中考压轴题专题训练9
中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版
中考压轴题专题训练:“四点共圆”典型问题50练一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.34.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.25.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.66.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.58.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是梯形.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt △DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC =30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D 作DF⊥AE于F点,连接OF.则线段OF的长度为.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=,BM=.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为.三.解答题(共27小题)24.设梯形ABCD中,AB∥CD,E,F分别在腰AD和BC上,若A,B,F,E四点共圆,证明C,D,E,F也必四点共圆.25.已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.26.如图,在△ABC中,AB<AC,AD平分∠BAC,BM=CM,K为AM上一点,且∠BKC=180°﹣∠BAC.求证:∠BKD=∠CKD.27.如图,O为△ABC外心,D为BC上一点,BD中垂线交AB于F,CD中垂线交AC于E,求证:A、F、O、E四点共圆.28.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,AC=BC,O是△ABC 的外心,证明C,E,O,F四点共圆.29.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.30.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,点E是AC的中点,连接OD.(1)求证:OD⊥DE;(2)求证:O、A、E、D四点共圆.(3)△ABC满足什么条件时,经过O、A、E、D的圆与BC相切?并说明理由.31.如图,在锐角三角形ABC中,AB=AC,∠ACB的平分线交AB于点D.过△ABC的外心O作直线OG⊥CD交AC于点E,交CD于点G,过点E作EF∥AB交CD于F.(1)求证:C,E,O,F四点共圆;(2)求证:A,O,F三点共线;(3)求证:EA=EF.32.在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时:(1)观察填空:①与△ACD全等的三角形是;②∠AFB的度数为;(2)利用题干中的结论,证明:C,D,F,E四点共圆;(3)直接写出线段FD,FE,FC之间的数量关系.33.如图,四边形ABCD中,∠ACB=∠ADB=90°,自对角线AC、BD的交点N作NM⊥AB于点M,线段AC、MD交于点E,BD、MC交于点F,P是线段EF上的任意一点.证明:点P到线段CD的距离等于点P到线段MC、MD的距离之和.34.如图,在△ABC中,过A作BC的垂线,垂足为D,O为AD的中点,以AD为直径的⊙O分别与边AB、AC交于点E、F.试求证:(1)BC是⊙O的切线;(2)B、C、F、E四点共圆吗?说明理由.35.如图,圆O内接四边形ABCD的对边AD,BC延长线交于点P,对角线AC,BD交于点Q,设△PDB 的外接圆交直线PQ与P和另一个点K,求证:(1)OK⊥PQ(2)C,D,O,K四点共圆;(3)三条直线AB,OK,DC交于一点.36.如图,已知锐角三角形ABC,过点A作BC的垂线与以BC为直径的⊙O1分别交于点D,E.过点B 作CA的垂线与以CA为直径的⊙O2分别交于点F,G.求证:E,F,D,G四点共圆,并确定圆心的位置.37.已知△ABC中,∠A=60°,E、F分别为AB、AC延长线上的点,且BE=CF=BC,△ACE的外接圆与EF交于不同于E的点K,设BF与CE交于点T.(1)证明:A、B、T、C四点共圆;(2)证明:点K在∠BAC的角平分线上.38.已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,(1)[以下ⅰ、ⅱ两小题任选一题](ⅰ)求四边形ABCD的面积(ⅱ)求证:A、B、E、F四点在同一个圆上(2)求证:AB∥DC.39.已知:AB是⊙O的直径,C为AB延长线上的一点,过点C作⊙O的割线,与⊙O交于D、E两点,OF是△BOD的外接圆O1的直径,连接CF并延长交⊙O1于点G.求证:O、A、E、G四点共圆.40.如图,四边形ABCD为⊙O的内接四边形,对边BC,AD交于点F,AB、DC交于点E,△ECF的外接圆与⊙O的另一交点为H,AH与EF交于点M,MC与⊙O交于点C.证明:(1)M为EF的中点;(2)A、G、E、F四点共圆.41.已知:AB∥DF,它们之间的距离等于AB;AC∥DE,它们之间的距离等于AC;CB∥EF,它们之间的距离等于BC,求证:A1、B1、C1、A2、B2、C2六点共圆.42.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.43.若以圆内接四边形ABCD的各边为弦作任意圆,求证:这些圆相交的四点共圆.44.如图,PQ为两圆的公共弦,M为PQ上一点,AB、CD分别是两圆的弦且它们相交于M,求证:A、C、B、D四点共圆.45.如图,⊙O1与⊙O2相交于P、Q两点,过P点作两圆的割线分别交于⊙O1与⊙O2于A、B,过A、B 分别作两圆的切线相交于T,求证:T、A、Q、B四点共圆.46.如图所示,两圆交于A、B两点,过B的直线交两圆于C、D,两圆外有一点P,连接PC,PD,分别交两圆于E,F.求证:P、E、A、F四点共圆.47.如图,⊙O是以等腰Rt△ABC的斜边AB为直径的圆,点P是BA的延长线上的一点,过点P作⊙O 的一条切线,切点为点Q,∠QPB的平分线交AC、BC于点E、F.(1)求证:P、A、E、Q四点共圆.(2)若AE=a,BF=b,求EF的长.48.如图,四边形ABCD内接于⊙O,P、Q、R分别是AB、BC、AD的中点,连接PQ与DA的延长线交于S,连接PR与CB延长线交于T,求证:S、T、Q、R四点共圆.49.如图,两圆T1、T2相交于A、B两点,过点B的一条直线分别交圆T1、T2于点C、D,过点B的另一条直线分别交圆T1、T2于点E、F,直线CF分别交圆T1、T2于点P、Q,设M、N分别是弧PB、弧QB的中点,求证:若CD=EF,则C、F、M、N四点共圆.50.如图,D是△ABC的BC边上的一点,O1、O2和O3分别为△ABC、△ADB和△ADC外接圆的圆心,求证:A、O2、O1、O3四点共圆.中考压轴题专题训练:“四点共圆”典型问题50练参考答案与试题解析一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.【分析】如图,连接DE,由等腰直角三角形的性质可求∠C=∠BAC=45°,AC=AB=4,由∠CAD=∠CBE,可证点A,点B,点D,点E四点共圆,可得∠ABD=∠DEC=90°,由等腰直角三角形的性质可求DE=,即可求解.【解答】解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,故选:B.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【分析】在NM上截取NF=ND,连结DF,AF,由A,B,C,D四点共圆,得出∠MND+∠MAD=180°,由MN∥BC,得出∠AMN+∠ADN=180°,可得到A,D,N,M四点共圆,再由AE,DE分别平分∠BAD,∠CDA,A,F,E,D四点共圆,由∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND =∠EDN=∠ADE=∠AFM,可得出MA=MF,即得出MN=MF+NF=MA+ND.【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.3【分析】延长AM交BC于F,连接ED,根据三角形中位线定理得出ED∥BC,即可求得∠DBC=∠MDE,根据四点共圆,可得∠MDE=∠BAF,由题意可得M是三角形的重心,则F是BC的中点,AM=2FM,证得△ABF∽△MBF,可得=,得出AF•FM=BF2=16,根据条件化成AM2=16,即可求得结论.【解答】解:延长AM交BC于F,连接ED,∵BD、CE是△ABC的两条中线,∴ED∥BC,∴∠DBC=∠MDE,∵A、D、M、E四点共圆,∴∠MDE=∠BAF,∵△ABC的两条中线BD、CE交于点M,∴BF=FC=BC=4,∴M为三角形的重心,∴AM=2FM,∵∠BAF=∠MBF,∠AFB=∠BFM,∴△ABF∽△MBF,∴=,∴AF•FM=BF2=16,(AM+AM)•AM=16,∴AM2=16,∴AM=.故选:C.4.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.2【分析】下面介绍两种解法:解法一:当AP⊥BC时,线段DE的值最小,利用四点共圆的判定可得:A、E、P、D四点共圆,且直径为AP,得出∠AED=∠C=45°,有一公共角,根据两角对应相等两三角形相似得△AED∽△ACB,则,设AD=2x,表示出AE和AC的长,求出AE与AC的比,代入比例式中,可求出DE的值.解法二:先通过四点共圆同理得到:△EFD为顶角为120°的等腰三角形,所以当AP⊥BC时,线段DE的值最小,再作辅助线,求AP的长,从而得EF的长,由等腰三角形三线合一及勾股定理得DE的值.【解答】解:解法一:当AP⊥BC时,线段DE的值最小,如图1,∵PE⊥AB,PD⊥AC,∴∠AEP=∠ADP=90°,∴∠AEP+∠ADP=180°,∴A、E、P、D四点共圆,且直径为AP,在Rt△PDC中,∠C=45°,∴△PDC是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠PAD=45°,∴∠PED=∠PAD=45°,∴∠AED=45°,∴∠AED=∠C=45°,∵∠EAD=∠CAB,∴△AED∽△ACB,∴,设AD=2x,则PD=DC=2x,AP=2x,如图2,取AP的中点O,连接EO,则AO=OE=OP=x,∵∠EAP=∠BAC﹣∠PAD=60°﹣45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=x,cos30°=,∴OM=x•=x,∴AM=x+x=x,由勾股定理得:AE=,=,=(+1)x,∴=,∴ED=.则线段DE的最小值为;解法二:如图3,取AP的中点F,连接EF、DF,有EF=DF=AP,∠EFD=120°,∴△EFD为顶角为120°的等腰三角形,∴当AP⊥BC时,线段DE的值最小,如图4,作AB的中垂线,交AP于一点O,交AB于G,连接OB,设OA=OB=2x,∵∠BOP=2∠BAO=30°,∴BP=x,OP=x,∴AP=PC=(2+)x,∵BC=6﹣2,∴x+2x+x=6﹣2,x=4﹣2,∴AP=(2+)x=(2+)(4﹣2)=2,∴EF=FD=1,如图5,过F作FH⊥ED于H,∴EH=DH,∵∠FED=30°,∴FH=,∴EH=DH=,∴DE=;故选:B.5.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【解答】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.6.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM 是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.【解答】解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.∵点M、E、N、F分别为AD、AB、BC、CD边的中点,∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.∴四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.②当AC⊥BD时,由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故②正确.③当AC=BD且AC⊥BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故③正确.故选:C.7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM ≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN=AM2是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.8.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC【分析】本题要求选出错误的命题,只需找到一个命题,说明该命题是假命题即可.可采用反证法判断C是错误的,运用相交弦定理可得DA•DM=DP•DQ,DA•DM=DB•DC,可得DP•DQ=DB•DC,即=,从而可得△DBP∽△DQC,则有∠BPD=∠QCD.由AM平分∠BAC可得∠BAM=∠MAC,根据圆周角定理可得∠MBC=∠MAC,∠MCB=∠BAM,即可得到∠MBC=∠MCB,从而有∠BPD=∠MBC,与三角形外角的性质∠MBC=∠BPD+∠BDP矛盾,故假设不成立,即选择C错误.【解答】解:假设A、P、M、Q四点共圆,根据相交弦定理可得:DA•DM=DP•DQ,∵A、B、M、C四点共圆,∴根据相交弦定理可得:DA•DM=DB•DC,∴DP•DQ=DB•DC,即=,∵∠BDP=∠QDC,∴△DBP∽△DQC,∴∠BPD=∠QCD,∵AM平分∠BAC,∴∠BAM=∠MAC,∵∠MBC=∠MAC,∠MCB=∠BAM,∴∠MBC=∠MCB,∴∠BPD=∠MBC.与∠MBC=∠BPD+∠BDP矛盾,故假设不成立,因而命题C错误,故选:C.9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5【分析】①正确,如图1中,只要证明∠MCN+∠MDN=180°.②正确,可以证明△ADM与△DCN全等.③正确,如图3中,只要证明△ADM≌△CDN,推出AM=CN,DM=DN,因为AC=BC,推出CM=BN,即可证明.④正确,如图4中,作DH⊥AC于H,DG⊥BC于G.只要证明四边形CHDG是正方形,△DHM≌△DGN,推出MH=NG,推出CM+CN=CH+MH+CG﹣NG=2CH,又因为AD=CD=CH,由此即可证明.⑤正确,如图5中,由△DHM∽△DGN,推出==,设DM=x,则DG=2x,推出S△DMN=•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM ⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,由此即可判断.【解答】解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,=•2x•x=x2,∴S△DMN当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,≤4.∴2≤S△DMN故选:D.二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是等腰梯形.【分析】由四点共圆和平行线的性质证出∠B=∠C,根据在同一底上的两角相等的梯形是等腰梯形就能求出答案.【解答】解:∵圆经过梯形ABCD的四个顶点,∴∠A+∠C=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠C,∴梯形ABCD是等腰梯形.故答案为:等腰.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有①③.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.【分析】首先按照题意画出示意图,然后根据四点共圆的判定定理进行判断.①验证∠BPM=∠BOC 即可;②由图形可知明显错误;③推导∠AOP+∠ANP=180°即可.【解答】解:如图,∵OC⊥AB于C,∴∠BOC=∠AOC=∠AOB,NA=NB,∵∠BPM=∠AOB,∴∠BPM=∠BOC,∴O、M、B、P四点共圆,∴①正确.∵四边形AMBN为凹四边形.∴A、M、B、N不共圆,∴②错误.∵NA=NB,∴∠NAB=∠NBA,∵∠NAB+∠NBA+∠ANP=180°,∴∠ANP+2∠NBA=180°∵∠AOP=2∠NBA,∴∠AOP+∠ANP=180°,∴A、O、P、N四点共圆,∴③正确.故答案为:①③12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=90°.【分析】根据题意可知,点A、B、D、E共圆,点H是△ABC的垂心.过点A作⊙O的切线AF交BC 的延长线BC于点F.根据切线的性质可知△ABF是直角三角形、由平行线的判定与性质可知∠HCA=∠CAF;最后由图形可知∠BAF=∠FAC+∠CAB=90°,即∠BAC+∠HCA=90°.【解答】解:∵△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,∴点A、B、D、E在以AB为直径的⊙O上;过点A作⊙O的切线AF交BC的延长线BC于点F,则AF⊥AB.∵点H是三角形ABC的垂心,∴CH⊥AB,∴CH∥AF,∴∠HCA=∠CAF(两直线平行,内错角相等);又∵∠BAF=∠FAC+∠CAB=90°,∴∠BAC+∠HCA=90°.故答案是:90°.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.【分析】连接AE,AF,DF,根据AD为直径,可证A、C、B、E四点共圆,则∠ACF=∠ABD,又∠AFC=∠ADB,可证△AFC∽△ADB,则=,而∠FAD=∠FED=∠BEC=∠BAC=45°,根据=求解.【解答】解:如图,连接AE,AF,DF,∵AD为直径,∴∠AED=∠AEB=∠ACB=90°,∴A、C、B、E四点共圆,∴∠ACF=∠ABD,又∵∠AFC=∠ADB,∴△AFC∽△ADB,∴=,∵∠FAD=∠FED=∠BEC=∠BAC=45°,在Rt△ADF中,===.故答案为:.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=﹣2013.【分析】不妨设A在B的左边,设MN与AB的交点为H,易证△AHM∽△NHA,从而可求出AH,进而得到x1,同理可求出x2,然后代入所求代数式就可解决问题.【解答】解:不妨设A在B的左边,设MN与AB的交点为H,由题可知:M(1,﹣2012),N(1,1),则MH=2012,NH=1.根据抛物线的对称性可得MN垂直平分AB,故MN为四边形AMBN外接圆的直径,根据圆周角定理可得∠NAM=∠NBM=90°,∴∠NAH+∠MAH=90°,∠HMA+∠MAH=90°,∴∠NAH=∠HMA.∵∠AHN=∠MHA=90°,∴△AHM∽△NHA,∴=,∴AH2=MH•NH=2012,∴AH==2,∴1﹣x1=2,∴x1=1﹣2.同理x2=1+2,∴x1x2﹣x1﹣x2=(1﹣2(1+2)﹣(1﹣2)﹣(1+2)=1﹣2012﹣1+2﹣1﹣2=﹣2013.故答案为﹣2013.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为18°.【分析】通过证明点A,点B,点C,点D四点共圆,可得∠ABD=∠ACD=72°,由直角三角形的性质可求解.【解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=+1.