 ,第三边m故选B【点睛】本题考查了根据三角形三边关系确定第三边的范围,掌握三角形的三边关系是解题的关键.5、定义新运算“” ,规定:.若关于x的不等式的解集为,则m的值是()A .B .C . 1D . 2知识点:一元一次不等式【答案】B【分析】题中定义一种新运算,仿照示例可转化为熟悉的一般不等式,求出解集,由于题中给出解集为,所以与化简所求解集相同,可得出等式,即可求得m.【详解】解:由,∴,得:,∵解集为,∴∴,故选:B .【点睛】题目主要考查对新运算的理解、不等式的解集、一元一次方程的解等,难点是将运算转化为所熟悉的不等式.6、城乡学校集团化办学已成为西宁教育的一张名片.“ 五四” 期间,西宁市某集团校计划组织乡村学校初二年级 200 名师生到集团总校共同举办“ 十四岁集体生日” .现需租用A,B两种型号的客车共10 辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A型客车x辆,租车总费用为y元.(1 )请写出y与x的函数关系式(不要求写自变量取值范围);(2 )据资金预算,本次租车总费用不超过 11800 元,则A型客车至少需租几辆?(3 )在(2 )的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案.知识点:一元一次不等式【答案】(1 );(2 ) 1 辆;(3 )租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B 型客车租7 辆;最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【分析】(1 )根据租车总费用=每辆A型号客车的租金单价× 租车辆数+每辆B型号客车的租金单价× 租车辆数,即可得出y与x之间的函数解析式,再由全校共200 名师生需要坐车及x ≤10 可求出x的取值范围;(2 )由租车总费用不超过 11800 元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案;(3 )由题意得出,求出x的取值范围,分析得出即可.【详解】解:(1 ),∴;(2 )根据题意,得:,解得,∵x应为正整数,∴∴A型客车至少需租1 辆;(3 )根据题意,得,解得,结合(2 )的条件,,∵x应为正整数,∴x取1 , 2 , 3 ,∴ 租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B型客车租7 辆.∵,∴y随x的增大而减小,∴ 当时,函数值y最小,∴ 最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.7、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多可以购买多少个 A 型放大镜?知识点:一元一次不等式【答案】(1 )每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )最多可以购买 35 个 A 型放大镜.【详解】分析:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;(2 )由题意列出不等式求出即可解决问题.详解:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,可得:,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.8、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多l ,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.9、不等式2x ﹣ 1 > 3 的解集为 _____ .知识点:一元一次不等式【答案】x > 2【详解】解:移项得:2x > 3+1 ,合并同类项得:2x > 4 ,不等式的两边都除以2 得x > 2 ,∴ 不等式 2x ﹣ 1 > 3 的解集为 x > 2 .10、不等式﹣4x﹣1≥ ﹣ 2x+1 的解集,在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】不等式移项,合并,把x系数化为1 ,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x﹣1≥ ﹣ 2x+1 ,移项得:﹣4x+2x ≥1 + 1 ,合并得:﹣2x ≥2 ,解得:x ≤ ﹣ 1 ,数轴表示,如图所示:故选:D.【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.11、不等式组的解集,在数轴上表示正确的是()A. B .C .D .知识点:一元一次不等式【答案】C【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以解答本题.【详解】解:,由① 得:,由② 得:,故原不等式组的解集为:,故选:C .【点睛】本题主要考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解不等式组的方法.12、不等式的解集是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】按照解不等式步骤:移项,合并同类项,系数化为1 求解.【详解】解:,,,.故选:B.【点睛】本题考查解不等式,熟练掌握不等式的基本性质是解题关键.13、若点在一次函数的图象上,且,则的取值范围为__ .知识点:一元一次不等式【答案】【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m −n>2 ,即可得出b<−2 ,此题得解.【详解】解:点在一次函数的图象上,,即:.,,即.故答案是:.【点睛】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征并结合不等式是解题的关键.14、我市对居民生活用水实行“ 阶梯水价” .小李和小王查询后得知:每户居民年用水量 180 吨以内部分,按第一阶梯到户价收费;超过 180 吨且不超过 300 吨部分,按第二阶梯到户价收费;超过 300 吨部分,按第三阶梯到户价收费.小李家去年 1~9 月用水量共为 175 吨, 10 月、 11 月用水量分别为 25 吨、 22 吨,对应的水费分别为 118.5 元、 109.12 元.(1 )求第一阶梯到户价及第二阶梯到户价(单位:元 / 吨);(2 )若小王家去年的水费不超过 856 元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).知识点:一元一次不等式【答案】(1 )第一阶梯 3.86 元 / 吨,第二阶梯 4.96 元 / 吨;(2 )不超过 212 吨【分析】(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,然后根据10 月和 11 月的收费列出方程组求解即可;(2 )设小王甲去年的用水量为m,由于,则m<300 ,然后不等式求解即可.【详解】解:(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,由题意得:解得,∴ 第一阶梯到户价为 3.86 元,第二阶梯到户价为 4.96 元,答:第一阶梯到户价为3.86 元,第二阶梯到户价为 4.96 元;(2 )设小王甲去年的用水量为m,∵,∴ 当m小于180 是符合题意∵,∴m<300当180≤m <300,解得,∴ 小王家去年年用水量不超过 212 吨,答:小王家去年年用水量不超过212 吨.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次不等式的实际应用,解题的关键在于能够根据题意找到数量关系式进行求解.15、为庆祝中国共产党成立周年,某校组织了党史知识竞赛,共道题,记分规则为:若答对,每题记分;若答错或不答,每题记分.小明的参赛目标是超过分,则他至少要答对_______ 道题.l ∴x可取的最小值为18 .故答案为:18 .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16、不等式的解集是()A .x ≤4B .x ≥4C .x ≤1D .x=1知识点:一元一次不等式【答案】A【分析】通过移项,合并同类项,未知数系数化为1 ,即可求解.【详解】解:,移项得:,解得:,故选A .【点睛】本题主要考查解一元一次不等式,掌握“ 移项,合并同类项,未知数系数化为1” 是解的关键.17、关于的不等式的解集是___________ .知识点:一元一次不等式【答案】【分析】先去分母,再移项,最后把未知数的系数化“” ,即可得到不等式的解集.【详解】解:去分母得:>移项得:故答案为:【点睛】本题考查的是一元一次不等式的解法,掌握解不等式的方法是解题的关键.18、小美打算买一束百合和康乃馨组合的鲜花,在“ 母亲节” 祝福妈妈.已知买 2 支百合和 1 支康乃馨共需花费 14 元, 3 支康乃馨的价格比 2 支百合的价格多 2 元.(1 )求买一支康乃馨和一支百合各需多少元?(2 )小美准备买康乃馨和百合共 11 支,且百合不少于 2 支.设买这束鲜花所需费用为元,康乃馨有支,求与之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.