立体图形的表面积与体积

合集下载

小升初数学知识点总结:立体图形

小升初数学知识点总结:立体图形

小升初数学知识点总结:立体图形(一)立体图形【认识、表面积、体积】一、长方体、正方体都有6个面,12条棱,8个顶点。

正方体是特殊的长方体。

二、圆柱的特征:一个侧面、两个底面、无数条高。

三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

五、体积:物体所占空间的大小叫做物体的体积。

容器所能容纳其它物体的体积叫做容器的容积。

六、圆柱和圆锥三种关系:①等底等高:体积1︰3②等底等体积:高1︰3③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍。

八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形。

②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

④圆柱的侧面展开后还可能得到一个正方形。

⑤正方形的边长=圆柱的底面周长=圆柱的高。

【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。

即:V=Sh。

【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只。

②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。

4.-立体图形的体积、表面积、侧面积-几何重心与转动惯量计算公式

4.-立体图形的体积、表面积、侧面积-几何重心与转动惯量计算公式

§4立体图形的体积、表面积、侧面积几何重心与转动惯量计算公式一、立体图形的体积、表面积、侧面积、几何重心与转动惯量计算公式图形体积V、表面积S、侧面积M、几何重心G与转动惯量*Ja为棱长,d为对角线a,b,h分别为长,宽,高,d为对角线体积3aV=表面积26aS=侧面积24aM=对角线ad3=重心G在对角线交点上2aGQ=体积abhV=表面积)(2bhahabS++=侧面积)(2bahM+=对角线222hbad++=重心G在对角线交点上2hGQ=转动惯量取长方体中心为坐标原点,坐标轴分别平行三个棱边mhbJx)(12122+=mhaJy)(12122+=mbaJz)(12122+=mhbaJo)(121222++=(当hba==时,即为正方体的情况)*表中m为物体的质量,物体都为匀质.一般物体的转动惯量计算公式见第六章,§3,五.图形体积V、表面积S、侧面积M、几何重心G与转动惯量Ja,b,c为边长,h为高a为底边长,h为高,d为对角线n为棱数,a为底边长,h为高,g为斜高体积FhV=表面积MFS+=2侧面积hcbaM)(++=式中F为底面积重心2hGQ=(P、Q分别为上下底重心)转动惯量对于正三棱柱(a=b=c)取G为坐标原点,z轴与棱平行mahaJz1248324==体积hahaV225981.2233≈=表面积ahaahaS61962.563322+≈+=侧面积ahM6=对角线224ahd+=重心2hGQ=(P、Q分别为上下底重心)转动惯量取G为坐标原点,z轴与棱平行mahaJz12583524==体积FhV31=表面积FMS+=侧面积agnnFM2'==式中F为底面积,'F为一侧三角形面积。