【分析】先证明A、B、C、D四点共圆,由圆周角定理得出∠ABD=∠ACD,再由已知条件和圆内接四边形的性质得出∠ACD=∠ADC,由三角形内角和定理求出∠ACD=∠ADC=75°,得出∠ACB=45°,作BM⊥AC于M,则∠AMB=∠CMB=90°,由含30°角的直角三角形的性质和勾股定理得出BM=AB=1,AM=,得出△CBM是等腰直角三角形,因此CM=BM=1,即可得出AC的长.【解答】解:∵∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∠DAB=180°﹣∠DCB=60°,∴∠ABD=∠ACD,∵∠ABD=∠CBF,∴∠ACD=∠CBF,∵∠CBF=∠ADC,∴∠ACD=∠ADC,∵AC平分∠DAB,∴∠DAC=∠BAC=30°,∴∠ACD=∠ADC=75°,∴∠ACB=120°﹣75°=45°,作BM⊥AC于M,如图所示:则∠AMB=∠CMB=90°,∴BM=AB=1,△CBM是等腰直角三角形,∴AM=BM=,CM=BM=1,∴AC=AM+CM=+1;故答案为:+1.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=28°.【分析】以CD为对称轴作△CDE与△CBD对称,可得∠DEC=∠DBC=82°,CE=CB,然后由∠DAC=98°可得∠DEC+∠DAC=180°,得出A、D、E、C四点共圆,然后可得CE=AD,继而得出∠DCA=∠CDE=∠CDB,由∠BCD和∠DBC的度数可求出∠BCD的度数,即可求出∠ACD的度数.【解答】解:以CD为对称轴作△CDE与△CBD对称,则∠DEC=∠DBC,CE=CB,∵∠DAC=98°,∠DBC=82°,∴∠DEC=82°,∴∠DEC+∠DAC=180°,∴A、D、E、C四点共圆,∵BC=AD,CE=CB,∴CE=AD,∴∠DCA=∠CDE=∠CDB,∵∠BCD=70°,∠DBC=82°,∴∠BDC=180°﹣∠BCD﹣∠DBC=28°,∴∠ACD=∠BDC=28°.故答案为:28°.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.【分析】作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.易证∠DFE=∠ACB═45°,可得D、E、C、F四点共圆,从而可证到∠DEN=∠DFM,进而可得△DNE≌△DMF,则有DN =DM,NE=MF.易证四边形DNCM是正方形,设正方形DNCM的边长为x,根据△CDF的面积为7.5建立关于x的方程,求出x,从而可求出FC、KC、BK,然后根据勾股定理就可求出BF的长.【解答】证明:作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.∵△ABC和△DEF都是等腰直角三角形,∴∠DFE=∠ACB=45°,∴D、E、C、F四点共圆,∴∠EDF+∠ECF=180°,∠DEC+∠DFC=180°,∠DCF=∠DEF=45°.∵∠DEN+∠DEC=180°,∴∠DEN=∠DFM.在△DNE和△DMF中,.∴△DNE≌△DMF,∴DN=DM,NE=MF.∵∠DNC=∠NCM=∠DMC=90°,∴四边形DNCM是矩形.∵DN=DM,∴矩形DNCM是正方形.设正方形DNCM的边长为x,则NC=MC=DM=DN=x,∴MF=NE=NC﹣EC=x﹣1,∴FC=MC+FM=x+(x﹣1)=2x﹣1.∵△CDF的面积为7.5,∴x(2x﹣1)=7.5.解得:x1=﹣2.5(舍去),x2=3.∴BD=DC==3,FC=5,∴KF=FC•sin45°=.同理:KC=,∴BK=BC﹣KC=6﹣=,∴BF==.故答案为:.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为45°.【分析】如图,连接AF,DG,由等腰三角形的性质可得∠AFD=∠AGD=90°,可得点A,点F,点G,点D四点共圆,可得∠DFG=∠GAD=25°,由直角三角形的性质和等腰三角形的性质可求∠DFM =20°,即可求解.【解答】解:如图,连接AF,DG,∵AE=AC,DE=DB,点F,点G是CE,BE的中点,∴AF⊥CE,DG⊥BE,∴∠AFD=∠AGD=90°,∴点A,点F,点G,点D四点共圆,∴∠DFG=∠GAD=25°,∵∠AFD=90°,点M是AD中点,∴AM=FM=DM,∴∠DFM=∠FDM,且∠AMF=∠FDM+∠DFM=40°,∴∠DFM=20°,∴∠MFG=∠MFD+∠DFG=45°,故答案为45°.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC=30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.【分析】过点C作CM⊥CF交BD延长线于点M,连接AM,由∠BMC=∠BAC=∠BFC=60°知A、F、B、C、M五点共圆,证∠AMB=60°、OM=OA=2得△AOM是等边三角形,由∠AOM=60°=∠OMC知MC∥AO,得===,从而有OD=OM=、DM=OM=,由A、F、B、M四点共圆证△ODG是等边三角形,得AG=OA﹣OG=OM﹣OD=DM=、EG=AG=,根据DE=DG+EG=OD+EG得出答案.【解答】解:过点C作CM⊥CF交BD延长线于点M,连接AM,∵∠DOC=30°,∴∠BMC=∠BAC=∠BFC=60°,∴A、F、B、C、M五点共圆,∴∠AMB=∠ACB=60°,∵OC=、∠COD=30°,∴OM==2=OA,∴△AOM是等边三角形,∴∠AOM=60°,∵∠AOM=60°=∠OMC,∴MC∥AO,∴===,∴OD=OM=,DM=OM=,∵A、F、B、M四点共圆,∴∠FAM=180°﹣∠FBM=90°,∴∠EAG=∠FAM﹣∠OAM=30°,∴∠OGD=∠AGE=60°,∴△ODG是等边三角形,∴AG=OA﹣OG=OM﹣OD=DM=,∴EG=AG=,∴DE=DG+EG=OD+EG=,故答案为:.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为﹣.【分析】作OG⊥DF于G,连接OG.易证A、O、F、D四点共圆,从而有∠OFG=∠DAO=45°,则有OG=FG.设GF=GO=x,则有DG=1+x,OF=x.然后先求出OD,再在Rt△OGD中运用勾股定理求出x,就可得到OF的长.【解答】解:作OG⊥DF于G,连接OG,如图所示.∵四边形ABCD是正方形,∴∠DAC=45°,∠AOD=90°.∵DF⊥AE,即∠AFD=90°,∴∠AOD=∠AFD.∴A、O、F、D四点共圆.∴∠OFG=∠DAO=45°.∵OG⊥DF,即∠OGF=90°,∴∠FOG=45°=∠OFG.∴OG=FG.∵∠AFD=90°,∠DAE=30°,AD=2,∴DF=1.设GF=GO=x,则有DG=DF+FG=1+x,OF==x.在Rt△AOD中,OD=AD•sin∠DAO=2×=.在Rt△OGD中,∵∠OGD=90°,∴OG2+DG2=OD2.∴x2+(1+x)2=()2.解得:x1=﹣+,x2=﹣﹣(舍去).所以OF=x=﹣.故答案为:﹣.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为①③④⑤.【分析】①由正方形的性质得∠BAD=∠ADC=∠B=90°,由旋转的性质得∠NAD=∠BAM,∠AND =∠AMB,由余角的性质进而得∠DAM=∠AND,①正确;②由正方形的性质得PC∥EF,由相似三角形的性质得到CP=b﹣,②错误;③由旋转的性质得GN=ME,则AB=ME=NG,证出△ABM≌△NGF(SAS);③正确;=AM2=a2+b2;④正确;得到S四边形AMFN⑤由正方形的性质得∠AMP=90°,∠ADP=90°,得∠ABP+∠ADP=180°,推出A,M,P,D四点共圆,⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△MFE,∴=,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴=,∴CP=b﹣;故②错误;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF(SAS);故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,。
专题09 新定义型几何图形问题(学生版) -2021年中考数学复习重难点与压轴题型专项训练
备战2021年中考复习重难点与压轴题型专项训练专题09新定义型几何图形问题【专题训练】一、解答题1.(2020·河南信阳市·八年级期末)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:我们已经学习了平行四边形、菱形、矩形、正方形,在这四种图形中是垂美四边形的是_____________.(2)性质探究:如图2,已知四边形ABCD是垂美四边形,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,CE交AB于点M,已知AC=4,AB=5,求GE的长.2.(2020·洪泽外国语中学八年级月考)如果三角形的两个内角α与β满足α﹣β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,△A >90°,△B =20°,求△C 的度数;(2)如图①,在Rt △ABC 中,△BAC =90°,AB =4,BC =5,点D 是BC 延长线上一点.若△ABD 是“准互余三角形”,求CD 的长;(3)如图②,在四边形ABCD 中,AC ,BD 是对角线,AC =4,CD =5,△BAC =90°,△ACD =2△ABC ,且△BCD 是“准互余三角形”,求BD 的长.3.(2020·湖南怀化市·中考真题)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是____________(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD △BC ,AC BD ⊥,过点D 作BD 垂线交BC 的延长线于点E ,且45DBC ∠=︒,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于△O 中,60BCD ∠=︒.求△O 的半径.4.(2020·内蒙古通辽市·九年级学业考试)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,,AB AD CB CD ==,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线,AC BD 交于点O ,AC BD ⊥.试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结,,CE BG GE .已知30,1CAB CB ∠=︒=,求GE 的长.5.(2019·河南九年级其他模拟)若△ABC绕点A逆时针旋转α后,与△ADE构成位似图形,则我们称△ABC与△ADE互为“旋转位似图形”.(1)知识理解:如图1,△ABC与△ADE互为“旋转位似图形”.①若α=25°,△D=100°,△C=28°,则△BAE=;②若AD=6,DE=7,AB=4,则BC=(2)知识运用:如图2,在四边形ABCD中,△ADC=90°,AE△BD于点E,△DAC=△DBC,求证:△ACD与△ABE互为“旋转位似图形”.(3)拓展提高:如图3,△ABG为等边三角形,点C为AG的中点,点F是AB边上的一点,点D为CF延长线上的一点,点E在线段CF上,且△ABD与△ACE互为“旋转位似图形”.若AB=6,AD=4,求DECE的值.6.(2020·常州市第二十四中学九年级期中)若三角形的一条角平分线与被平分的角的一边相等,则称这个三角形为“弱等腰三角形”,这条角平分线叫做这个三角形的“弱线”,如图①,AD是△ABC的角平分线,当AD=AB时,则△ABC是“弱等腰三角形”,线段AD是△ABC的“弱线”.(1)如图②,在△ABC中.△B=60°,△C=45°.求证:△ABC是“弱等腰三角形”;(2)如图③,在矩形ABCD中,AB=3,BC=4.以B为圆心在矩形内部作AE,交BC于点E,点F是AE上一点,连结CF.且CF与AE有另一个交点G.连结BG.当BG是△BCF的“弱线”时,求CG的长.(3)已知△ABC 是“弱等腰三角形”,AD 是“弱线”,且AB =3BD ,求AC :BC 的值.7.(2020·江西抚州市·金溪一中九年级一模)定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升)(3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求ADCD的值.8.(2020·江苏南通市·八年级月考)定义:有一组对边相等目这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD 与四边形AEEG 都是正方形,135AEB 180<∠<︒︒,求证:四边形BEGD 是“等垂四边形”;(2)如图②,四边形ABCD 是“等垂四边形”,AD BC ≠,连接BD ,点E ,F ,G 分别是AD ,BC ,BD 的中点,连接EG ,FG ,EF .试判定EFG 的形状,并证明;(3)如图③,四边形ABCD 是“等垂四边形”,4=AD ,6BC =,试求边AB 长的最小值.9.(2020·江西九年级一模)定义:两条长度相等,且它们所在的直线互相垂直的线段,我们称其互为“等垂线段”.知识应用:在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,△ACB=△AED=90°,连接BD,点P是线段BD的中点,连接PC,PE.(1)如图1,当AE在线段AC上时,线段PC与线段PE是否互为“等垂线段”?请说明理由.(2)如图2,将图1中的△ADE绕点A顺时针旋转90°,点D落在AB边上,请说明线段PC与线段PE互为“等垂线段”.拓展延伸:(3)将图1中的△ADE绕点A顺时针旋转150°,若BC=3,DE=1,求PC的值.10.(2020·沈阳市第一二六中学九年级月考)如图1,平面内有一点P到△ABC的三个顶点的距离分别为P A、PB、PC,若有P A2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC 关于点的勾股点;在点E、F、G三点中只有点是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE =CD ;②若DA =DE ,△AEC =120°,求△ADE 的度数.(3)矩形ABCD 中,AB =5,BC =6,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点,若△ADE 是等腰三角形,直接写出AE 的长.11.(2020·浙江宁波市·九年级零模)当一个角固定不变,而某种图形在该角的内部变化,则我们称这个角为墙角. (1)如图1,墙角O ∠=30°,如果AB =3,长度不变,在角内滑动,当OA =6时,则求出此时OB 的长度.(2)如图2,墙角O ∠=30°,如果在AB 的右边作等边ABC ∆,AB =3,长度不变,滑动过程中,请求出点O 与点C 的最大距离.(3)如图3,墙角sin O =35时,如果点E 是O ∠一条边上的一个点,DEF ∠=90°,其两条边与O ∠另一条边交于点F 与点D ,求OFOD的最大值.12.(2019·江西南昌市·八年级期中)如图1,我们把对角线互相垂直的四边形叫做对垂四边形.观察发现:如图1,对垂四边形ABCD四边存在数量为:AD2+BC2=AB2+CD2.应用发现:如图2,若AE,BD是△ABC的中线,AE△BD,垂足为O,AC=4,BC=6,求AB=应用知识:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=2,AB=3,求GE长.拓展应用:如图4,在平行四边形ABCD中,点E、F、G分别是AD,BC,CD的中点,BE△EG,AD=4,AB=3,求AF的长13.(2019·浙江杭州市·九年级期中)定义:若一个三角形一条边上的高等于这条边长的一半,则称该三角形为“半高”三角形,这条高称为“半高”.(1)如图1,ABC ∆中,90ACB ∠=︒,2BCAC =,点P 在AB 上,PD AC ⊥于点D ,PE BC ⊥于点E ,连接BD ,DE 求证: BDE ∆是“半高”三角形;(2)如图2,ABC ∆是“半高”三角形,且BC 边上的高是“半高”,点P 在AB 上,//PQ BC 交AC 于点Q ,PM BC ⊥于点M ,QN BC ⊥于点N .①请探究BM ,PM ,CN 之间的等量关系,并说明理由;②若ABC ∆的面积等于16,求MQ 的最小值.14.(2020·江苏扬州市·八年级期中)阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).① ;② .(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,△AEC=△AFC.求证:四边形AECF是筝形.(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD的面积.15.(2020·四川麓山师大一中八年级月考)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.16.(2020·浙江绍兴市·九年级期中)我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,△ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的△M交于点E,DE平分△ADC,连结AE,BD.显然△DCE、△DEF、△DAE 是半直角三角形.(1)求证:△ABC是半直角三角形;(2)求证:△DEC =△DEA ;(3)若点D 的坐标为(0,8),求AE 的长.17.(2020·江西南昌市·九年级期末)如图,在平面直角坐标系中,以原点O 为中心的正方形ABCD 的边长为4m ,我们把AB y ∥轴时正方形ABCD 的位置作为起始位置,若将它绕点O 顺时针旋转任意角度α时,它能够与反比例函数(0)k y k x=>的图象相交于点E ,F ,G ,H ,则曲线段EF ,HG 与线段EH ,GF 围成的封闭图形命名为“曲边四边形EFGH ”.(1)①如图1,当AB y ∥轴时,用含m ,k 的代数式表示点E 的坐标为________;此时存在曲边四边形EFGH ,则k 的取值范围是________;②已知23k m =,把图1中的正方形ABCD 绕点O 顺时针旋转45º时,是否存在曲边四边形EFGH ?请在备用图中画出图形,并说明理由.当把图1中的正方形ABCD 绕点O 顺时针旋转任意角度α时,直接写出使曲边四边EFGH 存在的k 的取值范围.③若将图1中的正方形绕点O 顺时针旋转角度()0180a a ︒<<︒得到曲边四边形EFGH ,根据正方形和双曲线的对称性试探究四边形EFGH 是什么形状的四边形?曲边四边形EFGH 是怎样的对称图形?直接写出结果,不必证明;(2)正方形ABCD 绕点O 顺时针旋转到如图2位置,已知点A 在反比例函数(0)k y k x=>的图象上,AB 与y 轴交于点M ,8AB =,1AM =,试问此时曲边四边EFGH 存在吗?请说明理由.18.(2019·湖南师大附中博才实验中学) 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC 中,AB =2,BC =52,AC =3,D 为平面内一点,以A 、B 、C 、D 四点为顶点构成的四边形为“完美四边形”,若DA ,DC 的长是关于x 的一元二次方程x 2-(m +3)x +14(5m 2-2m +13)=0(其中m 为常数)的两个根,求线段BD 的长度.(3)如图2,在“完美四边形”EFGH 中,△F =90°,EF =6,FG =8,求“完美四边形”EFGH 面积的最大值.19.