知识点:一元一次不等式【答案】(1 )买一支康乃馨需 4 元,一支百合需 5 元;(2 ),,当购买康乃馨9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【分析】(1 )设买一支康乃馨需x元,一支百合需y元,然后根据题意可得,进而求解即可;(2 )由(1 )及题意可直接列出与之间的函数关系式,进而可得,然后根据一次函数的性质可进行求解.【详解】解:(1 )设买一支康乃馨需x元,一支百合需y元,由题意得:,解得:,答:买一支康乃馨需4 元,一支百合需 5 元.(2 )由(1 )及题意得:百合有(11-x)支,则有,,∵ 百合不少于 2 支,∴,解得:,∵-1 < 0 ,∴w随x的增大而减小,∴ 当x =9 时,w取最小值,最小值为,∴ 当购买康乃馨 9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【点睛】本题主要考查一次函数的应用及一元一次不等式与二元一次方程组的应用,熟练掌握一次函数的应用及一元一次不等式与二元一次方程组的应用是解题的关键.19、2021 年是中国共产党建党 100 周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送 549 名学生和 11 名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1 )共需租 ________ 辆大客车;(2 )最多可以租用多少辆甲种型号大客车?(3 )有几种租车方案?哪种租车方案最节省钱?知识点:一元一次不等式【答案】(1 ) 11 ;(2 ) 3 辆;(3 ) 3 种,租用 3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【分析】(1 )根据学生和老师的总人数、乙种客车的载客量,以及每辆汽车上至少要有一名教师进行计算即可得;(2 )设租用辆甲种型号大客车,从而可得租用辆乙种型号大客车,根据甲、乙两种型号的大客车的载客量、学生和老师的总人数建立不等式,解不等式求出的取值范围,再结合且为正整数即可得;(3 )根据(2 )中的取值范围可得出租车方案,再分别求出各租车方案的费用即可得.【详解】解:(1 )(辆)(人),(辆),共需租11 辆大客车,故答案为:11 ;(2 )设租用辆甲种型号大客车,则租用辆乙种型号大客车,由题意得:,解得,因为且为正整数,所以最多可以租用3 辆甲种型号大客车;(3 )由(2 )可知,租用甲种型号大客车的辆数可以为辆,则有三种租车方案:① 租用 1 辆甲种型号大客车, 10 辆乙种型号大客车;② 租用 2 辆甲种型号大客车, 9 辆乙种型号大客车;③ 租用 3 辆甲种型号大客车, 8 辆乙种型号大客车;方案① 的费用为(元),方案② 的费用为(元),方案③ 的费用为(元),所以租用3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【点睛】本题考查了一元一次不等式的实际应用,正确建立不等式是解题关键.20、不等式的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】求出不等式的解集,再根据“ 大于向右,小于向左,不包括端点用空心,包括端点用实心” 的原则将解集在数轴上表示出来.【详解】解:解不等式,去分母得:,去括号得:,移项合并得:,系数化为得:,表示在数轴上如图:故选:B .【点睛】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ 向右画;<,≤ 向左画),在表示解集时“≥” ,“≤”要用实心圆点表示;“ <” ,“ >” 要用空心圆点表示.。
七年级数学下册《一元一次不等式与不等式组》练习题及答案解析
七年级数学下册《一元一次不等式与不等式组》练习题及答案解析1. 不等式组{x>−1x≤1的解集是( )A. x<1B. x≥1C. −1<x≤1D. 1≤x<−12. 不等式组{x+2<0x+3<0的解集是( )A. x<−2B. x<−3C. −3<x<−2D. x>−23. 下列各式中一元一次不等式是( )A. x≥5xB. 2x>1−x2C. x+2y<1D. 2x+1≤3x4. 若代数式2a+7的值不大于3则a的取值范围是( )A. a≤4B. a≤−2C. a≥4D. a≥−25. 已知a>b>0则下列不等式不一定成立的是( )A. ab>b2B. a+c>b+cC. 1a <1bD. ac>bc6. 不等式4x−511<1的正整数解为( )A. 1个B. 3个C. 4个D. 5个7. 不等式组{x+1≤02x+3<5的解集是( )A. x≤−1或x>1B. −1≤x<1C. x≤−1D. x>18. 亮亮准备用自己节省的零花钱买一台英语复读机他现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.设x个月后他至少有300元则可以用于计算所需要的月数x的不等式是( )A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3009. 关于x的不等式组{x+43>x2+1x+a<0的解集为x<2则a的取值范围是( )A. a≤−2B. a≥−2C. a≤2D. a≥210. 如果a<b<0下列不等式中错误的是( )A. ab>0B. a+b<0C. ab<1 D. a−b<011. 不等式12x>−3的解集是______.12. 不等式x+2>12x的负整数解______.13. 不等式组:{x−1<0x>0的解集是______.14. 不等式组{2x+1>x−1x+8>4x−1的正整数解是______.15. 某生物兴趣小组要在温箱里培养A B两种菌苗A种菌苗的生长温度x(℃)的范围是35≤x≤38 B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)d的范围是______.16. 已知不等式3x −a ≤0的正整数解只有1 2 3 那么a 的取值范围是______.17. 若不等式组{x −a >2b −2x >0的解集是−1<x <1 则(a +b)2014等于______. 18. 已知关于x 的不等式组{5−2x ≥1x −a ≥0无解 则a 的取值范围是______. 19. 一位老师说 他班学生的一半在学数学 四分之一的学生在学音乐 七分之一的学生在学外语 还剩不足6名同学在操场上踢足球 则这个班的学生最多有______人.20. 几个小朋友分糖块 如果每人分4块糖 则多余8块糖 如果每人分8块糖 则有一人分到了糖块但不足8块 请你猜想 共有______位小朋友______块糖.21. 解下列不等式 并把它们的解集在数轴上表示出来.(1)−3(1−x)+6>1+4x(2)x −12+1≥x. 22. 解下列不等式组:(1){3x −1<52x +6>0(2){3(x +1)>5x +4x −12≤2x −13. 23. 已知关于x 的方程5x −2m =3x −6m +1的解为x 满足−3<x ≤2 求m 的整数值.24. 某软件公司开发一种图书软件 前期投入的开发、广告宣传费用共50000元 且每售出一套软件 软件公司还需支付安装调试费200元.如果每套定价700元 软件公司至少要售出多少套才能确保不亏本?25. 一本科普读物共98页 晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了.已知小敏平均每天比晓芬多读3页 那么晓芬平均每天读多少页?(答案取整数)26. 扬州火车站有某公司待运的甲种货物1530吨 乙种货物1150吨 现计划用50节A 、B 两种型号的车厢将这批货物运至北京、已知每节A 型货厢的运费是0.5万元 每节B 型货厢的运费是0.8万元 甲种货物35吨和乙种货物15吨可装满一节A 型货厢 甲种货物25吨和乙种货物35吨可装满一节B 型货厢 按此要求安排A 、B 两种货厢的节数 共有几种方案?请你设计出来 并说明哪种方案的运费最少 最少运费是多少?参考答案与解析1.【答案】C【解析】解:把解集表示在数轴上如下:所以不等式组的解集是−1<x ≤1.故选:C.把两个解集表示在数轴上 再找公共部分即可.本题考查一元一次不等式组的解集 熟练掌握在数轴上表示不等式的解集是解题关键.2.【答案】B【解析】解:{x +2<0①x +3<0②由①得:x <−2由②得:x <−3则不等式组的解集为x <−3.故选:B.分别求出不等式组中两不等式的解集 找出两解集的公共部分即可.此题考查了解一元一次不等式组 熟练掌握不等式组的解法是解本题的关键.3.【答案】D【解析】解:A 、不是整式 不符合题意B 、未知数的最高次数是2 不符合题意C 、含有2个未知数 不符合题意D 、是只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式 符合题意故选D.找到只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式即可.考查一元一次不等式的定义:只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式叫做一元一次不等式.4.【答案】B【解析】解:依题意得2a +7≤32a ≤−4a≤−2.故选:B.根据题意列出不等式利用不等式的性质来求a的取值范围.本题考查了解一元一次不等式.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.【答案】D【解析】解:A、ab>b2成立B、a+c>b+c成立C、1a <1b成立D、ac<bc不一定成立.故选:D.根据不等式的性质分析判断.不等式两边同时乘以或除以同一个数或式子时一定要注意不等号的方向是否改变.6.【答案】B【解析】解:解不等式得x<4则不等式4x−511<1的正整数解为123共3个.故选:B.