4.立体图形的体积、表面积、侧面积几何重心与转动惯量计算公式

4.立体图形的体积、表面积、侧面积几何重心与转动惯量计算公式

立体图形的体积、表面积、侧面积几何重心与转动惯量计算公式一、 立体图形的体积、表面积、侧面积、几何重心与转动惯量计算公式图形 体积、表面积、侧面积、几何重心与转动惯量为棱长,为对角线分别为长,宽,高,为对角线体 积 3=表面积26=侧面积24=对角线 3=重 心 在对角线交点上2=体 积 =表面积 )(2++=侧面积 )(2+=对角线222++=重 心 在对角线交点上2= 转动惯量取长方体中心为坐标原点,坐标轴分别平行三个棱边)(12122+=)(12122+=)(12122+=)(121222++= (当==时,即为正方体的情况)*表中为物体的质量,物体都为匀质.一般物体的转动惯量计算公式见第六章,§3,五.图形 体积、表面积、侧面积、几何重心与转动惯量为边长,为高为底边长,为高,为对角线为棱数,为底边长,为高,为斜高 体 积 =表面积 +=2侧面积 )(++=式中为底面积重 心2=(、分别为上下底重心)转动惯量对于正三棱柱()取为坐标原点,轴与棱平行1248324==体 积 225981.2233»=表面积61962.563322+»+= 侧面积 6=对角线224+=重 心2=(、分别为上下底重心)转动惯量取为坐标原点,轴与棱平行12583524==体 积 31=表面积 +=侧面积2'==式中为底面积,'为一侧三角形面重 心4h GQ = (Q 为底面的重心)图形体积V 、表面积S 、侧面积M 、几何重心G 与转动惯量Ja,b,c,p,q,r 为棱长h 为高体积 011111010101028812222222222222c b ac p qb p r a q r V = 重心PQ GQ 41= (P 为顶点,Q 为底面的重心)体积)''(3FF F F h V ++=式中F F ,'分别为上下底面积重心 '''3'24FF F F F FF F PQ GQ ++++=(P ,Q 分别为上下底重心)分别为上下底边长,为棱数,为高,为斜高体 积÷÷øöççèæ÷øöçèæ++=2''13表面积 ++='侧面积 )'(2+=式中,'分别为上下底面积重 心2222'''3'24++++= (、分别为上下底重心)图形 体积、表面积、侧面积、几何重心与转动惯量两底为矩形,分别为上下底边长,为高,1为截头棱长体积]'')')('([6++++= '''1--=重心''2''2''3''2++++++= (分别为上下底重心)底为矩形,a,b为其边长,h为高,a’为上棱长r为半径 重心'2'2aaaaPQGQ++=(P为上棱中点,Q为下底面重心)体 积33352360.0634ddrV»==pp 表面积24rS p=重 心 G与球心O重合转动惯量取球心O为坐标原点mrJJJzyx252===mrJo253=图形 体积V、表面积S、侧面积M、几何重心G与转动惯量J[半球体]r为半径,O为球心r为球半径,a为弓形底圆半径,h为拱高,a为锥角(弧度)r为球半径,a为拱底圆半径,h为拱高 体 积 331232drVpp==表面积23rS p=侧面积22rM p=重 心 rGO83=转动惯量取球心O为坐标原点,z轴与GO重合 mrJJJzyx252===mrJo253=体 积 hrhrV220944.232»=p表面积 )2(ahrS+=p侧面积 (锥面部分) rM pa=重 心 )2(83hrGO-=转动惯量z轴与GO重合úûùêëé-÷øöçèæ-=2sin2cos2cos1215225aaap rJz÷øöçèæ+-=2cos2cos32533aahmr体 积)3(3)3(6222hrhhahV-=+=pp表面积 )2()2(222aharhS+=+=pp 侧面积(球面部分))(222harhM+==pp重 心)3()2(432hrhrGO--=图形 体积V、表面积S、侧面积M、几何重心G与转动惯量J[球台]r为球半径,a¢,a分别为上下底圆的半径,h为高R为中心半径,D为中心直径,r为圆截面半径,d为圆截面直径体 积 )'33(6222haahV++=p表面积 )'2(22aarhS++=p侧面积 rhM p2=2222222'÷÷øöççèæ--+=hhaaar重 心22244'33'23haaaahGO++-=222222'33'422haahaahGQ++++=(Q为下底圆心)体 积 222242DdRrVpp==表面积 DdRrS224pp==重 心 G在圆环的中心上转动惯量取圆环的中心为坐标原点,z轴垂直于圆环所在平面mRrJJyx÷÷øöççèæ+==28522mRrJz÷øöçèæ+=2243图形体积V 、表面积S 、侧面积M 、几何重心G 与转动惯量J [圆柱体]r 为底面半径,h 为高R 为外半径,r 为内半径,h 为高r 为底圆半径,h,H 分别为最小,最大高度,a 为截角,D 为截头椭圆轴体 积h r V 2p = 表面积)(2h r r S +=p 侧面积rh M p 2= 重 心 2hGQ =(P ,Q 分别为上下底圆心) 转动惯量 取重心G 为坐标原点,z 轴垂直底面m h r J J y x ÷øöçèæ+==34122m r J z 22=体 积th R r R h V p p 2)(22=-= 表面积 )(222r R M S -+=p侧面积 R h r R h M p p 4)(2=+= 式中t 为管壁厚,R 为平均半径重 心2h GQ = 转动惯量 取z 轴与GQ 重合 m r R J z 2)(22+=体 积 )(22h H r V +=p 表面积 ÷øöçèæ++=a p cos 112r M S ÷øöçèæ+++=2D h H r r p 侧面积 )(h H r M +=p 截头椭圆轴22)(4h H r D -+= 重 心tan 22r h H +a)(2tan 2h H r GK +=a (GQ 为重心到底面距离,GK 为重心到轴线O O ¢的距离)图形体积V 、表面积S 、侧面积M 、几何重心G 与转动惯量Jh 为截段最大高度,b 为底面拱高,2a 为底面弦长,r 为底面半径,a 2为弧所对圆心角(弧度)体 积])(3)3([3222a r b r a r a bh V -+-=÷øöçèæ--=a a a cos sin 31sin 33a b hr侧面积(柱面部分)])[(2a r b b rhM +-=a体 积abc abc V 1888.434»=p 重 心G 在椭球中心O 上 转动惯量 取椭球中心为坐标原点,z 轴与c 轴重合m c b J x )(5122+=m a c J y)(5122+= m b a J z)(122+=a,b,c 为半轴图形体积V 、表面积S 、侧面积M 、几何重心G 与转动惯量J体 积h r V 23p= 表面积 )(l r r S +=p 侧面积 rl M p = 母 线 22h r l +=重 心4h GQ = (Q 为底圆中心,O 为圆锥顶r为底圆半径,h为高,l为母线r,R分别为上,下底圆半径,h为高,l为母线上下底平行,F¢,F分别为上,下底面积,F为中截面面积,h为高取圆锥顶点为坐标原点,z轴与GQ 重合mhrJJyx÷÷øöççèæ+==22453mrJz2103=体 积 )(322RrrRhV++=p表面积 )(22rRMS++=p侧面积 )(rRlM+=p母 线22)(hrRl+-=圆锥高(母线交点到底圆的距离)rRhrhH-+=重 心2222324rRrRrRrRhGQ++++=(P,Q分别为上下底圆心)体 积 )4'(60FFFhV++»[注] 棱台、圆台、球台、圆锥、棱柱、圆柱等都是拟棱台的特例图形 体积V、表面积S、侧面积M、几何重心G与转动惯量Jd 为上,下底圆直径,D 为中截面直径,h 为高母线为圆弧时: 体积)2(26180.0)2(122222d D h d D hhV +»+=p2)2(08727.0d D h +»母线为抛物线时: 体积 ÷øöçèæ++=2243215d Dd D h V p )348(05236.022d Dd D h ++» 重心2h GQ = (P ,Q 分别为上下底圆心)二、 多面体[正四面体] [正八面体] [正十二面体] [正二十面体]图形面数f4 8 12 20 棱数k 6 12 30 30 顶点数e 462012体积V 31179.0a34714.0a36631.7a31817.2a表面积S27321.1a24641.3a26457.20a26603.8a表中a 为棱长.[欧拉公式] 一个多面体的面数为f ,棱数为k ,顶点数为e ,它们之间满足 2=+-f k e。

