2018年福建中考数学试卷和答案
2018年福建漳州中考数学试卷及答案解析版
≈ 0.60,cos37° ≈ 0.80,tan37° ≈ 0.75, 2 ≈ 1.41)
C 45°
D
N
37°
M
A
B
【答案】
解:过点 C、D 分别作 CE⊥AB 于 E,DF⊥AB 于 F
则∠CEA =∠DFA = 90°,又∵AB // CD,∴∠ECD = 180°− ∠CEA = 90°,
∴四边形 CDFE 为矩形,∴EF = CD = 3.2(公里),
(2) 13 2
(3)连接 BB1,与 y 轴的交点即所求的点 D,使得 DB + DB1 的值最小. 设 BB1 所在直线的函数关系式为 y = kx + b (k ≠ 0),
把点
B(−1,2),B1(2,1)代入得:
2 1
k 2k
b b
,解得
k
=
1 3
,b
=
5 3
.
∴y = 1 x + 5 ,∴D(0, 5 )
B
D
C
O
−2 A −1 0
1
【答案】 2 16.(2018 福建漳州,16,4 分)如图,一个宽为 2 厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,
刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是 3 和 9,那么玻璃杯的杯口外 沿半径为___________cm.
3 4 5 6 7 8 9 2 厘米
【答案】10
三、解答题(共 9 小题,满分 86 分,请在答.题.卡.的相应位置解答) 17.(2018 福建漳州,17,8 分)计算: 4 16 cos 30 . 【答案】解:原式 = 4 − 4 + 3 = 3
(完整word版)2018年福建省中考数学试题及答案(A卷)
15.W个同样人小的含45。角的三角尺按如图所示的方式放置•其中一个三角尺的
M顶点与>1一个的Mil顶点0(合丁点4. H.另三个锐角顶点H.CJ)在同一直 线I:.-1/f = x/2 JfHJ C/) =.
16.如图■直线尸x+m MXZltll线尸 斗郴交于儿〃网点冲:〃*轴9AC//y轴•则
随机啪件的是
A.阿枚骰子向上一面的点数之和大于I
B.两枚叔子向IL而的点数之和等于I
C.两枚骰子向I:一而的点数之和大于12
D.两枚燉子向上一面的点数之和尊T12
7.已知■則以下対m的佔算正确的是
A.2 <m< 3IL3 <ni< 4C.4 <m <5I). 5 < /n < 6
&我ih打代数学”作《脚法统宗》记载••绳索竝对问题八一条竿子一条索•索比罕子氏一托.折冋索子却 址竿•却比竿子短一托「兀大盘为:现仃-•恨竿和一条绳索•用绳索公址竿他索比罕长5心如果将绳索对 半折后井£站竿•就比竿知5尺.设绷索长寓尺•竿长y尺•则符合题盘的方那细是
21•(卜小题满分8分)
如图■在RlA 1HC<|\Z.C = 9()\/IK=IO,/IC=8.线段1〃 山线段M绕点.4按 逆时针方向旋转90。得到•△处G lhA/lflC沿CB方向平移得到•且比线卜:卜、过点I).
(丨)求乙〃〃尸的大小;
(2)求CY;的长.
22•(本小题满分1()分)
叭乙两家快递公用揽件员(揽收快件的员工)的口工资方案如下:
第
二、填空题:本题共6小题,每小题4分,共24分.