(2020·江苏苏州市·九年级期中)如图(1),在△ABC中,如果正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC 上,那么我们称这样的正方形为“三角形内接正方形”小波同学按数学家波利亚在《怎样解题》中的方法进行操作:如图(2),任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结BN′并延长交AC于点N,画NM△BC于点M,NP△NM交AB于点P,PQ△BC于点Q,得到四边形PQMN,小波把线段BN称为“波利亚线”,请帮助小波解决下列问题:(1)四边形PQMN是否是△ABC的内接正方形,请证明你的结论;(2)若△ABC为等边三角形,边长BC=6,求△ABC内接正方形的边长;(3)如图(3),若在“波利亚线”BN上截取NE=NM,连结EQ,EM.当34MNBM时,猜想△QEM的度数,并说明你的理由.20.(2020·广州市育才中学九年级期中)若点P为△ABC所在平面上一点,且△APB=△BPC=△CP A=120°,则点P叫做△ABC的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点“.即P A+PB+PC最小.(1)如图1,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.①证明:点P就是△ABC费马点;②证明:P A+PB+PC=BE=DC;(2)如图2,在△MNG中,MN=,△M=75°,MG=3.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.21.(2020·湖南长沙市·九年级月考)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若,A C B D ∠=∠∠≠∠,则称四边形ABCD 为准平行四边形.(1)如图①,,,,A P B C 是O 上的四个点,60APC CPB ∠=∠=︒,延长BP 到Q ,使AQ AP =.求证:四边形AQBC 是准平行四边形;(2)如图②,准平行四边形ABCD 内接于O ,,AB AD BC DC +=,若O 的半径为5,6AB =,求AC 的长;(3)如图③,在Rt ABC 中,90,30,2C A BC ∠=︒∠=︒=,若四边形ABCD 是准平行四边形,且BCD BAD ∠≠∠,请直接写出BD 长的最大值.22.(2020·广东深圳市·九年级二模)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ;②在凸四边形ABCD 中,AB =AD 且CB ≠CD ,则该四边形 “十字形”.(填“是”或“不是”)(2)如图1,A ,B ,C ,D 是半径为1的△O 上按逆时针方向排列的四个动点,AC 与BD 交于点E ,△ADB ﹣△CDB =△ABD ﹣△CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式; ①S =1S 2S +;②S =3S 4S +;③“十字形”ABCD 的周长为1210.23.(2020·浙江省临海市临海中学九年级期中)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD ,△ABC =△ADC =90°,则该损矩形的直径是线段 .(2)在线段AC 上确定一点P ,使损矩形的四个顶点都在以P 为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,△ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分△ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.。
2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)
2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。
(决胜2021年)中考物理压轴题剖析与精练专题09浮力(含解析)
中考物理压轴题剖析与精练:专题09浮力【考点1】:浮力【例1】(2020•山西模拟)在物理研讨课上,王老师用自制教具演示了如下实验:将一只去盖、去底的饮料瓶的瓶口朝下,把小球(直径略大于瓶口直径)放入瓶内并注水,看到有少量水从瓶口流出,此时小球静止(如图甲所示),停止注水,然后用手堵住瓶口,一会儿小球浮起来了(如图乙所示,水未流出)。
以下分析正确的是()A.小球上浮过程中,受到的浮力始终等于受到的重力B.小球上浮过程中,受到的浮力始终不变C.小球最终漂浮时,受到的浮力大于重力D.小球漂浮时瓶内水对手的压强小于上浮过程中瓶内水对手的压强【考点】浮力和压强概念【答案】D【解析】AB、小球上浮过程中,露出水面之前受到的浮力大于重力;露出水面的过程中,重力不变,浮力减小,当乒乓球漂浮时浮力等于重力,故AB错误;C、小球漂浮时,受到的浮力等于重力,故C错误;D、小球上浮过程中排开水的体积大于漂浮时排开水的体积,小球上浮过程中水的深度大于小球漂浮时瓶内水的深度,故小球漂浮时水对手的压强小于上浮过程中瓶内水对手的压强,故D正确。
故选:D。
【点评】本题考查浮力有关的知识和压强公式的应用,属于常考题型,难度不大。
【变式1-1】(2020•香洲区模拟)某检验人员在盛放密度分别为ρ甲、ρ乙、ρ丙的硫酸铜溶液试管中,分别滴入一滴体积相同的同一感染者的血液,一段时间后出现了如图所示的情形。
则下列分析正确的是()A.血液滴在甲试管中受到的浮力最小B.感染者血液的密度与ρ乙相同C.血液滴在丙试管中受到的重力等于排开硫酸铜溶液的重力D.三个试管底部受到硫酸铜溶液的压强相等【考点】浮力概念和物体的浮沉条件【答案】B【解析】A、同一感染者体积相同的一滴血液的重力相同,甲中血液漂浮,浮力等于重力;乙中血液悬浮,浮力等于重力;丙中血液沉底,浮力小于重力,所以F甲=F乙>F丙,故A错误;B、当物体密度与液体密度相同时,物体将悬浮在液体中,血液滴在乙中悬浮,故感染者血液的密度与ρ乙相同,故B正确;C、血液滴在丙试管中下沉,故受到的重力大于排开硫酸铜溶液的重力,故C错误;D、当物体密度与液体密度相同时,物体将悬浮在液体中,血液滴在乙中悬浮,故感染者血液的密度与ρ乙相同,当血液滴漂浮时,硫酸铜溶液的密度大于血液的密度,当血液滴下沉时,硫酸铜溶液的密度小于于血液的密度,可知ρ甲>ρ乙>ρ丙,由图知液面相平,由公式p=ρgh可得,p甲>p乙>p丙,故D错误。
中考数学突破专题训练---第五题:压轴题(9)
中考突破专题训练---第五题:压轴题(9)(时间:40分钟,满分27分)五、解答题(三)(本大题3小题,每小题9分,共27分)2008年20.(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的和与积,填人下表(.21.(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.C BOD 图7 A B O D C E图822.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD . (1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围. DCBAE图9图10中考突破专题训练---压轴题(9)答案五、解答题(三)(每小题9分) 20.(1)3, 3-, 0, 29-;…………………………2分32, 0, 32, 0;…………………………4分 2, 1, 3, 2;…………………………6分 b a -, ca.…………………………7分 (2)已知:1x 和2x 是方程20 (0)ax bx c a ++=≠的两个根,那么,12b x x a +=-, 12cx x a⋅=.……………………………………9分21.解:(1)如图7.∵ △BOC 和△ABO 都是等边三角形, 且点O 是线段AD 的中点,∴ OD=OC=OB=OA,∠1=∠2=60°, ……1分 ∴ ∠4=∠5.又∵∠4+∠5=∠2=60°,∴ ∠4=30°.…………………………2分 同理,∠6=30°.…………………………3分 ∵ ∠AEB=∠4+∠6,∴ ∠AEB=60°.………………………4分 (2)如图8. ∵ △BOC 和△ABO 都是等边三角形,∴ OD=OC, OB=OA,∠1=∠2=60°,………5分 又∵OD=OA,∴ OD =OB ,OA =OC ,∴ ∠4=∠5,∠6=∠7. …………………6分∵ ∠DOB=∠1+∠3, ∠AOC=∠2+∠3,∴∠DOB=∠AOC. …………………………………7分 ∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°, ∴ 2∠5=2∠6,∴ ∠5=∠6.………………………………………………8分 又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6, ∴ ∠AEB =∠2+∠5-∠5=∠2,∴ ∠AEB =60°.…………………………………………9分 图7OD C A图88765421EO DC BA322.解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB ,又∵ ∠1=∠2=30°,∴ ∠PFB =∠2=30°,∴ FP =BP.…………………………6过点P 作PK ⊥FB 于点K ,则FK BK =∵ AF =t ,AB =8,∴ FB =8-t ,1(8)2BK t =-.在Rt △BPK 中,1tan 2(8)tan 30)2PK BK t t =⋅∠=-︒=-. ……………………7分 ∴ △FBP 的面积11(8)(8)226S FB PK t t =⋅⋅=⋅-⋅-, ∴ S 与t 之间的函数关系式为: 28)S t =-,或243S t =-+…………………………………8分 t 的取值范围为:08t ≤<. …………………………………………………………9分。
江苏省中考数学选择填空压轴题专题9阅读理解问题
专题 09 阅读理解问题例 1.我们把 1,1,2, 3,5,8,13, 21, 这组数称为斐波那契数列,为了进一步研究,挨次以这列数为半径作 90°圆弧 PP ,PP ,PP , 获得斐波那契螺旋线,而后按序连接, , , 获得螺旋折线(如图) ,已知点 P (0, 1), PP PP PPP (- 1,0),( 0,- 1),则该折线上的点 的坐标为( )P PA .(- 6,24)B .(- 6,25)C .(- 5,24)D .(- 5,25) 同类题型 1.1 定义 [x]表示不超出实数 x 的最大整数,如 [1.8] =1,[- 1.4]=-12,[-3]=- 3.函数 y =[x] 的图象以下图,则方程[x] = x 的解为()2A .0 或 2B .0 或 2C .1 或- 2D . 2或- 2同类题型 1.2 nmn ﹣1m ﹣1对于函数 y = x + x ,我们定义y'= nx + mx ( m 、 n 为常数).比如 y =x 4+x 2,则 y'=4x 3+2x .已知: y =1x 3+( m ﹣1)x 2+m 2x .3(1)若方程 y ′=0 有两个相等实数根,则 m 的值为 ;(2)若方程 y ′=m ﹣1有两个正数根,则 m 的取值范围为.4例 2.将一枚六个面的编号分别为 1,2,3,4,5,6 的质地平均的正方体骰子先后扔掷两次,记第一次掷出的点数为 a ,第二次掷出的点数为 b ,则使对于x ,y 的方程组 {ax +by =3)有正数解的概率为 ___.x +2y =2同类题型 2.1 六个面上分别标有1,1,2,3, 4, 5 六个数字的平均立方体的表面睁开图以下图,掷这个立方体一次,记向上一面的数为平面直角坐标系 中某个点的横坐标,朝下一面的数为该点的纵坐标.则获得的坐标落在抛物线y =2x -x 上的概率是( )A .2 B .1C .1D .13639同类题型 2.2 把一枚六个面编号分别为 1,2,3, 4,5, 6 的质地平均的正方体骰子先后扔掷 2 次,若两个正面向上的编号分别为m 、n ,则二次函数 y =x +mx +n 的图象与 x 轴没有公共点的概率是 ________.同类题型2.3 如图,正方形ABCD的边长为2,将长为2 的线段QR 的两头放在正方形的相邻的两边上同时滑动.假如点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点 B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD内任一点,把N 点落在线段 QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =()4-ππ 1π-1A .B .C .D .4444同类题型 2.4 从- 1, 1, 2 这三个数字中,随机抽取一个数,记为 a ,那么,使对于 x 的一次函数 y =2x +a 的图象与 x 轴、 y 轴围成的三角形的面积为1,4且使对于 x 的不等式组 {x +2 ≤a 有解的概率为 _________.-)1 x ≤2a例 3.若 f (n )为的各位数字之和,如 +1=197,1+9 + (是随意正整数)14 n 1 n+7=17,则 f ( 14)= 17,记 ( n )= f (n ), =(f (n )),k 是任 f f = (()) f f f nf意正整数则f(8)=()A.3 B .5 C.8 D.11同类题型 3.1 将 1,2,3,,100 这100 个自然数,随意分为50 组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式1(|a-2b|+a+b)中进行计算,求出其结果,50 组数代入后可求得50 个值,则这 50 个值的和的最大值是 ____________.同类题型 3.2 规定: [x]表示不大于 x 的最大整数,(x)表示不小于x 的最小整数, [x)表示最靠近x 的整数( x≠n+ 0.5,n 为整数),比如: [2.3] =2,(2.3)=3,[2.3)= 2.则以下说法正确的选项是 ________.(写出全部正确说法的序号)①当 x=1.7 时, [x]+( x)+ [x)= 6;②当 x=- 2.1 时, [x] +( x)+ [x)=- 7;③方程 4[x]+3(x)+ [x)= 11 的解为 1<x<1.5;④当- 1< x< 1 时,函数 y=[x] +( x)+ x 的图象与正比率函数有两个交点.y= 4x 的图象同类题型 3.3 设[x]表示不大于 x 的最大整数, { x} 表示不小于 x 的最小整数,<x>表示最靠近 x 的整数( x≠n+ 0.5, n 为整数).比如 [3.4] =3,{3.4} =4,<3.4 ≥3.则方程 3[x]+2{x} +< x≥ 22()A .没有解B.恰巧有 1 个解C.有 2 个或 3 个解D.有无数个解同类题型 3.4 对于实数 p, q,我们用符号min{ p,q} 表示 p, q 两数中较小的数,如 min{1 ,2} =1,所以, min{ -,} = ______;若 min{ (-, }2 -3 )xx 1=1,则 x=____________.例4.已知点 A 在函数y=-1(x>0)的图象上,点 B 在直线y= kx+1+k(k x为常数,且 k≥0)上.若 A,B 两点对于原点对称,则称点 A, B 为函数y,y图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的状况为()A.有 1 对或 2 对B.只有 1 对C.只有 2 对D.有 2 对或3 对同类题型 4.1 在平面直角坐标内A,B 两点知足:①点 A,B 都在函数 y=f(x)的图象上;②点 A,B 对于原点对称,则称A,B 为函数 y=f(x)的一个“黄金点对”.|x+4|,x ≤0则函数 f(x)=1的“黄金点对”的个数为(){-,x>0 )xA.0 个 B .1 个C.2 个D.3 个同类题型 4.2 定义:在平面直角坐标系 xOy 中,把从点 P 出发沿纵或横方向抵达点Q(至多拐一次弯)的路径长称为 P,Q 的“实质距离”.如图,若 P(-1, 1), Q( 2,3),则 P, Q 的“实质距离”为 5,即 PS+ SQ= 5 或 PT+ TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B,C 三个小区的坐标分别为 A(3, 1),B(5,- 3),C(- 1,- 5),若点 M 表示单车停放点,且知足 M 到 A, B, C 的“实际距离”相等,则点 M 的坐标为____________.同类题型 4.3 经过三边都不相等的三角形的一个极点的线段把三角形分红两个小三角形,假如此中一个是等腰三角形,此外一个三角形和原三角形相像,那么把这条线段定义为原三角形的“和睦切割线”.如图,线段CD 是△ABC 的“和谐切割线”,△ACD 为等腰三角形,△CBD 和△ABC 相像,∠A= 46°,则∠ACB 的度数为__________.专题 09 阅读理解问题例 1.我们把 1,1,2, 3,5,8,13, 21, 这组数称为斐波那契数列,为了进一步研究,挨次以这列数为半径作 90°圆弧 PP ,PP ,PP , 获得斐波那契螺旋线,而后按序连接, , , 获得螺旋折线(如图) ,已知点 P (0, 1),PP PP PPP (- 1,0),( 0,- 1),则该折线上的点 的坐标为( )P PA .(- 6,24)B .(- 6,25)C .(- 5,24)D .(- 5,25)解:由题意, P 在 P 的正上方,推出 P 在 P 的正上方,且到P 的距离= 21+ 5=26,所以 P 的坐标为(- 6,25), 选 B .同类题型 1.1 定义 [x]表示不超出实数 x 的最大整数,如 [1.8] =1,[- 1.4]=- 2,[-3]=- 3.函数 y =[x] 的图象以下图,则方程[x] = 1 的解为( )2 xA .0 或 2B .0 或 2C .1 或- 2D . 2或- 2解:当 1≤x<2 时,1=1,解得= 2 ,;2xx=- 2x1当 x=0,x=0,x=0;21当- 1≤x<0时,2x=- 1,方程没有实数解;1当- 2≤x<- 1 时,2x=- 2,方程没有实数解;1所以方程 [x]=2x的解为 0 或 2.选A.同类题型 1.2 对于函数nm n﹣1m﹣1y= x + x ,我们定义y'= nx + mx ( m、 n 为常数).比如 y=x4+x2,则 y'=4x3+2x.已知: y=1x3+( m﹣1)x2+m2x.3(1)若方程y′=0 有两个相等实数根,则m 的值为;(2)若方程y′=m﹣1有两个正数根,则4m 的取值范围为.解:依据题意得y′=x2+2(m﹣1)x+m2,(1)∵方程x2﹣2(m﹣1)x+m2=0 有两个相等实数根,∴△= [ ﹣2(m﹣1)]2﹣4m2=0,1解得: m=;(2)y′=m﹣1,即 x2+2(m﹣1)x+m2=m﹣1,4 41化简得: x2+2(m﹣1)x+m2﹣m+=0,4∵方程有两个正数根,2(m-1)<0∴m2-m+> 0 {[-2(m-1)]2-4(m2-m+) ),≥03 1解得: m≤且 m≠ .4 2例2.将一枚六个面的编号分别为 1,2,3,4,5,6 的质地平均的正方体骰子先后扔掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使对于+=ax by 3)有正数解的概率为 ___.x,y的方程组 {x+2y=2解:①当 2a-b=0 时,方程组无解;②当 2a-b≠0时,方程组的解为由 a、b 的实质意义为1, 2, 3, 4,5, 6 可得.易知 a,b 都为大于 0 的整数,则两式结合求解可得=6-2b,2a-3,-y =-x2a b2a b∵使 x、y 都大于 0 则有6-2b>0,=2a-3>0,=-x -y2a b 2a b∴解得 a<1.5,b>3 或许 a>1.5,b<3,∵a,b 都为 1 到 6 的整数,∴可知当 a 为 1 时 b 只好是 4, 5, 6;或许 a 为 2, 3, 4, 5, 6 时 b 为 1 或2,这两种状况的总出现可能有3+10=13 种;(1, 4)(1,5)( 1,6)(2,1)( 3,1)(4,1)( 5,1)(6,1)(2,2)(3,2)(4,2)(5,2)(6,2)又掷两次骰子出现的基本领件共6×6=36 种状况,故所求概率为=13.36同类题型 2.1 六个面上分别标有 1,1,2,3, 4, 5 六个数字的平均立方体的表面睁开图以下图,掷这个立方体一次,记向上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则获得的坐标落在抛物线y=2x-x 上的概率是()A .2B .1C .1D .13639解:掷一次共出现 6 种状况,依据图形可知 1,2,3 所对应的数分别是 1,5,4,在抛物线上的点为:( 1,1),只有两种状况,所以概率为:2=1. 