【精品】2018年山东省威海市文登区八校九年级上学期期中数学试卷带解析答案(五四学制)
2018年山东威海中考数学试题及答案
【导语】⽆忧考将在本次⼭东威海中考过后,考后发布2018年⼭东威海中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。
因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。
视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。
中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。
因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。
参加2018中考的考⽣可直接查阅2018年⼭东威海中考试题及答案信息!—→以下是⼭东威海2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取威海2018年中考成绩、2018年中考录取分数线信息,⽆忧考为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。
2018-2019学山东省威海市第九中学(五四制)年八年级上学期期中考试数学试题及参考答案
…………外…………○学校…………内…………○绝密★启用前2018-2019学山东省威海市第九中学(五四制)年八年级上学期期中考试数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.下列各式:15(1﹣x ),5a x -,43x π-,m n m n +-,222x y -,25x x,其中分式共有( )A .2个B .3个C .4个D .5个2.下列多项式中,不能用平方差公式分解的是( ) A .221a b - B .240.25a - C .21x -+D .22a b --3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S 甲2>S 乙2;②S 甲2<S 乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④○…………外………○……………○…题※※○…………内………○……………○…4.下列因式分解正确的是( )A .4a b ﹣63a b+92a b=2a b (2a ﹣6a+9)B .2x ﹣x+=21()2x -C .2x ﹣2x+4=2(2)x -D .42x ﹣2y =(4x+y )(4x ﹣y )5.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和中位数分别是( ).A .7,7B .8,7.5C .7,7.5D .8,66.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116x D .2116x 7.下列各式中,从左到右的变形正确的是( ) A .x y x yx y x y-+--=---B .x y x yx y x y-+-=--+C .x y x yx y x y-++=---D .x y x yx y x y-+-=---+8.下列等式成立的是( )A .0.10.1a aa b a b =--B .a aa b a b -=-+ C .1a a b b=+ D .2a ab b b=9.若3x y -=,则226x y y --=( ) A .3B .6C .9D .1210.某开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如 期完成;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.小亮设规定的工期为x 天,根据题意列出了方 程:415x x x +=+,则方案③中被墨水污染的部分应该是( ) 1111.某校初三年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将六个班级各自的平均成绩之和除以6,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这六个班级各自的平均成绩的最小值与最大值之间C .这六个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这六个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 12.若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是( ) A .m >﹣1 B .m ≥1 C .m >﹣1且m ≠1 D .m ≥﹣1且m ≠1第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.一组数据的方差是2222212381[(6)(6)(6)...(6)]8S x x x x =-+-+-++-,则这组数据共有_______个,平均数是________. 14.方程111x x x =-- 的解是____ 15.分解因式,2242mx mx m -+= .16.“植树节”时,九(1)班6个小组的植树棵数分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的平均数是____17.化简22(3)()x y x x y y y x -++-=_________________.18.如果111a b +=,则2323a ab b a ab b-+=++__________. 三、解答题19.因式分解:(1)()()2221619x x -+-+ (2)()222224a b a b -+20.解下列分式方程(1)12x -+3=12x x --1x +4………○………………※在※※装※※订※※线答※※题※※………○………………21.化简(1) 211111x x x x x x +-⎛⎫-÷ ⎪-+-⎝⎭ (2)324222a b c bc c a a ⎛⎫⎛⎫⎛⎫-⋅-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22.先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.23.某单位组织职工郊游,租用一辆60座客车,租金为1000元.出发前部分职工因有事不能参加,实际参加的人数是原计划的45,结果每位职工比原计划多付5元.问原计划有多少名职工参加这次郊游? 24.若,求(1), (2)2421x x x ++的值.25.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为________; (2)请你将图②补充完整; (3)求乙校成绩的平均分;(4)经计算知s 甲2=135,s 乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.参考答案1.B【解析】【分析】根据分式的定义看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出答案.【详解】解:是分式的有:5a x-、m nm n+-、25xx;故答案为B. 【点睛】本题主要考查分式的定义,注意π不是字母,是常数;43xπ-不是分式,是整式.2.D【解析】【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选:D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.3.C【解析】【详解】试题分析:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45 ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定;故选C . 考点:1.方差;2.折线统计图. 4.B 【解析】试题分析:A 、原式=2a b (2a ﹣6a+9)=2a 2(3)a -,错误;B 、原式=21()2x -,正确;C 、原式不能分解,错误;D 、原式=(2x+y )(2x ﹣y ),错误. 考点:因式分解-运用公式法;因式分解-提公因式法 5.C 【解析】试题解析:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环); 因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环). 故选C .考点:1.众数;2.条形统计图;3.中位数. 6.D 【解析】 【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解. 【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ;③若为单项式,则可加上-4. 故选:D. 【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意. 7.B 【解析】 【分析】根据分式的基本性质进行判断. 【详解】解:A 、分子、分母同时乘以-1,则原式=x yx y-+,故本选项错误; B 、分子、分母同时乘以-1,则原式x yx y-=+,故本选项正确; C 、分子、分母同时乘以-1,则原式=x yx y-+ ,故本选项错误; D 、分子、分母同时乘以-1,则原式=x yx y-+,故本选项错误. 故选:B. 【点睛】本题考查了分式的基本性质.规律总结:(1)同类分式中的操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式变号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变. 8.D 【解析】【分析】根据分式的基本性质进行判断. 【详解】解:A 、分子、分母同时除以-1,则原式=10aa b -,故本选项错误;B 、分子、分母同时乘以-1,则原式=aa b -+,故本选项错误; C 、分子、分母同时除以a ,则原式=11b a + ,故本选项错误; D 、分子、分母同时乘以b ,则原式=2abb,故本选项正确.故选:D. 【点睛】本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变. 9.C 【解析】 【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答. 【详解】解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--= 故答案为C. 【点睛】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键. 10.B 【解析】 【详解】试题解析:由题意:415x x x +=+,可知甲做了4天,乙做了x 天.由此可以推出,开始他们合做了4天, 故条件③是甲乙合做了4天. 故选B .点睛:用到的等量关系为:工效×工作时间=工作总量. 11.B 【解析】 【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系. 【详解】解:A 、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;B 、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;C 、中位数和平均数是不同的概念,故错误;D 、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误; 故选:B. 【点睛】本题主要考查了平均数与众数,中位数的关系,平均数: ()121n x x x x n=++⋯; 众数:一组数据中出现次数最多的那个数据叫做这组数据的众数;中位数:n 个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数. 12.D 【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程13.8 6 【解析】 【分析】对比方差公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦ 很容易得出结论. 【详解】解:方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦ 其中n 是这个样本的容量,x 是样本的平均数; 所以本题中这个样本的容量是8,样本的平均数是6; 故答案为8,6. 【点睛】考查方差计算公式中各数据的含义,明确方差公式中各参数的意义是解答本题的关键. 14.无解 【解析】 【分析】按照去分母、去括号、移项、系数化为1、检验的步骤进行解答即可. 【详解】 解:111x x x =-- x=1由1-1=0,所以x=1是增根,该分式方程无解. 故答案为-1. 【点睛】本题考查了分式方程的解法,其基本步骤为去分母、去括号、移项、系数化为1、检验. 15.2m(x-1)2 【解析】试题分析:首先进行提取公因式2m ,然后利用完全平方公式进行因式分解.考点:因式分解16.5【解析】试题分析:因为数据的众数是5,根据众数的定义可得:x=5,所以该数据的平均数=57356455x +++++== 考点:1.众数;2.平均数.17.x y x y-+ 【解析】【分析】先将分母展开,然后合并,再对分子、分母因式分解,最后约分即可.【详解】 解:22(3)()x y x x y y y x -++- =22223x x y xyy x y -+-+ =22222-++x y x xy y =()()()2x y x y x y +-+ =x y x y-+ 【点睛】本题考查了多项式乘法和运用公式法进行因式分解,其中运用公式法进行因式分解是解答本题的关键.18.15-【解析】【分析】 由111a b +=得a+b=ab ,然后再对2323a ab b a ab b-+++变形,最后代入,即可完成解答. 【详解】 解:由111a b +=得a+b=ab , 2323a ab b a ab b -+=++2332a b ab a b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab-+=15-. 