首先利用不等式的基本性质解不等式然后找出符合题意的正整数解.本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.【答案】C【解析】解:解不等式x+1≤0得:x≤−1解不等式2x+3<5得:x<1则不等式组的解集为x≤−1故选C.分别求出每一个不等式的解集根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.8.【答案】B【解析】解:x个月可以节省30x元根据题意得30x+45≥300.故选:B.此题中的不等关系:现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.至少即大于或等于.本题主要考查简单的不等式的应用解题时要注意题目中的“至少”这类的词.9.【答案】A【解析】解:根据题意得:x<2x+a<0∴x<−a∴a=−2或a<−2∴a≤−2故选A.根据题意知道不等式组的解集为x<2再由x+a<0直接求出a的取值范围.本题考查了不等式的解集解题的关键是根据题意及不等式的解集直接求出a的取值范围.10.【答案】C【解析】解:A、如果a<b<0则a、b同是负数因而ab>0故A正确B、因为a、b同是负数所以a+b<0故B正确C、a<b<0则|a|>|b|则ab >1也可以设a=−2b=−1代入检验得到ab<1是错误的.故C错误D、因为a<b所以a−b<0故D正确故选:C.根据不等式的性质分析判断.利用特殊值法验证一些式子错误是有效的方法.11.【答案】x>−6【解析】解:去分母得故答案为:x>−6.直接把不等式的两边同时乘以2即可得出结论.本题考查的是解一元一次不等式熟知不等式的基本性质是解答此题的关键.12.【答案】−3−2−1【解析】解:不等式x +2>12xx −12x >−2 12x >−2 解得x >−4故不等式x +2>12x 的负整数解有−3、−2、−1.故答案为:−3、−2、−1.首先利用不等式的基本性质解不等式 再从不等式的解集中找出非负整数解即可.本题考查了一元一次不等式的整数解 正确解不等式 求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】0<x <1【解析】解集:由(1)得 x <1由(2)得 x >0所以不等式组{x −1<0x >0的解集是0<x <1. 分别求出两个不等式的解集 求其公共解集.求不等式的公共解集 要遵循以下原则:同大取较大 同小取较小 小大大小中间找 大大小小解不了.14.【答案】1 2【解析】解:{2x +1>x −1①x +8>4x −1②解不等式①得:x >−2解不等式②得:x <3∴原不等式组的解集为:−2<x <3∴该不等式组的正整数解为:1 2故答案为:1按照解一元一次不等式组的步骤 进行计算可得−2<x <3 然后再找出此范围内的正整数即可. 本题考查了一元一次不等式组的整数解 准确熟练地进行计算是解题的关键.15.【答案】35≤t ≤36【解析】解:由题意可得不等式组{35≤x ≤3834≤y ≤36根据求不等式解集的方法可知温箱里的温度t ℃应该设定在35≤t ≤36故答案为:35≤t ≤36.温箱里的温度T ℃应该设定在能使A B 两种菌苗同时满足的温度 即35≤x ≤38与34≤y ≤36的公共部分.此题考查的是不等式的解集.求不等式组的解集 应注意:同大取较大 同小取较小 小大大小中间找 大大小小解不了.16.【答案】9≤x <12【解析】解:不等式的解集是:x ≤a 3∵不等式的正整数解恰是1 2 3∴3≤a 3<4 ∴a 的取值范围是9≤a <12.故答案为:9≤a <12.首先确定不等式组的解集 利用含a 的式子表示 再根据整数解的个数就可以确定有哪些整数解 然后根据解的情况可以得到关于a 的不等式 从而求出a 的范围.本题考查了一元一次不等式的整数解 正确解出不等式的解集 正确确定a 3的范围 是解决本题的关键.解不等式时要用到不等式的基本性质.17.【答案】1【解析】解:{x −a >2①b −2x >0②解不等式①得 x >2+a解不等式②得 x <b 2所以 不等式组的解集是2+a <x <b 2∵不等式组的解集是−1<x <1∴{2+a =−1b 2=1 解得{a =−3b =2所以故答案为:1.先去用a 、b 表示出不等式组的解集 然后根据不等式组的解集列出关于a 、b 的方程组并求出a 、b 最后代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法 难点在于用a 、b 表示出不等式组的解集再列出方程组.18.【答案】a>2【解析】解:解不等式5−2x≥1得:x≤2解不等式x−a≥0得:x≥a∵不等式组的无解∴a>2故答案为:a>2.分别求出每一个不等式的解集根据口诀:大大小小找不到并结合不等式组的解集可得答案.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.19.【答案】28【解析】解:设这个班的学生共有x人依题意得:x−12x−14x−17x<6解之得:x<56又∵x为2、4、7的公倍数∴这个班的学生最多共有28人.本题考查一元一次不等式的应用将现实生活中的事件与数学思想联系起来读懂题列出不等关系式即可求解.解决问题的关键是读懂题意找到关键描述语找到所求的量的等量关系.20.【答案】3 20【解析】解:设x个小朋友y块糖由题意可知y−4x=81≤y−8(x−1)<8∴y=8+4x代入不等式可知2<x≤154∵x为整数所以x为3则y为20所以共有3位小朋友20块糖.故答案为3可以设x个小朋友y块糖列出不等式从而根据条件求解x和y的值.本题考查了一元一次不等式的应用解决问题的关键是读懂题意根据实际情况依题意列出不等式进行求解.21.【答案】解:(1)−3(1−x)+6>1+4x−3+3x+6>1+4x3x−4x>1+3−6−x >−2x <2将解集表示在数轴上如图所示:(2)x −12+1≥x x −1+2≥2xx −2x ≥1−2−x ≥−1x ≤1..【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得 然后在数轴上表示出解集即可.本题主要考查解一元一次不等式的基本能力 严格遵循解不等式的基本步骤是关键 尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.【答案】解:(1){3x −1<5①2x +6>0②解不等式①得:x <2解不等式②得:x >−3则不等式组的解集为−3<x <2(2){3(x +1)>5x +4①x −12⩽2x −13② 解不等式①得:x <−12解不等式②得:x ≥−1则不等式组的解集为−1≤x <−12.【解析】分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.23.【答案】解:解方程5x −2m =3x −6m +1 得x =12−2m.∵−3<x ≤2∴{12−2m ≤212−2m>−3解得−34≤m <134∴m 的整数值是0 1. 【解析】先用m 的式子表示x 再根据−3<x ≤2 列出不等式组 求出不等式组的解集 再从中找出m 的整数值.此题考查的是一元一次不等式组的解法和一元一次方程的解 根据x 的取值范围 得出a 的整数解.24.【答案】解:设软件公司要售出x 套软件才能确保不亏本则有:700x ≥50000+200x解得:x ≥100.答:软件公司至少要售出100套软件才能确保不亏本.【解析】要使公司不赔本 那么销售软件的收入≥投资的总费用 然后得出自变量的取值范围.本题考查一元一次不等式的应用 将现实生活中的事件与数学思想联系起来 读懂题列出不等式关系式即可求解.25.【答案】解:设晓芬平均每天读x 页 则小敏平均每天读(x +3)页依题意得:{7x <987(x +3)>98解得:11<x <14又∵x 为整数∴x =12或13.答:晓芬平均每天读12页或13页.【解析】设晓芬平均每天读x 页 则小敏平均每天读(x +3)页 根据“晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了” 即可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再取其中的整数值即可得出结论.本题考查了一元一次不等式组的应用 根据各数量之间的关系 正确列出一元一次不等式组是解题的关键.26.【答案】解:设A 型货厢的节数为x 则B 型货厢的节数为(50−x)节.{35x +25(50−x)≥153015x +35(50−x)≥1150解得:28≤x ≤30.∵x 为正整数∴x 可为28 29∴方案为①A型货厢28节B型货厢22节②A型货厢29节B型货厢21节③A型货厢30节B型货厢20节总运费为:0.5x+0.8×(50−x)=−0.3x+40∵−0.3<0∴x越大总运费越小∴x=30最低运费为:−0.3×30+40=31万元.答:A型货厢30节B型货厢20节运费最少最少运费是31万元.【解析】关系式为:A型货厢装甲种货物吨数+B型货厢装甲种货物吨数≥1530A型货厢装乙种货物吨数+B型货厢装乙种货物吨数≥1150把相关数值代入可得一种货厢节数的范围进而求得总运费的等量关系根据函数的增减性可得最少运费方案及最少运费.考查一元一次不等式组的应用及方案的选择问题得到所运货物吨数的两个关系式及总运费的等量关系是解决本题的关键。
第二章 一元一次不等式与一元一次不等式组测试题(含答案)
第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
一元一次不等式组练习题(含答案)
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:
.