ll.il尊:俘卜=-
12.杲8种食品所禽的热肚值分别120.134J20J 19.126.120 J18J24,WJ这组数据的 众数为・
2018年福建省中考数学A卷试卷(含详细答案)
数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A .3-B .2-C .0D .π 2.某几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .长方体D .四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,5 4.一个n 边形的内角和为360°,则n 等于( )A .3B .4C .5D .65.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15°B .30°C .45°D .60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 7.已知m =m 的估算正确的( )A .23m <<B .34m <<C .45m <<D .56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩9.如图,AB 是O 的直径,BC 与O 相切于点B ,AC 交O 于点D ,若50ACB ∠=︒°,则BOD ∠等于( )A .40°B .50°C .60°D .80°10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于s x 的方程20x bx a ++=的根毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分,请把答案填在题中的横线上)11.计算:01-=⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组31320x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1,410.x y x y +=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD ,BC 分别相交于点E ,F .求证:OE OF =.19.(本小题满分8分)先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中1m =.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC △及线段A B '',A A A ∠'∠'=∠(),以线段A B ''为一边,在给出的图形上用尺规作出A B C '''△,使得A B C '''△∽ABC △,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A按逆时针方向旋转90°得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D .(1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元; 乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题: ①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ≤.已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a =,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页) 数学试卷 第8页(共34页)24.(本小题满分12分)已知四边形ABCD 是O 的内接四边形,AC 是O 的直径,DE AB ⊥,垂足为E . (1)延长DE 交O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC PB =; (2)过点B 作BC AD ⊥,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB 1DH =,80OHD ∠=︒,求BDE ∠的大小.25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,. (1)若点(0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当1x <2x <0时,12120x x y y (-)(-)>;当120x x <<时,12120x x y y (-)(-)<.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且ABC △有一个内角为60°. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠.5 / 17福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】解:在实数3-,-2,0,π中,33-=,则203π--<<<,故最小的数是:2-.故选:B. 分析:直接利用绝对值的性质化简,进而比较大小得出答案. 2.【答案】C【解析】解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C. 分析:根据常见几何体的三视图逐一判断即可得. 3.【答案】C【解析】解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C. 分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解. 4.【答案】B【解析】解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .故选:B. 5.【答案】A.【解析】解:∵等边三角形ABC 中,AD BC ⊥, ∴BD CD =,即:AD 是BC 的垂直平分线, ∵点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠,数学试卷 第11页(共34页)数学试卷 第12页(共34页)∵45EBC ∠=︒, ∴45ECB ∠=︒, ∵ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒. 故选:A.分析:先判断出AD 是BC 的垂直平分线,进而求出45EBC ∠=︒,即可得出结论. 6.【答案】D【解析】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 7.【答案】B【解析】解:∵2m12,∴34m <<.故选:B.. 8.【答案】A【解析】解:设索长为x 尺,竿子长为y 尺,根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A.分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 9.【答案】D【解析】解:∵BC 是O 的切线, ∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒,7 / 17故选:D.分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可. 10.【答案】D.【解析】解:∵关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210(2)4(1)0a b a +≠⎧⎨∆=-+=⎩,,∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根; 当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根. ∵10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根. 故选:D.分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.第Ⅱ卷二、填空题11.【答案】0【解析】解:原式110==-,故答案为:0. 分析:根据零指数幂:01(0)a a =≠进行计算即可. 12.【答案】120【解析】解:∵这组数据中120出现次数最多,有3次, ∴这组数据的众数为120. 故答案为:120.数学试卷 第15页(共34页)数学试卷 第16页(共34页)分析:根据众数的定义:一组数据中出现次数最多的数据即为众数. 13.【答案】3【解析】解:∵90ACB ∠=︒,D 为AB 的中点, ∴116322CD AB ==⨯=. 故答案为:3.分析:根据直角三角形斜边上的中线等于斜边的一半解答. 14.【答案】2x >【解析】解:313,2x x x ++⎧⎨-⎩>①>0,②∵解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,分析:先求出每个不等式的解集,再求出不等式组的解集即可. 15.1【解析】解:如图,过点A 作AF BC ⊥于F ,在Rt ABC △中,45B ∠=︒,∴2BC =,1BF AF AB ===, ∵两个同样大小的含45︒角的三角尺, ∴2AD BC ==,在Rt ADF △中,根据勾股定理得,DF =∴121CD BF DF BC =+==-,分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论. 16.