【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.19.(1)()()2222x x -+;(2)()()22a b a b -+-. 【解析】【分析】(1)先利用完全平方公式进行分解,再用平方差公式进行分解;(2)先利用平方差公式进行分解,再用完全平方公式进行分解;【详解】解:(1)()()2221619x x -+-+=()()2221619x x -+-+ =()2213x -+ =()224x - =()()2222x x -+(2)()222224a b a b -+=2222(2)(2)ab a b ab a b ++--=2222(2)(2)ab a b a b ab -+++-=()()22a b a b -+- 【点睛】本题考查了运用公式法进行因式分解,灵活应用平方差公式和完全平方公式是的答本题的关键.20. (1)分式方程无解;(2)分式方程无解.【解析】【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2) 把分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,经检验即可得到分式方程的解.【详解】 (1)1 2x -+3=12x x--, 去分母得:1+3x ﹣6=x ﹣1,解得:x=2,经检验x=2是增根,分式方程无解; (2)1 1x x +-﹣241x -=1, 去分母得:x 2+2x+1﹣4=x 2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(1)4;(2)63a bc-. 【解析】【分析】先对括号内通分运算,然后再化除为乘,最后化简即可.先算乘方,再化除为乘,最后约分化简即可.【详解】解:(1)211111x x x x x x +-⎛⎫-÷ ⎪-+-⎝⎭=()()2222211111x x x x x x ⎛⎫+--÷ ⎪ ⎪---⎝⎭=22411x x x x -⎛⎫⨯ ⎪-⎝⎭=4(2)324222a b c bc c a a ⎛⎫⎛⎫⎛⎫-⋅-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =63444344a b c b c c a a-⋅÷ =63443444a b c a c a b c-⋅⋅ =1034447a b c a b c- =63a bc- 【点睛】本题考查了分式的化简和含有乘方的运算化简,解题的关键是灵活的运用运算规律. 22.28x +,10.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.试题解析:原式=(()()()()2322422x x x x x x x x +---⋅-+ =()()()()()242222x x x x x x x +-+⋅-+=2(x +4)当x =1时,原式=10.23.原计划有50名职工参加这次郊游.【解析】【分析】本题首先依据题意得出等量关系即原计划每位职工所付车费=实际每位职工所付车费-5,然后列出方程10001000545x x += ,最后解出方程检验并作答即可. 【详解】 解:设原计划有名职工参加这次郊游则依题意可得:10001000545x x += 整理得:4x=200,解得:x=50,经检验=50是原分式方程的解答:原计划有50名职工参加这次郊游.【点睛】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验作答.注意:分式方程的解必须检验.24.(1)7;(2)18 【解析】【分析】(1)将221x x +化成含有完全平方形式,然后代入已知,即可完成解答; (2)给2421x x x ++上下同除以x 2,变成含有(1)的形式,再进行运算即可完成解答. 【详解】解:(1)由221x x +=221x x ⎛⎫+- ⎪⎝⎭=9-2=7;(2)24222111117181x x x x x===+++++. 【点睛】本题主要考查了完全平方公式的应用,灵活对完全平方公式进行变形是解答本题的关键. 25.(1)54°;(2)补图见解析;(3)85分;(4)甲校20名同学的成绩相对乙校较整齐.【解析】试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.试题解析:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20-6-3-6=5,统计图补充如下:(3)20-1-7-8=4,707804901120008x ⨯+⨯+⨯+⨯==85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.。
2018年威海市中考数学试卷含答案解析(word版)
2018年威海市中考数学试卷含答案解析(word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年威海市中考数学试卷含答案解析(word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年威海市中考数学试卷含答案解析(word版)(word版可编辑修改)的全部内容。
山东省威海市2018年中考数学试卷(解析版)一、选择题1.(2018年山东省威海市)﹣2的绝对值是( )A.2B.﹣C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(2018年山东省威海市)下列运算结果正确的是( )A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(2018年山东省威海市)如图是某圆锥的主视图和左视图,该圆锥的侧面积是( )A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=( )A.B.1C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(2018年山东省威海市)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是( )A.当小球抛出高度达到7。
2018年山东威海市中考数学试题及答案
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
1 13.分解因式: − a 2 + 2a − 2 = ________________. 2
14.关于 x 的一元二次方程 ( m − 5 ) x 2 + 2 x + 2 = 0 有实根,则 m 的最大整数解是___________. 15.如图,直线 AB 与双曲线 y =
k ( k 0 ) 交于点 A , B ,点 P 是直线 AB 上一动点,且点 P x
在第二象限,连接 PO 并延长交双曲线于点 C ,过点 P 作 PD ⊥ y 轴,垂足为点 D .过点 C 作
CE ⊥ x 轴, 垂足为 E .若点 A 的坐标为 ( −2,3) , 点 B 的坐标为 ( m,1) , 设 △POD 的面积为 S1 ,
解这个方程,得 x = 60 . 经检验, x = 60 是所列方程的解.
1 ∴ 60 1 + = 80 (个) 3
答:软件升级后每小时生产 80 个零件.
1 = 45°, ∠4 = 180°− 2∠2 = 30°, BE = EK , KF = FC . 21.解:由题意,得 ∠3 = 180°− 2∠
提前了 40 分钟,求软件升级后每小时生产多少个零件?
EG 为折痕; 21.如图, 将矩形 ABCD (纸片)折叠, 使点 B 与 AD 边上的点 K 重合, 点 C 与 AD
边上的点 K 重合, FH 为折痕,已知 ∠1 = 67.5°, ∠2=75°, EF = 3 + 1 .求 BC 的长.
22.为积极响应“弘扬传统文化”的号召, 某学校倡导全校 1200 名学生进行经典诗词诵背活 动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启 动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部 分)如下图所示:
山东省威海市九年级上学期期中数学试卷
山东省威海市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列语句不是命题的是()A . 两直线平行,同位角相等B . 锐角都相等C . 画直线AB平行于CDD . 所有质数都是奇数2. (2分) (2017八上·独山期中) 等腰三角形一边等于5,另一边等于8,则其周长是()A . 18B . 21C . 18或21D . 不能确定3. (2分)一条信息可以通过如图所示的网络由上(A点)往下向各站传送,例如信息b2可由经a1的站点送达,也可由经a2的站点送达,共有两条途径传送,则信息由A点到d3的不同途径共有()A . 3条B . 4条C . 6条D . 12条4. (2分)(2017·龙岗模拟) 如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD 于点F,则△DEF的面积与△BAF的面积之比为()A . 3:4B . 9:16C . 4:9D . 1:35. (2分)关于x的方程kx2+2x-1=0有两个实数根,则k的取值范围是()A . k≥1B . k≥-1C . k≥1且k≠0D . k≥-1且k≠06. (2分)(2017·徐汇模拟) 如果2x=3y(x、y均不为0),那么下列各式中正确的是()A . =B . =3C . =D . =7. (2分)某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A . 5.4(1+x)2=6.3B . 5.4(1﹣x)2=6.3C . 6.3(1+x)2=5.4D . 6.3(1﹣x)2=5.48. (2分) (2016九上·腾冲期中) 如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)一直四棱柱的底面是菱形,它的一条边长为2,一个角为60°,且侧棱长为6,那么它的表面积为________ .10. (1分)(2017·洪泽模拟) 如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=________.11. (1分) (2017九上·恩阳期中) 如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1 ,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1 ,它的面积记作S2 .照此规律作下去,则S2017=________.12. (1分)(2018·山西) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为________.13. (1分)已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数根,则b的值是________.14. (1分)如图,数学兴趣小组测量校园内旗杆的高度,小华拿一支刻有厘米分划的小尺,站在距旗杆30米的地方,手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住旗杆,已知臂长60cm,则旗杆高为________米.15. (1分)(2017·高唐模拟) 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.16. (1分) (2018八上·徐州期末) 如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为________ m.三、解答题 (共10题;共75分)17. (10分) (2017八下·东营期末) 综合题(1)计算:.(2)用配方法解方程: .18. (5分)(2018·长春模拟) 甲、乙两人做摸球游戏,在不透明的口袋里放入大小相同的两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?19. (5分)已知a、b、c为整数,且满足3+a2+b2+c2<ab+3b+2c,求的值.20. (5分)如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.若AB=6,AD=12,BE=8,求:DF的长,以及四边形DCEF的面积。
2018年山东省(威海、潍坊)中考数学试题(共2套 附答案)
则∠AEB 的度数为
.
17.(3 分)用若干个形状、大小完全相同的矩形纸片围12;8 个矩形纸片围成如图②所示的正方形,其阴影部分的
面积为 8;12 个矩形纸片围成如图③所示的正方形,其阴影部分的面积为
.
18.(3 分)如图,在平面直角坐标系中,点 A1 的坐标为(1,2),以点 O 为圆心,以 OA1 长为 半径画弧,交直线 y= x 于点 B1.过 B1 点作 B1A2∥y 轴,交直线 y=2x 于点 A2,以 O 为圆心,以
2018 年山东省威海市中考数学试卷
参考答案与试题解析
一、选择题(每小题只有一个选项符合题意.共 12 小题,每小题 3 分,共 36 分) 1. 【解答】解:﹣2 的绝对值是 2, 故选:A.
2. 【解答】解:A、a2•a3=a5,故此选项错误; B、﹣(a﹣b)=﹣a+b,正确; C、a2+a2=2a2,故此选项错误; D、a8÷a4=a4,故此选项错误; 故选:B.
售单价 x(元)万件之间的函数关系如图所示.
(1)求该网店每月利润 w(万元)与销售单价 x(元)之间的函数表达式;
(2)小王自网店开业起,最快在第几个月可还清 10 万元的无息贷款?
24.(12 分)如图①,在四边形 BCDE 中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为 C,D,A, BC≠AC,点 M,N,F 分别为 AB,AE,BE 的中点,连接 MN,MF,NF.
3. 【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线 y= (k<0)上,
∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y 随 x 的增大 而增大, ∴y3<y1<y2. 故选:D.
