数学人教版八年级上册sss

合集下载

人教版八年级数学上册12.三角形全等的判定SSS课件

人教版八年级数学上册12.三角形全等的判定SSS课件

证明全等的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好;
②三角形全等书写三步骤: 写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
1.如下图,△ABC是一个三角形钢架,AB=AC,AD是 连接A与BC 中点D的支架.求证:△ ABD ≌ △ ACD.
证明:∵D是BC 的中点
1. 有两个角对应相等的两个三角形 不一定全等
2. 有两条边对应相等的两个三角形
不一定全等
3. 有一个角和一条边对应相等的两个三角形 不一定全等
300
60o
300
60o
4cm
结论:有两个条件对应相等不能保证三角形全等.
三个条件呢?
你 能 说 出 有 哪 几 种 可 能 的 情 况 ?
如 果 给 出 三 个 条 件 画 三 角 形 ,
在△DBH和△DCH中 ∵BD=CD,BH=CH,DH=DH, ∴△DBH≌△DCH(SSS).
A
D
B
H
C
通过本课时的学习,需要我们掌握: 1.三角形全等的判定定理一——SSS。 2.利用它可以证明简单的三角形全等问题。 3、体验分类讨论的数学思想。 4、初步学会理解证明的思路。
(4)A=A' (5)B=B' (6)C=C'
在ABC和A' B' C'中,有
(1)AB=A'B' (2)BC=B'C' (3)CA=C'A'
(4)A=A' (5)B=B' (6)C=C' 六个条件,可得到什么结论?
A
B
C
B'
C'
答:ABC ≌ A' B' C'

八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思

八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思

八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思教材分析1.掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题;学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

2.培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

学情分析1、学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

2、学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

3、根据学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限。

教学目标(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

教学重点和难点重点:三角形全等条件的探索过程是本节课的重点。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对学生有一定的难度。

教学过程全等形、全等三角角形的概念,对应关系。

判定两个三角形是否全等,至少需要多少个怎样的条件?给定三条定长的线段a.b.c.用这三条线段分别画两个三角形,然后剪下来对照,发现什么问题,多做几次。

人教版八年级数学上册全等三角形的判定(SSS)

人教版八年级数学上册全等三角形的判定(SSS)

C
经过本节课的学习, 你有哪些收获?
还需要条件 BF=DC 或 BD=FC B D FC
练一练
工人师傅常用角尺平分一个任意角,做法如下: 如图,∠AOB是一个任意角,在边OA,OB上分别 取OM=ON,移动角尺,使角尺两边相同的刻度分 别与M、N重合,过角尺顶点C的射线OC便是 ∠AOB的平分线。为什么?
Hale Waihona Puke 例2:如图,已知AB=CD,AD=CB,求证:∠B=∠D
SSS公理的书写方式
A D
B
C
AB=DC BC=AD
AC=AC ∴ △ABC≌△CDA(SSS)
思考
已知如图所示,AC=FE,BC=DE,AD=FB,要用 “边边边”证明△ABC≌△FDE,需要那些条件?
如何证明?
A
CA
C
D
B
BD
E
F E
F
∵ DB是AB与DF的公共部 分,且AD=BF
变式
∴ AD+DB=BF+DB
1.只给一条边时;
3㎝ 3㎝
3cm
2.只给一个角时;
45◦
45◦
45◦
结论:只有一条边或一个角对应相等的两个三 角形不一定全等.
你如 能果 说给 出出 有两 哪个 几条 种件 可画 能三 的角 情形 况, ?
①两角; ②两边; ③一边一角。
①如果三角形的两个内角分别是300 ,450 时
30◦ 45◦
A
D