【答案】69 / 17【解析】解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=, 整理,得230x mx +=-, 则a b m +=-,3ab =-,∴222))((412a b a b ab m -+=+=-. ∵1•2ABC S AC BC =△ 222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6. 分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x =相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-,则方程组的解为3,2.x y =⎧⎨=-⎩【解析】分析:方程组利用加减消元法求出解即可.数学试卷 第19页(共34页)数学试卷 第20页(共34页)18.【答案】证明:∵四边形ABCD 是平行四边形, ∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠, 在OAE △和OCF △中,,,,OAE OCF OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE COF △≌△(ASA ), ∴OE OF =.【解析】分析:由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF△≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()2111m m mm m m +-=+-()()111m mm m m +=+-11m =-当1m=时,原式==. 【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题. 20.【答案】(1)解:如图所示,A B C '''△即为所求;(2)已知,如图,ABC A B C '''△∽△,k AB BC A B CA B C A C =='''''=',D 是AB 的中点,D '是A B ''的中点, 求证:DC kD C ''=.证明:∵D 是AB 的中点D '是A B ''的中点, ∴12AD AB =,12A D A B ''='',∴1212A B AB AB A D A B AD ''''=='', ∵ABC A B C '''△∽△,∴A A CB AB AC ='''','A A ∠=∠, ∵A A A D AD CC ''''=,'A A ∠=∠, ∴A CD ACD '''△∽△, ∴k CD D C A C CA ''''==. 【解析】分析:(1)作=A B C ABC '''∠∠,即可得到A B C '''△; (2)依据D 是AB 的中点,D '是A B ''的中点,即可得到=,根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A CD ACD '''△∽△,可得k CD D C A C CA ''''==.21.【答案】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到, ∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,∵EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥, ∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, ∵90DAB ∠=︒, ∴90ADE ∠=︒, ∵90ACB ∠=︒,∴ADE ACB ∠=∠, ∴ADE ACB △∽△, ∴AD AEAC AB=, ∵8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】分析:(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论; (2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论. 22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元,乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦ ()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】分析:(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设m AB x =,则()1002m BC x =-, 根据题意得()1002450x x =-,解得15x =,245x =, 当5x =时,10029020x =->,不合题意舍去; 当45x =时,100210x =-, 答:AD 的长为10 m ; (2)设m AD x =, ∴()()21110050125022S x x x ==--+-, 当50a ≥时,则50x =时,S 的最大值为1250;当050a <<时,则当0x a <≤时,S 随x 的增大而增大,当x a =时,S 的最大值为21502a a -, 综上所述,当50a ≥时,S 的最大值为1250;当050a <<时,S 的最大值为21502a a -.【解析】分析:(1)设m AB x =,则()1002m BC x =-,利用矩形的面积公式得到()1002450x x =-,解方程得15x =,245x =,然后计算1002x -后与20进行大小比较即可得到AD 的长; (2)设m A D x =,利用矩形面积得到()11002S x x =-,配方得到()215012502S x =--+,讨论:当50a ≥时,根据二次函数的性质得S 的最大值为1250;当050a <<时,则当0x a <≤时,根据二次函数的性质得S 的最大值为21502a a -.24.【答案】解:(1)如图1,∵AC 是O 的直径,∴90ABC ∠=︒, ∵DE AB ⊥, ∴90DEA ∠=︒, ∴DEA ABC ∠=∠, ∴BC DF ∥, ∴F PBC ∠=∠,∵四边形BCDF 是圆内接四边形, ∴180F DCB ∠+∠=︒, ∵180PCB DCB ∠+∠=︒, ∴F PCB ∠=∠, ∴PBC PCB ∠=∠, ∴PC PB =;(2)如图2,连接OD ,∵AC 是O 的直径,∴90ADC ∠=︒, ∵BG AD ⊥, ∴90AGB ∠=︒, ∴ADC AGB ∠=∠, ∴BG DC ∥, ∵BC DE ∥,∴四边形DHBC 是平行四边形, ∴1BC DH ==,在Rt ABC △中,AB =tan ABACB BC∠=, ∴60ACB ∠=︒, ∴12BC AC OD ==, ∴DH OD =,在等腰三角形DOH 中,80DOH OHD ∠=∠=︒, ∴20ODH ∠=︒, 设DE 交AC 于N , ∵BC DE ∥,∴60ONH ACB ∠=∠=︒,∴()18040NOH ONH OHD ∠=︒∠+∠=︒-, ∴40DOC DOH NOH ∠=∠∠=︒-, ∵OA OD =,∴1202OAD DOC ∠=∠=︒, ∴20CBD OAD ∠=∠=︒, ∵BC DE ∥,∴20BDE CBD ∠=∠=︒.【解析】分析:(1)先判断出BC DF ∥,再利用同角的补角相等判断出F PCB ∠=∠,即可得出结论; (2)先判断出四边形DHBC 是平行四边形,得出1BC DH ==,再用锐角三角函数求出60ACB ∠=︒,进而判断出DH OD =,求出20ODH ∠=︒,即可得出结论.25.【答案】解:(1)∵抛物线2y ax bx c =++过点2(0)A ,, ∴2c =.又∵点(0)也在该抛物线上,∴2((0a b c +=+,∴220(0)a a +=≠.(2)①∵当120x x <<时,1212()()0x x y y -->, ∴120x x -<,120y y -<,∴当0x <时,y 随x 的增大而增大; 同理:当0x >时,y 随x 的增大而减小, ∴抛物线的对称轴为y 轴,开口向下, ∴0b =.∵OA 为半径的圆与拋物线的另两个交点为B 、C , ∴ABC △为等腰三角形, 又∵ABC △有一个内角为60°, ∴ABC △为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又∵2OB OC OA ===,∴•cos30CD OC =︒=,•sin301OD OC =︒=.不妨设点C 在y 轴右侧,则点C 的坐标为1)-. ∵点C 在抛物线上,且2c =,0b =, ∴321a +=-, ∴1a =-,∴抛物线的解析式为22y x =+-.②证明:由①可知,点M 的坐标为211(2)x x -+,,点N 的坐标为222(2)x x -+,. 直线OM 的解析式为11(0)y k x k =≠. ∵O 、M 、N 三点共线,∴10x ≠,20x ≠,且22121222x x x x -+-+=, ∴121222x x x x -+=-+, ∴1212122()x x x x x x =---, ∴122x x =-,即212x x =-, ∴点N 的坐标为211242x x ⎛⎫-+ ⎪⎝⎭,-. 设点N 关于y 轴的对称点为点N ',则点N '的坐标为211242x x ⎛⎫+ ⎪⎝⎭,-. ∵点P 是点O 关于点A 的对称点, ∴24OP OA ==,∴点P 的坐标为(04),. 设直线PM 的解析式为24y k x =+, ∵点M 的坐标为21(2)x x +,-, ∴212124x k x +=+-,∴21212x k x +=-,∴直线PM 的解析式为21124x y x +=-+.∵22211122111122(2)4244==2x x x x x x x +-++-+-+, ∴点N '在直线PM 上, ∴PA 平分MPN ∠.【解析】分析:(1)由抛物线经过点A 可求出2c =,再代入(0)即可找出220(0)a a +=≠; (2)①根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向下,进而可得出0b =,由抛物线的对称性可得出ABC △为等腰三角形,结合其有一个60︒的内角可得出ABC △为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;②由①的结论可得出点M 的坐标为211(2)x x -+,、点N 的坐标为222(2)x x -+,,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点N '的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点N '在直线PM 上,进而即可证出PA 平分MPN ∠s.。