威海市中考数学试卷含答案解析
山东省威海市2018年中考数学试卷解析版一、选择题1.2018年山东省威海市﹣2的绝对值是A.2 B.﹣C.D.﹣2分析根据负数的绝对值等于它的相反数可得答案.解答解:﹣2的绝对值是2;故选:A.点评此题主要考查了绝对值;关键是掌握绝对值的性质.2.2018年山东省威海市下列运算结果正确的是A.a2 a3=a6B.﹣a﹣b=﹣a+b C.a2+a2=2a4D.a8÷a4=a2分析直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.解答解:A、a2 a3=a5;故此选项错误;B、﹣a﹣b=﹣a+b;正确;C、a2+a2=2a2;故此选项错误;D、a8÷a4=a4;故此选项错误;故选:B.点评此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则;正确掌握相关运算法则是解题关键.3.2018年山东省威海市若点﹣2;y1;﹣1;y2;3;y3在双曲线y=k<0上;则y1;y2;y3的大小关系是A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2分析直接利用反比例函数的性质分析得出答案.解答解:∵点﹣2;y1;﹣1;y2;3;y3在双曲线y=k<0上;∴﹣2;y1;﹣1;y2分布在第二象限;3;y3在第四象限;每个象限内;y随x的增大而增大;∴y3<y1<y2.故选:D.点评此题主要考查了反比例函数的性质;正确掌握反比例函数增减性是解题关键.4.2018年山东省威海市如图是某圆锥的主视图和左视图;该圆锥的侧面积是A.25πB.24πC.20πD.15π分析求得圆锥的底面周长以及母线长;即可得到圆锥的侧面积.解答解:由题可得;圆锥的底面直径为8;高为3;∴圆锥的底面周长为8π;圆锥的母线长为=5;∴圆锥的侧面积=×8π×5=20π;故选:C.点评本题主要考查了由三视图判断几何体以及圆锥的计算;圆锥的侧面展开图为一扇形;这个扇形的弧长等于圆锥底面的周长;扇形的半径等于圆锥的母线长.5.2018年山东省威海市已知5x=3;5y=2;则52x﹣3y=A.B.1 C.D.分析首先根据幂的乘方的运算方法;求出52x、53y的值;然后根据同底数幂的除法的运算方法;求出52x﹣3y的值为多少即可.解答解:∵5x=3;5y=2;∴52x=32=9;53y=23=8;∴52x﹣3y==.故选:D.点评此题主要考查了同底数幂的除法法则;以及幂的乘方与积的乘方;同底数幂相除;底数不变;指数相减;要熟练掌握;解答此题的关键是要明确:①底数a≠0;因为0不能做除数;②单独的一个字母;其指数是1;而不是0;③应用同底数幂除法的法则时;底数a可是单项式;也可以是多项式;但必须明确底数是什么;指数是什么.6.2018年山东省威海市如图;将一个小球从斜坡的点O处抛出;小球的抛出路线可以用二次函数y=4x﹣x2刻画;斜坡可以用一次函数y=x刻画;下列结论错误的是A.当小球抛出高度达到7.5m时;小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2分析求出当y=7.5时;x的值;判定A;根据二次函数的性质求出对称轴;根据二次函数性质判断B;求出抛物线与直线的交点;判断C;根据直线解析式和坡度的定义判断D.解答解:当y=7.5时;7.5=4x﹣x2;整理得x2﹣8x+15=0;解得;x1=3;x2=5;∴当小球抛出高度达到7.5m时;小球水平距O点水平距离为3m或5侧面cm;A错误;符合题意;y=4x﹣x2=﹣x﹣42+8;则抛物线的对称轴为x=4;∴当x>4时;y随x的增大而减小;即小球距O点水平距离超过4米呈下降趋势;B正确;不符合题意;;解得;;;则小球落地点距O点水平距离为7米;C正确;不符合题意;∵斜坡可以用一次函数y=x刻画;∴斜坡的坡度为1:2;D正确;不符合题意;故选:A.点评本题考查的是解直角三角形的﹣坡度问题、二次函数的性质;掌握坡度的概念、二次函数的性质是解题的关键.7.2018年山东省威海市一个不透明的盒子中放入四张卡片;每张卡片上都写有一个数字;分别是﹣2;﹣1;0;1.卡片除数字不同外其它均相同;从中随机抽取两张卡片;抽取的两张卡片上数字之积为负数的概率是A.B.C.D.分析画树状图展示所有12种等可能的结果数;再找出抽取的两张卡片上数字之积为负数的结果数;然后根据概率公式求解.解答解:画树状图如下:由树状图可知共有12种等可能结果;其中抽取的两张卡片上数字之积为负数的结果有4种;所以抽取的两张卡片上数字之积为负数的概率为=;故选:B.点评本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n;再从中选出符合事件A或B 的结果数目m;然后利用概率公式计算事件A或事件B的概率.8.2018年山东省威海市化简a﹣1÷﹣1 a的结果是A.﹣a2B.1 C.a2D.﹣1分析根据分式的混合运算顺序和运算法则计算可得.解答解:原式=a﹣1÷ a=a﹣1 a=﹣a2;故选:A.点评本题主要考查分式的混合运算;解题的关键是掌握分式的混合运算顺序和运算法则.9.2018年山东省威海市抛物线y=ax2+bx+ca≠0图象如图所示;下列结论错误的是A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0分析根据二次函数的图象与系数的关系即可求出答案.解答解:A由图象开口可知:a<0由对称轴可知:>0;∴b>0;∴由抛物线与y轴的交点可知:c>0;∴abc<0;故A正确;B由图象可知:x=﹣1;y<0;∴y=a﹣b+c<0;∴a+c<b;故B正确;C由图象可知:顶点的纵坐标大于2;∴>2;a<0;∴4ac﹣b2<8a;∴b2+8a>4ac;故C正确;D对称轴x=<1;a<0;∴2a+b<0;故D错误;故选:D.点评本题考查二次函数的综合问题;解题的关键是正确理解二次函数的图象与系数之间的关系;本题属于中等题型.10.2018年山东省威海市如图;⊙O的半径为5;AB为弦;点C为的中点;若∠ABC=30°;则弦AB的长为A.B.5 C. D.5分析连接OC、OA;利用圆周角定理得出∠AOC=60°;再利用垂径定理得出AB即可.解答解:连接OC、OA;∵∠ABC=30°;∴∠AOC=60°;∵AB为弦;点C为的中点;∴OC⊥AB;在Rt△OAE中;AE=;∴AB=;故选:D.点评此题考查圆周角定理;关键是利用圆周角定理得出∠AOC=60°.11.2018年山东省威海市矩形ABCD与CEFG;如图放置;点B;C;E共线;点C;D;G共线;连接AF;取AF的中点H;连接GH.若BC=EF=2;CD=CE=1;则GH=A.1 B.C.D.分析延长GH交AD于点P;先证△APH≌△FGH得AP=GF=1;GH=PH=PG;再利用勾股定理求得PG=;从而得出答案.解答解:如图;延长GH交AD于点P;∵四边形ABCD和四边形CEFG都是矩形;∴∠ADC=∠ADG=∠CGF=90°;AD=BC=2、GF=CE=1;∴AD∥GF;∴∠GFH=∠PAH;又∵H是AF的中点;∴AH=FH;在△APH和△FGH中;∵;∴△APH≌△FGHASA;∴AP=GF=1;GH=PH=PG;∴PD=AD﹣AP=1;∵CG=2、CD=1;∴DG=1;则GH=PG=×=;故选:C.点评本题主要考查矩形的性质;解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.2018年山东省威海市如图;在正方形ABCD中;AB=12;点E为BC的中点;以CD为直径作半圆CFD;点F为半圆的中点;连接AF;EF;图中阴影部分的面积是A.18+36πB.24+18πC.18+18πD.12+18π分析作FH⊥BC于H;连接FH;如图;根据正方形的性质和切线的性质得BE=CE=CH=FH=6;则利用勾股定理可计算出AE=6;通过Rt△ABE≌△EHF得∠AEF=90°;然后利用图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF进行计算.解答解:作FH⊥BC于H;连接FH;如图;∵点E为BC的中点;点F为半圆的中点;∴BE=CE=CH=FH=6;AE==6;易得Rt△ABE≌△EHF;∴∠AEB=∠EFH;而∠EFH+∠FEH=90°;∴∠AEB+∠FEH=90°;∴∠AEF=90°;∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF=12×12+π 62﹣×12×6﹣6×6=18+18π.故选:C.点评本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.二、填空题本题包括6小题;每小题3分;共18分13.2018年山东省威海市分解因式:﹣a2+2a﹣2=﹣a﹣22.分析原式提取公因式;再利用完全平方公式分解即可.解答解:原式=﹣a2﹣4a+4=﹣a﹣22;故答案为:﹣a﹣22点评此题考查了因式分解﹣运用公式法;熟练掌握因式分解的方法是解本题的关键.14.2018年山东省威海市关于x的一元二次方程m﹣5x2+2x+2=0有实根;则m的最大整数解是m=4.分析若一元二次方程有实根;则根的判别式△=b2﹣4ac≥0;建立关于m的不等式;求出m的取值范围.还要注意二次项系数不为0.解答解:∵关于x的一元二次方程m﹣5x2+2x+2=0有实根;∴△=4﹣8m﹣5>0;且m﹣5≠0;解得m<5.5;且m≠5;则m的最大整数解是m=4.故答案为:m=4.点评考查了根的判别式;总结:一元二次方程根的情况与判别式△的关系:1△>0方程有两个不相等的实数根;2△=0方程有两个相等的实数根;3△<0方程没有实数根.15.2018年山东省威海市如图;直线AB与双曲线y=k<0交于点A;B;点P是直线AB上一动点;且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴;垂足为点D.过点C作CE⊥x轴;垂足为E.若点A的坐标为﹣2;3;点B的坐标为m;1;设△POD的面积为S1;△COE的面积为S2;当S1>S2时;点P的横坐标x的取值范围为﹣6<x<2.分析利用待定系数法求出k、m;再利用图象法即可解决问题;解答解:∵A﹣2;3在y=上;∴k=﹣6.∵点Bm;1在y=上;∴m=﹣6;观察图象可知:当S1>S2时;点P在线段AB上;∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.点评本题考查反比例函数的性质、三角形的面积、待定系数法等知识;解题的关键是灵活运用所学知识解决问题;属于中考常考题型.16.2018年山东省威海市如图;在扇形CAB中;CD⊥AB;垂足为D;⊙E是△ACD的内切圆;连接AE;BE;则∠AEB的度数为135°.分析如图;连接EC.首先证明∠AEC=135°;再证明△EAC≌△EAB即可解决问题;解答解:如图;连接EC.∵E是△ADC的内心;∴∠AEC=90°+∠ADC=135°;在△AEC和△AEB中;;∴△EAC≌△EAB;∴∠AEB=∠AEC=135°;故答案为135°.点评本题考查三角形的内心、全等三角形的判定和性质等知识;解题的关键是学会添加常用辅助线;构造全等三角形解决问题;属于中考常考题型.17.2018年山东省威海市用若干个形状、大小完全相同的矩形纸片围成正方形;4个矩形纸片围成如图①所示的正方形;其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形;其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形;其阴影部分的面积为44﹣16.分析图①中阴影部分的边长为=2;图②中;阴影部分的边长为=2;设小矩形的长为a;宽为b;依据等量关系即可得到方程组;进而得出a;b的值;即可得到图③中;阴影部分的面积.解答解:由图可得;图①中阴影部分的边长为=2;图②中;阴影部分的边长为=2;设小矩形的长为a;宽为b;依题意得;解得;∴图③中;阴影部分的面积为a﹣3b2=4﹣2﹣62=44﹣16;故答案为:44﹣16.点评本题主要考查了二元一次方程组的应用以及二次根式的化简;当问题较复杂时;有时设与要求的未知量相关的另一些量为未知数;即为间接设元.无论怎样设元;设几个未知数;就要列几个方程.18.2018年山东省威海市如图;在平面直角坐标系中;点A1的坐标为1;2;以点O为圆心;以OA1长为半径画弧;交直线y=x于点B1.过B1点作B1A2∥y轴;交直线y=2x于点A2;以O为圆心;以OA2长为半径画弧;交直线y=x于点B2;过点B2作B2A3∥y轴;交直线y=2x于点A3;以点O为圆心;以OA3长为半径画弧;交直线y=x于点B3;过B3点作B3A4∥y轴;交直线y=2x于点A4;以点O为圆心;以OA4长为半径画弧;交直线y=x于点B4;…按照如此规律进行下去;点B2018的坐标为22018;22017.分析根据题意可以求得点B1的坐标;点A2的坐标;点B2的坐标;然后即可发现坐标变化的规律;从而可以求得点B2018的坐标.解答解:由题意可得;点A1的坐标为1;2;设点B1的坐标为a;a;;解得;a=2;∴点B1的坐标为2;1;同理可得;点A2的坐标为2;4;点B2的坐标为4;2;点A3的坐标为4;8;点B3的坐标为8;4;……∴点B2018的坐标为22018;22017;故答案为:22018;22017.点评本题考查一次函数图象上点的坐标特征、点的坐标;解答本题的关键是明确题意;发现题目中坐标的变化规律;求出相应的点的坐标.三、解答题本题包括7小题;共66分19.2018年山东省威海市解不等式组;并将解集在数轴上表示出来.分析根据解一元一次不等式组的步骤;大小小大中间找;可得答案解答解:解不等式①;得x>﹣4;解不等式②;得x≤2;把不等式①②的解集在数轴上表示如图;原不等式组的解集为﹣4<x≤2.点评本题考查了解一元一次不等式组;利用不等式组的解集的表示方法是解题关键.20.2018年山东省威海市某自动化车间计划生产480个零件;当生产任务完成一半时;停止生产进行自动化程序软件升级;用时20分钟;恢复生产后工作效率比原来提高了;结果完成任务时比原计划提前了40分钟;求软件升级后每小时生产多少个零件分析设软件升级前每小时生产x个零件;则软件升级后每小时生产1+x个零件;根据工作时间=工作总量÷工作效率结合软件升级后节省的时间;即可得出关于x的分式方程;解之经检验后即可得出结论.解答解:设软件升级前每小时生产x个零件;则软件升级后每小时生产1+x个零件;根据题意得:﹣=+;解得:x=60;经检验;x=60是原方程的解;且符合题意;∴1+x=80.答:软件升级后每小时生产80个零件.点评本题考查了分式方程的应用;找准等量关系;正确列出分式方程是解题的关键.21.2018年山东省威海市如图;将矩形ABCD纸片折叠;使点B与AD边上的点K重合;EG为折痕;点C与AD边上的点K重合;FH为折痕.已知∠1=67.5°;∠2=75°;EF=+1;求BC的长.分析由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC;作KM⊥BC;设KM=x;知EM=x、MF=x;根据EF的长求得x=1;再进一步求解可得.解答解:由题意;得:∠3=180°﹣2∠1=45°;∠4=180°﹣2∠2=30°;BE=KE、KF=FC;如图;过点K作KM⊥BC于点M;设KM=x;则EM=x、MF=x;∴x+x=+1;解得:x=1;∴EK=、KF=2;∴BC=BE+EF+FC=EK+EF+KF=3++;∴BC的长为3++.