6 3选 C .同类题型 2.2 把一枚六个面编号分别为1,2,3, 4,5, 6 的质地平均的正方体骰子先后扔掷 2 次,若两个正面向上的编号分别为m 、n ,则二次函数 = +xy mx +n 的图象与 x 轴没有公共点的概率是 ________. 解:∵二次函数 y =x +mx +n 的图象与 x 轴没有公共点, ∴△< 0,即 m -4n <0, ∴m <4n ,列表以下:m 、 n 1234561 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 3 3,1 3,2 3,3 3,4 3,5 3,6 44 , 1 , 2 , 3 , 4 ,5 4 , 64 4 4 45 5,1 5,2 5,3 5,4 5,5 5,6 66,16,26,36,46,56,6共有 36 种等可能的结果,此中知足 m <4n 占 17 种,17所以二次函数y=x+mx+n 的图象与 x 轴没有公共点的概率=.同类题型 2.3 如图,正方形 ABCD 的边长为 2,将长为 2 的线段 QR 的两头放在正方形的相邻的两边上同时滑动.假如点Q 从点 A 出发,沿图中所示方向按A→B→C→D→A 滑动到 A 止,同时点R 从点 B 出发,沿图中所示方向按B→C→D→A→B 滑动到 B 止.点 N 是正方形 ABCD 内任一点,把 N 点落在线段 QR 的中点 M 所经过的路线围成的图形内的概率记为 P,则 P=()- B .πC.1 -A.4πD.π14 4 4 4解:依据题意得点M 到正方形各极点的距离都为1,点M 所走的运动轨迹为以正方形各极点为圆心,以 1 为半径的四个扇形,∴点 M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去 4 个扇形的面积.而正方形ABCD 的面积为2×2=4,4 个扇形的面积为90π×14 ×=π,360∴点∴把M 所经过的路线围成的图形的面积为4-π,N 点落在线段QR 的中点 M 所经过的路线围成的图形内的概率记为P,则4-π.P= 4选A.同类题型 2.4 从- 1, 1, 2 这三个数字中,随机抽取一个数,记为a,那么,使对于 x 的一次函数 y=2x+a 的图象与 x 轴、 y 轴围成的三角形的面积为1,4且使对于 x 的不等式组{x +2 ≤a)有解的概率为 _________. 1-x ≤2a1解:当 a =- 1 时, y =2x +a 可化为 y = 2x - 1,与 x 轴交点为 (, 0),与 y轴 2交点为( 0,- 1),三角形面积为1 1 12 × ×1= ;241,0),与 y 轴交点当 a = 1 时, y =2x + a 可化为 y = 2x +1,与 x 轴交点为 (-2为( 0,1),三角形的面积为 1 1 1 2 × ×1= ;2 4当 a =2 时, y =2x +2 可化为 y = 2x + 2,与 x 轴交点为(- 1,0),与 y 轴交点为( 0,2),三角形的面积为 1×2×1=1(舍去);2当 a =- 1 时,不等式组{x +2 ≤a 可化为 x +2 ≤-1,不等式组的解集为){)1-x ≤2a1-x ≤-2x ≤-3 ,无解;{ x ≥3 )x +2 ≤ax +2 ≤1 x ≤-1 当 a = 1 时,不等式组1-x ≤2a可化为1-x ≤2 ,解得 -x ≤1),解集为{){ ) {-≤ 1,解得 x =- 1.{-)x ≥ 1使对于 x 的一次函数 y =2x +a 的图象与 x 轴、 y 轴围成的三角形的面积为1,4且使对于 x 的不等式组 {x +2 ≤a 有解的概率为1.)3=1-x ≤2a P例 3.若 f (n )为 + (是随意正整数) 的各位数字之和,如 +1=197,1+ 914n 1 n +7=17,则 f ( 14)= 17,记 ( n )= f (n ), =(f (n )),k 是任 f f = (()) f f f nf意正整数则 f (8)=()A .3B .5C .8D .11解:∵ 8+1=65,∴ f (8)= f (8)= 6+5=11,同理,由 11+1=122 得 f (8)= 1+ 2+2= 5;由 5+ 1=26,得 f (8)= 2+ 6=8,可得f (8)=6+5=11=f (8), (8), ,f (8)=f ∴ f (8)=f (8)对随意 k ∈ N 建立又∵ 2016=3×672,∴ f (8)=f (8)=f (8)= =f (8)= 8.选 C .同类题型3.1 将 1,2,3, ,100 这100 个自然数,随意分为50 组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式1(|a -2b|+a +b)中进行计算,求出其结果,50 组数代入后可求得50 个值,则这50 个值的和的最大值是 ____________.解:①若 a ≥b ,则代数式中绝对值符号可直接去掉,∴代数式等于 a ,②若 b >a 则绝对值内符号相反,∴代数式等于 b因而可知输入一对数字,能够获得这对数字中大的那个数(这跟谁是a 谁是b没关)既然是乞降,那就要把这五十个数加起来还要最大,我们能够列举几组数,找找规律,假如 100 和 99 一组,那么 99 就被浪费了,由于输入 100 和 99 这组数字,获得的不过 100,假如我们取两组数字 100 和 1 一组, 99 和 2 一组,则这两组数字代入再乞降是 199,假如我们这样取100 和 99 2 和 1,则这两组数字代入再乞降是102,这样,能够很显然的看出,应防止大的数字和大的数字相遇这样就能够使最后的和最大,由此一来,只需100 个自然数里面最大的五十个数字从51 到 100 随意俩个数字不一样组,这样最后求得五十个数之和最大值就是五十个数字从51 到 100 的和,51+52+53++100=3775.同类题型 3.2 规定: [x]表示不大于 x 的最大整数,(x)表示不小于x 的最小整数, [x)表示最靠近x 的整数( x≠n+ 0.5,n 为整数),比如: [2.3] =2,(2.3)=3,[2.3)= 2.则以下说法正确的选项是 ________.(写出全部正确说法的序号)①当 x=1.7 时, [x]+( x)+ [x)= 6;②当x=- 2.1 时, [x] +( x)+ [x)=- 7;③方程 4[x]+3(x)+ [x)= 11 的解为 1<x<1.5;④当- 1< x< 1 时,函数 y=[x] +( x)+ x 的图象与正比率函数 y= 4x 的图象有两个交点.解:①当 x=1.7 时,[x]+( x)+ [x)=[1.7] +( 1.7)+ [1.7)=1+2+2=5,故①错误;②当 x=- 2.1 时,[x]+( x)+ [x)=[-2.1]+(- 2.1)+ [ -2.1)=(- 3)+(- 2)+(- 2)=- 7,故②正确;③4[x] +3(x)+ [x)= 11,7[x]+3+[x)= 11,7[x]+[x)= 8,1<x<1.5,故③正确;④∵- 1<x<1 时,∴当- 1<x<- 0.5 时, y=[x] +( x)+ x=- 1+0+x=x-1,当- 0.5<x<0 时, y=[x] +( x)+ x=- 1+0+x=x-1,当x=0 时, y=[x] +( x)+ x=0+0+0=0,当0<x<0.5 时, y=[x]+( x)+ x=0+1+x=x+1,当0.5<x<1 时, y=[x]+( x)+ x=0+1+x=x+1,∵y=4x,则x- 1=4x 时,得x=- 1;x+1=4x3 时,得x=1;当3x= 0 时, y=4x=0,∴当- 1< x< 1 时,函数y=[x] +( x)+ x 的图象与正比率函数y= 4x 的图象有三个交点,故④错误,答案为②③.同类题型 3.3 设[x]表示不大于 x 的最大整数, { x} 表示不小于 x 的最小整数,<x>表示最靠近 x 的整数( x≠n+ 0.5, n 为整数).比如 [3.4] =3,{3.4} =4,<3.4 ≥3.则方程A .没有解C.有 2 个或3[x]+2{x} +< x≥ 22()B.恰巧有 1 个解3 个解D.有无数个解】解:当 x= 3 时, 3[x]+ 2{ x} +< x≥3×3+2×3+ 3= 18,当 x= 4 时, 3[x] + 2{x} +< x≥ 3×4+2×4+4=24,∴可得 x 的大概范围为 3<x<4,①3<x<3.5 时, 3[x] +2{ x} +< x≥3×3+2×4+3=20,不切合方程;②当3.5<x<4 时, 3[x]+2{ x} +< x≥3×3+2×4+4=21,不切合方程.选A.同类题型 3.4 对于实数 p, q,我们用符号min{ p,q} 表示 p, q 两数中较小的数,如 min{1 ,2} =1,所以, min{ -,} = ______;若 min{ (-, }2 -3 )xx 1=1,则 x=____________.解: min{ -2,- 3} =- 3,∵min{ , } =1,(-)xx 1当 x=0.5 时,,不行能得出,最小值为1,x=(x-1)∴当 x>0.5 时,(-)<,x 1 x则(x-1)=1,x-1=±1,x-1=1,x-1=- 1,解得:x=2,x=0(不合题意,舍去),当x<0.5 时,(x-1)>x,则x=1,解得:x=1(不合题意,舍去),x=- 1,综上所述: x 的值为: 2 或- 1.例4.已知点 A 在函数y=-1(x>0)的图象上,点 B 在直线y= kx+ 1+ k(k x为常数,且 k≥0)上.若 A,B 两点对于原点对称,则称点 A, B 为函数y,y图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的状况为()A.有 1 对或 2 对B.只有 1 对C.只有2 对D.有2 对或3 对解:设 A (a ,-1),a1由题意知,点 A 对于原点的对称点B (- a ,)在直线 y =kx +1+k 上, a则1=- ak +1+k , a整理,得: ka -( k +1)a +1=0 ①,即( a -1)(ka -1)= 0,∴a -1=0 或 ka -1=0,则 a =1 或 ka -1=0,若 k =0,则 a =1,此时方程①只有 1 个实数根,即两个函数图象上的 “友善点 ” 只有 1 对; 若 k ≠0,则 a =1 或1,此时方程①有 2 个实数根,即两个函数图象上的 “友a =k好点 ”有 2 对,综上,这两个函数图象上的 “友善点 ”对数状况为 1 对或 2 对,选 A .同类题型 4.1 在平面直角坐标内A ,B 两点知足:①点 A ,B 都在函数 y =f (x )的图象上;②点 A ,B 对于原点对称,则称 A ,B 为函数 y =f (x )的一个 “黄金点对 ”.|x +4|,x ≤0则函数 f (x )= {1 )的“黄金点对 ”的个数为( ) - ,x >0xA .0 个B .1 个C .2 个D .3 个解:依据题意: “黄金点对 ”,可知,作出函数y=-1(x>0)的图象对于原点对称的图象,x同一坐标系里作出函数y=|x+4|,x≤0的图象如右图:察看图象可得,它们在x≤0时的交点个数是3.即f(x)的“黄金点对”有: 3个.选 D.同类题型 4.2 定义:在平面直角坐标系xOy 中,把从点 P 出发沿纵或横方向到达点 Q(至多拐一次弯)的路径长称为P,Q 的“实质距离”.如图,若P(-1, 1), Q( 2,3),则 P, Q 的“实质距离”为 5,即 PS+ SQ= 5 或 PT+ TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B,C 三个小区的坐标分别为 A(3, 1),B(5,- 3),C(- 1,- 5),若点 M 表示单车停放点,且知足 M 到 A, B, C 的“实际距离”相等,则点 M 的坐标为____________.解:若设 M(x,y),则由题目中对“实质距离”的定义可得方程组: 3-x+1-y=y+5+x+1=5-x+3+y,解得, x=1,y=- 2,则 M(1,- 2).同类题型 4.3 经过三边都不相等的三角形的一个极点的线段把三角形分红两个小三角形,假如此中一个是等腰三角形,此外一个三角形和原三角形相像,那么把这条线段定义为原三角形的“和睦切割线”.如图,线段CD 是△ABC 的“和睦切割线”,△ACD 为等腰三角形,△CBD 和△ABC 相像,∠ A= 46°,则∠ ACB 的度数为 __________.解:∵△ BCD∽△ BAC,∴∠ BCD=∠ A=46°,∵△ ACD 是等腰三角形,∵∠ ADC>∠ BCD,∴∠ ADC>∠ A,即 AC≠CD,1①当 AC=AD 时,∠ACD=∠ADC=(180°-46°)= 67°,∴∠ ACB=67°+46°=113°,②当 DA=DC 时,∠ ACD=∠ A=46°,∴∠ ACB=46°+46°=92°,故答案为 113°或 92°.。
2023年九年级中考数学 压轴题集训
压轴题集训一、阅读长题【例】探究一,模型再现:m条直线最多可以把平面分割成多少个部分?如图①,很明显,平面中画出1条直线时,会得到1+1=2(个)部分;所以1条直线最多可以把平面分割成2个部分;如图②,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4(个)部分,所以2条直线最多可以把平面分割成4个部分;如图③,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7(个)部分,所以3条直线最多可以把平面分割成7个部分;平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11(个)部分,所以4条直线最多可以把平面分割成11个部分;……图①图②图③问题一:5条直线最多可以把平面分割成个部分.问题二:m条直线最多可以把平面分割成个部分(用含m的代数式表示).探究二,类比迁移:n个圆最多可以把平面分割成多少个部分?如图④,很明显,平面中画出1个圆时,会得到1+1=2(个)部分,所以1个圆最多可以把平面分割成2个部分;如图⑤,平面中画出第2个圆时,新增的一个圆与已知的1个圆最多有2个交点,这2个交点会把新增的这个圆分成2部分,从而多出2个部分,即总共会得到1+1+2=4(个)部分,所以2个圆最多可以把平面分割成4个部分;如图⑥,平面中画出第3个圆时,新增的一个圆与已知的2个圆最多有4个交点,这4个交点会把新增的这个圆分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8(个)部分;图④图⑤图⑥平面中画出第4个圆时,新增的一个圆与已知的3个圆最多有6个交点,这6个交点会把新增的这个圆分成6部分,从而多出6个部分,即总共会得到1+1+2+4+6=14(个)部分;……问题三:5个圆最多可以把平面分割成个部分.问题四:n个圆最多可以把平面分割成个部分(用含n的代数式表示).问题五:如果n个圆最多可以把平面分割成508个部分,求n的值(要求写出解答过程).探究三,拓展延伸:问题六:5条直线和1个圆最多可以把平面分割成个部分.问题七:m 条直线和n 个圆最多可以把平面分割成 个部分(用含m,n 的代数式表示). 解析:本题探究平面分割问题,直线与圆分割平面的探究方式是相同的,其本质都是先研究新增交点的个数,进而得到新增的平面部分的个数,再利用规律[1+2+3+…+m=m (m+1)2]解决具体问题.对应训练1.【问题】 用n 边形的对角线把n 边形分割成(n -2)个三角形,共有多少种不同的分割方案(n ≥4)?【探究】 为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n 边形的分割方案有f(n)种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①、图②,显然只有2种不同的分割方案,所以f(4)=2.图① 图②探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案? 不妨把分割方案分成3类:图③ 图④ 图⑤第1类:如图③,用点E 与B 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种不同的分割方案.第2类:如图④,用点A ,E 与C 连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为12f(4)种分割方案. 第3类:如图⑤,用点A 与D 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种不同的分割方案.综上,f(5)=f(4)+12f(4)+f(4)=52×f(4)=104×f(4)=5(种). 探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案? 不妨把分割方案分成四类:图⑥ 图⑦ 图⑧ 图⑨第1类:如图⑥,用点F 与B 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有f(5)种不同的分割方案,所以此类共有f(5)种不同的分割方案.第2类:如图⑦,用点A ,F 与C 连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种分割方案.第3类:如图⑧,用点A ,F 与D 连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种分割方案.第4类:如图⑨,用点A 与E 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有f(5)种不同的分割方案,所以此类共有f(5)种分割方案.综上,f(6)=f(5)+f(4)+f(4)+f(5)=f(5)+25f(5)+25f(5)+f(5)=145f(5)=14(种).探究四:用七边形的对角线把七边形分割成5个三角形,则f(7)与f(6)的关系为: f(7)=( )6f(6),共有 种不同的分割方案.……【结论】 用n 边形的对角线把n 边形分割成(n -2)个三角形,共有多少种不同的分割方案(n ≥4)?[直接写出f(n)与f(n -1)之间的关系式,不写解答过程].【应用】 用九边形的对角线把九边形分割成7个三角形,共有多少种不同的分割方案?(应用上述结论中的关系式求解.)2.实际问题:现有n 支队伍,每支队伍都有足够多的水平完全相同的队员,要从这n 支队伍中抽调部分队员安排到一张有4个位置的方桌进行竞技比赛,4个位置可以出现来自于同一队伍的队员,为了防止他们作弊,需要避免同队的队员坐在相邻的座位上.那么,一共有多少种不同的安排方法?问题探究:探究一:如果有两支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?不妨设两支队伍分别为A ,B.从①号位开始,我们有2种选择,即A 队员或B 队员,②③号位置都只有1种选择(另一支队伍的队员),④号位也只有1种选择.这样就得到了2×1×1×1=2(种),一共有两种不同的安排方法.探究二:如果有3支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?不妨设3支队伍分别为A,B,C.让我们运用上面的方法试试.①号位置有3种队员可以选择,即A队员、B队员或C队员,②③两个位置选择队员时,我们需要考虑两种不同的情形:第1种:若②③号位队员来自同一队伍,则②号位有2种选择,③号位只有1种选择,④号位有2种选择,此时会有3×2×1×2=12(种)安排方法;第2种:若②③号位队员来自不同的队伍,则②号位有2种选择,③号位只有1种选择,④号位也只有1种选择,此时会有3×2×1×1=6(种)安排方法.把上述两种情况的结果加起来得到12+6=18(种),即一共有18种不同的安排方法.探究三:如果有4支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?(请按照前面的探究方法,描述如果有4支参赛队伍时,会有多少种结果的推算过程.)归纳探究:如果有n支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?无论有多少支参赛队伍,我们都要考虑两种情况:②③号位队员来自同一个队伍;②③号位队员来自不同的队伍.如果有n支参赛队伍,①号位有种队员可以选择,②号位有种队员可以选择.若②③号位队员来自同一队伍,则③号位只有1种选择,④号位有种选择,这样我们就有种安排方法(结果不需化简).若②③号位队员来自不同队伍,则③号位有种选择,④号位有种选择,这样我们就有种安排方法(结果不需化简).结论:如果有n支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有种不同的安排方法(结果不需化简).二、动态几何题【例】如图,在矩形ABCD中,AB=24 cm,BC=16 cm,点E为边CD的中点,连接BE,作EF⊥BE交AD于点F.点P从点B出发,沿BE方向匀速运动,速度为2 cm/s;同时,点Q从点A出发,沿AB方向匀速运动,速度为3 cm/s.当一个点停止运动时,另一个点也停止运动.设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,点P在线段BQ的垂直平分线上?(2)连接PQ,设五边形AFEPQ的面积为S(cm2),求S与t的函数关系式.(3)在运动过程中,是否存在某一时刻t,使S五边形AFEPQ∶S矩形ABCD=33∶64?若存在,求出t 的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点Q在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.1.如图,在四边形ABCD中,AB∥CD,∠D=90°,AC⊥BC,DC=8 cm,AD=6 cm.点F从点A出发,以2 cm/s的速度沿AB向点B匀速运动;同时,点E从点B出发,以1 cm/s的速度沿BC向点C匀速运动.当其中一点到达终点时,两点都停止运动,设运动时间为t(s).(1)求AB的长度.(2)设四边形ACEF的面积为y(cm2),求y与t的函数关系式.倍?若存在,求出此时(3)是否存在某一时刻t,使得四边形ACEF的面积是△ACD的面积的54t的值;若不存在,请说明理由.(4)求t为何值时,△BEF为直角三角形.2.如图,在矩形ABCD中,AB=8 cm,BC=6 cm,连接AC,点O为AC的中点,点E为边BC 上的一个动点,连接OE,作OF⊥OE,交边AB于点F.已知点E从点B开始,以1 cm/s的速度在线段BC上移动,设运动时间为t(s)(0<t<6).解答下列问题:(1)当t为何值时,OE∥AB ?(2)连接EF,设△OEF的面积为y(cm2),求y与t的函数关系式.(3)在运动过程中,是否存在某一时刻t,使S△OEF∶S矩形ABCD=51∶384?若存在,求出t的值;若不存在,请说明理由.(4)连接OB,在运动过程中,是否存在某一时刻t,使OB恰好将△OEF分成面积比为1∶2的两部分?若存在,直接写出t的值;若不存在,请说明理由.备用图①备用图②。