立体图形表面积体积

立体图形表面积体积

教育学科教师辅导讲义学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师: 授课 类型T (立体图形相关知识点) C (典型例题试题讲解) T (拓展提高)授课日期时段教学内容知识点一:表面积1、长方体表面积=长x 宽× 2+ 宽× 高× 2+ 长×高× 2 字母公式:S=ax b× 2+ a× c× 2+ b×c× 2 或者:长方体的表面积 =( 长×宽 + 长×高 + 宽×高 ) × 2 。

字母公式:S=(ax b+ a× c+ b×c)× 22、正方体的表面积 =棱长×棱长×6。

字母公式:S=a ×a× 63、圆柱体的表面积:圆柱表面积=上底+下底+侧面(侧面面积=底面圆的周长×圆柱的高) 用字母表示:22s r ch π=+注:侧面积的求法:已知底面半径和高,rh π侧2s = 已知底面直径和高,dh π侧=s知识点二:体积1、长方体体积:长方体体积= ① 长×宽×高 (V=abh)② 底面积×高=横截面积×长 (V =sh ) 2、正方体的体积:正方体体积=棱长×棱长×棱长检测题1:把一个圆柱的侧面展开,得到一个正方形.已知这个圆柱的高是10厘米,它的侧面积是( )平方厘米.A .50B .100C .50πD .100π答案:B检测题2.把一个棱长4厘米的正方体分割成两个长方体,表面积增加了______平方厘米.答案:64检测题3 一个正方体的棱长之和是48厘米,它的棱长是______厘米,表面积是______平方厘米,体积是______立方厘米. 答案:2 24 8检测题4 把两个棱长5厘米的正方体拼成一个长方体,这个长方体的表面积是______平方厘米.答案:250检测题5.一个练功房铺设了1600块长50厘米,宽10厘米,厚3厘米的木地板,这个练功房的面积有______平方米.答案:这个练功房的面积有80平方米.检测题6.圆柱的底面半径扩大2倍,高缩小到原来的21,它的体积就( )答案:扩大2倍检测题7.做一个圆柱体,侧面积是9.42平方厘米,高是3厘米,它的底面半径是______.答案:1.57cm一、专题精讲例1.如图是高为10厘米的圆柱,如果它的高增加4 厘米,那么它表面积就增加125.6平方厘米。

体积和表面积的关系与运算

体积和表面积的关系与运算

体积和表面积的关系与运算一、体积与表面积的定义1.体积:物体所占空间的大小。

2.表面积:物体表面的总面积。

二、体积与表面积的计算公式1.立方体的体积公式:V = a³(a为立方体的边长)2.立方体的表面积公式:S = 6a²三、体积与表面积的运算关系1.体积与边长的关系:体积随边长的增加而增加。

2.表面积与边长的关系:表面积随边长的增加而增加。

四、体积与表面积的单位1.体积的单位:立方米(m³)、立方分米(dm³)、立方厘米(cm³)等。

2.表面积的单位:平方米(m²)、平方分米(dm²)、平方厘米(cm²)等。

五、体积与表面积的换算1.1立方米(m³)= 1000立方分米(dm³)2.1立方米(m³)= 1000000立方厘米(cm³)3.1平方米(m²)= 100平方分米(dm²)4.1平方米(m²)= 10000平方厘米(cm²)六、常见几何体的体积与表面积公式1.圆柱体的体积公式:V = πr²h(r为圆柱的底面半径,h为圆柱的高)2.圆柱体的表面积公式:S = 2πrh + 2πr²3.圆锥体的体积公式:V = (1/3)πr²h(r为圆锥的底面半径,h为圆锥的高)4.圆锥体的表面积公式:S = πr² + πrl(l为圆锥的母线长)5.球的体积公式:V = (4/3)πr³(r为球的半径)6.球的表面积公式:S = 4πr²七、体积与表面积的实际应用1.计算物体的体积和表面积,以便了解物体的大小和形状。