点评本题主要考查翻折变换;解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变;位置变化;对应边和对应角相等.22.2018年山东省威海市为积极响应“弘扬传统文化”的号召;某学校倡导全校1200名学生进行经典诗词诵背活动;并在活动之后举办经典诗词大赛;为了解本次系列活动的持续效果;学校团委在活动启动之初;随机抽取部分学生调查“一周诗词诵背数量”;根调查结果绘制成的统计图部分如图所示.大赛结束后一个月;再次抽查这部分学生“一周诗词诵背数量”;绘制成统计表一周诗词诵背数量3首4首4首6首7首8首人数10 10 15 40 25 20请根据调查的信息分析:1活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;2估计大赛后一个月该校学生一周诗词诵背6首含6首以上的人数;3选择适当的统计量;从两个不同的角度分析两次调查的相关数据;评价该校经典诗词诵背系列活动的效果.分析1根据统计图中的数据可以求得这组数据的中位数;2根基表格中的数据可以解答本题;3根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数;从而可以解答本题.解答解:1本次调查的学生有:20÷=120名;背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45人;∵15+45=60;∴这组数据的中位数是:4+5÷2=4.5首;故答案为:4.5首;2大赛后一个月该校学生一周诗词诵背6首含6首以上的有:1200×=850人;答:大赛后一个月该校学生一周诗词诵背6首含6首以上的有850人;3活动启动之初的中位数是4.5首;众数是4首;大赛比赛后一个月时的中位数是6首;众数是6首;由比赛前后的中位数和众数看;比赛后学生背诵诗词的积极性明显提高;这次举办后的效果比较理想.点评本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择;解答本题的关键是明确题意;找出所求问题需要的条件;利用数形结合的思想解答.23.2018年山东省威海市为了支持大学生创业;某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款;注册了一家淘宝网店;招收5名员工;销售一种火爆的电子产品;并约定用该网店经营的利润;逐月偿还这笔无息贷款.已知该产品的成本为每件4元;员工每人每月的工资为4千元;该网店还需每月支付其它费用1万元.该产品每月销售量y万件与销售单价x元万件之间的函数关系如图所示.1求该网店每月利润w万元与销售单价x元之间的函数表达式;2小王自网店开业起;最快在第几个月可还清10万元的无息贷款分析1y万件与销售单价x是分段函数;根据待定系数法分别求直线AB和BC的解析式;又分两种情况;根据利润=售价﹣成本×销售量﹣费用;得结论;2分别计算两个利润的最大值;比较可得出利润的最大值;最后计算时间即可求解.解答解:1设直线AB的解析式为:y=kx+b;代入A4;4;B6;2得:;解得:;∴直线AB的解析式为:y=﹣x+8;2分同理代入B6;2;C8;1可得直线BC的解析式为:y=﹣x+5;2018年山东省威海市∵工资及其他费作为:0.4×5+1=3万元;∴当4≤x≤6时;w1=x﹣4﹣x+8﹣3=﹣x2+12x﹣35;2018年山东省威海市当6≤x≤8时;w2=x﹣4﹣x+5﹣3=﹣x2+7x﹣23;2018年山东省威海市2当4≤x≤6时;w1=﹣x2+12x﹣35=﹣x﹣62+1;∴当x=6时;w1取最大值是1;2018年山东省威海市当6≤x≤8时;w2=﹣x2+7x﹣23=﹣x﹣72+;当x=7时;w2取最大值是1.5;2018年山东省威海市∴==6;即最快在第7个月可还清10万元的无息贷款.2018年山东省威海市点评本题主要考查学生利用待定系数法求解一次函数关系式;一次函数与一次不等式的应用;利用数形结合的思想;是一道综合性较强的代数应用题;能力要求比较高.24.2018年山东省威海市如图①;在四边形BCDE中;BC⊥CD;DE⊥CD;AB⊥AE;垂足分别为C;D;A;BC≠AC;点M;N;F 分别为AB;AE;BE的中点;连接MN;MF;NF.1如图②;当BC=4;DE=5;tan∠FMN=1时;求的值;2若tan∠FMN=;BC=4;则可求出图中哪些线段的长写出解答过程;3连接CM;DN;CF;DF.试证明△FMC与△DNF全等;4在3的条件下;图中还有哪些其它的全等三角形请直接写出.分析1根据四边形ANFM是平行四边形;AB⊥AE;即可得到四边形ANFM是矩形;再根据FN=FM;即可得出矩形ANFM是正方形;AB=AE;结合∠1=∠3;∠C=∠D=90°;即可得到△ABC≌△EAD;进而得到BC=AD;CA=DE;即可得出=;2依据四边形MANF为矩形;MF=AE;NF=AB;tan∠FMN=;即可得到=;依据△ABC∽△EAD;即可得到==;即可得到AD的长;3根据△ABC和△ADE都是直角三角形;M;N分别是AB;AE的中点;即可得到BM=CM;NA=ND;进而得出∠4=2∠1;∠5=2∠3;根据∠4=∠5;即可得到∠FMC=∠FND;再根据FM=DN;CM=NF;可得△FMC≌△DNF;4由BM=AM=FN;MF=AN=NE;∠FMB=∠MFN=∠MAN=∠ENF=90°;即可得到:△BMF≌△NFM≌△MAN≌△FNE.解答解:1∵点M;N;F分别为AB;AE;BE的中点;∴MF;NF都是△ABE的中位线;∴MF=AE=AN;NF=AB=AM;∴四边形ANFM是平行四边形;又∵AB⊥AE;∴四边形ANFM是矩形;又∵tan∠FMN=1;∴FN=FM;∴矩形ANFM是正方形;AB=AE;又∵∠1+∠2=90°;∠2+∠3=90°;∴∠1=∠3;∵∠C=∠D=90°;∴△ABC≌△EADAAS;∴BC=AD=4;CA=DE=5;∴=;2可求线段AD的长.由1可得;四边形MANF为矩形;MF=AE;NF=AB;∵tan∠FMN=;即=;∴=;∵∠1=∠3;∠C=∠D=90°;∴△ABC∽△EAD;∴==;∵BC=4;∴AD=8;3∵BC⊥CD;DE⊥CD;∴△ABC和△ADE都是直角三角形;∵M;N分别是AB;AE的中点;∴BM=CM;NA=ND;∴∠4=2∠1;∠5=2∠3;∵∠1=∠3;∴∠4=∠5;∵∠FMC=90°+∠4;∠FND=90°+∠5;∴∠FMC=∠FND;∵FM=DN;CM=NF;∴△FMC≌△DNFSAS;4在3的条件下;BM=AM=FN;MF=AN=NE;∠FMB=∠MFN=∠MAN=∠ENF=90°;∴图中有:△BMF≌△NFM≌△MAN≌△FNE.点评本题属于相似形综合题;主要考查了全等三角形的判定与性质;相似三角形的判定与性质;直角三角形的性质以及矩形的判定与性质的综合运用;解决问题的关键是判定全等三角形或相似三角形;利用全等三角形的对应边相等;相似三角形的对应边成比例得出有关结论.25.2018年山东省威海市如图;抛物线y=ax2+bx+ca≠0与x轴交于点A﹣4;0;B2;0;与y轴交于点C0;4;线段BC的中垂线与对称轴l交于点D;与x轴交于点F;与BC交于点E;对称轴l与x轴交于点H.1求抛物线的函数表达式;2求点D的坐标;3点P为x轴上一点;⊙P与直线BC相切于点Q;与直线DE相切于点R.求点P的坐标;4点M为x轴上方抛物线上的点;在对称轴l上是否存在一点N;使得以点D;P;M.N为顶点的四边形是平行四边形若存在;则直接写出N点坐标;若不存在;请说明理由.分析1利用待定系数法问题可解;2依据垂直平分线性质;利用勾股定理构造方程;3由题意画示意图可以发现由两种可能性;确定方案后利用锐角三角函数定义构造方程;求出半径及点P坐标;4通过分类讨论画出可能图形;注意利用平行四边形的性质;同一对角线上的两个端点到另一对角线距离相等.解答解:1∵抛物线过点A﹣4;0;B2;0∴设抛物线表达式为:y=ax+4x﹣2把C0;4带入得4=a0+40﹣2∴a=﹣∴抛物线表达式为:y=﹣x+4x﹣2=﹣x2﹣x+42由1抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为﹣1;m过点C做CG⊥l于G;连DC;DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+4﹣m2;DB2=m2+2+12∴12+4﹣m2=m2+2+12解得:m=1∴点D坐标为﹣1;13∵点B坐标为2;0;C点坐标为0;4∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中;cos∠CBF=∴∴BF=5;EF=;OF=3设⊙P的半径为r;⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时;连P1Q1;P1R1;则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=;OP1=∴点P1坐标为;0②同理;当圆心P2在直线BC右侧时;可求r2=;OP2=7∴P2坐标为7;0∴点P坐标为;0或7;04存在当点P坐标为;0时;①若DN和MP为平行四边形对边;则有DN=MP当x=时;y=﹣∴DN=MP=∴点N坐标为﹣1;②若MN、DP为平行四边形对边时;M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知;点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时;点N纵坐标为此时点N坐标为﹣1;当点N在x轴下方时;点N坐标为﹣1;﹣当点P坐标为7;0时;所求N点不存在.故答案为:﹣1;、﹣1;、﹣1;﹣点评本题综合考查二次函数、圆和平行四边形存在性的判定等相关知识;应用了数形结合思想和分类讨论的数学思想.。
2018年威海市中考数学试卷含答案解析(word版)
山东省威海市2018年中考数学试卷(解析版)一、选择题1.(2018年山东省威海市)﹣2得绝对值就是()A.2B.﹣C.D.﹣2【分析】根据负数得绝对值等于它得相反数可得答案.【解答】解:﹣2得绝对值就是2,故选:A.【点评】此题主要考查了绝对值,关键就是掌握绝对值得性质.2.(2018年山东省威海市)下列运算结果正确得就是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+bC.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂得乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂得乘除运算、去括号法则,正确掌握相关运算法则就是解题关键.3.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3得大小关系就是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数得性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x得增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数得性质,正确掌握反比例函数增减性就是解题关键. 4.(2018年山东省威海市)如图就是某圆锥得主视图与左视图,该圆锥得侧面积就是()A.25πB.24πC.20πD.15π【分析】求得圆锥得底面周长以及母线长,即可得到圆锥得侧面积.【解答】解:由题可得,圆锥得底面直径为8,高为3,∴圆锥得底面周长为8π,圆锥得母线长为=5,∴圆锥得侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥得计算,圆锥得侧面展开图为一扇形,这个扇形得弧长等于圆锥底面得周长,扇形得半径等于圆锥得母线长.5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=()A. B.1 C. D.【分析】首先根据幂得乘方得运算方法,求出52x、53y得值;然后根据同底数幂得除法得运算方法,求出52x﹣3y得值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂得除法法则,以及幂得乘方与积得乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题得关键就是要明确:①底数a≠0,因为0不能做除数;②单独得一个字母,其指数就是1,而不就是0;③应用同底数幂除法得法则时,底数a可就是单项式,也可以就是多项式,但必须明确底数就是什么,指数就是什么.6.(2018年山东省威海市)如图,将一个小球从斜坡得点O处抛出,小球得抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误得就是()A.当小球抛出高度达到7、5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡得坡度为1:2【分析】求出当y=7、5时,x得值,判定A;根据二次函数得性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线得交点,判断C,根据直线解析式与坡度得定义判断D.【解答】解:当y=7、5时,7、5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7、5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线得对称轴为x=4,∴当x>4时,y随x得增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡得坡度为1:2,D正确,不符合题意;故选:A.【点评】本题考查得就是解直角三角形得﹣坡度问题、二次函数得性质,掌握坡度得概念、二次函数得性质就是解题得关键.7.(2018年山东省威海市)一个不透明得盒子中放入四张卡片,每张卡片上都写有一个数字,分别就是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取得两张卡片上数字之积为负数得概率就是()A. B. C. D.【分析】画树状图展示所有12种等可能得结果数,再找出抽取得两张卡片上数字之积为负数得结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取得两张卡片上数字之积为负数得结果有4种, 所以抽取得两张卡片上数字之积为负数得概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能得结果n,再从中选出符合事件A或B得结果数目m,然后利用概率公式计算事件A或事件B得概率.8.(2018年山东省威海市)化简(a﹣1)÷(﹣1)•a得结果就是()A.﹣a2B.1C.a2D.﹣1【分析】根据分式得混合运算顺序与运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式得混合运算,解题得关键就是掌握分式得混合运算顺序与运算法则.9.(2018年山东省威海市)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误得就是()A.abc<0B.a+c<bC.b2+8a>4acD.2a+b>0【分析】根据二次函数得图象与系数得关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴得交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点得纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.