最新九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)
2023年九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x ∥轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++沿射线AC 方向平移M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.3.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标.4.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线24y ax bx =++与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,直线4y x =-+经过B 、C 两点,4OB OA =.(1)求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,过点P 作PD x ⊥轴交BC 于点D ,垂足为N ,连接PC 交x 轴于点E ,设点P 的横坐标为t ,PCD 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,如图3,过点P 作PF PC ⊥交y 轴于点F ,PF PE =.点G 在抛物线上,连接PG ,45CPG ∠=︒,连接BG ,求直线BG 的解析式.5.如图1,已知二次函数2y ax bx c =++的图象的顶点为()0,1D ,且经过点()2,2A .(1)求二次函数的解析式;(2)过点A 的直线与二次函数图象的另一交点为B ,与y 轴交于点C ,若BDC 的面积是ADC △的两倍,求直线AB 的解析式;(3)如图2,已知(),0E m ,是x 轴上一动点(E ,O 不重合),过E 的两条直线1l ,2l 与二次函数均只有一个交点,且直线1l ,2l 与y 轴分别交于点M 、N .对于任意的点E ,在y 轴上(点M 、N 上方)是否存在一点()0,F t ,使N FEM F E △∽△恒成立.若存在,求出t 的值;若不存在,请说明理由.6.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.7.如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,3).(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△CBP=△ACO,若存在,求出点P的坐标,若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求DQ EQ QFAD BE CF++的值.8.如图所示,平面直角坐标系中,二次函数y=a(x+2k)(x﹣k)图象与x轴交于A、B两点,抛物线对称轴为直线x=﹣2;(1)求k 的值;(2)点C 为抛物线上一点,连接BC 、AC ,作CD △x 轴于D ,当△BCA =90°时,设CD 长度为d ,求d 与a 的函数关系式;(3)抛物线顶点为S ,作S T 垂直AB 于T ,点Q 为第一象限抛物线上一点,连接AQ 交S T 于点P ,过B 作x 轴的垂线交AQ 延长线于点E ,连接OE 交BQ 于点G ,过O 作OE 的垂线交AQ 于点F ,若OF =OG ,tan△ABQ =2时,连接S Q ,求证:S Q =S P .9.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线=1x -.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE CE 、,当ACE △的面积最大时,求点D 的坐标; (3)当m 为何值时,ADF △与CDE 相似.10.如图,抛物线28y ax bx =++与x 轴交于()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求该抛物线的函数表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,设四边形PBOC 和AOC 的面积分别为PBOC S 四边形和AOCS,记AOC PBOC S S S =-△四边形,求S 最大值点P 的坐标及S 的最大值;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与BOC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =+-经过点()1,0C -,点()4,0B ,交y 轴于点A ,点H 是该抛物线上第四象限内的一个动点,HE △x 轴于点E ,交线段AB 于点D ,HQ △y 轴,交y 轴于点Q .(1)求抛物线的函数解析式.(2)若四边形HQOE 是正方形,求该正方形的面积.(3)连接OD 、AC ,抛物线上是否存在点H ,使得以点O 、A 、D 为顶点的三角形与△ABC 相似,若存在,请直接写出点H 的坐标,若不存在,请说明理由.12.如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为()10A -,,顶点为B .点()5C m ,在抛物线上,直线BC 交x 轴于点E .(1)求抛物线的表达式及点E 的坐标; (2)连接AB ,求△B 的余切值;(3)点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.13.如图所示,抛物线2=23y x x --与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN △面积的最大值. (3)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.14.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.15.综合与探究如图,抛物线212y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B ,C 的坐标分别为(2,0),(0,3),点D 与点C 关于x 轴对称,P 是直线AC 上方抛物线上一动点,连接PD 、交AC 于点Q .(1)求抛物线的函数表达式及点A 的坐标; (2)在点P 运动的过程中,求PQ :DQ 的最大值;(3)在y 轴上是不存在点M ,使45AMB ∠=︒?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得△CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.17.如图(1),直线y =-x +3与x 轴、y 轴分别交于点B (3,0)、点C (0,3),经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式与点P 的坐标;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值; (3)连接AC ,点N 在x 轴上,点M 在对称轴上,△是否存在使以B 、P 、N 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由;△是否存在点M ,N ,使以C 、P 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. (图(2)、图(3)供画图探究)18.如图,已知抛物线213222y x x =-++与x 轴交于点A 、B ,与y 轴交于点C .(1)则点A 的坐标为_________,点B 的坐标为_________,点C 的坐标为_________;(2)设点11(,)P x y ,22(,)Q x y (其中12x x >)都在抛物线213222y x x =-++上,若121x x =+,请证明:12y y >;(3)已知点M 是线段BC 上的动点,点N 是线段BC 上方抛物线上的动点,若90CNM ∠=︒,且CMN 与OBC △相似,试求此时点N 的坐标.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4-(3)存在,(0,9)P -或9(0,)5P -2.(1)10;(2)最大值为4,()2,6P ; (3)N 点坐标为113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭.3.(1)243y x x =-+,()21-,(2)⎝⎭或⎝⎭(3)207,99⎛⎫ ⎪⎝⎭4.(1)254y x x =-+ (2)32122S t t =-+ (3)416y x =-5.(1)2114y x =+ (2)312y x =-或132y x =-+ (3)存在,=2t6.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 7.(1)223y x x =-++(2)存在,1217(,),(1,4)24P P - (3)DQ EQ QF AD BE CF ++的值为18.(1)k =4 (2)1d a=-9.(1)4(2)(32-,32-) (3)当2m =-或1m =-时ADF △与CDE 相似10.(1)21382y x x =-++ (2)()4,12P ,最大值为56(3)存在,()3,8,(3,5,()3,1111.(1)234y x x =--(2)6+(3)存在,点H 的坐标为1684,525⎛⎫- ⎪⎝⎭或521,24⎛⎫- ⎪⎝⎭12.(1)21322y x x =--;E (2,0) (2)3(3)M 点的坐标为(5,0)或(7,0)13.(1)C 点坐标为(0,-3),顶点M 的坐标为(1,-4);(2)278(3)P 点的坐标为39(,)44--或(-1,-2).14.(1)抛物线L 1:2=23y x x --,抛物线L 2:223y x x =-++; (2)435(,)39M 或(4,5)M -.15.(1)211322y x x =--+,A (-3,0); (2)316; (3)存在,M (0,6)或(0,-6)16.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)17.(1)243y x x =-+,顶点坐标为P (2,-1) (2)33,24E ⎛⎫- ⎪⎝⎭(3)△存在,()10,0N 或27,03N ⎛⎫ ⎪⎝⎭;△存在,点M 的坐标为(2,2);(2,-4);(2,4)18.(1)(-1,0),(4,0),(0,2);(3)点N 的坐标为(32,258)或(3,2).。
2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)
专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
中考数学《压轴题》专题训练含答案解析
压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。
解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。
2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。
上海市中考物理压强压轴题专题09柱体切割、叠放等(含解析)
上海市中考物理压强压轴题:专题09 柱体切割与叠放选择题一、常见题目类型1.只切割不叠放:将甲、乙(或一个)柱形物体沿水平(或竖直)方向切去某一厚度(体积或质量)(如图1)。
2.切割加叠放:将甲、乙(或一个)柱形物体沿水平(或竖直)方向切去某一厚度(体积或质量)并叠放在对方(或自己)上面(如图2)。
二、分析此类题目常用到的知识:① 压强: p =F /S =G /S =mg /S P =ρg h变化(增大或减小)的压强 △P =△F / S △P =ρg △h ② 密度:ρ=m/V③ 柱体对水平面的压力的大小等于柱体的重力大小:F = G = mg ④柱体的体积:V = sh (长方体) V = h 3(立方体)⑤柱体的底面积:S = ab S = h 2三、常见分析方法:主要是物理公式与数学知识结合进行推导(定性、定量)法。
根据题目情况也可灵活运用其他方法如数学比例法、极限法、分解法、转换法等。
四、例题【例题1】如图1所示,甲、乙两个实心均匀正方体分别放在水平地面上,它们对地面的压强相等。
若在两个正方体的上部,沿水平方向分别截去相同高度的部分,则剩余部分对水平地面的压强p 以及剩余部分质量m 的大小关系为( )图1(b )(a )图2△乙′△甲′A .p 甲<p 乙 m 甲<m 乙B .p 甲<p 乙 m 甲>m 乙C .p 甲>p 乙 m 甲>m 乙D .p 甲>p 乙 m 甲=m 乙 【答案】C 【解析】第一步先比较甲与乙密度的大小关系:乙甲乙甲ρρρ<⇒⎭⎬⎫==gh P P P第二步比较变化的压强△P 的大小关系,运用沿水平方向分别截去相同的高度。
g h P g h P P P ρρρρ<⎫⎪⎪∆=∆⇒∆<∆⎬⎪∆=∆⎪⎭甲乙甲甲甲乙乙乙 第三步用P '=P 原来-△P 比较切割后压强的大小乙甲乙原乙甲原甲乙甲P P PP P P P P P P >⇒⎪⎭⎪⎬⎫∆-=∆-=∆<∆ 第四步根据P =F /S 判断质量的大小。
专题09 三角形问题-2022中考数学压轴题精讲(解析版)
一、单选题1.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A 同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.4【答案】D【关键点拨】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.2.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE.试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2 .正确的序号有()A.①② B.①②③ C.①②④ D.①②③④【答案】C【解析】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,学科*网又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,故正确的结论有①②④,故选C.学科*网【关键点拨】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握3.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A 顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个 B.2个 C.3个 D.4个【答案】B∴∠BAD+∠EAC=120°−∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,【关键点拨】本题考查了旋转的性质,等腰三角形的性质和判定,三角形的外角性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.4.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.随x,m,n的值而定【答案】C【解析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.【关键点拨】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.5.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.【答案】A【解析】6.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1个 B.2个 C.3个 D.4个【答案】C【解析】(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,学*科网∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正确;,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正确;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由点H是BC的中点,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH: BH:2BH=1::2.故(3)错误;学*科网(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE与△CBE中,【关键点拨】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.学&科网7.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB 边上动点,则△MNP周长的最小值为( )A.2 B.4 C. D.【答案】B【解析】【关键点拨】本题考查了等边三角形的性质和判定,轴对称-最短路线问题的应用,正确作出辅助线,确定M、N的位置,证明△OP1P2是等边三角形是解题关键.8.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1 B.2 C.3 D.4【答案】D②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,学科*网,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【关键点拨】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.9.