24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.
一元一次不等式(组)专题训练
一元一次不等式(组)一、 一元一次不等式(组)的解A 、 已知不等式(组)的解(集),求参数的值或取值范围 例1:不等式-<+mx 23x 4的解集是63x m >-,求m 的取值范围。
练习:1、若关于x 的不等式a(1)x 12a x ->+-的解集是1x <-求a 的取值范围。
2、若关于x 的不等式(1)x 5a a -<+的解集和24x <的解集相同,求a 的取值。
3、不等式475x a x ->+的解集是1x <-求a 的取值4、若关于x 的不等式2132x a a ->-的解集和2x a <的解集相同,求a 的取值例2:若不等式组3x x a >⎧⎨>⎩的解集是x a >则a 的取值范围是 练习:1、(1)若不等式组5x x m <⎧⎨>⎩ 无解,则a 的取值范围是 (2)若无解,则a 的取值范围是2、已知不等式组x a x b <⎧⎨>⎩无解,求不等式组11x a x b >-⎧⎨<-⎩的解3、当a 满足什么条件时,不等式组131x a x a >+⎧⎨<-⎩无解4、如果2a <,那么不等式组2x x a >⎧⎨>⎩的解集为 ,2x x a <⎧⎨<⎩的解集为 例3:若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<求(a 3)(b 3)-+ 的值。
练习:1、一元一次不等式组13x a x -≤⎧⎨+>⎩的解集为x a ≥-,求a 的取值范围。
2、一元一次不等式组221x a b x a a -≥⎧⎨-<+⎩的解集为35x ≤<,求b a3、一元一次不等式组213(x 1)x x m ->-⎧⎨<⎩的解集为2x <,求m 的取值范围。
4、不等式组26x x x m-+<-⎧⎨>⎩的解集为4x >,求m 的取值范围B :已知不等式(组)的整数解的个数,求参数的取值范围例4:已知不等式30x a -≤ 的正整数解有三个,1,2,3求a 的取值范围。
一元一次不等式练习习题附答案
一元一次不等式练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >0【答案】B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B . 【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<.2.若不等式组4101x m x x m-+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m =D .5m =【答案】C 【分析】首先解出不等式组的解集,然后与x >4比较,即可求出实数m 的取值范围. 【详解】解:由①得2x >4m -10,即x >2m -5; 由②得x >m -1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.3.下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩【答案】D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4.海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80【答案】C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5.不等式组31xx<⎧⎨≥⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】根据不等式组的解集的表示方法即可求解. 【详解】解:∵不等式组的解集为31x x <⎧⎨≥⎩ 故表示如下:故选:C . 【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.如果0b a <<,则下列哪个不等式是正确的( ) A .2b ab < B .2a ab >C .22b a ->-D .22b a >【答案】C 【分析】运用不等式的基本性质逐一判断即可. 【详解】 ∵0b a <<, ∴2b ab > , ∴A 不符合题意; ∵0b a <<, ∴2ab a > , ∴B 不符合题意; ∵0b a <<, ∴22b a ->- , ∴C 符合题意; ∵0b a <<, ∴22b a < , ∴D 不符合题意; 故选C .【点睛】本题考查了不等式的性质,熟练运用基本性质是解题的关键.7.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2 C.x>﹣3 D.x≤2【答案】A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8.能说明“若x>y,则ax>ay”是假命题的a的值是()A.3 B.2 C.1 D.1-【答案】D【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.【详解】解:“若x>y,则ax>ay”是假命题,则0a<,故选:D.【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.二、填空题912x-x的取值范围为_______________.【答案】12x ≤且1x ≠- 【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解. 【详解】解:由题意得:120x -≥,且10x +≠ 解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键. 10.若m 与3的和是正数,则可列出不等式:___. 【答案】30m +> 【分析】根据题意列出不等式即可 【详解】若m 与3的和是正数,则可列出不等式30m +> 故答案为:30m +> 【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键.11.不等式组21054x x -≤⎧⎨+≥⎩的整数解是__________.【答案】-1、0 【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案. 【详解】解:解不等式210x -≤, 得:12x ≤, 解不等式54x +≥, 得:1x ≥-,则不等式组的解集为112x ≤≤-, ∴不等式组的整数解为-1、0, 故答案为:-1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.12.a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0; (3)35a __________35b ;(4)2a -________2b -;(5)14a -________14b -;(6)a c ⋅_______b c ⋅; (7)a c -________b c -;(8)ab _______2b .【答案】> > > < < > > > 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变; (2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变; (3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变. 据此可以对不等号的方向进行判断. 【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +; (2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0; (3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ;(4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅; (7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -; (8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.13.不等式组53xx m<⎧⎨>+⎩有解,m的取值范围是______.【答案】m<2【分析】根据不等式组得到m+3<x<5,【详解】解:解不等式组53xx m<⎧⎨>+⎩,可得,m+3<x<5,∵原不等式组有解∴m+3<5,解得:m<2,故答案为:m<2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.14.如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)【答案】<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.三、解答题15.解下列不等式:(1)5132x x -+>-;(2)1515x x -+≤-;(3)112135x x -<-;(4)(31)2x x x --≤+.【答案】(1)3x <;(2)152x ≥;(3)458x <;(4)13x ≥-. 【分析】根据解一元一次不等式的步骤以及不等式的基本性质,解一元一次不等式即可. 【详解】 (1)5132x x -+>- 去分母,5226x x -+>- 移项,合并同类项,3x ->- 化系数为1,3x <; (2)1515x x-+≤- 去分母,315x x -+≤- 移项,合并同类项,215x -≤- 化系数为1, 152x ≥; (3)112135x x -<-去分母,530153x x -<- 移项,合并同类项,845x < 化系数为1,458x <; (4)(31)2x x x --≤+ 去括号,312x x x -+≤+ 移项,合并同类项,31x -≤ 化系数为1,13x ≥-.【点睛】本题考查了解一元一次不等式,正确的计算是解题的关键. 16.解下列不等式组: (1)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩【答案】(1)12x -≤<;(2)1x ≥-.【分析】(1)(2)分别先根据一元一次不等式的解法分别求出每个不等式的解集,并将两个不等式的解集表示在同一数轴上,再利用不等式组的解集的确定方法:“同大取大;同小取小;大小小大中间找;大大小小无解”求解即可. 【详解】解:(1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①,得1x ≥-. 解不等式②,得2x <.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为12x -≤<.(2)()2731423133x x x x ⎧-<-⎪⎨+≥-⎪⎩①② 解不等式①,得4x ->. 解不等式②,得1x ≥-.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为1x ≥-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键. 17.已知-x <-y ,用“<”或“>”填空: (1)7-x ________7-y . (2)-2x ________-2y . (3)2x ________2y . (4)23x _______23y .【答案】(1)<(2)<(3)>(4)>【分析】根据不等式的性质求解即可.(1)解:∵x y-<-,∴不等号两边都加7,依据不等式的性质1,得7-x<7-y.