【点评】本题考查二次函数得综合问题,解题得关键就是正确理解二次函数得图象与系数之间得关系,本题属于中等题型.10.(2018年山东省威海市)如图,⊙O得半径为5,AB为弦,点C为得中点,若∠ABC=30°,则弦AB得长为()A. B.5 C. D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为得中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.【点评】此题考查圆周角定理,关键就是利用圆周角定理得出∠AOC=60°.11.(2018年山东省威海市)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF得中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD与四边形CEFG都就是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H就是AF得中点,∴AH=FH,在△APH与△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形得性质,解题得关键就是掌握全等三角形得判定与性质、矩形得性质、勾股定理等知识点.12.(2018年山东省威海市)如图,在正方形ABCD中,AB=12,点E为BC得中点,以CD为直径作半圆CFD,点F为半圆得中点,连接AF,EF,图中阴影部分得面积就是()A.18+36πB.24+18πC.18+18πD.12+18π【分析】作FH⊥BC于H,连接FH,如图,根据正方形得性质与切线得性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分得面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF进行计算.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC得中点,点F为半圆得中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分得面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.【点评】本题考查了正多边形与圆:利用面积得与差计算不规则图形得面积.二、填空题(本题包括6小题,每小题3分,共18分)13.(2018年山东省威海市)分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解得方法就是解本题得关键.14.(2018年山东省威海市)关于x得一元二次方程(m﹣5)x2+2x+2=0有实根,则m得最大整数解就是m=4.【分析】若一元二次方程有实根,则根得判别式△=b2﹣4ac≥0,建立关于m得不等式,求出m 得取值范围.还要注意二次项系数不为0.【解答】解:∵关于x得一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)>0,且m﹣5≠0,解得m<5、5,且m≠5,则m得最大整数解就是m=4.故答案为:m=4.【点评】考查了根得判别式,总结:一元二次方程根得情况与判别式△得关系:(1)△>0⇔方程有两个不相等得实数根;(2)△=0⇔方程有两个相等得实数根;(3)△<0⇔方程没有实数根.15.(2018年山东省威海市)如图,直线AB与双曲线y=(k<0)交于点A,B,点P就是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A得坐标为(﹣2,3),点B得坐标为(m,1),设△POD得面积为S1,△COE 得面积为S2,当S1>S2时,点P得横坐标x得取值范围为﹣6<x<2.【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P得横坐标x得取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.【点评】本题考查反比例函数得性质、三角形得面积、待定系数法等知识,解题得关键就是灵活运用所学知识解决问题,属于中考常考题型.16.(2018年山东省威海市)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E就是△ACD得内切圆,连接AE,BE,则∠AEB得度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E就是△ADC得内心,∴∠AEC=90°+∠ADC=135°,在△AEC与△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.【点评】本题考查三角形得内心、全等三角形得判定与性质等知识,解题得关键就是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(2018年山东省威海市)用若干个形状、大小完全相同得矩形纸片围成正方形,4个矩形纸片围成如图①所示得正方形,其阴影部分得面积为12;8个矩形纸片围成如图②所示得正方形,其阴影部分得面积为8;12个矩形纸片围成如图③所示得正方形,其阴影部分得面积为44﹣16.【分析】图①中阴影部分得边长为=2,图②中,阴影部分得边长为=2;设小矩形得长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b得值,即可得到图③中,阴影部分得面积.【解答】解:由图可得,图①中阴影部分得边长为=2,图②中,阴影部分得边长为=2;设小矩形得长为a,宽为b,依题意得,解得,∴图③中,阴影部分得面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组得应用以及二次根式得化简,当问题较复杂时,有时设与要求得未知量相关得另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.18.(2018年山东省威海市)如图,在平面直角坐标系中,点A1得坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018得坐标为(22018,22017).【分析】根据题意可以求得点B1得坐标,点A2得坐标,点B2得坐标,然后即可发现坐标变化得规律,从而可以求得点B2018得坐标.【解答】解:由题意可得,点A1得坐标为(1,2),设点B1得坐标为(a, a),,解得,a=2,∴点B1得坐标为(2,1),同理可得,点A2得坐标为(2,4),点B2得坐标为(4,2),点A3得坐标为(4,8),点B3得坐标为(8,4),……∴点B2018得坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点得坐标特征、点得坐标,解答本题得关键就是明确题意,发现题目中坐标得变化规律,求出相应得点得坐标.三、解答题(本题包括7小题,共66分)19.(2018年山东省威海市)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组得步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②得解集在数轴上表示如图,原不等式组得解集为﹣4<x≤2.【点评】本题考查了解一元一次不等式组,利用不等式组得解集得表示方法就是解题关键.20.(2018年山东省威海市)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省得时间,即可得出关于x得分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60就是原方程得解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.【点评】本题考查了分式方程得应用,找准等量关系,正确列出分式方程就是解题得关键. 21.(2018年山东省威海市)如图,将矩形ABCD(纸片)折叠,使点B与AD边上得点K重合,EG为折痕;点C与AD边上得点K重合,FH为折痕.已知∠1=67、5°,∠2=75°,EF=+1,求BC得长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF得长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC得长为3++.【点评】本题主要考查翻折变换,解题得关键就是掌握翻折变换得性质:折叠前后图形得形状与大小不变,位置变化,对应边与对应角相等.22.(2018年山东省威海市)为积极响应“弘扬传统文化”得号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动得持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成得统计图(部分)如图所示.,“”,一周诗词诵背数量3首4首4首6首7首8首人数10 10 15 40 25 20(1)活动启动之初学生“一周诗词诵背数量”得中位数为4、5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上得人数;(3)选择适当得统计量,从两个不同得角度分析两次调查得相关数据,评价该校经典诗词诵背系列活动得效果.【分析】(1)根据统计图中得数据可以求得这组数据得中位数;(2)根基表格中得数据可以解答本题;(3)根据统计图与表格中得数据可以分别计算出比赛前后得众数与中位数,从而可以解答本题.【解答】解:(1)本次调查得学生有:20÷=120(名),背诵4首得有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据得中位数就是:(4+5)÷2=4、5(首),故答案为:4、5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上得有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上得有850人;(3)活动启动之初得中位数就是4、5首,众数就是4首,大赛比赛后一个月时得中位数就是6首,众数就是6首,由比赛前后得中位数与众数瞧,比赛后学生背诵诗词得积极性明显提高,这次举办后得效果比较理想.【点评】本题考查扇形统计图、条形统计图、用样本估计总体、统计量得选择,解答本题得关键就是明确题意,找出所求问题需要得条件,利用数形结合得思想解答.23.(2018年山东省威海市)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元得无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆得电子产品,并约定用该网店经营得利润,逐月偿还这笔无息贷款.已知该产品得成本为每件4元,员工每人每月得工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间得函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间得函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元得无息贷款?【分析】(1)y(万件)与销售单价x就是分段函数,根据待定系数法分别求直线AB与BC得解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润得最大值,比较可得出利润得最大值,最后计算时间即可求解.【解答】解:(1)设直线AB得解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB得解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC得解析式为:y=﹣x+5,(2018年山东省威海市)∵工资及其她费作为:0、4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(2018年山东省威海市)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2018年山东省威海市)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值就是1,(2018年山东省威海市)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值就是1、5,(2018年山东省威海市)∴==6,即最快在第7个月可还清10万元得无息贷款.(2018年山东省威海市)【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式得应用,利用数形结合得思想,就是一道综合性较强得代数应用题,能力要求比较高.24.(2018年山东省威海市)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE得中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求得值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段得长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)得条件下,图中还有哪些其它得全等三角形?请直接写出.【分析】(1)根据四边形ANFM就是平行四边形,AB⊥AE,即可得到四边形ANFM就是矩形,再根据FN=FM,即可得出矩形ANFM就是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD得长;(3)根据△ABC与△ADE都就是直角三角形,M,N分别就是AB,AE得中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE得中点,∴MF,NF都就是△ABE得中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM就是平行四边形,又∵AB⊥AE,∴四边形ANFM就是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM就是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD得长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC与△ADE都就是直角三角形,∵M,N分别就是AB,AE得中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)得条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.【点评】本题属于相似形综合题,主要考查了全等三角形得判定与性质,相似三角形得判定与性质,直角三角形得性质以及矩形得判定与性质得综合运用,解决问题得关键就是判定全等三角形或相似三角形,利用全等三角形得对应边相等,相似三角形得对应边成比例得出有关结论.25.(2018年山东省威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC得中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l 与x轴交于点H.(1)求抛物线得函数表达式;(2)求点D得坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P得坐标;(4)点M为x轴上方抛物线上得点,在对称轴l上就是否存在一点N,使得以点D,P,M.N为顶点得四边形就是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现由两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形得性质,同一对角线上得两个端点到另一对角线距离相等.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC得中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG与Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF与Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P得半径为r,⊙P与直线BC与EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1就是正方形∴ER1=P1Q1=r1在Rt△BEF与Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN与MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N得垂直距离等于点P到点D得垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣)【点评】本题综合考查二次函数、圆与平行四边形存在性得判定等相关知识,应用了数形结合思想与分类讨论得数学思想.。