B
CE
F

号 语
在△ABC与△DEF中
言 来
AB=DE
表 达
AC=DF

BC=EF

人教版八年级数学上册12.2全等三角形判定 (SSS) 课件

人教版八年级数学上册12.2全等三角形判定  (SSS) 课件

归纳:只有一个角对应相等的两 个三角形不一定全等.
观察思考
两个三角形如果满足两个条件对应相等,这两个三 角形是否全等: 第一种情况:
3cm 5cm
3cm 5cm
归纳:两条边对应相等的两个三角形不一定全等.
观察思考
第二种情况:
老师的这个含300,600的三
角尺和你们的含300,600的 三角尺能重合吗
三边对应相等的两个三角形全等
总结归纳
“边边边”公理
文字叙述:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”)
A
几何语言: 在△ABC和△DEF中, AB=DE,
B
C
D
BC=EF,
CA=FD, ∴
如图,有一个三角形钢架,AB=AC,AD是连接点A
当堂检测
4.若干个正六边形拼成的图形中,下列三角形 与△ACD全等的有( )
A.△BCE B.△ADF C.△ADE D.△CDE
当堂检测
5.如图,点A,D,B,E在同一条直线上,AC=EF, AD=BE,BC=DF,BC与DF交于点O.(1)求证: △ABC≌△EDF.(2)若∠CBE=125°,求∠BOD的 度数.
与BC中点D的支架。求证:AD平分∠BAC
A
解题技巧: ①先找已知条件AB=AC
②再找隐含条件公共边AD
B
D
C
③最后找由已知条件推出的结论BD=CD
例题分析
证明:∵D是BC中点(已知)
∴ BD=DC(线段中点定义) A
在△ABD与△ACD中
AB=AC(已知)
B
BD=CD(已证)
D
C
AD=AD(公共边) ∴ △ABD≌△ACD(SSS)

人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计

人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
1.帮助学生巩固全等三角形的定义,强化他们对全等概念的理解。
2.引导学生通过实际操作和探究,发现并理解SSS判定方法,提高他们的几何推理能力。
3.针对不同学生的学习特点,设计有针对性的教学活动,使他们在轻松愉快的氛围中掌握知识。
4.关注学生的学习情感,激发他们的学习兴趣,培养他们的自主学习能力。
在教学过程中,教师要关注学生的个体差异,充分调动他们的积极性,使他们在合作、交流、探索中不断提高,为后续几何知识的学习打下坚实基础。
-运用多媒体辅助教学,展示动态的几何图形,帮助学生形象地理解全等三角形的性质和判定方法。
-设计实际案例,让学生在解决问题的过程中,将理论知识与实际应用相结合。
2.教学步骤:
(1)导入新课:通过复习全等三角形的定义和已知判定方法,为新课的学习做好铺垫。
(2)自主探究:学生分组讨论,尝试运用SSS判定方法判断给定三角形是否全等,并总结规律。
4.鼓励学生运用所学知识,解决实际问题,培养他们的创新意识和应用能力。
(三)情感态度与价值观
在本节课的学习过程中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情。
2.培养学生的自信心,让他们在解决问题的过程中体验成功的喜悦。
3.培养学生严谨的学术态度,让他们明白在数学推理中,每一步都需要严谨的逻辑支撑。
人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
一、教学目标
(一)知识与技能
1.了解全等三角形的定义,知道全等三角形在形状和大小上完全相同。
2.熟练掌握用SSS(Side-Side-Side,即边-边-边)判定两个三角形全等的方法。
3.能够运用SSS判定方法,解决实际问题和几何证明题。

12.2《三角形全等的判定(SSS)》教案-河南省漯河市舞阳县人教版八年级数学上册

12.2《三角形全等的判定(SSS)》教案-河南省漯河市舞阳县人教版八年级数学上册
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解三角形全等的判定(SSS)。首先,通过提问学生日常生活中的实例,我发现他们对于全等概念的理解有一定的生活基础,这为后续的学习打下了良好的基础。然而,我也注意到在理论讲解环节,部分学生对SSS判定条件的理解还不够深入,需要我在这里多花一些时间进行解释和演示。
2.在实践活动和小组讨论中,加强对学生的引导,防止他们偏离主题,提高讨论效率。
3.鼓励学生提问,并及时给予解答,帮助他们扫清知识障碍。
4.注重培养学生的空间观念和逻辑思维能力,让他们在学习中能够更好地理解和应用全等三角形的知识。
2.提升逻辑推理能力:引导学生运用SSS全等条件进行推理分析,培养学生严谨的逻辑思维和推理能力;
3.培养数学抽象素养:使学生从具体的三角形实例中抽象出全等三角形的判定方法,形成一般性规律;
4.增强数学建模能力:培养学生运用全等三角形知识解决实际问题的能力,激发学生在实际情境中发现数学模型的兴趣;
5.培养数学运算与数据分析素养:在解决全等三角形相关问题中,加强学生对数学符号、公式和数据的理解和运用,提高运算准确性。
4.能够运用全等三角形的知识解决实际问题;
5.通过实际操作、观察、推理等活动,培养学生的空间观念和逻辑思维能力。
二、核心素养目标
《三角形全等的判定(SSS)》教学旨在培养学生的以下核心素养:
1.增强空间观念:通过观察、操作全等三角形的模型,使学生能够理解全等三角形的性质,并在脑中形成清晰的空间图形;
3.重点难点解析:在讲授过程中,我会特别强调SSS判定条件和全等三角形性质这两个重点。对于难点部分,我会通过图形比较和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。