2.在制作和包装物体时,计算体积和表面积,以节省材料和空间。

3.在建筑设计中,计算建筑物的体积和表面积,以确定建筑材料的需求量和建筑物的外观。

八、体积与表面积的拓展1.立体图形的体积和表面积的计算。

人教版小学六年级数学立体图形的表面积和体积

人教版小学六年级数学立体图形的表面积和体积

3.14×20 2×5=6280
(立方厘米)
5
12
9
40
完成作业我最棒!
1、有一个近似圆锥的小麦堆,测得其

底面周长是12.56米,高1.5米。如果 每立方米小麦重0.75吨,这堆小麦大 约有多少吨?将这些小麦装入底面 积是3.14平方米的圆柱形粮囤里能装 多高? 2、一间教室长10米,宽8米,高4米, 门窗面积21.5平方米,粉刷教室的四 壁和顶面要用水泥多少千克?(按 每平方米用水泥15千克计算)
立体图形的表面积和体积
小学数学总复习
龙王小学 李少红
1
基础知识复习
1、什么叫物体的表面积? 一个立体图形的所有面的面积总 和叫做这个立体图形的表面积
2、什么叫物体的体积?
物体所占空间的大小 叫做物体的体积
2
3、看你知道多少?
做一个圆柱形油桶要用铁皮多少平方 分米?需要计算什么?( 表面积 ) 求一段圆柱形钢材重多少千克?需 要计算什么?( 体积 ) 求一个长方体油箱能装油多少升? 需要计算什么?( 容积 ) 求一节通风管要用铁皮多少平方分 米?需要计算什么?( 侧面积 )
10
11
5
活用知识、解决问题
一个水池的排水管内直径是2分 米,水在管内的流速是每秒4分 米。一分钟可以排水多少升? 2÷2=1(分米) 3.14×1 2×4×60=753.6 (立方分米)=753.6(升)
6
我是生活小能手
一个装满稻谷的粮囤,高2米,它的 上面是圆锥形,下面是圆柱形,底 面半径是3米,圆柱和圆锥一样高, 这囤稻谷大约有多少立方米?(得 数保留整数)
2÷2=1(米) 3.14×3 2×1+3.14×3 2×1÷3 =37.68(立方米) ≈37(立方米)

立体图形的体积和表面积

立体图形的体积和表面积

答:表面积增加了314平方分米。
一个棱长是4分米正方体容器装满水后, 把水 倒入一个底面积是12平方分米的圆 锥体容器里正好装满,这个圆锥体的 高是多少分米?
正方体(圆锥)的体积:4×4×4 =16×4 =64(立方分米)
圆锥的高:3×64÷12 = 192÷12 =16(分米)
答:这个圆锥的高是16分米.
只列式不计算4厘米方法三4410160平方厘米方法一8484442160平方厘米方法四4412442160平方厘米方法二844442160平方厘米将一个圆柱体沿着底面直径切成两个半圆柱表面积增加了40平方厘米圆柱的底面直径为4厘米这个圆柱的体积是多少立方厘米
表面积的定义?
一个立体图形所有的面 的面积总和,叫做它的表 面积.
将一个圆柱体沿着底面直径切成两个半圆柱,表面积增 加了40平方厘米,圆柱的底面直径为4厘米,这个圆柱的 体积是多少立方厘米?
如果我们沿着一个圆柱的底面直 径切开,那么你能算出切开后得到 的图形它的表面积增加了多少吗?
生活中的数学问题 一个用塑料薄膜覆盖的草莓大棚, 长10米,横截面是一个半径2米的半 圆。 ①大棚内的空间有多少大?
10 20
将一个圆柱体沿着底面直径切成两个半圆柱,表面积增 加了40平方厘米,圆柱的底面直径为4厘米,这个圆柱的 体积是多少立方厘米?
如果我们沿着一个圆柱的底面直 径切开,那么你能算出切开后得到 的图形它的表面积增加了多少吗?
把一根长20米,底面直径10分米的 圆柱形木材平行于底面锯3段,表面积 增加了多少? 解 :10÷2=5(分米) 2 5 ×3.14 =78.5(平方分米) 78.5 ×(3-1) ×2 =78.5×4 =314(平方分米)
体积的定义?
一个立体图形所占空间的 大小叫做它的体积.