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A. B. C. D.【答案】A【关键点拨】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.10.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③ B.①②④ C.①②③④ D.①③④【答案】C③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.在△AEF和△BED中,∵,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AD=BC,BD=AF,∴CD=DF.学科&网∵AD⊥BC,∴△FDC是等腰直角三角形.∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.故选C.【关键点拨】本题考查了全等三角形的判定与性质,本题中求证△BFE≌△CDE是解题的关键.11.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】D【解析】A、连接OA、OC,由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,【关键点拨】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键. 12.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、AB′,下列说法:①∠BAD=30°;②∠BFC=135°;③AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】∵点D是等腰直角△ABC腰BC上的中点,∴BD=BC=AB,∴tan∠BAD=,∴∠BAD≠30°,故①错误;如图,连接B'D,∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,学&科网∴S△AFE≠S△FCE,故④错误;故选B.【关键点拨】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.13.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A【关键点拨】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.14.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④ B.①② C.①④ D.①②③④【答案】B【解析】如图【关键点拨】本题主要考查三角形全等及三角形全等的性质.15.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对 B.3对 C.4对 D.5对【答案】C∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.学科*网【关键点拨】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.二、填空题16.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x 轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第个等边三角形的边长等于__________.【答案】【关键点拨】本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.17.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为__.(用含正整数n的代数式表示)【答案】()2n﹣2×…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×,故答案为:()2n﹣2×.【关键点拨】本题考查了含30度角的直角三角形的性质、等边三角形的面积公式、解直角三角形等知识,熟练掌握相关性质得出等边三角形的边长的规律是解题的关键.18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】【关键点拨】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.19.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】∴A(,0);∴OA=,设D(x,) ,∴E(x,- x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;学*科网∴EF=1,∴S△AOE=·OA·EF=2.故答案为:.【关键点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.20.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD 与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.③如图,过点Q作QE⊥PC交PC延长线于E,∵∠PCQ=120°,∴∠QCE=60°,在Rt△QCE中,tan∠QCE=,∴QE=CQ×tan∠QCE=CQ×tan60°=CQ,∵CP=CD=CQ,∴S△PCQ=CP×QE=CP×CQ=,∴CD最短时,S△PCQ最小,即:CD⊥AB时,CD最短,过点C作CF⊥AB,此时CF就是最短的CD,∵AC=BC=4,∠ACB=120°,∴∠ABC=30°,∴CF=BC=2,即:CD最短为2,∴S△PCQ最小===,∴③错误;④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.21.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
专题9二次函数与圆综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(解析版)
专题9二次函数与圆综合问题解决函数与圆的综合问题的关键是找准函数与圆的结合点,弄清题目的本质,利用圆的基本性质和函数的性质、数形结合、方程思想、全等与相似,以便找到对应的解题途径.常见的考法有:1.直线与圆的位置关系:平面直角坐标系中的直线与圆的位置关系问题关键是圆心到直线的距离等于半径的大小,常用的方法有:(1)利用圆心到直线的距离等于半径的大小这一数量关系列出关系式解决问题(2)利用勾股定理解决问题(3)利用相似列出比例式解决问题2.函数与圆的新定义题目:利用已掌握的知识和方法理解新定义,化生为熟3.函数与圆的性质综合类问题:利用几何性质,结合图形,找到问题中的“不变”关键因素和“临界位置”.【例1】【例1】(2021•花都区三模)如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.【分析】(1)将点A(﹣1,0),B(4,0)代入y=ax2+bx+2即可求解析式;(2)过点P作PH⊥BC交于点H,设P(0,t),CH=x,由已知分别可求BC=2,BH=2﹣x,HP=BH=2﹣x,在Rt△CPH中,sin∠PCH===,cos∠PCH===,求出t=﹣,则P(0,﹣),与x轴对称点为(0,),此点也满足所求;(3)当M点在B点处时,N点在F(0,﹣4)处,当M点在O点处时,N点在E(2,0)处,∠EOF=90°,EF=BC=2,可以判断N点在以EF为直径的圆上运动,连接OO',O'(1,﹣2),NA有最大值和最小值,O'A=2,则可求NA最大值为2+,NA最小值为2﹣,进而求得2﹣≤NA≤2+.【解答】解:(1)将点A(﹣1,0),B(4,0)代入y=ax2+bx+2,得,解得,∴y=﹣x2+x+2;(2)过点P作PH⊥BC交于点H,设P(0,t),CH=x,∵C(0,2),B(4,0),∴BC=2,∴BH=2﹣x,∵∠OBP+∠OBC=45°,∴∠CBP=45°,∴HP=BH=2﹣x,在Rt△CPH中,sin∠PCH==,cos∠PCH==,在Rt△BOC中,sin∠PCH=,cos∠PCH=,∴=,=,∴x=,t=﹣,∴P(0,﹣),P点关于x轴对称点为(0,),此点也满足∠OBP+∠OBC=45°,∴满足条件的P点坐标为(0,﹣)或(0,);(3)当M点在B点处时,N点在F(0,﹣4)处,当M点在C点处时,N点在E(2,0)处,∵∠EOF=90°,EF=BC=2,可以判断N点在以EF为直径的圆上运动,连接OO',当NA经过圆心O'时,NA有最大值和最小值,∴O'(1,﹣2),∵A(﹣1,0),∴O'A=2,∴NA最大值为2+,NA最小值为2﹣,∴2﹣≤NA≤2+.【例2】(2020•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.【分析】(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+94x+c求出a与c的值即可得出抛物线的解析式;(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH=32,tan60°=QHOH,求出Q(3√32,32),把x=3√32代入y=−34x2+94x+3,得y=27√38−3316≠32,则假设不成立;②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT=32,tan60°=QTOT,求出Q(−3√32,32),把x=−3√32代入y=−34x2+94x+3,得y=−27√38−3316≠32,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式y=−34x+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=34x2−94x﹣3,MD=34x﹣3,代入即可得出结果.【解答】解:(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+94x+c得:{0=a−94+c3=c,解得:{a =−34c =3,∴抛物线的解析式为:y =−34x 2+94x +3; (2)不存在,理由如下:①当点Q 在y 轴右边时,如图1所示: 假设△QCO 为等边三角形, 过点Q 作QH ⊥OC 于H , ∵点C (0,3), ∴OC =3,则OH =12OC =32,tan60°=QH OH , ∴QH =OH •tan60°=32×√3=3√32, ∴Q (3√32,32), 把x =3√32代入y =−34x 2+94x +3, 得:y =27√38−3316≠32, ∴假设不成立,∴当点Q 在y 轴右边时,不存在△QCO 为等边三角形; ②当点Q 在y 轴的左边时,如图2所示: 假设△QCO 为等边三角形, 过点Q 作QT ⊥OC 于T , ∵点C (0,3), ∴OC =3,则OT =12OC =32,tan60°=QT OT , ∴QT =OT •tan60°=32×√3=3√32, ∴Q (−3√32,32), 把x =−3√32代入y =−34x 2+94x +3, 得:y =−27√38−3316≠32,∴假设不成立,∴当点Q 在y 轴左边时,不存在△QCO 为等边三角形;综上所述,在抛物线上不存在一点Q ,使得△QCO 是等边三角形;(3)令−34x 2+94x +3=0, 解得:x 1=﹣1,x 2=4, ∴B (4,0),设BC 直线的解析式为:y =kx +b , 把B 、C 的坐标代入则{0=4k +b 3=b ,解得:{k =−34b =3,∴BC 直线的解析式为:y =−34x +3,当M 在线段BC 上,⊙M 与x 轴相切时,如图3所示: 延长PM 交AB 于点D ,则点D 为⊙M 与x 轴的切点,即PM =MD , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =−34x 2+94x +3,MD =−34x +3, ∴(−34x 2+94x +3)﹣(−34x +3)=−34x +3, 解得:x 1=1,x 2=4(不合题意舍去), ∴⊙M 的半径为:MD =−34+3=94;当M 在线段BC 上,⊙M 与y 轴相切时,如图4所示: 延长PM 交AB 于点D ,过点M 作ME ⊥y 轴于E ,则点E 为⊙M 与y 轴的切点,即PM =ME ,PD ﹣MD =EM =x , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =−34x 2+94x +3,MD =−34x +3, ∴(−34x 2+94x +3)﹣(−34x +3)=x , 解得:x 1=83,x 2=0(不合题意舍去), ∴⊙M 的半径为:EM =83;当M 在BC 延长线,⊙M 与x 轴相切时,如图5所示:点P 与A 重合, ∴M 的横坐标为﹣1,∴⊙M 的半径为:M 的纵坐标的值, 即:−34×(﹣1)+3=154; 当M 在CB 延长线,⊙M 与y 轴相切时,如图6所示:延长PM 交x 轴于D ,过点M 作ME ⊥y 轴于E ,则点E 为⊙M 与y 轴的切点,即PM =ME ,PD ﹣MD =EM =x , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =34x 2−94x ﹣3,MD =34x ﹣3, ∴(34x 2−94x ﹣3)﹣(34x ﹣3)=x ,解得:x 1=163,x 2=0(不合题意舍去), ∴⊙M 的半径为:EM =163; 综上所述,⊙M 的半径为94或83或154或163.【点评】本题是二次函数综合题,主要考查了待定系数法求解析式、等边三角形的性质、圆的性质、三角函数等知识;熟练掌握待定系数法求解析式是解题的关键.【例3】(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt △BCM中,利用勾股定理求出半径以及点C的坐标即可解决问题.(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.【解答】解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.∵与y轴相切于点D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四边形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴C(5,4),∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.(2)结论:AE是⊙C的切线.理由:连接AC,CE.∵CM⊥AB,∴AM=BM=3,∴A(2,0),B(8,0)设抛物线的解析式为y=a(x﹣2)(x﹣8),把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=1 4,∴抛物线的解析式为y=14(x﹣2)(x﹣8)=14x2−52x+4=14(x﹣5)2−94,∴抛物线的顶点E(5,−9 4),∵AE=√32+(94)2=154,CE=4+94=254,AC=5,∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切线.【点评】本题属于二次函数综合题,考查了矩形的判定和性质,解直角三角形,圆的方程,切线的判定等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.【例4】(2020•西藏)在平面直角坐标系中,二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC ,P A ,PC ,若S △P AC =152,求点P 的坐标; (3)如图乙,过A ,B ,P 三点作⊙M ,过点P 作PE ⊥x 轴,垂足为D ,交⊙M 于点E .点P 在运动过程中线段DE 的长是否变化,若有变化,求出DE 的取值范围;若不变,求DE 的长.【分析】(1)由二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,可得二次函数的解析式为y =12(x +2)(x ﹣4),由此即可解决问题.(2)根据S △P AC =S △AOC +S △OPC ﹣S △AOP ,构建方程即可解决问题.(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.根据AM =MP ,根据方程求出t ,再利用中点坐标公式,求出点E 的纵坐标即可解决问题.【解答】解:(1)∵二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,∴二次函数的解析式为y =12(x +2)(x ﹣4),即y =12x 2﹣x ﹣4.(2)如图甲中,连接OP .设P (m ,12m 2﹣m ﹣4).由题意,A (﹣2,0),C (0,﹣4),∵S △P AC =S △AOC +S △OPC ﹣S △AOP ,∴152=12×2×4+12×4×m −12×2×(−12m 2+m +4), 整理得,m 2+2m ﹣15=0,解得m =3或﹣5(舍弃),∴P (3,−52).(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.理由:如图乙中,连接AM ,PM ,EM ,设M (1,t ),P [m ,12(m +2)(m ﹣4)],E (m ,n ).由题意A (﹣2,0),AM =PM ,∴32+t 2=(m ﹣1)2+[12(m +2)(m ﹣4)﹣t ]2, 解得t =1+14(m +2)(m ﹣4),∵ME =PM ,PE ⊥AB ,∴t =n+12(m+2)(m−4)2,∴n=2t−12(m+2)(m﹣4)=2[1+14(m+2)(m﹣4)]−12(m+2)(m﹣4)=2,∴DE=2,另解:∵PD•DE=AD•DB,∴DE=AD⋅DBPD=(m+2)(4−m)4+m−m2=2,为定值.∴点P在运动过程中线段DE的长是定值,DE=2.【点评】本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.【例5】(2020•宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.【分析】(1)设二次函数表达式为:y=ax2,将(2,1)代入上式,即可求解;(2)△PMN是等边三角形,则点P在y轴上且PM=4,故PF=2√3,即可求解;(3)在Rt△FQE中,EN=√(2−1)2+(1−14)2=54,EF=√(1−0)2+(1−14)2=54,即可求解.【解答】解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=1 4,故二次函数表达式为:y=14x 2;(2)将y=1代入y=14x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2√3;∵点F (0,1),∴点P 的坐标为(0,1+2√3)或(0,1﹣2√3);(3)假设二次函数的图象上存在一点E 满足条件,设点Q 是FN 的中点,则点Q (1,1),故点E 在FN 的中垂线上.∴点E 是FN 的中垂线与y =14x 2图象的交点,∴y =14×12=14,则点E (1,14), EN =√(2−1)2+(1−14)2=54,同理EF =√(1−0)2+(1−14)2=54,点E 到直线y =﹣1的距离为|14−(﹣1)|=54, 故存在点E ,使得以点E 为圆心半径为54的圆过点F ,N 且与直线y =﹣1相切. 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本的性质、等边三角形的性质等,综合性强,难度适中.【例6】(2021•嘉兴二模)定义:平面直角坐标系xOy 中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P (2,2),以P 为圆心,为半径作圆.