【2018中考数学真题】福建试题(A卷,含解析)【2018数学中考真题解析系列】
福建省2018年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S2+6,利用二次函数△ABC=AC•BC=m的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x ≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.。
2018年福建省中考数学试卷(B)
2018年福建省中考数学试卷(B )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) .(A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、54.一个n 边形的内角和360°,则n 等于( ) . (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <6 8.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) . (A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) . (A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.(2题)俯视图 (5题)A(19题)A BCDO13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y x18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.E A A' B'(13题)A21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG . (1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示: (1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED ,CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD .(1)如图1,若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长; (2)已知0<a <50,且空地足够大,如图2,请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大值,并求面积的最大值.24.(12分)如图,D 是△ABC 外接上的动点,且B 、D 位于AC 的两侧.DE ⊥AB ,垂足为E ,DE 的延长线交此圆于点F .BG ⊥AD ,垂足为G ,BG 交DE 交于H ,DC 、FB 的延长线交于点P ,且PB =PC . (1)求证:BG ∥CD ; (2)设△ABC 外接圆的圆心为O ,若AB =3DH ,∠OHD =80°,求∠BDE 的大小.25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) .且抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心, OA 为半径的圆与抛物线于另两点为B 、C ,且△ABC 中有一个内角为60°. (1) 求抛物线解析式;(2) 若MN 与直线y=x 32-平行,且M 、N 位于直线BC 的两侧,y 1> y 2,解决以下问题: ①求证:P A 平分∠MPN ;②求△MBC 外心的纵坐标的取值范围.备用图。
福建省2018年中考[数学]考试真题与答案解析
福建省2018年中考[数学]考试真题与答案解析一、选择题本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A.|﹣3|B.﹣2C.0D.π答案解析:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B. 2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥答案解析:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案解析:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于( )A.3B.4C.5D.6答案解析:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°答案解析:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12答案解析:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<6答案解析:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.B.C.D.答案解析:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A.40°B.50°C.60°D.80°答案解析:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根答案解析:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题11.计算:()0﹣1= 0 .答案解析:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 120 .答案解析:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .答案解析:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3. 14.不等式组的解集为 x>2 .答案解析:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .答案解析:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .答案解析:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.解方程组:.答案解析:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.答案解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.先化简,再求值:(﹣1)÷,其中m=+1.答案解析:(﹣1)÷===,当m=+1时,原式=.20.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.答案解析:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.答案解析:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.答案解析:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.答案解析:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE 的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.答案解析:(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.25.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N (x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C 的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.答案解析:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.。
2018年福建省中考数学试卷(电子版)