(2)解:∵x y-<-,∴不等号两边都乘以2,依据不等式的性质2,得-2x<-2y.(3)解:∵x y-<-,∴不等号两边都乘以-2;依据不等式的性质3,得2x>2y.(4)解:∵x y-<-,∴不等号两边都乘以23-,依据不等式的性质3,得23x>23y.故答案为:(1)<(2)<(3)>(4)>【点睛】本题考查了不等式的性质:1、把不等式的两边都加(或减去)同一个数或式子,不等号的方向不变;2、不等式两边都乘(或除以)同一个正数,不等号的方向不变;3、不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3)384x<;(4)1x≥2;(5)2x+y≤8【答案】(2)、(3)是一元一次不等式【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键. 19.解不等式(组)(1)2151132x x -+-> (2)321125123x x x x -≥+⎧⎪+⎨-<-⎪⎩ 【答案】(1)1x -<;(2)不等式组的解集为83x ≤-. 【分析】(1)先去分母,再去括号,移项合并,系数化1即可;(2)分别解每个不等式,再取它们的公共解集即可.【详解】解:(1)2151132x x -+->, 去分母得()()2213516x x --+> ,去括号得421536x x --->,移项合并得 1111x ->,解得1x -<;(2)321125123x x x x -≥+⎧⎪⎨+-<-⎪⎩①②, 解不等式①得83x ≤-, 解不等式②得45x <, ∴不等式组的解集为83x ≤-. 【点睛】本题考查不等式的解法,不等式组的解法,掌握不等式的解法与步骤,不等式组的解法,特别是不等式组的解集取法,同大取大,同小取小,大小小大取中间,大大小小无解是解题关键.20.解不等式:(1)2(x ﹣1)﹣3(3x +2)>x +5.(2)221235x x +->-. 【答案】(1)138x <-(2)43x < 【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可.【详解】解:(1)去括号,得:2x ﹣2﹣9x ﹣6>x +5,移项,得:2x ﹣9x ﹣x >5+2+6,合并,得:﹣8x >13,系数化为1,得:138x <-; (2)去分母,得:5(2+x )>3(2x ﹣1)﹣30,去括号,得:10+5x >6x ﹣3﹣30,移项,得:5x ﹣6x >﹣3﹣30﹣10,合并同类项,得:﹣x >﹣43,系数化为1,得:x <43.【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤. 21.计算:解下列不等式(组),并把解集在数轴上表示出来.(1)6341213x x x x +≤+⎧⎪+⎨>-⎪⎩ (2)()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩ 【答案】(1)14x ≤<,数轴见解析;(2)723x -<≤,数轴见解析 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再将解集表示在数轴上即可.【详解】(1)634 1213x xxx+≤+⎧⎪⎨+>-⎪⎩①②解不等式①,得x≥1.解不等式②,得x<4.因此,原不等式组的解集为1≤x<4.在数轴上表示其解集如下:(2)()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩①②.由①,得x>﹣2.由②,得x≤73.故此不等式组的解集为723x-<≤.在数轴上表示为,【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.22.列一元一次方程解应用题:某校七年级将进行广播操比赛,七年级(1)班准备在网上找商家将班徽制作成胸牌,下列图表是负责这项事务的同学了解到的信息及他们的对话:材料费(元/个)总设计费(元)甲商家10150乙商家12160(1)当制作多少个胸牌时,在甲、乙两个商家购买费用相同?(2)七年级(1)班应该如何根据本班定制胸牌数量选择不同的商家才更省钱?【答案】(1)当制作23个胸牌时,甲乙两个商家购买费用相同;(2)当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当制作23个胸牌时,甲乙两个商家购买费用相同.【分析】(1)根据题意设当制作x 个胸牌时,甲乙两个商家购买费用相同,依据所花费用相同列出方程,求解即可;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,根据题意分三种情况讨论即可.【详解】解:(1)设当制作x 个胸牌时,甲乙两个商家购买费用相同,根据题意可得:100.915015121600.6x x ⨯++=+⨯,解得:23x =,当制作23个胸牌时,甲乙两个商家购买费用相同;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,当100.915015121600.6y y ⨯++>+⨯,解得:23y <,当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当100.915015121600.6y y ⨯++<+⨯,解得:23y >,当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当100.915015121600.6y y ⨯++=+⨯,解得:23y =,当制作23个胸牌时,甲乙两个商家购买费用相同.【点睛】题目主要考查一元一次方程及一元一次不等式的应用,理解题意,列出相应方程是解题关键.23.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,在每辆车都满载的情况下,甲种运输车至少需要安排多少辆.【答案】甲种运输车至少需要安排6辆【分析】设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨,根据两种运输汽车不超过10辆建立不等式求出其解,就可以求出甲种车运输的吨数,从而求出结论.【详解】解:设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨, 根据题意,得:4654x x -+≤10, 去分母得:4x +230-5x ≤200,-x ≤-30,x ≥30,则5x ≥6. 答:甲种运输车至少需要安排6辆.【点睛】本题考查了一元一次不等式的应用,关键是以运输车的总数不超过10辆作为不等量关系列方程求解.24.(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 【答案】(1)x ≥﹣1,数轴见解析;(2)733x -<≤,2 【分析】 (1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x ﹣5x ≤2,合并同类项,得:﹣2x ≤2,系数化为1,得:x ≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.。
一元一次不等式组试题(含答案)
一元一次不等式组A卷:基础题一、选择题1.下列不等式组中,是一元一次不等式组的是()A.2,3 xx>⎧⎨<-⎩B.10,20xy+>⎧⎨-<⎩C.320,(2)(3)0xx x->⎧⎨-+>⎩D.320,11xxx->⎧⎪⎨+>⎪⎩2.下列说法正确的是()A.不等式组3,5xx>⎧⎨>⎩的解集是5〈x〈3 B.2,3xx>-⎧⎨<-⎩的解集是-3<x<-2C.2,2xx≥⎧⎨≤⎩的解集是x=2 D.3,3xx<-⎧⎨>-⎩的解集是x≠33.不等式组2,3482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解为( )A.-1 B.0 C.1 D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3〈x〈5 B.-3<x〈5 C.-5<x<3 D.-5〈x<-35.不等式组20,30xx->⎧⎨-<⎩的解集是()A.x〉2 B.x〈3 C.2〈x<3 D.无解二、填空题6.若不等式组2,xx m<⎧⎨>⎩有解,则m的取值范围是______.7.已知三角形三边的长分别为2,3和a,则a的取值范围是_____.8.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;•如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.9.若不等式组2,20x ab x->⎧⎨->⎩的解集是-1〈x<1,则(a+b)2006=______.三、解答题10.解不等式组2(2)4,(1) 10(2) 32x xx x-≤-⎧⎪+⎨-<⎪⎩11.若不等式组1,21x mx m<+⎧⎨>-⎩无解,求m的取值范围.12.为节约用电,某学校于本学期初制定了详细的用电计划.•如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度.若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?B卷:提高题一、七彩题1.(一题多变题)如果关于x的不等式(a-1)x〈a+5和2x<4的解集相同,则a•的值为______.(1)一变:如果(1)5,24a x ax-<+⎧⎨<⎩的解集是x〈2,则a的取值范围是_____;(2)二变:如果24,1,51xxaxa⎧⎪<⎪≥⎨⎪+⎪<-⎩的解集是1≤x〈2,则a的取值范围是____二、知识交叉题2.(科内交叉题)在关于x1,x2,x3的方程组121232133,,x x ax x ax x a+=⎧⎪+=⎨⎪+=⎩中,已知a1>a2>a3,请将x1,x2,x3按从大到小的顺序排列起来.3.(科外交叉题)设“○”、“□”、“△"分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、 “△”这样的物体,按质量从小到大的顺序排列为()A.○□△B.○△□ C.□○△D.△□○三、实际应用题4.某宾馆底层客房比二楼少5间,某旅游团有48人,若全安排在底层,每间4人,则房间不够;若每间5人,则有房间没有住满5人;若全安排在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,求该宾馆底层有客房多少间?四、经典中考题5.(2007,厦门,3分)小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为69•千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,•这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,•加在他和妈妈坐的一端,结果爸爸被跷起,那么小宝的体重可能是( )A.23。
第二章 一元一次不等式和一元一次不等式组(解析版)