2018年山东省威海市中考数学试卷(含详细答案解析及分析)中考真题
2018年山东省威海市中考数学试卷一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3.00分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣22.(3.00分)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a23.(3.00分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3.00分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(3.00分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.6.(3.00分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3.00分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3.00分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣19.(3.00分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(3.00分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.511.(3.00分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.12.(3.00分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3.00分)分解因式:﹣a2+2a﹣2=.14.(3.00分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3.00分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3.00分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(3.00分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3.00分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7.00分)解不等式组,并将解集在数轴上表示出来.20.(8.00分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8.00分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9.00分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10.00分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12.00分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12.00分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B (2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x 轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2018年山东省威海市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3.00分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(3.00分)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(3.00分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(3.00分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(3.00分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3.00分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.【点评】本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.(3.00分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.(3.00分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.9.(3.00分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.【点评】本题考查二次函数的综合问题,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.10.(3.00分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.【点评】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.11.(3.00分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.(3.00分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A .18+36πB .24+18πC .18+18πD .12+18π【分析】作FH ⊥BC 于H ,连接FH ,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt △ABE ≌△EHF 得∠AEF=90°,然后利用图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF 进行计算.【解答】解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt △ABE ≌△EHF ,∴∠AEB=∠EFH ,而∠EFH +∠FEH=90°,∴∠AEB +∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C .【点评】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.二、填空题(本题包括6小题,每小题3分,共18分)13.(3.00分)分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2【点评】此题考查了因式分解﹣运用公式法和提公因式法,熟练掌握因式分解的方法是解本题的关键.14.(3.00分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是m=4.【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(3.00分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为﹣6<x<﹣2.【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.【点评】本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3.00分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.【点评】本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(3.00分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为44﹣16.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.18.(3.00分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.三、填空题(本题包括7小题,共66分)19.(7.00分)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(8.00分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8.00分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x +x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.(9.00分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【分析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根基表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.【点评】本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(10.00分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其它费用为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.24.(12.00分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM 是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.【点评】本题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.25.(12.00分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B (2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x 轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现有两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形的性质,同一对角线上的两个端点到另一对角线距离相等.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=。
威海市九年级上学期期中数学试卷
威海市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·沙湾模拟) 口袋里装有大小、形状完全一样的9个红球、6个白球. 则()A . 从中随机摸出一个球,摸到红球的可能性更大B . 从中随机摸出一个球, 摸到红球和白球的可能性一样大C . 从中随机摸出5个球,必有2个白球D . 从中随机摸出7个球,可能都是白球2. (2分) (2015九上·宜昌期中) 抛物线y=﹣2(x﹣1)2+3的顶点坐标是()A . (﹣1,3)B . (1,3)C . (1,﹣3)D . (﹣1,﹣3)3. (2分)(2017·广陵模拟) 如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=63°,则∠BCD为()A . 37°B . 47°C . 27°D . 63°4. (2分) (2017九上·余姚期中) 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是弧AB的中点,连结AD,AG,CD,则下列结论不一定成立的是()A . CE=DEB . ∠ADG=∠GABC . ∠AGD=∠ADCD . ∠GDC=∠BAD5. (2分)由函数y=-x2的图象平移得到函数y=-(x-4)2+5的图象,则这个平移是()A . 先向左平移4个单位,再向下平移5个单位B . 先向左平移4个单位,再向上平移5个单位C . 先向右平移4个单位,再向下平移5个单位D . 先向右平移4个单位,再向上平移5个单位6. (2分)(2018·南宁模拟) 不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个球,记下颜色后,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是()A .B .C .D .7. (2分)如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A . =B . >C . <D . 无法确定8. (2分)已知:如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=130°,过D点的切线PD与直线AB交于P点,则∠ADP的度数为()A . 45°B . 40°C . 50°D . 