2018年福建省中考数学试卷( A)第I 卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数|-3|,-2,0,π中,最小的数是 A.|-3| B.-2 C.0 D.π2.某几何体的三视图如图所示,则该几何体是 A.圆柱 B.三棱柱 C.长方体 D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是 A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.一个n 边形的内角和为360°,则n 等于 A.3 B.4 C.5 D.65.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC =45°,则∠ACE 等于 A.150° B.30° C.45° D.60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.则下列事件为随机事件的是 A.两枚骰子向上一面的点数之和大于1 B.两枚骰子向上一面的点数之和等于1 C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一面的点数之和等于127.已知m =34+,则以下对m 的估算正确的是 A.23m << B. 34m << C. 45m <<D. 56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是A.5152x y x y =+⎧⎪⎨=-⎪⎩B. 5152x y x y =-⎧⎪⎨=+⎪⎩C. 525x y x y =+⎧⎨=-⎩D. 525x y x y =-⎧⎨=+⎩9.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,A C 交⊙O 于点D .若∠ACB =50°,则∠BOD 等于 A.40° B.50° C.60° D.80°10.已知一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等实数根,则下面选项正确的是 A . 1一定不是方程x 2+bx +a =0的根 B .0一定不是方程x 2+bx +a =0的根 C .1和-1都是方程x 2+bx +a =0的根 D .1和-1不都是方程x 2+bx +a =0的根第Ⅱ卷二、填空题:本题共6小题,每题4分共24分.11.计算:1220-⎪⎪⎭⎫⎝⎛=______. 12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为______. 13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = _______.14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个 三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角 板的锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =_______. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组: ⎩⎨⎧=+=+1041y x y xACBDCBADEyxCBAO如图,□ABCD 对角线AC 与BD 相交于点O ,EF 过点O 且与AD ,BC 分别交于点E ,F . 求证:OE =OF ,19.(本小题满分8分)先化简再,求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据給出的△ABC 及线段A'B'.∠A' (∠A'=∠A ),以线段A'B'为一边,在给出的图形上用尺规作出△A'B'C',使得△A'B'C'∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知,求证和证明过程.21.(本小题满分8分)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.线段AD 由线段AB 绕点A 按逆时针旋转90°得到,△EFG 由△ABC 沿CB 方向平移得到,直线EF 过点D . (1)求∠BDF 的大小; (2)求CG 长.C AD B EF O甲乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公同揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收人的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23. (本小题满分10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其 .已知矩形菜园的一边靠墙,另三边一共用了100米木栏.中AD MN(1)若a= 20,所围成的矩形菜园的面积为450平方米求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.已知四边形ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径,DE ⊥AB 垂足为点E , (1)延长DE 交⊙O 于点F ,延长DC 、FB 交于点P ,如图1,求证:PC = PB ;(2) 如图2,过点B 作BG ⊥AD 于点G ,BG 交DE 于H ,且点O 和点A 都在DE 的左侧,若AB =3,DH =1,∠OHD =80°,求∠BDE 的度数.25.(本小题满分14分)已知抛物线2y ax bx c =++ 过点A (0,2) . (1)若点(2-,0)也在该抛物线上,求a ,b 满足的关系式;(2)抛物线上任意不同两点M (x 1,y 1)、N(x 2,y 2)都满足:当x 1< x 2<0时,0))((2121>--y y x x ;当0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径的圆与交抛物线于另两点为B ,C ,且△ABC 有一个内角为60°.①求抛物线解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:P A 平分∠MPN .E 图1 C B A D FP OE OH ABCDEG图2。
(完整版)2018年福建省中考数学试卷(A)及答案
2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数、、0、–2中,最小的是() .3-π(A) (B) –2 (C) 0 (D)3-π2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4(D)2、3、54.一个边形的内角和360°,则等于( ) .n n (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上,若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 () .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12(D) 两枚骰子向上一面的点数之和等于127.已知m =,则以下对m 的估算正确的是 ( ) .34+(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <68.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) .(A) (B) (C) (D) ⎪⎩⎪⎨⎧-=+=5215y x y x ⎪⎩⎪⎨⎧+=-=5215y x y x ⎩⎨⎧-=+=525y x y x ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB =50°,则∠BOD = ( ) .(A) 40° (B) 50°(C) 60°(D) 80°,10.已知一元二次方程 有两个相等的实数根,则下面选项正确的是( ) .0)1(2)1(2=++++a b x a (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根(C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根二、填空题(24分)11.计算:=___0___.1220-⎪⎪⎭⎫⎝⎛12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.(2题)俯视图(5题)A(19题)A BCDO13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____.14. 不等式组的解集为__x >2_____.⎩⎨⎧>-+>+02313x x x 15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB =,则CD =___–1____.2316.如图,直线y =x +m 与双曲线交于点A 、B 两点,作BC ∥x xy 3=轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组:⎩⎨⎧=+=+1041y x y x 18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:,其中m m m m 11122-÷⎪⎭⎫ ⎝⎛-+13+=m 20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.EAA'B'(13题)A B21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG . (1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示:(1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED ,CG=AE===AD AC AB ⨯10810⨯22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F .