2020-2021学年八年级数学下册高分数拔尖提优单元密卷(北师大版)参考答案与试题解析考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共40分)1.(本题4分)不等式x <-2的解集在数轴上表示为( )A .B .C .D .【答案】D【解析】A 选项中,数轴上表达的解集是:2x ≥-,所以不能选A ;B 选项中,数轴上表达的解集是:2x >-,所以不能选B ;C 选项中,数轴上表达的解集是:2x -≤,所以不能选C ;D 选项中,数轴上表达的解集是:2x <-,所以可以选D.故选D.2.(本题4分)已知a <3,则不等式(a ﹣3)x <a ﹣3的解集是() A .x >1 B .x <1 C .x >﹣1D .x <﹣1【答案】A【分析】因为a <3,所以a ﹣3<0.两边同时除以a ﹣3得:x >1.故选A.3.(本题4分)x 与3的和的一半是负数,用不等式表示为( )A .12x +3>0 B .12x +3<0 C .12(x +3)<0 D .12(x +3)>0 【答案】C【解析】 “x 与3的和的一半是负数”用不等式表示为:1(3)02x +<. 故选C.4.(本题4分)如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( )A .x <3B .x >3C .x <1D .x >1【答案】A【解析】 由图可知一次函数过点(2,0)和点(0,-4),将两点坐标分别代入y =kx +b ,得02,4,k b b =+⎧⎨-=⎩解得2,4,k b =⎧⎨=-⎩ 故一次函数解析式为y=2x -4,当y<2时,2x -4<2,解得x<3.故选A.5.(本题4分)如图,直线y x b =+与直线6y kx =+交于点(3,5)P ,则关于x 的不等式6x b kx +>+的解集是( ).A .35x <<B .3x <C .3x >D .3x <或5x >【答案】C【解析】 由图像可得,当x >3时,x +b >kx +6.故选C.6.(本题4分)下列变形中不正确的是( )A .由a b >得b a <B .由a b ->-得b a >C .若a>b,则ac 2>bc 2(c 为有理数)D .由12x y -<得2x y >- 【答案】C【解析】A 选项:由前面的式子可判断a 是较大的数,那么b 是较小的数,正确,不符合题意;B 选项:不等式两边同除以-1,不等号的方向改变,正确,不符合题意;C 选项:当c=0时,左右两边相等,错误,符合题意;D 选项:不等式两边都乘以-2,不等号的方向改变,正确,不符合题意;故选C .7.(本题4分)如图,直线y =kx +b 经过点A(-1,-2)和点B(-2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( )A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <0【答案】B【解析】解:不等式2x <kx+b <0体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点, 显然,这些点在点A 与点B 之间.故选B .8.(本题4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为( )A .6B .5C .6或5D .4【答案】A【详解】设共有学生x 人,0≤(3x +8)-5(x -1)<3,解得5<x ≤6.5,故共有学生6人,故选A. 9.(本题4分)对于不等式组1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤C .此不等式组有5个整数解D .此不等式组无解【答案】A【解析】 解:1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩①②,解①得x ≤72,解②得x >﹣1,所以不等式组的解集为﹣1<x ≤72,所以不等式组的整数解为1,2,3.故选A .10.(本题4分)不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-【答案】B【解析】详解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.第II卷(非选择题)二、填空题(共20分)11.(本题4分)写出一个解集为x≥1的一元一次不等式:_____________.【答案】x-1≥0(答案不唯一)【详解】解:移项,得x-1≥0,故答案为:x-1≥0(答案不唯一).12.(本题4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.【答案】x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.13.(本题4分)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190”为一次操作.如果操作只进行一次就停止,则x的取值范围是_________.【答案】x >64.【详解】解:第一次的结果为:3x −2,没有输出,则3x −2>190,解得:x >64.故x 的取值范围是x >64.故答案为x >64.14.(本题4分)要使关于x 的方程5x -2m =3x -6m +1的解满足-3<x <4,则m 的取值范围是_______.【答案】-74<m<74. 【解析】解方程5x -2m =3x -6m +1,5x -3x=2m -6m+1,解得x=142m -, 将x 代入-3<x <4,得-3<142m -<4, 解得-74<m<74. 故答案为-74<m<74. 15.(本题4分)如果一次函数(0)y kx b k =+≠的图象与x 轴交点坐标为(2,0)-,如图所示.则下列说法:①y 随x 的增大而减小;②关于x 的方程0kx b +=的解为2x =-;③0kx b +>的解是2x >-;④0b <.其中正确的说法有_____.(只填你认为正确说法的序号)【答案】①②④【解析】解:由图可知k <0,①当k <0时,y 随x 的增大而减小,故本小题正确;②图象与x 轴交于点(-2,0),故关于x 的方程kx+b=0的解为x=-2,故本小题正确;③不等式kx+b >0的解集图像0y >的部分对应的自变量x 的取值范围,所以x <-2,故本小题错误; ④直线与y 轴负半轴相交,b <0,故本小题正确;综上所述,说法正确的是①②④.故答案为①②④.三、解答题(共90分)16.(本题8分)解不等式组:2322112.323x x x x ①②>-⎧⎪⎨-≥-⎪⎩【答案】-2≤x <2.【解析】解:解不等式①,得x <2.解不等式②,得x≥-2.∴原不等式组的解集为-2≤x <2.17.(本题8分)解不等式组()21511325131x xx x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.【答案】-1≤x <2【解析】()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得,x≥-1,解不等式②得,x<2,在数轴上表示如下:所以不等式组的解集是−1≤x<2. 不等式组的整数解为-1,0,1,2.18.(本题8分)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.【答案】(1)y=x+3;(2)x≤3.【解析】(1)∴一次函数y=kx+3的图象经过点(1,4),∴ 4=k+3,∴ k=1,∴ 这个一次函数的解析式是:y=x+3.(2)∴ k=1,∴ x+3≤6,∴ x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.19.(本题9分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【答案】A型42元,B型56元;30台.【解析】试题解析:(1)设A型号计算器售价为x元,B型号计算器售价为y元由题意可得:()() ()() 5304076 {630340120x yx y-+-=-+-=解得:42 {56 xy==答:A型号计算器售价为42元,B型号计算器售价为56元.(2)设购进A型号计算器a台,则B型号计算器(70-a)台由题意可得:30a+40(70-a)≤2500解得:a≥30答:最少需要购进A型号计算器30台.20.(本题10分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?【答案】(1)200元和100元(2)至少6件【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.21.(本题10分)已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.【答案】(1)-2<a≤3.(2)5;(3)a=-1.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∴①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∴方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∴-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∴不等式的解为x<1∴2a+1<0,∴a<-12,∴-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.22.(本题11分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元试题解析:(1)设饮用水有x 件,则蔬菜有(x ﹣80)件.x+(x ﹣80)=320,解这个方程,得x=200.∴x ﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m 辆,则租用乙种货车(8﹣m )辆.得:4020(8)200{1020(8)120m m m m +-≥+-≥, 解这个不等式组,得2≤m≤4.∴m 为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.23.(本题12分)对x ,y 定义一种新运算T ,规定(,)2ax by x y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ . 已知(1,1)2T -=-,(4,2)1T =.(1)求a ,b 的值; (2)若关于m 的不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围. 【答案】(1)a ,b 的值分别为1,3;(2)123p -≤<-.【解析】(1)由,()4,21T =,得()112211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+, 即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3. (2)由(1)得()3,2x y x y x y +T =+,则不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩可化为105,539,m m p -≤⎧⎨->-⎩ 解得19325p m --≤<. ∴不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩恰好有3个整数解, ∴93235p -<≤,解得123p -≤<-. 24.(本题14分)已知直线y =kx +b 经过点B (1,4),且与直线y =-x -11平行.(1)求直线AB 的解析式并求出点C 的坐标;(2)根据图象,写出关于x 的不等式0<2x ﹣4<kx +b 的解集;(3)现有一点P 在直线AB 上,过点P 做PQ ∥y 轴交直线y =2x -4于点Q ,若C 点到线段PQ 的距离为1,求点P 的坐标并直接写出线段PQ 的长.【答案】(1)y =-x +5,C (3,2); (2)2<x <3 ; (3)P (2,3)或者(4,1),线段PQ 的长为3.