65°9. (2分)(2016·潍坊) 如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A . ﹣B . ﹣C . ﹣D . ﹣10. (2分)如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论:①abc >0;②2a+b=0;③4a+2b+c<0;④对于任意x均有ax2﹣a+bx﹣b>0,其中正确的个数有()A . 1B . 2C . 3D . 411. (2分) (2015八下·金平期中) 如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A . 3B . 4C . 5D . 612. (2分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A . 1或﹣5B . ﹣1或5C . 1或﹣3D . 1或3二、填空题 (共6题;共6分)13. (1分) (2016八上·徐州期中) 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣2﹣1012…y…1771﹣11…则当y<7时,x的取值范围是________.14. (1分) (2015八下·沛县期中) 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同,小刚通过多次摸球实验后发现其中摸到红色球的频率稳定在15%,则口袋中红色球的个数很可能是________个.15. (1分) (2018九上·朝阳期中) 平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O ,则点A(4,3)在⊙O________(填:“内”或“上“或“外”)16. (1分)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式________ (写出一个即可)17. (1分) (2017九上·鄞州月考) 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的弦CD的长________.18. (1分) (2019八上·姜堰期末) 如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.三、解答题 (共8题;共77分)19. (5分)已知:如图所示,AD=BC。
2018年山东省威海市中考数学试卷含解析(完美打印版)
2018年山东省威海市中考数学试卷(含解析)一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2B.﹣C.D.﹣22.(3分)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+bC.a2+a2=2a4D.a8÷a4=a23.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1C.D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1C.a2D.﹣19.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0B.a+c<b C.b2+8a>4ac D.2a+b>010.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.511.(3分)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2=.14.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB 的度数为.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD 边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12分)如图1,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图2,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C (0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2018年山东省威海市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2B.﹣C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.2.(3分)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+bC.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.3.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5m,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.7.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.9.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.10.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.(3分)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠P AH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π【分析】作FH⊥BC于H,连接FH,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF进行计算.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)214.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是m=4.【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为﹣6<x<﹣2.【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB 的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为44﹣16.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD 边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【分析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根据表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其它费用为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)24.(12分)如图1,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图2,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC ∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C (0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现有两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形的性质,同一对角线上的两个端点到另一对角线距离相等.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)代入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4;(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P的半径为r,⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN和MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣).。
2018年威海市中考数学试卷含答案解析(word版)(K12教育文档)
(完整word版)2018年威海市中考数学试卷含答案解析(word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)2018年威海市中考数学试卷含答案解析(word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)2018年威海市中考数学试卷含答案解析(word版)(word版可编辑修改)的全部内容。
山东省威海市2018年中考数学试卷(解析版)一、选择题1.(2018年山东省威海市)﹣2的绝对值是()A.2 B.﹣C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(2018年山东省威海市)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(2018年山东省威海市)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=( )A.B.1 C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(2018年山东省威海市)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7。
2018年山东省威海市中考数学试卷含答案解析
次函数性质判断 B;求出抛物线与直线的交点,判断 C,根据直线解析式和坡度
的定义判断 D.
【解答】解:当
y
7.5
时,
7.5
4x
1 2
x2
,整理得
x2
8x
15
0
,解得,
x1
3
,
x2
5
,
∴当小球抛出高度达到 7.5 m 时,小球水平距 O 点水平距离为 3 m 或 5cm,A 错误,符
合题意; y 4x 1 x2 1 (x 4)2 8 ,则抛物线的对称轴为 x 4 ,
表
一周诗词诵
3首
4首
4首
6首
7首
8首
背数量
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为
.
(2)估计大赛后一个月该校学生一周诗词诵背 6 首(含 6 首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校
经典诗词诵背系列活动的效果.
徐老师
山东省威海市 2018 年初中学业水平考试
数学
本试卷满分 120 分,考试时间 120 分钟.
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中, 只有一项是符合题目要求的)
1. 2 的绝对值是
()
A.2
B. 1
C. 1
2
2
D. -2
2.下列运算结果正确的是
所示的正方形,其阴影部分的面积为 12;8 个矩形纸片围成如图②所示的正方
形,其阴影部分的面积为 8;12 个矩形纸片围成如图③所示的正方形,其阴影部
2018年九年级(上)期中数学试题(含答案)- 精品
2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。
山东省2018届九年级数学上学期期中试题新人教版含答案
山东省2018届九年级数学上学期期中试题一、选择题(每题3分)1、函数y=(a-1)x a是反比例函数,则此函数图象位于()A.第一、三象限; B.第二、四象限;C.第一、四象限; D.第二、三象限2、若∠A是锐角,且sinA=0.75,则( )A.0°<∠A<30° B.30°<∠A<45° C.45°<∠A<60°D60°<∠A<90°3、在二次函数y=x2-2x-3中,当0≤x≤3时,y的最大值和最小值分别是()A 0,-4B 0,-3C -3,-4D 0,04、如图,直线y=x-2与y轴交于点C,与x轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,若S△AOB S△BOC = 1:2,则k的值为()A.2 B.3 C.4 D.65D点测得楼顶的仰角为30︒C点,又测得仰角为)A.82米B.163米C.52米D.70米6、如图,二次函数y=ax2+bx+c(a≠0)的图象如图所示,它与x轴交点的横坐标分别为-1,3,下列结论:①b-2a=0;②a﹣2b+4c<0;③abc<0;④8a+c>0.其中正确的有()A.3个 B.2个 C.1个 D.0个7、如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数10y x x=()的图象上,则点E 的横坐标是()A B D 8、 当k 取任意实数时,抛物线22)(54k k x y +-=的顶点所在曲线是 ( ) A .2x y = B .2x y -= C .)0(2>=x x y D .)0(2>-=x x y9、如图,在正方形ABCD 外作等腰直角△CDE,DE=CE ,连接AE ,则sin∠AED=( )数772--=x kx y 的图象10、已知函交点,则k 的取值范围是与轴有x( ) A .47-k B .047≠-≥k k 且 C .47-≥k D .047≠-k k 且 11、如图,△ABC 中,∠ACB=90°,BC=2,AC=3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.B.C.D.12、 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )二、填空题(每题3分)13、如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为________。
2018年山东威海市中考数学试卷(带答案解析)
第 7页(共 21页)
二、填空题(本题包括 6 小题,每小题 3 分,共 18 分) 13.(3 分)分解因式:﹣ a2+2a﹣2= ﹣ (a﹣2)2 . 【解答】解:原式=﹣ (a2﹣4a+4)=﹣ (a﹣2)2, 故答案为:﹣ (a﹣2)2
14.(3 分)关于 x 的一元二次方程(m﹣5)x2+2x+2=0 有实根,则 m 的最大整 数解是 m=4 . 【解答】解:∵关于 x 的一元二次方程(m﹣5)x2+2x+2=0 有实根, ∴△=4﹣8(m﹣5)≥0,且 m﹣5≠0, 解得 m≤5.5,且 m≠5, 则 m 的最大整数解是 m=4. 故答案为:m=4.
【解答】解:由题意可得, 点 A1 的坐标为(1,2), 设点 B1 的坐标为(a, a),
쳌쳌
,解得,a=2,
∴点 B1 的坐标为(2,1), 同理可得,点 A2 的坐标为(2,4),点 B2 的坐标为(4,2), 点 A3 的坐标为(4,8),点 B3 的坐标为(8,4), …… ∴点 B2018 的坐标为(22018,22017), 故答案为:(22018,22017).
∴AB= ,
第 5页(共 21页)
故选:D.