高中数学 空间几何体的表面积和体积

高中数学 空间几何体的表面积和体积
1.3 简单几何体的表面积和体积
1、表面积:几何体表面的面积 2、体积:几何体所占空间的大小。
表面积、全面积和侧面积
• 表面积:立体图形的所能触摸到的面积之 和叫做它的表面积。(每个面的面积相加 )
• 全面积 全面积是立体几何里的概念, 相对于截面积(“截面积”即切面的面积) 来说的,就是表面积总和
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
(3)台体的侧面积
①正棱台:设正n棱台的上底面、下底面周 长分别为c′、c,斜高为h′,则正n棱台的侧面积公
式:S正棱台侧= 1∕2(c+c.′)h′
②圆台:如果圆台的上、下底面半径分别为
r′、r,母线长为l,则S圆台侧= πl(r′+. r)
(2)锥体的侧面积
①正棱锥:设正棱锥底面正多边形的周长为c,斜 高为h′,则
S正棱锥侧= 1∕2ch.(′ 类比三角形的面积)
②圆锥:如果圆锥的底面半径为r,母线长为l,那 么
S圆锥侧= πrl.(类比三角形的面积)
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥= 侧 12ch'
棱锥的侧面展开图是什么?如何计算它的表面积?
正三棱锥的侧面展开图
h/ h/
侧面展开
h' h'
正五棱锥的侧面展开图
S表面积 S侧S底
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线
展开,分别得到什么图形?展开的图形与原图
有什么关系?
扇形
R扇= l
l扇=
nl
180
l
r
S圆锥 = S 侧 扇 = n 3l6 201 2l扇 lrl

五年级几何体的表面积与体积的计算完整

五年级几何体的表面积与体积的计算完整

五年级几何体的表面积与体积的计算(可以直接使用,可编辑实用优秀文档,欢迎下载)空间与图形教师辅导讲义——立体图形的知识与应用知识要点长方体、正方体、圆柱体、圆锥体的表面积及体积1.表面积:物体表面面积的总和,叫做物体的表面积。

表面积通常用S 表示。

常用面积单位是平方千米、平方米、平方分米、平方厘米。

2.体积:物体所占空间的大小,叫做物体的体积。

体积通常用V 表示。

常用体积单位是立方米、立方分米、立方厘米。

3.容积:箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积或容量。

常用容积单位是升、毫升。

4.体积与容积单位之间的换算:1立方分米=l 升,1立方厘米=l 毫升。

5.体积和容积的异同点 容积的计算方法跟体积的计算方法相同,但要从容器的里面量长、宽、高,而计算体积要从物体的外面量长、宽、高。

计量体积用体积单位,计量容积除了用体积单位外,还可以用容积单位升和毫升。

6. 立体图形的表面积、侧面积和体积计算公式相同点不同点 面棱顶点面的特点 面的大小 棱长 长方体6个12条8个6个面一般都是长方形,也可能有两个相对的面是正方形相对的面的面积相等每一组互相平行的四条棱的长度相等正方体6个12条8个6个面都是相等的正方形6个面的面积都相等12条棱长的长度都相等精典题型分析1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米。

(单位:厘米)练习:学校生物小组做了一个昆虫箱(如图)。

昆虫箱的上、下、左、右面是木板,前、后面装纱网。

①制作这样一个昆虫箱,至少需要多少平方厘米的木板?②制作这样一个昆虫箱,至少需要多少平方厘米的纱网?2、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水。

如果在水中沉入一个棱长为30厘米的正方体铁块,那么,水箱中水深多少分米?练习1:一个长方体的玻璃缸内有一些水,水面距离上沿0.6分米(如图)。

准备在缸内放入一块体积是60立方分米的假山石(假山石能全部浸在水中),水会溢出吗?如果会溢出,溢出多少立方分米?练习2:一个正方体玻璃容器,从里面量棱长是2dm。

体积和表面积的计算及应用

体积和表面积的计算及应用

体积和表面积的计算及应用一、体积的计算1.体积的定义:物体所占空间的大小叫做物体的体积。

2.体积的单位:立方米(m³)、立方分米(dm³)、立方厘米(cm³)等。

3.常见几何体的体积公式:–立方体:V = a³(a为边长)–长方体:V = lwh(l为长,w为宽,h为高)–正方体:V = a³(a为边长)–圆柱体:V = πr²h(r为底面半径,h为高)–圆锥体:V = 1/3πr²h(r为底面半径,h为高)4.体积的计算在生活中的应用:如计算物体的容量、容积等。

二、表面积的计算1.表面积的定义:物体所有面的总面积叫做物体的表面积。

2.表面积的单位:平方米(m²)、平方分米(dm²)、平方厘米(cm²)等。

3.常见几何体的表面积公式:–立方体:S = 6a²(a为边长)–长方体:S = 2lw + 2lh + 2wh(l为长,w为宽,h为高)–正方体:S = 6a²(a为边长)–圆柱体:S = 2πrh + 2πr²(r为底面半径,h为高)–圆锥体:S = πr² + πrl(r为底面半径,l为斜高)4.表面积的计算在生活中的应用:如计算物体的表面积、制作物体的包装等。