请判断⊙P 是不是二次函数y =x 2﹣4x +3的坐标圆,并说明理由;(2)已知二次函数y =x 2﹣4x +4图象的顶点为A ,坐标圆的圆心为P ,如图1,求△POA 周长的最小值;(3)已知二次函数y =ax 2﹣4x +4(0<a <1)图象交x 轴于点A ,B ,交y 轴于点C ,与坐标圆的第四个交点为D ,连结PC ,PD ,如图2.若∠CPD =120°,求a 的值.【分析】(1)先求出二次函数y=x2﹣4x+3图象与x轴、y轴的交点,再计算这三个交点是否在以P(2,2)为圆心,为半径的圆上,即可作出判断.(2)由题意可得,二次函数y=x2﹣4x+4图象的顶点A(2,0),与y轴的交点H(0,4),所以△POA周长=PO+P A+OA=PO+PH+2≥OH+2,即可得出最小值.(3)连接CD,P A,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,设PE=m,由∠CPD=120°,可得P A=PC=2m,CE=m,PF=4﹣m,因为二次函数y=ax2﹣4x+4图象的对称轴l 为,AB=,所以AF=BF=,,在Rt△P AF中,利用勾股定理建立方程,求得m的值,进而得出a的值.【解答】解:(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图象与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴P A=PB=PC=,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+P A+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD,P A,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,∵AB=,∴AF=BF=,∵∠CPD=120°,PC=PD,C(0,4),∴∠PCD=∠PDC=30°,设PE=m,则P A=PC=2m,CE=m,PF=4﹣m,∵二次函数y=ax2﹣4x+4图象的对称轴l为,∴,即,在Rt△P AF中,P A2=PF2+AF2,∴,即,化简,得,解得,∴.【题组一】1.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.【分析】(1)令y=0,求得抛物线与x轴的交点A、B的坐标,令x=0,用a表示C点的坐标,再由三角函数列出a的方程,便可求得a的值;(2)过M点作MH⊥AB于点H,连接MA、MC,用d表示出M的坐标,根据MA=MC,列出a、d的关系式,再通过关系式求得结果;(3)取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y =x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当P为直线y=x与⊙M的切点时,∠APB达到最大,利用圆圆周角性质和解直角三角形的知识求得结果便可.【解答】解:(1)连接BC,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=OCOB=32a8=√33,解得,a=√3 12;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH=12AB=2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+12a=(4√a√2a)2+4√2,∴当4√a=1√2a时,有d最小=4√2,即当a=√28时,有d最小=4√2;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=√4+d2,∴MS=√2MP=√2d2+8,∵MS+MT=ST=6,∴√2d2+8+d=6,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2√2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=12∠AMB=∠APB,∴sin∠APB=sin∠BMT=BTMB=√22.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,解直角三角形,圆周角定理和圆与直线切线性质,难度较大,第(3)题的关键是构造辅助圆确定当∠APB 达到最大时的P点位置.2.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.【分析】(1)将三个已知点坐标代入抛物线的解析式中列出方程组求得a 、b 、c ,便可得抛物线的解析式;(2)1°用待定系数法求出直线BC 的解析式,再设M 的横坐标为t ,用t 表示MN 的距离,再根据二次函数的性质求得MN 的最大值;2°分三种情况:当∠PMN =90°时;当∠PNM =90°时;当∠MPN =90°时.分别求出符合条件的P 点坐标便可.【解答】解:(1)把A 、B 、C 三点的坐标代入抛物线y =ax 2+bx +c (a ≠0)中,得 {a +b +c =09a +3b +c =0c =3, 解得,{a =1b =−4c =3,∴抛物线的解析式为:y =x 2﹣4x +3;(2)1°设直线BC 的解析式为y =mx +n (m ≠0),则 {3m +n =0n =3, 解得,{m =−1n =3,∴直线BC 的解析式为:y =﹣x +3,设M (t ,﹣t +3)(0<t <3),则N (t ,t 2﹣4t +3), ∴MN =﹣t 2+3t =−(t −32)2+94,∴当t =32时,MN 的值最大,其最大值为94;2°∵△PMN 的外接圆圆心Q 在△PMN 的边上, ∴△PMN 为直角三角形,由1°知,当MN 取最大值时,M (32,32),N (32,−34),①当∠PMN =90°时,PM ∥x 轴,则P 点与M 点的纵坐标相等, ∴P 点的纵坐标为32,当y =32时,y =x 2﹣4x +3=32, 解得,x =4+√102,或x =4−√102<32(舍去), ∴P (4+√102,32);②当∠PNM =90°时,PN ∥x 轴,则P 点与N 点的纵坐标相等, ∴P 点的纵坐标为−34,当y =−34时,y =x 2﹣4x +3=−34, 解得,x =52,或x =32(舍去), ∴P (52,−34);③当∠MPN =90°时,则MN 为△PMN 的外接圆的直径, ∴△PMN 的外接圆的圆心Q 为MN 的中点, ∴Q (32,38),半径为12MN =98,过Q 作QK ∥x 轴,与在MN 右边的抛物线图象交于点K ,如图②,令y =38,得y =x 2﹣4x +3=38, 解得,x =8−√224<32(舍),或x =8+√224, ∴K (8+√224,38),∴QK =2+√224>98,即K 点在以MN 为直径的⊙Q 外, 设抛物线y =x 2﹣4x +3的顶点为点L ,则l (2,﹣1), 连接LK ,如图②,则L 到QK 的距离为38+1=118,LK =(8+√224−2)2+(38+1)2=√2098, 设Q 点到LK 的距离为h ,则12QK ⋅118=12LK ⋅ℎ,∴ℎ=118QKLK =118×2+√224√2098=22√209+11√209×224×209≈1.27>98, ∴直线LK 下方的抛物线与⊙Q 没有公共点,∵抛物线中NL 部分(除N 点外)在过N 点与x 轴平行的直线下方,∴抛物线中NL 部分(除N 点外)与⊙Q 没有公共点, ∵抛物线K 点右边部分,在过K 点与y 轴平行的直线的右边,∴抛物线K 点右边部分与⊙Q 没有公共点,综上,⊙Q 与MN 右边的抛物线没有交点, ∴在线段MN 右侧的抛物线上不存在点P ,使△PMN 的外接圆圆心Q 在MN 边上; 综上,点P 的坐标为(4+√102,32)或(52,−34). 【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的最值的应用,直角三角形的存在性质的探究,圆的性质,第(2)题的1°题关键是把MN 表示成t 二次函数,用二次函数求最值的方法解决问题;第(2)2°小题关键是分情况讨论.难度较大.3.(2020•望城区模拟)如图,在平面直角坐标系中,抛物线y =12x 2﹣bx +c 交x 轴于点A ,B ,点B 的坐标为(4,0),与y 轴于交于点C (0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D ,若点D 的横坐标为5,求点D 的坐标及∠ADB 的度数; (3)在(2)的条件下,设抛物线对称轴l 交x 轴于点H ,△ABD 的外接圆圆心为M (如图1),①求点M 的坐标及⊙M 的半径;②过点B 作⊙M 的切线交于点P (如图2),设Q 为⊙M 上一动点,则在点运动过程中QH QP的值是否变化?若不变,求出其值;若变化,请说明理由.【分析】(1)c =﹣2,将点B 的坐标代入抛物线表达式得:0=12×16−4b ﹣2,解得:b =−32,即可求解; (2)S △ABD =5×32=3√5×BN 2,则BN =√5,sin ∠BDH =BH BD=√22,即可求解; (3)①∠ADB =45°,则∠AMB =2∠ADB =90°,MA =MB ,MH ⊥AB ,AH =BH =HM =52,点M 的坐标为(32,52)⊙M 的半径为√5; ②PH =HB =5,则MH MQ=525√22=√22,MQ MP=5√2252=√22,故△HMQ ∽△QMP ,则QH QP=MH MQ=√22,即可求解. 【解答】解:(1)c =﹣2,将点B 的坐标代入抛物线表达式得:0=12×16−4b ﹣2,解得:b =−32,∴抛物线的解析式为y =12x 2−32x ﹣2;(2)当x =5时,y =12x 2−32x ﹣2=3,故D 的坐标为(5,3), 令y =0,则x =4(舍去)或﹣1,故点A (﹣1,0), 如图①,连结BD ,作BN ⊥AD 于N ,∵A (﹣1,0),B (4,0),C (0,﹣2), ∴AD =3√5,BD =√10, ∵S △ABD =5×32=3√5×BN2, ∴BN =√5,∴sin ∠BDH =BHBD =√22, ∴∠BDH =45°;(3)①如图②,连接MA ,MB ,∵∠ADB =45°,∴∠AMB =2∠ADB =90°, ∵MA =MB ,MH ⊥AB , ∴AH =BH =HM =52,∴点M 的坐标为(32,52)⊙M 的半径为5√22; ②如图③,连接MQ ,MB ,∵过点B 作⊙M 的切线交1于点P , ∴∠MBP =90°, ∵∠MBO =45°, ∴∠PBH =45°, ∴PH =HB =5, ∵MH MQ=525√22=√22,MQ MP=5√2252=√22, ∵∠HMQ =∠QMP , ∴△HMQ ∽△QMP , ∴QH QP=MH MQ=√22, ∴在点Q 运动过程中QH QP的值不变,其值为√22.【点评】本题考查用待定系数法求二次函数解析式,锐角三角函数的定义,相似三角形的判定与性质.圆的基本性质.解决(3)问的关键是构造相似三角形实现比的转换.4.(2020•天桥区二模)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.【分析】(1)用抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式,即可求解;(2)分点P在x轴下方、点P在x轴上方两种情况,分别求解即可;(3)证明BN是△OEM的中位线,故BN=12EM=12,而BD=√(2−1)2+(0+2)2=√5,而BD﹣BN≤ND≤BD+BN,即可求解.【解答】解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=1 2,故抛物线的表达式为:y=12(x﹣2)2﹣2=12x2﹣2x①;(2)点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2√3(舍去4﹣2√3);故m=2或4+2√3;(3)存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=12EM=12,而BD=√(2−1)2+(0+2)2=√5,在△BND中,BD﹣BN≤ND≤BD+BN,即√5−0.5≤ND≤√5+0.5,故线段DN的长度最小值和最大值分别为√5−0.5和√5+0.5.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、中位线的性质等,综合性强,难度适中.【题组二】5.(2021•乐山模拟)如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值【分析】(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,列方程组求a、b的值;(2)作AE⊥AB交y轴于点E,连结CE,作BF⊥x轴于点F,证明∠ABC=90°及△BCF≌△EAO,从而证明四边形ABCE是矩形且求出点E的坐标;(3)在(2)的基础上,作FL⊥BC于点L,证明△FCL∽△BCF及△DCL∽△BCD,得到LD=DB,再根据DA+LD≥AL,求出AL的长即为所求的最小值.【解答】解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,得,解得,∴抛物线的解析式为y=x2+x+2.(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).当y=0时,由x2+x+2=0,得x1=1,x2=4,∴C(4,0),∴CF=AO=1,AF=3﹣(﹣1)=4;又∵BF=2,∴,∵∠BFC=∠AFB=90°,∴△BFC∽△AFB,∴∠CBF=∠BAF,∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,∴BC∥AE,∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,∴△BCF≌△EAO(ASA),∴BC=EA,∴四边形ABCE是矩形;∵OE=FB=2,∴E(0,﹣2).(3)如图2,作FL⊥BC于点L,连结AL、CD.由(2)得∠BFC=90°,BF=2,CF=1,∴CF=CD,CB==.∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),∴△FCL∽△BCF,∴=,∴=,∵∠DCL=∠BCD(公共角),∴△DCL∽△BCD,∴=,∴LD=DB;∵DA+LD≥AL,∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.∵CL=CF=,∴BL==,∴BL2=()2=,又∵AB2=22+42=20,∴AL===,DA+DB的最小值为.6.(2021•河北区二模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+3的对称轴是直线x=2,与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求抛物线的解析式及顶点坐标;(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.【分析】(Ⅰ)由x=2=﹣=﹣,解得b=1,即可求解;(Ⅱ)当线段CM=CD时,则点C在MD的中垂线上,即y C=(y M+y D),即可求解;(Ⅲ)在OC上取点G,使=,即,则△POG∽△COP,故2PC+3PB =2(PB+PC)=2(BP+PG),故当B、P、G三点共线时,2PC+3PB最小,最小值为3BG,进而求解.【解答】解:(Ⅰ)∵对称轴是直线x=2,故x=2=﹣=﹣,解得b=1,故抛物线的表达式为y=﹣x2+x+3=﹣(x﹣2)2+4,∴抛物线的顶点为(2,4);(Ⅱ)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=6或﹣2,令x=0,则y=3,故点A、B、C的坐标分别为(﹣2,0)、(6,0)、(0,3),设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=﹣x+3,设点M的坐标为(x,﹣x2+x+3),则点D的坐标为(x,﹣x+3),当线段CM=CD时,则点C在MD的中垂线上,即y C=(y M+y D),即3=(﹣x2+x+3﹣x+3),解得x=0(舍去)或2,故点M的坐标为(2,4);(Ⅲ)在OC上取点G,使=,即,则OG=,则点G(0,),∵,∠GOP=∠COP,∴△POG∽△COP,∴,故PG=PC,则2PC+3PB=3(PB+PC)=3(BP+PG),故当B、P、G三点共线时,2PC+3PB最小,最小值为3BG,则2PC+3PB的最小值3BG=3=2.7.(2021•长沙模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;(2)如图2,延长线段OC至N,使得ON=,若∠OBN=∠ONA,且,求抛物线的解析式;(3)如图3,抛物线y=ax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C 的直线l:y=kx+m(k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D =∠CP2D=90°,求k的取值范围.【分析】(1)由点C的路径长=,即可求解;(2)证明△ONA∽△OBN,则OA•OB=ON2=3,即,得到c=3a,而a+b+c=1,tan∠ABM=,得到(1﹣4a)2﹣4a•3a=13,即可求解;(3)由点D、C的坐标得到k==t﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,得到(﹣1)2+(﹣1)2=()2,求出t=3+,进而求解.【解答】解:(1)点C的路径长==;(2)∵∠ONA=∠OBN,∠AON=∠NOB,∴△ONA∽△OBN,∴,即OA•OB=ON2=3,即,故c=3a,∵a+b+c=1,在△ABM中,tan∠ABM===,∴b2﹣4ac=13,即(1﹣4a)2﹣4a•3a=13,解得a=﹣1(舍去)或3,∴抛物线的表达式为y=3x2﹣11x+9;(3)由题意得:,解得,故抛物线的表达式为:y=x2﹣5x+5;设点D(t,n),n=t2﹣5t+5,而点C(1,1),将点D、C的坐标代入函数表达式得,则k==t﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,则点H(,),则HP=HC,即(﹣1)2+(﹣1)2=()2,化简得:3t2﹣18t+19=0,解得:t=3+(不合题意的值已舍去),k=t﹣4=.若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,则以DC为直径的圆H和x轴相交,∴0<k<.8.(2020•东海县二模)如图,△AOB的三个顶点A、O、B分别落在抛物线C1:y=x2+ x上,点A的坐标为(﹣4,m),点B的坐标为(n,﹣2).(点A在点B的左侧)(1)则m=﹣4,n=﹣1.(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线C2:y=ax2+bx+4经过A'、B'两点,延长OB'交抛物线C2于点C,连接A'C.设△OA'C的外接圆为⊙M.①求圆心M的坐标;②试直接写出△OA'C的外接圆⊙M与抛物线C2的交点坐标(A'、C除外).【分析】(1)把x=﹣4代入抛物线C1解析式求得y即得到点A坐标;把y=﹣2代入抛物线C1解析式,解方程并判断大于﹣4的解为点B横坐标.(2)①根据旋转90°的性质特点可求点A'、B'坐标(过点作x轴垂线,构造全等得到对应边相等)及OA'的长,用待定系数法求抛物线F2的解析式,求出直线OC的解析式,构建方程组确定点C的坐标,求出线段OA′,线段A′C的垂直平分线的解析式,构建方程组解决问题即可.②设⊙M与抛物线C2的交点为P(m,m2﹣3m+4).根据PM=OM,构建方程求解即可.【解答】解:(1)当x=﹣4时,y=×(﹣4)2+×(﹣4)=﹣4,∴点A坐标为(﹣4,﹣4),当y=﹣2时,x2+x=﹣2,解得:x1=﹣1,x2=﹣6,∵点A在点B的左侧,∴点B坐标为(﹣1,﹣2),∴m=﹣4,n=﹣1.故答案为﹣4,﹣1.(2)①如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G.