(1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =,DH =1,3∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和∴PB=PC ;1==BF CDPB PC (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH∴∠ODH=180°–2∠OHD=180°–2×80°=20°∴∠OAD=∠ODA=∠ADB–(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120°∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) .(1)若图象过点(,0),求a 与b 满足的关系式; 2-(2)抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,;0<x 1< x 2时,0))((2121>--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有0))((2121<--y y x x 一个内角为60°.①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2又图象过(,0),∴0= a ()2+b ()+22-2-2- ∴a =–1b 22(图1)(图2)(2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC .①又△ABC 中有一个内角为60°,∴△ABC 是正△.连接OC ,则OC=OA=2,∴C(,–1)3从而有y =–x 2+2,②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4)tan ∠1=====PE ME 114y x --114kx x --22114x x kx x ⋅--221214x x kx x x -tan ∠2====== PF NF 224y x -224kx x -11224x x kx x ⋅-211214x kx x x x -kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程 有两个相等的实数根,则下面选项正确的是( ) .0)1(2)1(2=++++a b x a (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根(C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D)16.如图,直线y =x +m 与双曲线交于点A 、B 两点,作BC ∥x xy 3=轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:=x +m , x 2+mx –3=0x3由y =x +m 知:AC=BC=x A –x B ==∆122+m ∴ S △ABC ==221BC 6)12(2122≥+m。
2018年福建省中考数学试卷(A)及答案
2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) .(A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、54.一个n 边形的内角和360°,则n 等于( ) . (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <6 8.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) . (A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) . (A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) .(A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____. 13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____(2题)俯视图 (5题)A(19题)A BCDOA14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y x18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG .EA A' B'(1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示:(1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED , CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ; (2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1,∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH ∴∠ODH=180°–2∠OHD=180°–2×80°=20° ∴∠OAD=∠ODA=∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120° ∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2, ∴C(3,–1) 从而有y =–x 2+2,(图1)(图2)②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4) tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -=221x k +tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) .(A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根 ③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。
2018年福建福州中考数学试卷及答案(word解析版)
2018年福建福州中考数学试卷及答案(word解析版)⼆〇⼀三年福州市初中毕业会考、⾼级中等学校招⽣考试数学试卷(全卷共4页,三⼤题,共22⼩题;满分150分;考试时间120分钟)⼀、选择题(共10⼩题,每题4分,满分40分;每⼩题只有⼀个正确的选项,请在答题卡的相应位置填涂)1.(2018福建福州,1,4分) 2的倒数是().A .12B .2C .-12D .-2【答案】A2.(2018福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是().A .20°B .40°C .50°D .60°【答案】C3.(2018福建福州,3,4分)2018年12⽉13⽇,嫦娥⼆号成功飞抵距地球约700万公⾥远的深空.7 000 000⽤科学记数法表⽰为().A .7×105B .7×106C .70×106D .7×107【答案】 B.4.(2018福建福州,4,4分)下列⽴体图形中,俯视图是正⽅形的是().ABCD【答案】D .5.(2018福建福州,5,4分)下列⼀元⼆次⽅程有两个相等实数根的是().A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=0【答案】C.6.(2018福建福州,6,4分)不等式1+x <0的解集在数轴上表⽰正确的是().12 OACA B C D【答案】A.7.(2018福建福州,7,4分)下列运算正确的是().A .a ·a 2=a 3B .(a 2)3=a 5C .22()a a b b=D .a 3÷a 3=a【答案】A .8.(2018福建福州,8,4分)如图,已知△ABC ,以点B 为圆⼼,AC 长为半径画弧;以点C 为圆⼼,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量⼀量线段AD 的长,约为().A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm【答案】A.9.(2018福建福州,9,4分)袋中有红球4个,⽩球若⼲个,它们只有颜⾊上的区别.从袋中随机地取出⼀个球,如果取到⽩球的可能性较⼤,那么袋中⽩球的个数可能是().A .3个B .不⾜3个C .4个D .5个或5个以上【答案】D .10.(2018福建福州,10,4分)A 、B 两点在⼀次函数图象上的位置如图所⽰,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是().A .a >0B .a <0C .b =0D .ab <0【答案】B.⼆、填空题(共5⼩题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.(2018福建福州,11,4分)计算:21a a-=_________.【答案】1a; 12.(2018福建福州,12,4分)矩形的外⾓和等于_______度.