【解析】解:(1)∴直线y=kx+b 经过点B (1,4),函数与直线y =-x -11,∴14k k b =-⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩, ∴直线AB 的解析式为:y =﹣x +5;∴若直线y =2x ﹣4与直线AB 相交于点C ,∴524y x y x =-+⎧⎨=-⎩解得32x y =⎧⎨=⎩, ∴点C (3,2).(2)由题意知所求是如图位置,24y x =-,令y =0,x =2,C(3,2),所以图像中的部分对应的2<x <3.(3) 若C 点到线段PQ 的距离为1,所以P 点横坐标是2,或者4,代入直线解析式y =﹣x +5有P (2,3)或者(4,1),代入24y x =-,Q (2,0),(4,4),所以PQ =3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级下册《第2章一元一次不等式与一元一次不等式组》2014年单元检测卷A(一)一、选择题(每小题4分,共48分)1.(4分)(2013•湘西州)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>2.(4分)下面列出的不等式中,正确的是()A.a不是负数,可表示成a>0 B.x不大于3,可表示成x<3C.m与4的差是负数,可表示成m﹣4<0 D.x与2的和是非负数,可表示成x+2>0 3.(4分)(2013•济宁)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣24.(4分)(2013•营口)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(4分)(2004•青海)已知点M(3a﹣9,1﹣a)在第三象限,且它的坐标是整数,则a 等于()A.1B.2C.3D.06.(4分)(2009•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣17.(4分)(2011•北仑区一模)若不等式组的解集是x>3,则m的取值范围是()A.m≤3 B.m>3 C.m<3 D.m=38.(4分)(2013•攀枝花)已知实数x,y,m满足,且y为负数,则m 的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣69.(4分)(2012•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%10.(4分)(2011•乐山)已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<111.(4分)(2013•潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.5612.(4分)(2010•泰安)若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7二、填空题(每小题4分,共24分)13.(4分)根据“y的与x的5倍的差是非负数”,列出的不等式为_________.14.(4分)(2013•哈尔滨)不等式组的解集是_________.15.(4分)(2012•凉山州)某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值范围是_________.16.(4分)(2010•咸宁)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_________.17.(4分)(2012•黄石)若关于x的不等式组有实数解,则a的取值范围是_________.18.(4分)(2013•荆州)如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是_________.三、解答题(19题6分.20题8分,共14分)19.(6分)解下列不等式:(1)5x﹣12≤2(4x﹣3);(2)≥x﹣2.20.(8分)(2014•泰州三校一模)解不等式组,并把解集在数轴上表示出来.四、解答题(每小题10分,共40分)21.(10分)(2013•扬州)已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.22.(10分)(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.23.(10分)(2013•南京)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300﹣400 400﹣500 500﹣600 600﹣700 700﹣900 …返还金额(元) 3 0 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?24.(10分)(2013•鄂尔多斯)某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒做为奖品.请你根据图中所给的信息,解答下列问题:(1)每个颜料盒,每支水笔各多少元?(2)恰逢商店举行优惠促销活动,具体办法如下:颜料盒按七折优惠,水笔10支以上超出部分按八折优惠,若买m个颜料盒需要y1元,买m支水笔需要y2元,求y1,y2关于m的函数关系式;(3)若学校需购买同一种奖品,并且该奖品的数量超过10件,请你帮助分析,如何购买奖品比较合算.五、解答题(12分.共24分)25.(12分)(2013•德州)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a226.(12分)(2013•盘锦)端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;‚②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.北师大版八年级下册《第2章一元一次不等式与一元一次不等式组》2014年单元检测卷A(一)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2013•湘西州)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>考点:不等式的性质.分析:根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.点评:此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.(4分)下面列出的不等式中,正确的是()A.a不是负数,可表示成a>0 B.x不大于3,可表示成x<3C.m与4的差是负数,可表示成m﹣4<0 D.x与2的和是非负数,可表示成x+2>0考点:不等式的定义.专题:常规题型.分析:根据各选项的表述列出个不等式,与选项中所表示的比对即可得出答案.解答:A、a不是负数,可表示成a≥0,故本选项错误;B、x不大于3,可表示成x≤3,故本选项错误;C、m与4的差是负数,可表示成m﹣4<0,故本选项正确;D、x与2的和是非负数,可表示成x+2≥0,故本选项错误.故选C.点评:本题考查了不等式的定义,解决本题的关键是理解非负数用数学符号表示是“≥0”.3.(4分)(2013•济宁)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣2考点:不等式的性质.分析:根据已知条件可以求得b=,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.解答:解:由ab=4,得b=,∵﹣2≤b≤﹣1,∴﹣2≤≤﹣1,∴﹣4≤a≤﹣2.故选D.点评:本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(4分)(2013•营口)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:存在型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x≥﹣2;由②得,x<1,故此不等式组的解集为:﹣2≤x<1.在数轴上表示为:故选C.点评:本题考查的是在数轴上表示不等式组的解集,熟知解不等式组的加减消元法和代入消元法是解答此题的关键.5.(4分)(2004•青海)已知点M(3a﹣9,1﹣a)在第三象限,且它的坐标是整数,则a 等于()A.1B.2C.3D.0考点:点的坐标;一元一次不等式组的整数解.分析:在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.解答:解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选B.点评:主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(4分)(2009•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣1考点:一次函数的图象.专题:数形结合.分析:根据图象和数据可直接解答.解答:解:根据图象和数据可知,当y<0即直线在x轴下方时x的取值范围是x>﹣2.故选B.点评:本题考查一次函数的图象,考查学生的分析能力和读图能力.7.(4分)(2011•北仑区一模)若不等式组的解集是x>3,则m的取值范围是()A.m≤3 B.m>3 C.m<3 D.m=3考点:解一元一次不等式组.专题:计算题.分析:先解不等式组,然然后根据不等式的解集,得出m的取值范围即可.解答:解:,解①得,x>3;解②得,x>m,∵不等式组的解集是x>3,则m≤3.故选A.点评:本题考查了解一元一次不等式组,根据的法则是:大大取大,小小取小,大小小大中间找,大大小小找不到.8.(4分)(2013•攀枝花)已知实数x,y,m满足,且y为负数,则m 的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6考点:非负数的性质:算术平方根;非负数的性质:绝对值;解二元一次方程组;解一元一次不等式.分析:根据非负数的性质列出方程求出x、y的值,然后根据y是负数即可得到一个关于m 的不等式,从而求得m的范围.解答:解:根据题意得:,解得:,则6﹣m<0,解得:m>6.故选A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.(4分)(2012•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%考点:一元一次不等式的应用.专题:压轴题.分析:缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.解答:解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.点评:此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.10.(4分)(2011•乐山)已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<1考点:一次函数与一元一次不等式;解一元一次不等式;一次函数的性质;一次函数图象上点的坐标特征.专题:计算题;压轴题;数形结合.分析:根据一次函数y=ax+b的图象过第一、二、四象限,得到b>0,a<0,把(2,0)代入解析式y=ax+b求出=﹣2,解a(x﹣1)﹣b>0,得x﹣1<,代入即可求出答案.