三、体积和表面积的应用1.计算物体的体积和表面积,可以了解物体的空间大小和外表形状。

2.在生活中,计算物体的体积和表面积,可以帮助我们更好地利用空间,提高生活和工作效率。

3.体积和表面积的计算,可以帮助我们解决一些实际问题,如制作物体模型、设计建筑物的结构等。

4.体积和表面积的计算,是数学在实际生活中的重要应用,有助于培养学生的空间想象能力和实际应用能力。

以上就是关于体积和表面积的计算及应用的知识点总结,希望对你有所帮助。

在学习过程中,要注意理论联系实际,提高自己的空间想象能力和实际应用能力。

立体图形的基本概念

立体图形的基本概念

立体图形的基本概念立体图形是在三维空间中存在的图形,与平面图形相比,立体图形具有更多的维度和复杂性。

立体图形包括了各种形状和结构,如立方体、圆柱体、圆锥体、球体等。

本文将介绍一些立体图形的基本概念,并探讨其特点和性质。

一、立体图形的定义和特点立体图形是由一系列的面、边和顶点组成的。

其中,面是由线段或边所围成的封闭曲面,边是连接两个顶点的线段,顶点则是多边形的交点。

立体图形具有以下特点:1. 三维性:立体图形在空间中存在,具有长度、宽度和高度三个维度。

与平面图形只有两个维度不同,立体图形在空间中具有更多的变化和表现力。

2. 复杂性:相比于平面图形,立体图形的结构更加复杂。

它们可以由多个面组成,各个面之间可能相互连接或平行。

立体图形的复杂性使得它们更具挑战性,也更具美观性。

3. 多样性:立体图形可以是各种各样的形状和结构。

从简单的立方体到复杂的球体,每个立体图形都具有自己独特的特点和特性。

二、立体图形的常见种类在几何学中,有许多常见的立体图形,每个都有其独特的特征和用途。

以下是一些常见的立体图形的描述:1. 立方体:立方体是最简单的立体图形之一。

它有六个面,每个面都是正方形,每个面都相互平行。

立方体的六个面围成了一个封闭的空间,具有相等的长度、宽度和高度。

2. 圆柱体:圆柱体由一个圆形的底面和一个平行于底面的侧面组成。

圆柱体的侧面是一个矩形,其宽度等于圆的周长,高度等于圆柱体的高度。

3. 圆锥体:圆锥体由一个圆形的底面和一个顶点连接底面的侧面组成。

圆锥体的侧面是由顶点和底面上的点组成的线段。

圆锥体可以有不同的高度和底面半径,从而呈现不同的形状和尺寸。

4. 球体:球体是由所有点到一个给定点的距离相等的点组成的集合。

它没有顶点、边和面,是唯一一个拥有连续曲面的立体图形。

三、立体图形的性质和应用立体图形具有许多独特的性质,这些性质使它们在不同的领域和应用中得到广泛应用。

以下是一些常见的立体图形的性质和应用:1. 表面积:立体图形的表面积是其各个面积的总和。

立体图形的表面积和体积的整理和复习

立体图形的表面积和体积的整理和复习
证明几何定理
立体图形的表面积和体积是证明几何定理的重要工具,如利用表面 积和体积证明等积定理、等周定理等。
在日常生活中的应用
01
02
03
建筑设计
在建筑设计中,需要计算 建筑物的表面积和体积, 以确定建筑物的外观、材 料用量和建筑成本。
包装设计
在包装设计中,需要计算 包装盒的表面积和体积, 以确定包装盒的大小、材 料用量和运输成本。
工、铸造等。
经济学
在经济学中,立体图形的表面积 和体积用于计算资源的分布、利 用和优化,如题与解析
基础习题
题目
一个长方体的长、宽、高 分别为5cm、4cm、3cm, 求其表面积和体积。
题目
一个正方体的棱长为4cm, 求其表面积和体积。
题目
一个圆柱体的底面半径为 3cm,高为5cm,求其表 面积和体积。
02
立体图形的表面积
表面积的定义与计算方法
定义
立体图形的表面积是指其外部表面的总面积。
计算方法
对于规则的立体图形,如长方体、圆柱体等,可以通过公式直接计算其表面积; 对于不规则的立体图形,通常需要将其拆分成若干个规则的立体图形进行计算。
常见立体图形的表面积计算
长方体
圆柱体
圆锥体
球体
长方体的表面积 = 2 × (长×宽 + 长×高 + 宽×
面积和体积。
感谢您的观看
THANKS
04
立体图形的表面积和体积 的应用
在几何学中的应用
计算几何形状的面积和体积
立体图形的表面积和体积是几何学中的基本概念,用于计算各种 几何形状的面积和体积,如长方体、圆柱体、圆锥体等。
解决几何问题
立体图形的表面积和体积是解决几何问题的关键,如计算几何体的 表面积和体积、求几何体的侧面积、求几何体的体积等。