【答案】360;13.(2018福建福州,13,4分)某校⼥⼦排球队队员的年龄分布如下表:AB C【答案】14;14.(2018福建福州,14,4分)已知实数a 、b 满⾜:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________.【答案】1000;15.(2018福建福州,15,4分)如图,由7个形状、⼤⼩完全相同的正六边形组成⽹格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的⾯积是____________.【答案】三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线⽤铅笔画完,再⽤⿊⾊签字笔描⿊) 16.(每⼩题7分,共14分)(1)(2018福建福州,16(1),7分)计算:0(1)4-+-- 【答案】解:0(1)4-+-- =1+4-=5-(2)(2018福建福州,16(2),7分)化简:2(3)(4)a a a ++-.【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +9.17.(每⼩题8分,共16分)(1)(2018福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .【答案】证明⼀:∵AB 平分∠CAD ,∴∠BAC =∠BAD ,在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =??∠=∠??=?∴△ABC ≌△ABD .∴BC =BD .证明⼆:连接CD∵AC =AD ,AB 平分∠CAD ,∴AB 垂直平分CD ,∴BC =BD .(2)列⽅程解应⽤题(2018福建福州,17(2),8分)把⼀些图书分给某班学⽣阅读,如果每⼈分3本,则剩余20本;如果每⼈分4本则还缺25本.这个班有多少学⽣?【答案】解法⼀:设这个班有x 名学⽣,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学⽣.解法⼆:设这个班有x 名学⽣,图书⼀共有y 本. 320425y x y x =+??=-? ,解得45,155.x y =??=?答:这个班共有45名学⽣.18.(10分)(2018福建福州,18,10分)为了解某校学⽣的⾝⾼情况,随机抽取该校男⽣、⼥⽣进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣⼈数相同,利⽤所得数据绘制如下统计图表:⾝⾼情况分组表(单位:cm )男⽣⾝⾼情况直⽅图⼥⽣⾝⾼情况扇形统计图CDBA(1)样本中,男⽣⾝⾼的众数在_______组,中位数在_______组;(2)样本中,⼥⽣⾝⾼在E 组的⼈数有_______⼈;(3)已知该校共有男⽣400⼈、⼥⽣380⼈,请估计⾝⾼在160≤x <170之间的学⽣约有多少⼈?【答案】(1)众数在B 组;中位数在C 组.(2)样本⼥⽣⼈数=样本男⽣⼈数=40; E 组⼥⽣百分⽐=5%E 组⼥⽣⼈数=40×5%=2(⼈)(3)男⽣:400×1840=180(⼈).⼥⽣:380×40%=152(⼈).19.(2018福建福州,19,12分)如图,在平⾯直⾓坐标系xOy 中,点A 的坐标为(-2,0),等边三⾓形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度;△AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转⾓可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转⾓等于120°.(2)∵△ACO 、△BOD 是等边三⾓形,∴∠CAO =60°,OA =OD ,∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°.20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE.(1)求证:BC 是⊙O 的切线;(2)求BN 的长.第20题图C【答案】(1)证明:∵ME =1,AM =2,AE∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°,∵AB 为⊙O 的直径,∴BC 是⊙O 的切线.(2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°,∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB∴BM =60180π.∴BN .21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上⼀点,△P AD 的⾯积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值;(3)若∠APD =90°,求y 的最⼩值.备⽤图第21题图BCB【答案】(1)如图2,过点A 作AH ⊥BC ,垂⾜为H .在Rt △ABH 中,∠B =45°,AB =x ,所以AH =2x .由S △APD =12AD AH ?,可得11222y x =?.整理,得y x =.(2)当y =1时,x =如图3,如图4,由于∠APC =∠B +∠1,∠APC =∠APD +∠2,当∠APD =∠B =∠C =45°时,∠1=∠2.所以△ABP ∽△PCD .因此AB PCBP CD=.所以PC ·PD =AB ·CD =2.图2 图3 图4(3)如图5,当∠APD =90°时,点P 在以AD 为直径的圆上.如图6,当AD 最⼩时,圆与BC 相切于点P .此时△APD 是等腰直⾓三⾓形.所以AD =2AH ,即2y x =.由(1)知,y x=.于是可以解得此时y =.图5 图622.(14分)我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a =;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请⽤含k 的代数式表⽰b ;(3)现有⼀组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x ,横坐标依次为1,2,…,n(n 为正整数,且n 为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂⾜记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正⽅形A n B n C n D n .若这组抛物线中有⼀条经过点D n ,求所有满⾜条件的正⽅形边长.【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=-.(2)设抛物线的顶点的坐标为(m ,km ),那么222()2y a x m km ax amx am km =-+=-++.对照y =ax 2+bx ,可得20,2.am km b am ?+=?=-? 由此得到b =2k .(3)正⽅形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线1 2y x =上.由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-.根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0).所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=--.联⽴12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m .当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正⽅形的边长分别为3、6、9(如图1所⽰).图1。
2018年福建省中考数学试卷及答案
2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) . (A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) .(A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、5 4.一个n 边形的内角和360°,则n 等于( ) .(A)3 (B) 4 (C) 5 (D)65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <68.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) .(2题)俯视图 (5题)(19题)ABC DO(A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) .(A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分) 17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y xA(13题)A18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D(1)求∠BDF 的度数;(2)求CG 的长. 