人教版数学八年级上册第十二章三角形全等的判定(一)SSS课件

人教版数学八年级上册第十二章三角形全等的判定(一)SSS课件

④以点C′为圆心,以CD为半径作弧,交O′B′于点D′; ⑤经过点D′作射线O′B′,则∠A′O′B′就是所作的角. 注意:此处主要为了解作图的原理,实际尺规作图中只需保留作 图的痕迹,不要求写出作法.
对点范例 3.仔细观察用直尺和圆规作一个角等于已知角的示意图(图1211-5),请根据三角形全等有关知识,说明作出∠CPD=∠AOB的 依据是__S_S_S____.
△A′B′C′
SSS
对点范例 1.如图12-11-2,AB=CD,AD=CB,判定△ABD≌△CDB的依据是 ____S_S_S__.
2.如图12-11-3,已知AB=AD,只要再添加一个条件:__B_C_=_D_C__, 就可以通过“SSS”判定△ABC≌△ADC.
知识重点 知识点二:尺规作图——作一角等于已知角 已知∠AOB,求作:∠A′O′B′,使∠A′O′B′=∠AOB. 具体作法(如图12-11-4): ①作射线O′A′; ②以点O为圆心,以任意长为半 径作弧,分别交OA,OB于点C,D; ③以点O′为圆心,以OC为半径作弧,交O′A′于点C′;
思路点拨:本题通过三角形的全等得到∠BOP和∠AOP相等,从 而得到结论.
举一反三 3.小明制作的风筝形状如图12-11-12,他根据DE=DF,EH=FH,不 用测量就知道∠E=∠F,请你运用所学知识给予证明.
谢谢
第十二章 全等三角形
第11课时 三角形全等的判定(一)——SSS
目录
01 本课目标 02 课堂导练
本课目标
1.构建三角形全等条件的探索思路,体会研究几何问题的方法. 2.探索并理解“边边边”判定方法,会用“边边边”判定方法证 明三角形全等. 3.会用尺规作一个角等于已知角,了解作图的道理.