立体图形知识点

立体图形知识点

立体图形知识点立体图形是我们在数学学习中经常接触到的重要概念,它存在于我们生活的方方面面。

从简单的积木玩具到复杂的建筑结构,立体图形无处不在。

首先,让我们来认识一下常见的立体图形。

长方体是一种常见的立体图形,它有六个面,每个面都是长方形(可能有两个相对的面是正方形),相对的面面积相等。

长方体有 12 条棱,相对的棱长度相等,还有 8 个顶点。

正方体则是一种特殊的长方体,它的六个面都是完全相同的正方形,12 条棱长度也都相等,同样有 8 个顶点。

圆柱体由两个底面和一个侧面组成。

底面是完全相同的圆,侧面展开是一个长方形。

圆锥体有一个底面,是圆形,侧面展开是一个扇形。

球体则是一个完全由曲面围成的立体图形,表面上的任意一点到球心的距离都相等。

了解了常见的立体图形,接下来我们看看它们的表面积和体积的计算方法。

长方体的表面积=(长×宽+长×高+宽×高)× 2 ,体积=长×宽×高。

正方体的表面积=棱长×棱长× 6 ,体积=棱长×棱长×棱长。

圆柱体的表面积包括侧面积和两个底面积。

侧面积=底面圆的周长×高,底面积=π×半径²,所以圆柱体的表面积=侧面积+ 2×底面积=2πrh +2πr²,体积=底面积×高=πr²h 。

圆锥体的表面积比较复杂,通常我们主要关注它的体积,体积=1/3×底面积×高=1/3×πr²h 。

球体的表面积=4πr²,体积=4/3×πr³ 。

在实际生活中,立体图形的知识有着广泛的应用。

比如在建筑设计中,设计师需要根据建筑物的功能和外观要求,合理运用各种立体图形的特点来设计房屋的结构和形状。

长方体和正方体常用于房屋的主体结构,圆柱体可以用于柱子,球体可能会出现在一些独特的建筑造型中。

4. 立体图形的体积、表面积、侧面积 几何重心与转动惯量计算公式

4. 立体图形的体积、表面积、侧面积 几何重心与转动惯量计算公式
r为底圆半径,h为高,l为母线
r,R分别为上,下底圆半径,h为高,l为母线
上下底平行, , 分别为上,下底面积, 为中截面面积,h为高
体积
表面积
侧面积
母线
重心
(Q为底圆中心,O为圆锥顶点)
转动惯量
取圆锥顶点为坐标原点,z轴与GQ重合
体积距离)
重心
(P,Q分别为上下底圆心)
两底为矩形,a’,b’,a,b分别为上下底边长,h为高, 为截头棱长
底为矩形,a,b为其边长,h为高,a’为上棱长
r为半径
体积
重心
(P,Q分别为上下底重心)
体积
重心
(P为上棱中点,Q为下底面重心)
体积
表面积
重心G与球心O重合
转动惯量
取球心O为坐标原点
图形
体积V、表面积S、侧面积M、几何重心G与转动惯量J
R为外半径,r为内半径,h为高
r为底圆半径,h,H分别为最小,最大高度, 为截角,D为截头椭圆轴
体积
表面积
侧面积
重心
(P,Q分别为上下底圆心)
转动惯量
取重心G为坐标原点,z轴垂直底面
体积
表面积
侧面积
式中t为管壁厚, 为平均半径
重心
转动惯量
取z轴与GQ重合
体积
表面积
侧面积
截头椭圆轴
重心
(GQ为重心到底面距离,GK
8
12
20
棱数k
6
12
30
30
顶点数e
4
6
20
12
体积V
表面积S
表中a为棱长.
[欧拉公式]一个多面体的面数为f,棱数为k,顶点数为e,它们之间满足

六年级下册数学教学设计《立体图形的表面积与体积》苏教版

六年级下册数学教学设计《立体图形的表面积与体积》苏教版

六年级下册数学教学设计《立体图形的表面积与体积》苏教版一. 教材分析《立体图形的表面积与体积》是苏教版六年级下册数学教材中的一课。

本节课主要让学生掌握立体图形的表面积和体积的计算方法,培养学生空间想象能力和抽象思维能力。

通过本节课的学习,学生能够理解立体图形的表面积和体积的概念,掌握计算公式,并能运用所学知识解决实际问题。

二. 学情分析六年级的学生已经掌握了平面图形的面积计算方法,对空间图形有一定的认识。

但是,对于立体图形的表面积和体积的计算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要通过直观的教具和生动的讲解,帮助学生理解和掌握计算方法。

三. 教学目标1.知识与技能:让学生掌握立体图形的表面积和体积的计算方法,能够正确计算常见立体图形的表面积和体积。

2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:让学生掌握立体图形的表面积和体积的计算方法。

2.难点:理解立体图形的表面积和体积的概念,掌握计算公式,并能运用所学知识解决实际问题。

五. 教学方法1.情境教学法:通过生活情境和实际问题,引发学生的学习兴趣,提高学生学习的积极性。

2.直观教学法:利用教具和模型,帮助学生直观地理解立体图形的表面积和体积的概念。

3.合作学习法:引导学生进行小组讨论和合作,培养学生的团队合作意识和问题解决能力。

4.引导发现法:教师引导学生发现问题,引导学生通过操作和思考,发现立体图形的表面积和体积的计算方法。

六. 教学准备1.教具准备:立体图形模型、计算器、纸张等。

2.教学媒体:PPT、教学视频等。

3.学具准备:学生每人一份立体图形模型、计算器、纸张等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的立体图形,如魔方、篮球等,引导学生关注立体图形。