解答:解:∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A.点评:本题主要考查对一次函数与一元一次不等式的关系,一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式等知识点的理解和掌握,能根据一次函数的性质得出a、b的正负,并正确地解不等式是解此题的关键.11.(4分)(2013•潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.56考点:一元一次不等式组的应用.专题:压轴题;新定义.分析:先根据[x]表示不大于x的最大整数,列出不等式组,再求出不等式组的解集即可.解答:解:根据题意得:5≤<5+1,解得:46≤x<56,故选C.点评:此题考查了一元一次不等式组的应用,关键是根据[x]表示不大于x的最大整数,列出不等式组,求出不等式组的解集.12.(4分)(2010•泰安)若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7考点:一元一次不等式组的整数解.专题:压轴题.分析:首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.解答:解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选D.点评:本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.二、填空题(每小题4分,共24分)13.(4分)根据“y的与x的5倍的差是非负数”,列出的不等式为y﹣5x≥0.考点:由实际问题抽象出一元一次不等式.分析:先表示出y的,进而表示出与5x的差,让差≥0即可.解答:解:∵y的为y,∴y的与x的5倍的差为y﹣5x,∴y的与x的5倍的差是非负数可表示为y﹣5x≥0,故答案为:y﹣5x≥0.点评:考查了列一元一次不等式的问题,关键是理解“非负数”用数学符号表示应为“≥0”.14.(4分)(2013•哈尔滨)不等式组的解集是﹣2≤x<1.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:∵解不等式①得:x<1,解不等式②得:x≥﹣2,∴不等式组的解集为:﹣2≤x<1,故答案为:﹣2≤x<1.点评:本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.15.(4分)(2012•凉山州)某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值范围是440≤x≤480.考点:一元一次不等式组的应用.专题:压轴题.分析:根据:售价=进价×(1+利润率),可得:进价=,商品可获利润(10%~20%),即售价至少是进价(1+10%)倍,最多是进价的1+20%倍,据此即可解决问题.解答:解:设这种商品的进价为x元,则得到不等式:≤x≤,解得440≤x≤480.则x的取值范围是440≤x≤480.故答案为:440≤x≤480.点评:本题考查一元一次不等式组的应用,读懂题列出不等式关系式即可求解.注意弄清售价、进价、利润率之间的关系.16.(4分)(2010•咸宁)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1.考点:一次函数与一元一次不等式.专题:数形结合.分析:把y=2代入y=x+1,求出x的值,从而得到点P的坐标,由于点P是两条直线的交点,根据两个函数图象特点可以求得不等式x+1≥mx+n的解集.解答:解:把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值.因而不等式x+1≥mx+n的解集是:x≥1.故答案为:x≥1.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.17.(4分)(2012•黄石)若关于x的不等式组有实数解,则a的取值范围是a<4.考点:解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a的不等式,求出a的取值范围即可.解答:解:,由①得,x<3,由②得,x>,∵此不等式组有实数解,∴<3,解得a<4.故答案为:a<4.点评:本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a的不等式是解答此题的关键.18.(4分)(2013•荆州)如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是k=﹣3.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:新定义.分析:根据新运算法则得到不等式2x﹣k≥1,通过解不等式即可求k的取值范围,结合图象可以求得k的值.解答:解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥1,∴k≤2x﹣1≤﹣3,∴k=﹣3.故答案是:k=﹣3.点评:本题考查了在数轴上表示不等式的解集、解一元一次不等式.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题(19题6分.20题8分,共14分)19.(6分)解下列不等式:(1)5x﹣12≤2(4x﹣3);(2)≥x﹣2.考点:解一元一次不等式.分析:(1)先去括号,再移项、合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.解答:解:(1)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(2)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1.点评:本题考查的是解一元一次不等式,熟知①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解一元一次不等式的基本步骤是解答此题的关键.20.(8分)(2014•泰州三校一模)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.四、解答题(每小题10分,共40分)21.(10分)(2013•扬州)已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.考点:解二元一次方程组;解一元一次不等式组.专题:计算题.分析:先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.解答:解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.点评:本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(10分)(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.考点:一元一次不等式组的应用.分析:根据设租用甲种货车x辆,则租用乙种(6﹣x)辆,利用某市民政局组织募捐了240吨救灾物资,以及每辆货车的载重量得出不等式求出即可,进而根据每辆车的运费求出最省钱方案.解答:解:设租用甲种货车x辆,则租用乙种(6﹣x)辆,根据题意得出:,解得:4≤x≤5,则租车方案为:甲4辆,乙2辆;甲5辆,乙1辆;租车的总费用分别为:4×400+2×300=2200(元);5×400+1×300=2300(元),故最省钱的租车方案是租用甲货车4辆,乙货车2辆.点评:此题主要考查了一元一次不等式的应用,根据已知得出不等式求出所有方案是解题关键.23.(10分)(2013•南京)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300﹣400 400﹣500 500﹣600 600﹣700 700﹣900 …返还金额(元) 3 0 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?考点:一元一次不等式组的应用.分析:(1)根据标价为1000元的商品按80%的价格出售,求出消费金额,再根据消费金额所在的范围,求出优惠额,从而得出顾客获得的优惠额;(2)先设该商品的标价为x元,根据购买标价不超过800元的商品,要使获得的优惠不少于226元,列出不等式,分类讨论,求出x的取值范围,从而得出答案.解答:解:(1)标价为1000元的商品按80%的价格出售,消费金额为800元,消费金额800元在700﹣900之间,返还金额为150元,顾客获得的优惠额是:1000×(1﹣80%)+150=350(元);答:顾客获得的优惠额是350元;(2)设该商品的标价为x元.①当80%x≤500,即x≤625时,顾客获得的优惠额不超过625×(1﹣80%)+60=185<226;②当500<80%x≤600,即625<x≤750时,顾客获得的优惠额:(1﹣80%)x+100≥226,解得x≥630.即:630≤x≤750.③当600<80%x≤700,即750<x≤875时,因为顾客购买标价不超过800元,所以750<x≤800,顾客获得的优惠额:750×(1﹣80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.答:该商品的标价至少为630元.点评:此题考查了一元一次不等式组的应用,解题的关键是读懂题意,求出消费金额,再根据所给的范围可解得优惠金额.24.(10分)(2013•鄂尔多斯)某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒做为奖品.请你根据图中所给的信息,解答下列问题:(1)每个颜料盒,每支水笔各多少元?(2)恰逢商店举行优惠促销活动,具体办法如下:颜料盒按七折优惠,水笔10支以上超出部分按八折优惠,若买m个颜料盒需要y1元,买m支水笔需要y2元,求y1,y2关于m的函数关系式;(3)若学校需购买同一种奖品,并且该奖品的数量超过10件,请你帮助分析,如何购买奖品比较合算.考点:一次函数的应用;二元一次方程组的应用.分析:(1)设每个颜料盒为x元,每支水笔为y元,然后列出方程组求解即可;(2)根据颜料盒七折优惠表示出y1与x的关系式;分0<x≤10和x>10两种情况,根据水笔八折优惠列式表示出y2与x的关系式即可;(3)分三种情况列式求出购买奖品件数,然后写出购买方法即可.解答:解:(1)设每个颜料盒为x元,每支水笔为y元,根据题意得,,解得.答:每个颜料盒为18元,每支水笔为15元;(2)由题意知,y1关于m的函数关系式是y1=18×70%m,即y1=12.6m;由题意知,买笔10支以下(含10支)没有优惠,所以此时的函数关系式为:y2=15m;当买10支以上时,超出部分有优惠,所以此时的函数关系式为:y2=15×10+15×(m﹣10)×80%,即y2=30+12m;(3)当y1=y2时,即12m+30=12.6m时,解得m=50,当y1>y2时,即12.6m>12m+30时,解得m>50,当y1<y2时,即12.6m<12m+30时,解得m<50,综上所述,当购买奖品超过10件但少于50件时,买颜料盒合算.当购买奖品等于50件时,买水笔和颜料盒钱数相同.当购买奖品超过50件时,买水笔合算.点评:本题考查了一次函数的应用,二元一次方程组的应用,比较简单,读懂题目信息,理清优惠的方法是解题的关键,(3)分情况列出不等式是解题的关键.五、解答题(12分.共24分)25.(12分)(2013•德州)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:。