初中数学人教八年级上册第十二章 全等三角形《三角形全等的判定SSS》教学设计

初中数学人教八年级上册第十二章 全等三角形《三角形全等的判定SSS》教学设计

“三角形全等的判定——SSS”教学设计人教版义务教育教科书数学八年级上册第十二章第二节第1课时王悦(南充安平中学)一、教学内容及内容解析《三角形全等的判定——SSS》是人教版《义务教育教科书·数学》八年级上册第十二章第二节的第1课时的内容.其主要内容为构建三角形全等条件的探索思路,掌握“边边边”的判定方法.本节课的内容是探索三角形全等条件的第一课时,是在学习了全等三角形的概念、全等三角形的性质后展开的.它不仅是下节课探索三角形全等其他条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供了很好的模式和方法.因此本节课的知识具有承前启后的作用,占有相当重要的地位.根据全等三角形的性质:全等三角形的三条边分别相等、三个角分别相等,并类比“平行线的性质”与“平行线的判定”之间的联系,探索能否从“三条边分别相等、三个角分别相等”六个条件中选择部分条件,简捷地判定两个三角形全等.为此建构了三角形全等条件的探索思路,即从“一个条件”“两个条件”“三个条件”分别进行探究,最后通过动手操作,概括出一种判定方法——“边边边”.该探索过程也为其他判定方法的探索提供了思路.二、教学目标和目标解析教学目标1.构建三角形全等条件的探索思路,体会研究几何问题的方法.2.探索并理解“边边边”判定方法,会用“边边边”判定方法证明三角形全等.3.会用尺规作一个角等于已知角,了解作图的道理.三、教学问题诊断分析探索三角形全等的条件是一个复杂且开放的问题,涉及到“类比”、“分类”等数学思想,对于农村学校八年级的学生来说有一定难度,这方面的知识十分欠缺,需要多做引导,使学生逐步理解这一类数学思想;在探究3中,所运用到的尺规作图虽说有一定基础,但运用较少,学生对这方面的知识也有所欠缺,老师在作图时应共同与学生完成作图.因此本节课的教学重难点分别为:◆教学重点:掌握“边边边”判定三角形全等的方法,灵活运用“边边边”判定方法解题.◆教学难点:构建三角形全等条件的探索思路,运用尺规作图的方法进行证明“SSS”,灵活运用“边边边”判定方法解题.四、教学过程(一)创设情境,引出课题情景展示:小明家衣橱上镶有两块全等的三角形玻璃装饰品,光泽又漂亮,可惜有一天有一块打碎了,妈妈让小明到玻璃店里配一块回来,聪明的同学,小明该测量哪些数据呢?才能使得与原来那块三角形全等.【设计意图】通过学生熟悉的生活实例创设情境便于学生快速进入状态思考,也能让同学感受应用数学的魅力. 引言 1 老师这儿判断三角形全等的方法有很多种.我们先从几千年前的数学家欧几里得那儿感受下如何判断三角形全等 (播放“欧几里得利用剪裁的方法验证全等”的视频).【设计意图】让学生从数学史中领略数学的进步以及魅力,并引导学生学习更多新的方法.引言2怎样不剪下来就能证明全等,就是我们本节课所要学习的方法——三角形全等的判定(SSS).【设计意图】引出课题,揭示三角形全等的判定是判断三角形全等的进一步创新,并能够为生活带来更多便利. (二)体验过程,探究新知1.类比“平行线的判定”,构建探索思路问题1 我们先来回顾一下以前的知识,“两直线平行,内错角相等”这个命题是平行线的什么?“内错角相等,两直线平行”这个命题又是平行线的什么?师生活动: 学生独立思考,举手回答问题,老师及时对问题进行评价.【设计意图】通过回顾已学知识,为下一步类比探索铺垫.追问: 观察一下,平行线的性质以及判定有什么联系吗?师生活动: 学生独立思考后,与同桌交流思想,代表进行发言【设计意图】通过交流引导学生发现性质到判定的内在联系,即互换原有题设和结论,便从性质转换成判定.追问:上节课我们学习了全等三角形的性质,你能猜想出全等三角形的判定吗?师生活动:学生独立思考,举手进行回答,老师并带领学生对给出的猜想进行验证. 【设计意图】引导学生类比平行线的性质和判定,得出全等三角形的判定. 问题2 猜想中需要6个条件才能够得出结论,一定需要6个条件吗?师生活动:学生举手进行回答.若学生回答不上来,老师则进一步进行指导,举一个具体的例子:已知两对角分别相等,能不能证明第三对角分别相等呢?【设计意图】引导学生对三角形全等判定方法条件的探索,运用简捷的条件对三角形全等进行判定. 探究1 观察如图1、2所示的图形,观察△ABC 、△BCD 有什么共同点?师生活动:学生小组合作进行讨论,思想交流.教师在交流过程中对学生进行指导与帮助,指派小组代表上台展示思路以及成果,老师并对成果进行有效评价.【设计意图】学生通过交流,认真分析问题,讨论问题,最终得出满足一个条件不能满足三角形全等 探究2 观察如图3、4、5所示的图形,上述图形中得到两个三角形有什么共同点?师生活动:学生独立思考,举手回答问题,老师及时对回答进行解读与评价.【设计意图】学生通过独立思考,并根据认真分析问题,最终得出满足两个条件不能满足三角形全等.图2图3图4 图5图12.尺规作图,探索“边边边”判定方法探究3 先任意画出一个ABC △.在画一个C B A '''△,使CA A C BC C B AB B A =''=''='',,.把画好的C B A '''△剪下来,放到ABC △上,他们全等吗?师生活动:首先带领学生对“满足三条边分别相等的条件证明全等”的正确性进行判断,借助“三角形的稳定性”辅助判断探究3的正确性.然后师生共同用尺规作图,学生剪图比较图.具体过程如下:(1)师生共同回顾如何用尺规作一条线段等于已知线段,然后引导学生先任意画一个△ABC,然后利用尺规作图的方法作出C B '',使,进而确定了点C B '',的位置;(2)共同探索如何确定A '的位置,并用尺规作图确定其位置;(3)画出C B A '''△,并将其剪下来,放到原三角形;(4)老师并选取几个较为成功的作品上台展示,进一步获得三角形全等的“边边边”判定方法.追问:作图的结果说明了什么?你能用文字语言和符号语言概括吗?师生活动:学生回答问题,并互相补充.教师板书:三边分别相等的两个三角形全等.【设计意图】通过作图、剪图、比较图的过程,感悟基本事实的正确性,锻炼学生的动手操作能力以及归纳概括能力.知识1 三角形全等的判定方法:三边分别相等的两个三角形全等. (1)简称:“边边边”或“SSS ”. (2)判定定理应用格式:(三)应用知识,理解所学例 在如图12,.2-3所示的三角形钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD.BCC B ='')(△中和△在△SSS C B A ABC C AAC C B BC B AAB C B AABC '''≅∴''=''=''='''师生活动:教师引导学生运用图形结合进行思考问题,并利用不同的符号对不同的条件进行标识,然后安排学生独立进行证明过程的书写.【设计意图】运用“边边边”判定方法证明简单的几何问题,感悟判定方法的简捷性,并在细节上揭示判定方法运用的技巧,从而达到例题精做的效果(四)课堂小结,素养提升问题1 探索三角形的条件,基本思路是什么?问题2 “SSS”判定方法有什么作用?(五)布置作业,延伸课外1.教科书习题第1,9题.2.练习册《用SSS判定三角形全等》【设计意图】既巩固本节课的内容,又由课内延伸到课外.使每个学生都能得到不同程度的发展.板书设计:板书设计§三角形全等的判定方法——SSS一、相关定义二、例题学生展示:1.判定方法例12.判定定理应用格式。