然后提出问题:“你们知道这些立体图形的表面积和体积是如何计算的吗?”引发学生的思考和兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、你能解决下面生活中的问题吗? 你能解决下面生活中的问题吗?
1)一个圆柱形水池,直径是20米 1)一个圆柱形水池,直径是20米,深2米. 一个圆柱形水池 20 这个水池占地面积是多少? ①这个水池占地面积是多少? ②挖成这个水池,共需挖土多少立方米? 挖成这个水池,共需挖土多少立方米? ③在池内四周和池底抹一层水泥,水泥 在池内四周和池底抹一层水泥, 面的面积是多少平方米? 面的面积是多少平方米?
下面的是高度一样的无盖鱼缸,哪个浴缸的水多? 先猜一猜,再计算?
a=50cm 解: V=a×a×a =50×50×50 =125000(平方厘米)
a=60cm b=40cm h=50cm V=abh=sh =60×40×50=12000(立方厘米)
作业: 作业:
个同样的小长方体, 用3个同样的小长方体,拼成一个大长方体,可 个同样的小长方体 拼成一个大长方体, 能有几种情况?它们的表面积各是多少? 能有几种情况?它们的表面积各是多少?
测测你的判断力
(1)体积单位比面积单位大。(X

(3)把一个长方体铁块熔铸成一个圆柱体, 形状虽然变了,但它们所占空间的大小没 有变。( √ ) (4)一个圆柱的底面直径是4厘米,高是4 厘米,将这个圆柱的侧面展开后一定是一 个正方形。 ( √ ) (5)长方体,正方体和圆柱的表面积多可以 用“地面积乘高”来计算。( X )
h h a h b s s a a a 1 3 V= abh V= a V= sh V= 3 sh
V = sh
正方体、 正方体、长方体和圆柱有什 么相似的地方呢? 么相似的地方呢?
动画
立体图形的表面积和体积有什么 区别? 区别?
(1)表示的意义不同 (1)表示的意义不同 (2)计量的单位不同 (2)计量的单位不同 (3)计算的方法不同 (3)计算的方法不同
快乐A、B、C
(1)揉一团面粉做饼,把饼做得越大,就是(B )揉一团面粉做饼,把饼做得越大,就是( ) A 表面积不变 体积不变 B表面积变大 体积不变 C 表面积不变 体积变大 D表面积变大 体积变大 (2)把一个长方体平均分成两个长方体,它的 )把一个长方体平均分成两个长方体, 表面积( 表面积( C )。 A 减少了 B 不变 C 增加了
1厘米 厘米 2厘米 厘米 3厘米 厘米 3厘米 厘米 长 宽 高 表面积
2)把一块棱长是6 2)把一块棱长是6厘米的正方体铁块熔成一个 把一块棱长是 底面直径20厘米的圆锥形铁块, 20厘米的圆锥形铁块 底面直径20厘米的圆锥形铁块,这个圆锥形铁 块的高是多少厘米? 得数保留一位小数) 块的高是多少厘米?(得数保留一位小数) 3 2 解:设圆锥的高是 厘米 设圆锥的高是x厘米 设圆锥的高是 6 ×3÷ (3.14×10 ) ÷ × 1 ×(3.14×102) ×x =6 3 = 648÷314 ÷ × 3 ≈ 3.1 (厘米 厘米) 厘米
a
h b
a
2
a a
h r
长方体表面积= 长方体表面积= 正方体表面积= 正方体表面积= 圆柱侧面积= 圆柱表面积=

(ab+ah+bh) ×2
6a 2лrh 2лrh+ 2лr
动画
2
动画
1.什么是立体图形的体积? 1.什么是立体图形的体积?你能举例说说 什么是立体图形的体积 吗? 一个立体图形所占空间的大小叫做它的体 积. 2.怎样计算长方体.正方体.圆柱. 2.怎样计算长方体.正方体.圆柱.圆锥的体 怎样计算长方体 积?
1、只列式,不计算: 只列式,不计算: 1)一个长方体 它的长是4分米,宽是5 一个长方体, 1)一个长方体,它的长是4分米,宽是5分 高是2分米,求它的表面积和体积. 米,高是2分米,求它的表面积和体积. 2)一个棱长是6分米的正方体, 2)一个棱长是6分米的正方体,它的表面 一个棱长是 积和体积各是多少? 积和体积各是多少? 3)一个圆柱的底面半径是3厘米, 12厘 3)一个圆柱的底面半径是3厘米,高12厘 一个圆柱的底面半径是 求它的表面积和体积. 米,求它的表面积和体积. 4)一个圆锥的底面周长是62.8厘米, 4)一个圆锥的底面周长是62.8厘米,高 一个圆锥的底面周长是62.8厘米 15厘米 它的体积是多少立方厘米? 厘米, 是15厘米,它的体积是多少立方厘米?
Buhalqam.ezezi 康苏学校
1.什么是立体图形的表面积? 1.什么是立体图形的表面积?你能举 什么是立体图形的表面积 例说说吗? 例说说吗? 一个立体图形所有的面的面积总和叫做 它的表面积. 它的表面积 2.怎样计算长方体.正方体. 2.怎样计算长方体.正方体.圆柱的表 怎样计算长方体 面积? 面积?
相关文档
最新文档