11.(3 分)矩形 ABCD 与 CEFG 如图放置,点 B,C,E 共线,点 C,D,G 共线, 连接 AF,取 AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
A.1 B. C. D. 【解答】解:如图,延长 GH 交 AD 于点 P,
4.(3 分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是( )
第 1页(共 21页)
A.25π B.24π C.20π D.15π 【解答】解:由题可得,圆锥的底面直径为 8,高为 3, ∴圆锥的底面周长为 8π,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省威海市文登区八校九年级(上)期中数学试卷(五四学制)一、选择题(共12小题,每小题3分,共36分)1.(3分)如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.2.(3分)点(﹣sin30°,cos30°)关于y轴对称的点的坐标是()A.(,)B.(,﹣)C.(﹣,﹣)D.(﹣,)3.(3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.()米B.12米C.()米D.10米4.(3分)已知一元二次方程x2+bx﹣3=0的一根为﹣3,在二次函数y=x2+bx﹣3的图象上有三点、、,y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y25.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣56.(3分)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+47.(3分)对于二次函数y=ax2+bx+c(a≠0),我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数y=x2﹣mx+m﹣2(m为实数)的零点的个数是()A.1 B.2 C.0 D.不能确定8.(3分)某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50m B.100m C.160m D.200m9.(3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是()A.2 B.1 C.0.5 D.2.510.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:(1)4ac﹣b2<0;(2)4a+c<2b;(3)3b+2c<0;(4)m(am+b)+b<a(m≠﹣1).其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个11.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个12.(3分)如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)13.(3分)函数y=中自变量x的取值范围.14.(3分)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a 的值为.15.(3分)当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3的函数值相等,当x=m+n时,函数y=x2﹣2x+3的值为.16.(3分)如图,已知函数y=﹣与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解是.17.(3分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(≈1.4)18.(3分)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交与点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,若P(37,m)在其中一段抛物线上,则m=.三、解答题(共4小题,共66分)19.(6分)计算:(sin30°)﹣1×(sin60°﹣cos45°)﹣.20.(8分)2013年9月23日强台风“天兔”登陆深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.求这棵大树折断前的高度.(结果保留根号)21.(8分)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)22.(10分)如图,距小明家楼下D点20米的B处有一根废弃的电线杆AB,经测得此电线杆与水平线DB所成锐角为60°,在小明家楼顶C处测得电线杆顶端A 的俯角为30°,底部点B的俯角为45°(点A、B、D、C在同一平面内).已知在以点B为圆心,10米长为半径的圆形区域外是一休闲广场,有关部门想把此电线杆水平放倒,且B点不动,为安全起见,他们想知道这根电线杆放倒后,顶端A能否落在休闲广场内?请通过计算回答.(结果精确到0.1米,参考数据:≈1.414,≈1.732)2017-2018学年山东省威海市文登区八校九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.2.(3分)点(﹣sin30°,cos30°)关于y轴对称的点的坐标是()A.(,)B.(,﹣)C.(﹣,﹣)D.(﹣,)【解答】解:∵sin30°=,cos30°=,∴点(﹣sin30°,cos30°)关于y轴对称的点的坐标是(,),故选:A.3.(3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.()米B.12米C.()米D.10米【解答】解:延长AC交BF延长线于D点,则∠CEF=30°,作CF⊥BD于F,在Rt△CEF中,∠CEF=30°,CE=4m,∴CF=2(米),EF=4cos30°=2(米),在Rt△CFD中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,即CF=2(米),CF:DF=1:2,∴DF=4(米),∴BD=BE+EF+FD=8+2+4=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(+6)米.故选:A.4.(3分)已知一元二次方程x2+bx﹣3=0的一根为﹣3,在二次函数y=x2+bx﹣3的图象上有三点、、,y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【解答】解:方法1、把x=﹣3代入x2+bx﹣3=0中,得9﹣3b﹣3=0,解得b=2,∴二次函数解析式为y=x2+2x﹣3,抛物线开口向上,对称轴为x=﹣=﹣1,∵﹣<﹣1<﹣<,且﹣1﹣(﹣)=,﹣﹣(﹣1)=,而>,∴y1<y2<y3.故选A.方法2、把x=﹣3代入x2+bx﹣3=0中,得9﹣3b﹣3=0,解得b=2,∴二次函数解析式为y=x2+2x﹣3,当x=﹣时,y1=(﹣)2+2×(﹣)﹣3=﹣3=﹣3.96,当x=﹣时,y2=(﹣)2+2×(﹣)﹣3=﹣3=﹣3.9375,当x=时,y3=()2+2×﹣3=﹣2,∴y1<y2<y3.故选:A.5.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.6.(3分)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+4【解答】解:由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(﹣1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=﹣(x﹣1)2+4.故选:B.7.(3分)对于二次函数y=ax2+bx+c(a≠0),我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数y=x2﹣mx+m﹣2(m为实数)的零点的个数是()A.1 B.2 C.0 D.不能确定【解答】解:由题意可知:函数的零点也就是二次函数y=ax2+bx+c与x轴的交点△=(﹣m)2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4∵(m﹣2)2一定为非负数∴(m﹣2)2+4>0,∴该抛物线与x轴有2个不同的交点,∴二次函数y=x2﹣mx+m﹣2(m为实数)的零点的个数是2.故选:B.8.(3分)某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50m B.100m C.160m D.200m【解答】解:建立如图所示的直角坐标系,则A点坐标为(﹣1,0)、B点坐标为((1,0),C点坐标为(0,0.5),D点坐标为(0.2,0),F点坐标为(0.6,0),设抛物线解析式为y=a(x﹣1)(x+1),把C(0,0.5)代入得a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+0.5,当x=0.2时,y=﹣0.5×0.22+0.5=0.48,当x=0.6时,y=﹣0.5×0.62+0.5=0.32,所以DE=0.48,FP=0.32,所以每段护栏需要不锈钢支柱的长度=2(DE+FP)=2×(0.48+0.32)=1.6(m),所以100段护栏需要不锈钢支柱的总长度=100×1.6m=160m.故选:C.9.(3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是()A.2 B.1 C.0.5 D.2.5【解答】解:连接AE,BE,由网格可得:AE∥DC,则∠EAB=∠APD,故tan∠APD=tan∠EAB===2.故选:A.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:(1)4ac﹣b2<0;(2)4a+c<2b;(3)3b+2c<0;(4)m(am+b)+b<a(m≠﹣1).其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点在(0,0)和(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,当x=﹣2时,y=ax2+bx+c=4a﹣2b+c>0,即4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵﹣=﹣1,∴b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴市中心x=﹣1,∴y=a﹣b+c的值最大,把(m,0)代入抛物线得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,∴m(am+b)+b<a(m≠﹣1),∴④正确;即正确的有3个.故选:B.11.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有.∵tan∠CAD==,故④错误,故选:B.12.(3分)如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A.B.C.D.【解答】解:过A作AD⊥x轴于D,∵OA=OC=4,∠AOC=60°,∴OD=2,由勾股定理得:AD=2,①当0≤t<2时,如图所示,ON=t,MN=ON=t,S=ON•MN=t2;②2≤t≤4时,ON=t,MN=2,S=ON•2=t.故选:C.二、填空题(共6小题,每小题3分,共18分)13.(3分)函数y=中自变量x的取值范围x<3.【解答】解:由题意,得3﹣x>0,解得x<3,故答案为:x<3.14.(3分)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a 的值为﹣1或2或1.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.15.(3分)当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3的函数值相等,当x=m+n时,函数y=x2﹣2x+3的值为3.【解答】解:∵当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3=(x﹣1)2+2的函数值相等,∴以m、n为横坐标的点关于直线x=1对称,则=1,∴m+n=2,∵x=m+n,∴x=2,函数y=4﹣4+3=3.故答案为3.16.(3分)如图,已知函数y=﹣与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解是x=﹣3.【解答】解:∵点P在函数y=﹣上,点P的纵坐标为1,∴1=,解得x=﹣3,∴函数y=﹣与y=ax2+bx(a>0,b>0)的图象交于点P的坐标为(﹣3,1),∴可得,,∴,解得x=﹣3.故答案为:x=﹣3.17.(3分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)【解答】解:如图,CE=2.2÷sin45°=2.2÷≈3.1米,BC=(5﹣CE×)×≈1.98米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.1米,(56﹣3.1﹣1.98)÷3.1+1=50.92÷3.1+1≈17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.18.(3分)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交与点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,若P(37,m)在其中一段抛物线上,则m=﹣2.【解答】解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C14在x轴下方,相当于抛物线C1向右平移6×6=36个单位得到C13,∴抛物线C13的解析式为y=﹣(x﹣36)(x﹣36﹣3)=﹣(x﹣36)(x﹣39),∵P(37,m)在第13段抛物线C13上,∴m=(37﹣36)(37﹣39)=﹣2.故答案为:﹣2.三、解答题(共4小题,共66分)19.(6分)计算:(sin30°)﹣1×(sin60°﹣cos45°)﹣.【解答】解:原式=()﹣1×(﹣)﹣(﹣1)=2×(﹣)﹣+1=﹣﹣+1=1﹣.20.(8分)2013年9月23日强台风“天兔”登陆深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.求这棵大树折断前的高度.(结果保留根号)【解答】解:延长BA交EF于点G,过点A作CD的垂线,设垂足为H,则∠DAC=180°﹣∠BAC﹣∠GAE=180°﹣38°﹣(90°﹣23°)=75°,在Rt△ADH中,∠ADC=60°,∠AHD=90°,∴∠DAH=30°,∵AD=3,∴DH=,AH=,在Rt△ACH中,∠CAH=∠CAD﹣∠DAH=75°﹣30°=45°,∴∠C=45°,∴CH=AH=,AC=,则树高++m.21.(8分)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.22.(10分)如图,距小明家楼下D点20米的B处有一根废弃的电线杆AB,经测得此电线杆与水平线DB所成锐角为60°,在小明家楼顶C处测得电线杆顶端A 的俯角为30°,底部点B的俯角为45°(点A、B、D、C在同一平面内).已知在以点B为圆心,10米长为半径的圆形区域外是一休闲广场,有关部门想把此电线杆水平放倒,且B点不动,为安全起见,他们想知道这根电线杆放倒后,顶端A能否落在休闲广场内?请通过计算回答.(结果精确到0.1米,参考数据:≈1.414,≈1.732)【解答】解:设AB=x米,如图,过点A作AE⊥水平线DB于点E,则:BE=AB•cos∠ABE=x•cos60°=x,AE=AB•sin∠ABE=x•sin60°=x,∴DE=DB+BE=20+x.过点A作AF⊥CD于点F,则AF=DE=20+x,DF=AE=x.∵C处测得电线杆顶端A的俯角为30°,∴∠CAF=30°,∴CF=AF•tan30°=(20+x).∵CD=DF+CF∴20=x+(20+x)解得:x=10(﹣1)≈7.3.∵7.3<10故顶端A不能落在休闲广场内.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。