《三角形全等的判定(SSS)》优质课教学设计

《三角形全等的判定(SSS)》优质课教学设计

《三角形全等的判定(SSS)》优质课教学设计风筝是一项集休闲、娱乐、健身于一体的民俗体育项目。

2400多年前,世界上第一只木鸢风筝在潍坊鲁山由鲁班放飞,风筝在潍坊大地扎根发芽。

现在潍坊的风筝五花八门,但是主要的类型也是只有两种,即十字风筝和三角风筝。

那为什么风筝靠什么在天空平稳飞行呢?其实是采用相对对称的结构来维持风筝的稳定,也就是保证风筝的左右一样。

那么我们要怎么证明一个十字风筝和三角风筝左右都一样呢?那就一起来学习今天的课程三角形全等的判定(SSS)。

一起探究一下风筝是不是左右相等的吧。

一、复习回顾:全等三角形的性质。

提问1:还记得什么是全等三角形吗?提问2:全等三角形具有什么样的性质呢?提问3:若已知△ABC≌△DEF,会有什么结论?提示1:能够重合的两个三角形叫全等三角形.提示2:全等三角形的对应边相等,对应角相等。

提示3:∵△ABC≌△DEF∴ AB=DE ∠A=∠DAC=DF ∠B=∠EBC=EF ∠C=∠F二、探究新知:因此,判定两个三角形全等,除了定义外,还可以利用这六组条件,但这两种方法都较为复杂,我们能否减少条件,用尽量少的条件进行判定呢?如果只满足这些条件中的一部分,那么能保证两个三角形全等吗?我们先从最少的条件开始探究。

探究一:(同桌讨论)①只给1条边。

所以,只确定一条边,可以画出无数个三角形,它的形状不定,所以只满足一条边对应相等,是不足以证明两个三角形全等的。

这种方式叫做举反例,即满足条件,但却发现结论不成立。

②只给1个角类比一个边的方法,让学生用画图举反例证明。

综上所述,只满足一个条件,不足以证明两个三角形全等。

探究二:(分成小组探究)如果给出两个条件,有哪几种情况?●有2条边对应相等的两个三角形●有1个角和1条边对应相等的两个三角形●有2个角对应相等的两个三角形分成三个小组,每个小组探究一个情况。

教师引导学生利用提前准备好的道具——纸棒、尺子、量角器,用纸棒围成三角形,此条件下的三角形是否只有一个。

人教版初二数学上册全等三角形的判定(SSS)说课稿

人教版初二数学上册全等三角形的判定(SSS)说课稿

全等三角形的判定(SSS)说课稿一、说教材:1、教材所处的地位和作用:这节课是一节新授课。

全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。

全等是两三角形间最简单、最常见的关系。

本节既是前面所学知识的延伸与拓展,又是后继学习相似形的条件的基础,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以提高。

而且证明全等三角形是证明线段相等和角相等的重要手段,本节作为证明两个三角形全等的依据之一,因此成为重中之重。

2、教育教学目标:(1)知识目标:经历用三边进行画图和验证三角形是否全等的过程中,探索出全等三角形的条件“边边边”,并能应用它们来判定两个三角形是否全等。

(2)能力目标:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力。

(3)情感目标:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。

3、学情分析:学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,几何证明题的推理证明的书写对学生来说难度较大,同时,我们知道,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。