解:构辅助线如图所示: (1)∠BDF =45°EA A'B'(2)AD=AB=10,证△ABC ∽△AED , CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数; ②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1, ∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH∴∠ODH=180°–2∠OHD=180°–2×80°=20°∴∠OAD=∠ODA=∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120°(图1)E CBADFPOG (图2)AB CDOE H G∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2,∴C(3,–1) 从而有y =–x 2+2,②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4)tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -=221x k +tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根 ②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根 ③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年福建省中考数学试卷(B卷)一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.(分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°6.(分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°10.(分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、填空题:本题共6小题,每小题4分,共24分)11.(分)计算:()0﹣1= .12.(分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.(分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .13.14.(分)不等式组的解集为.15.(分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC ∥y轴,则△ABC面积的最小值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(分)解方程组:.18.(分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(分)先化简,再求值:(﹣1)÷,其中m=+1.20.(分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(分)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE ⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.25.(分)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.2018年福建省中考数学试卷(B卷)参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.(分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图.3.(分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.【点评】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.(分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.5.(分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.6.(分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【点评】此题主要考查了随机事件,关键是掌握随机事件定义.7.(分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.(分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.(分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10.(分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.二、填空题:本题共6小题,每小题4分,共24分)11.(分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.【点评】此题主要考查了零指数幂,关键是掌握a0=1(a≠0).12.(分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.【点评】本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据.13.(分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.(分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.16.(分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC ∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C (a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可求出当m=0△ABC时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.19.(分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB 的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.【点评】本题考查了相似三角形的性质与判定,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式.21.(分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=,由平移的性质得,CG=AE=.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB是解本题的关键.22.(分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=元,因为>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.【点评】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义.23.(分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24.(分)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE ⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.【分析】(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.【解答】(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.【点评】本题考查圆的有关性质,等腰三角形的判定和性质,平行线的性质和判定,平行四边形的性质和判定,解直角三角形等知识,考查了运算能力、推理能力,并考查了分类思想.25.(分)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.【分析】(1)由A的坐标确定出c的值,根据已知不等式判断出y1﹣y2<0,可得出抛物线的增减性,确定出抛物线对称轴为y轴,且开口向下,求出b的值,如图1所示,可得三角形ABC为等边三角形,确定出B的坐标,代入抛物线解析式即可;(2)①设出点M(x1,﹣x12+2),N(x2,﹣x22+2),由MN与已知直线平行,得到k值相同,表示出直线MN解析式,进而表示出ME,BE,NF,BF,求出tan ∠MBE与tan∠NBF的值相等,进而得到BC为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y轴为BC的垂直平分线,设P为外心,利用勾股定理化简PB2=PM2,确定出△MBC外心的纵坐标的取值范围即可.【解答】解:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x 12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y﹣y1)2,∵x12=2﹣y2,∴y02+2y+4=(2﹣y1)+(y﹣y1)2,即y=y1﹣1,由①得:﹣1<y1≤2,≤0.则△MBC的外心的纵坐标的取值范围是﹣<y【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.。