鉴于以上学情分析,我把本节课的重难点设置为:4、重点,难点以及确定的依据:本节课的重点是掌握三角形全等的条件“SSS”,并能应用它们来判定两个三角形是否全等。

探索“SSS”及应用是难点。

我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

5、教学具准备教具:相关多媒体课件;学具:剪刀、纸片、直尺。

二、说教法学法:在课堂教学中将尽量为学生提供“做中学”的时间和空间,让学生在合作、体验中探究学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想。

人教版八年级数学上册第12章第2课时 三角形全等的判定——SSS

人教版八年级数学上册第12章第2课时 三角形全等的判定——SSS
返回
数学
4.如图,用直尺和圆规作一个角等于已知角,能得出 ∠A′O′B′=∠AOB 的依据是 SSS .
返回
数学
5.如图,用直尺和圆规作一个已知角的平分线的示意图,依 据“ SSS ”判定△COM 和△CON 全等,从而说明 OC 是 ∠AOB 的 角平分线 .
返回
数学
精典范例 6.【例 1】如图,AD=BC,要使△ABC≌△BAD,还需添加 的条件是 AC=BD .
SSS .
返回
数学
2.如图,已知点 A,D,C,F 在同一条直线上,AB=DE, BC=EF,要使△ABC≌△DEF,根据 SSS 还需要添加一个条 件是 AD=CF(或AC=DF) .
返回
数学
知识点二:三角形全等判定方法(SSS)的应用 如图,AB=CD,BD=AC,用三角形全等的判定“SSS”可证 明 △ABC ≌ △DCB 或 △ABD ≌ △DCA .
返回
数学
AD=CB 证明:在△ABD 和△CDB 中,AB=CD ,
BD=DB
∴△ABD≌△CDB(SSS),∴∠A=∠C.
小结:根据 SSS 推出△ABD≌△CDB,再根据全等三角形的 性质推出即可.
返回
数学
★13.如图,点 A,D,C,F 在同一直线上,AB=EF,AD= CF,BC=ED.求证:AB∥EF. 证明:∵AD=CF, ∴AD+DC=CF+DC,即 AC=FD, 在△ABC 与△FED 中, AB=FE,AC=FD,BC=ED,
返回
数学
知识要点 知识点一:三角形全等的判定(SSS) 三边分别 相等 的两个三角形全等(简写成“边边边”或 “SSS”). 几何语言:
返回
数学
在△ABC 与△A′B′C′中,

八年级-人教版-数学-上册-第1课时 三角形全等的判定(一)(SSS)

八年级-人教版-数学-上册-第1课时 三角形全等的判定(一)(SSS)

B D
B′ D′
O
C
A
O′
C′ A′
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧
交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
思考:为什么这样作出的∠A′O′B′和∠AOB相等?
B D
B′ D′
O
C
A
O′
C′ A′
OC OC,
理由:在△OCD和△O′C′D′中,OD OD, ∴△OCD≌△O′C′D′.
如果满足三个条件,你能说出几种可能的情况?
① 三个角;
两个条件的探究中,已证实不可行.
② 三条边; ③ 两边一角; ④ 两角一边.
现在我们分情况进行讨论,首先探究三条 边相等的情况下能不能保证三角形全等.
操作
先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′=AB,
B′C′=BC,A′C′=AC.把画好的△A′B′C′剪下来,放到△ABC上,
45° 45°
不全等
45°
45°
思考 当满足两个条件时, 两个三角形一定全等吗? ③两条边相等:
2 cm 4 cm
2 cm 4 cm
不全等
结论:满足两个条件时,两个三角形也不一定全等.
问题 通过画图可以发现,满足上述六个条件中的一个或两个,
△ABC与△A′B′C′不一定全等.满足上述六个条件中的三个,能 保证△ABC与△A′B′C′全等吗?
AB AC, BD CD, AD AD,
∴△ABD≌△ACD(SSS).
列出要证明的两个三角形 列出全等条件,用大括号括起来 得出结论,标明所用判定方法
书写三角形全等的条件的注意事项: (1)全等条件要按顺序排列; (2)同一个三角形的三个条件要放在等号同一侧; (3)两三角形对应顶点的字母要一一对应.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档