∴∠BEO=∠OGB'=90°,OE=1,BE=2,∵将△AOB绕点O逆时针旋转90°得到△A'OB′,∴OB=OB',∠BOB'=90°,∴∠BOE+∠B'OG=∠BOE+∠OBE=90°,∴∠B'OG=∠OBE,在△B'OG与△OBE中,,∴△B'OG≌△OBE(AAS),∴OG=BE=2,B'G=OE=1,∵点B'在第四象限,∴B'(2,﹣1),同理可求得:A'(4,﹣4),∴OA=OA'==4,∵抛物线F2:y=ax2+bx+4经过点A'、B',∴,解得:,∴抛物线F2解析式为:y=x2﹣3x+4,∵直线OB′的解析式为y=﹣x,由,解得或,∴点C(8,﹣4),∵A′(4,﹣4),∴A′C∥x轴,∵线段OA′的垂直平分线的解析式为y=x﹣4,线段A′C的垂直平分线为x=6,∴直线y=x﹣4与x=6的交点为(6,2),∴△OA′C的外接圆的圆心M的坐标为(6,2).②设⊙M与抛物线C2的交点为P(m,m2﹣3m+4).则有(m﹣6)2+(m2﹣3m+2)2=62+22,解得m=0或12或4或8,∵A'、C除外,∴P (0,4),或(12,4).9.(2019•鄂尔多斯)如图,抛物线y =ax 2+bx ﹣2(a ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点M ,使得△BCM 是以CM 为直角边的直角三角形?若存在,直接写出M 点坐标;若不存在,说明理由.【分析】(1)直接利用待定系数法即可得出结论;(2)先判断出过点P 平行于直线EF 的直线与抛物线只有一个交点时,PH 最大,再求出此直线l 的解析式,即可得出结论;(3)分两种情况:①当∠BMC =90°时,先求出BM 的长,进而求出BD ,DM 1的长,再构造出相似三角形即可得出结论;②当∠BCM =90°时,利用锐角三角函数求出点M 3的坐标,最后用对称的性质得出点M 4的坐标,即可得出结论.【解答】解:(1)∵抛物线y =ax 2+bx ﹣2(a ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,∴{9a −3b −2=0a +b −2=0,∴{a =23b =43, ∴抛物线的解析式为y =23x 2+43x ﹣2;(2)如图1,过点P 作直线l ,使l ∥EF ,过点O 作OP '⊥l , 当直线l 与抛物线只有一个交点时,PH 最大,等于OP ', ∵直线EF 的解析式为y =﹣x ,设直线l 的解析式为y =﹣x +m ①,∵抛物线的解析式为y =23x 2+43x ﹣2②,联立①②化简得,23x 2+73x ﹣2﹣m =0, ∴△=499−4×23×(﹣2﹣m )=0, ∴m =−9724, ∴直线l 的解析式为y =﹣x −9724,令y =0,则x =−9724, ∴M (−9724,0),∴OM =9724,在Rt △OP 'M 中,OP '=OM √2=97√248, ∴PH 最大=97√248.(3)①当∠CMB =90°时,如图2,∴BM 是⊙O 的切线,∵⊙C 半径为1,B (1,0),∴BM 2∥y 轴,∴∠CBM 2=∠BCO ,M 2(1,﹣2),∴BM 2=2,∵BM 1与BM 2是⊙C 的切线,∴BM 1=BM 2=2,∠CBM 1=∠CBM 2,∴∠CBM 1=∠BCO ,∴BD =CD ,在Rt △BOD 中,OD 2+OB 2=BD 2,∴OD2+1=(2﹣OD)2,∴OD=3 4,∴BD=5 4,∴DM1=3 4过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴OBM1Q =ODDQ=BDDM1,∴1M1Q =34DQ=5434,∴M1Q=35,DQ=920,∴OQ=34+920=65,∴M1(−35,−65),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC=OCOB=2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=√5 5,∴M3H=2m=2√55,OH=OC﹣CH=2−√55,∴M3(−2√55,√55−2),而点M4与M3关于点C对称,∴M 4(2√55,−√55−2), 即:满足条件的点M 的坐标为(−35,−65)或(1,﹣2)或(−2√55,√55−2)或(2√55,−√55−2).【点评】此题是二次函数综合题,主要考查了待定系数法,平行线的性质,勾股定理,切线的性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键. 10.(2019•日照)如图1,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A ,C 两点,抛物线y =x 2+bx +c 经过A ,C 两点,与x 轴的另一交点为B . (1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC ,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的⊙B 上一动点,连接PC 、P A ,当点P 运动到某一位置时,PC +12P A 的值最小,请求出这个最小值,并说明理由.【分析】(1)由直线y =﹣5x +5求点A 、C 坐标,用待定系数法求抛物线解析式,进而求得点B 坐标.(2)从x 轴把四边形AMBC 分成△ABC 与△ABM ;由点A 、B 、C 坐标求△ABC 面积;设点M 横坐标为m ,过点M 作x 轴的垂线段MH ,则能用m 表示MH 的长,进而求△ABM 的面积,得到△ABM 面积与m 的二次函数关系式,且对应的a 值小于0,配方即求得m 为何值时取得最大值,进而求点M 坐标和四边形AMBC 的面积最大值. (3)作点D 坐标为(4,0),可得BD =1,进而有BD BP=BP AB=12,再加上公共角∠PBD=∠ABP ,根据两边对应成比例且夹角相等可证△PBD ∽△ABP ,得PD PA等于相似比12,进而得PD =12AP ,所以当C 、P 、D 在同一直线上时,PC +12P A =PC +PD =CD 最小.用两点间距离公式即求得CD 的长.【解答】解:(1)直线y =﹣5x +5,x =0时,y =5 ∴C (0,5)y =﹣5x +5=0时,解得:x =1 ∴A (1,0)∵抛物线y =x 2+bx +c 经过A ,C 两点 ∴{1+b +c =00+0+c =5 解得:{b =−6c =5 ∴抛物线解析式为y =x 2﹣6x +5。
九年级中考数学动点问题压轴题专题训练(含答案)
九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。
中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)
中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。
九年级数学中考复习压轴题专题训练含答案解析二次函数小综合抛物线中的线段定值
专题九 二次函数小综合(四)定点、定值、定线微专题15 抛物线中的线段定值典例精讲考点 设参数→构相似计算【例1】如图,抛物线y =-2x 2-2x +3交 轴于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,D 为抛物线的顶点,E 为对称轴与x 轴的交点,P 是抛物线上B ,D 两点间的一个动点,PA ,PB 与直线DE 分别交于点F ,G ,当点P 运动时,EF +EG 是否为定值?若是,试求出该定值;若不是,请说明理由.考点 相似转化线段比→设参计算【例2】如图,抛物线y =a (x 2+2mx -3m 2)(其中a ,m 是常数,a <0,m >0)与x 轴分别交于A ,B 两点(点A 位于点B 的右侧),与y 轴交于点C (0,3),CD //AB 交抛物线于点D ,连接AD ,过点A 作射线AE 交抛物线于点E ,AB 平分∠DAE ,求证:AEAD为定值.考点 设直线的解析式→根系关系求解【例3】如图,抛物线2114y x =-与x 轴交于A ,B 两点,与y 轴交于点C ,M 为B 点右侧的抛物线上一动点,M ,N 两点关于y 轴对称,直线MB 与直线NB 分别交直线x =-3于点F ,E ,EF 交x 轴于点P ,求PF -PE 的值.典题精练训练点 利用相似求线段比1.(2020镇江改)如图,抛物线y =ax 2-2ax +c (a ,c 是常数,a <0)经过点M (-1,1),N ,已知点N 的横坐标是4,顶点为D ,它的对称轴与x 轴交于点C ,直线DM ,DN 分别与工轴相交于A ,B 两点,随着a 的变化,ACBC的值是否发生变化?请说明理由.训练点 利用根系关系求线段积2.(2020原创题)如图,抛物线y =x 2-4x +3交x 轴于点C ,B (C 在B 左边),交y 轴于点A , 直线y =kx -3k +7(k ≠0)交抛物线于M ,N 两点(M ,N 不与C ,B 重合),直线MC ,NC 分别交y 轴于点I ,点J .求证OI .OJ 为定值.训练点 利用含参直线解析式求线段积3.(2020原创题)如图,抛物线2122y x bx =-++交y 轴于点A ,点B (2,2)在抛物线上,过点C (0,4)的直线交抛物线于M ,N 两点,MB ,NB 分别交y 轴于点F ,G .求证:AF ⋅AG 为定值.专题九 二次函数小综合(四)定点、定值、定线微专题15 抛物线中的线段定值典例精讲考点 设参数→构相似计算【例1】如图,抛物线y =-2x 2-2x +3交 轴于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,D 为抛物线的顶点,E 为对称轴与x 轴的交点,P 是抛物线上B ,D 两点间的一个动点,PA ,PB 与直线DE 分别交于点F ,G ,当点P 运动时,EF +EG 是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】EF +EG 为定值8,理由如下:过点P 作PQ //y 轴交x 轴于Q ,设P (t ,-t 2-2t +3),则PQ =-t 2-2t +3,AQ -3+t ,QB =1-t ,∵PQ //EF ,∴△AEF ∽△AQP ,∴EF AEPQ AQ=, ∴EF =2(23)22(1)3PQ AE t t t AQ t ⋅--+⨯==-+.又∵PQ //EG ,∴△BEG ∽△BQP ,∴EG BE PQ BQ =,∴EG =2(23)22(3)1PQ BE t t t BQ t⋅--+⨯==+-,∴EF +EG =2(1-t )+2(t +3)=8.考点 相似转化线段比→设参计算【例2】如图,抛物线y =a (x 2+2mx -3m 2)(其中a ,m 是常数,a <0,m >0)与x 轴分别交于A ,B 两点(点A 位于点B 的右侧),与y 轴交于点C (0,3),CD //AB 交抛物线于点D ,连接AD ,过点A 作射线AE 交抛物线于点E ,AB 平分∠DAE ,求证:AEAD为定值.【解答】∵-3am 2=3,∴am 2=-1,由a (x 2+2mx -3m 2)=0,得x =m 或x =-3m ,∴.A (m ,0),由CD //AB 可得D (-2m ,3),设点E (n ,t ),t =a (n 2+2mn -3m 2),分别过点D ,E 作x 轴的垂线,垂足分别为M ,N ,∵AB 平分∠DAE ,∴Rt △ADM ∽△Rt △AEN ,∴AE NE NE =AD AM DM =,即23m n tm m --=+,解得:n m t m -=,∴E (n ,n m m -),∴a (n 2 + 2mn -3m 2)=n m m -,解得n =-4m 或m (舍去m ),∴5n m t m -==-,∴E (-4m ,-5),∴4533AE AN m m =AD AM m +==为定值.考点 设直线的解析式→根系关系求解【例3】如图,抛物线2114y x =-与x 轴交于A ,B 两点,与y 轴交于点C ,M 为B 点右侧的抛物线上一动点,M ,N 两点关于y 轴对称,直线MB 与直线NB 分别交直线x =-3于点F ,E ,EF 交x 轴于点P ,求PF -PE 的值.【解答】易求点B (2.0),设BF 的解析式为y =kx -2k ,∴F (-3,-5k ),∴PF =5k ,设BN 的解析式为y =nx -2n ,∴E (-3,-5n ),∴PE =-5n ,∴PF -PE =5k +5n =5(k +n ),联立22114y kx k y x =-⎧⎪⎨=-⎪⎩得x 2-4kx +8k -4=0,∴x m ⋅x B =8k -4,∴x B =2,∴x M =4k -2,同理,x N ⋅x B =8n -4, ∴x N =4n -2,∵M ,N 关于y 轴对称,∴x M +x N =0,∴4k -2+4n -2=0,∴k +n =1, ∴PF -PE =5(k +n )=5. 典题精练训练点 利用相似求线段比1.(2020镇江改)如图,抛物线y =ax 2-2ax +c (a ,c 是常数,a <0)经过点M (-1,1),N ,已知点N 的横坐标是4,顶点为D ,它的对称轴与x 轴交于点C ,直线DM ,DN 分别与工轴相交于A ,B 两点,随着a 的变化,ACBC的值是否发生变化?请说明理由.解:∵y =ax 2-2ax +c 过M (-1,1),∴a +2a +c =1,∴c =1-3a ,∴y =a 2-2ax +(1-3a ),∴D (1,1-4a ),N (4,1+5a ).分别过点M ,N 作MG ⊥CD 于点E ,NT ⊥DC 于点T ,∴NT =3.DG =-4a . ∵MG //TN //x 轴,∴△DMG ∽△DAC ,△DCB ∽△DTN ,∴ MG DG BC DCAC DC TN DT==,,∴24141493a a CB AC a a --==--,,∴1414,23a a AC BC a a --==--,∴32AC BC =训练点 利用根系关系求线段积2.(2020原创题)如图,抛物线y =x 2-4x +3交x 轴于点C ,B (C 在B 左边),交y 轴于点A , 直线y =kx -3k +7(k ≠0)交抛物线于M ,N 两点(M ,N 不与C ,B 重合),直线MC ,NC 分别交y 轴于点I ,点J .求证OI .OJ 为定值.解:易知C (1,0),设N (x 1,x 2-4x 1 +3),M (x 2,x 2-4x 2+3),联立23743y kx k y x x =-+⎧⎨=-+⎩,得x 2-(4+k )x -4+3k =0,∴x 1 +x 2=4+k ,x 1x 2=-4+3k ,由N (x 1, 21x -4x 1+3),C (1,0),可求得直线NC :y =(x 1-3)x -(x 1-3),同理,直线MC :y =(x 2-3)x -(x 2-3),∴OI ⋅OJ =121233(3)(3)x x x x -⋅-=---=-x 1⋅x 2+3(x 1+x 2)-9=-(-4+3k )+3(4+k )-9=7.训练点 利用含参直线解析式求线段积3.(2020原创题)如图,抛物线2122y x bx =-++交y 轴于点A ,点B (2,2)在抛物线上,过点C (0,4)的直线交抛物线于M ,N 两点,MB ,NB 分别交y 轴于点F ,G .求证:AF ⋅AG 为定值.解:易知A (0,2),抛物线为2122y x x =-++.设F (0,m ),G (0,n ),设直线BF 为y =kx +m ,则2-2k +m ,∴k =22m -,∴直线BF 为y =22m x m -+,同理可求直线BG 为y =22n-x +n ,由y =22m x m -+和2122y x x =-++,解得x =2或m -2,∴x M =m -2,同理,x N =n -2,设直线CN 的解析式为y =tx +4,由y =tx +4和2122y x x =-++,得21(1)202x t x +-+=,∴x M ⋅x N =4,即(m -2)⋅(n -2)=4,∴AF ⋅AG =(2-m )⋅(2-n )=4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴题专题5——类比思想在一类分类讨论问题中的应用类比思想在一类分类讨论中应用是非常广泛的。
这类问题往往指的是:点从线段内运动到线段外(延长线)上然后进行各种研究。
这类问题的特点是在变化中,虽然图形的结构发生变化,但是各种关系(位置关系、相似)并不改变。
重点是紧抓关系进行研究。
引入:直线l 上有A 、B 、P 三点,其中AB =1,:AP PB a , 其中a 是一个正实数。
试求:线段AP 的长度。
引入分析: 本题的关键有三:(1)首先对点在线段内和线段外进行讨论; (2)借助赋值或者合分比的方法来进行求解; (3)最后关于0<a <1,a =1,a >1重新整理。
当我们研究了点在线段内的情况之后,要将这样的研究方法类比到线段外进行研究。
解答过程:(1)如果P 在线段AB 内(1)1,11APa AP a PB AP PB AB a PB PBaPB AP a a =⇒=⋅⇒+==+⇒==++(2)如果P 在AB 的延长线上(1)1,,(1)11APa AP a PB AP PB AB a PB PBaPB AP a a a =⇒=⋅⇒-==-⇒==>--(3)如果P 在BA 的延长线上(1)1,,(01)11APa AP a PB PB AP AB a PB PBaPB AP a a a=⇒=⋅⇒-==-⇒==<<--综上所述: 当0<a <1时, 1aAP a=-,P 在BA 的延长线上; 或者1aAP a =+,P 在AB 上。
当a =1时,12AP =(P 在线段AB 的中点上); 当a >1时,1aAP a =-,P 在AB 的延长线上; 或者1aAP a =+,P 在AB 上。
在此过程中,首先我们可以看到,分类的思想非常重要。
而在分类讨论中,很多时候,不同的类别之间,解题的方法非常相似,(尤其是在一些位置关系变化比如:线段内外的问题中),遇到这种情况,我们可以用类比的思想,用相同的手段、相仿的过程来处理这些问题,可以减少很多思考以及处理的时间。
例题1:如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q;(1)当点P在线段AB上运动(不与A、B重合)时,求证:OA·BQ=AP·BP;(2) 在(1)成立的条件下,设点P的横坐标为x,线段CQ的长度为y,求出y关于x的函数解析式,并判断y是否存在最小值,若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使得△POQ为等腰三角形,如果存在,求出CQ的长,如果不存在,请说明理由。
第一题分析:本题第一小问难度不大,乘积式转化为比例式即可,寻找到三角形相似,则本题得证。
从第二小题到第三小题是本题的关键。
第二小题中,很显然,由于存在“一线三等角”的结构,因此△APO和△BPQ相似,也就成为了本题解决的关键所在。
第三题很显然,点P可以运动到AB的延长线上或者BA的延长线上,对于这两种情形,我们不必花时间再重新从头研究,只需要接续第二题的做法,使用相同的方法(三角形相似),沿着相仿的处理过程(顺着第二问中相似的三角形)进一步研究即可。
解答:(1)∵四边形ABCD为矩形∴∠OAP=90°∵∠OPB=∠AOB+∠OAP又∵∠OAB=∠OPQ=90°∴∠BPQ=∠AOP∴△AOP∽△BPQ ∴AO AP OP BP BQ PQ==∴OA·BQ = AP·BPQBPAO C x yQBPAO C x y(2)根据题意,知道OA =3,BQ =3-y ,AP =x ,BP =4-x 。
利用(1),代入得:2493(3)(4)3x x y x x y -+⋅-=-⇒=,0<x <4(3)很显然,因为∠OPQ =90°,△OPQ 为等腰三角形,于是只能有OP =PQ 。
[1]当P 在AB 上,PO =PQ ,所以,AP =1,CQ =2。
[2]当P 在AB 的延长线上,∵∠OAB =∠OPQ =90° ∴∠AOP +∠APO =∠APO +∠BPQ =90°∴∠AOP =∠BPQ ∴△AOP ∽△BPQ∵PO=PQ∴△AOP ≌△BPQ ∴BP =AO =3因此AP =7,CQ =10。
[3]当P 在BA 的延长线上,同理:△AOP ∽△BPQ . 结合等腰和直角, 不难得到OP =PQ , 所以△AOP ≌△BPQ 。
于是PB =AO ,不存在。
综上所述,AP =1时,CQ =2;AP =7时,CQ =10。
在书写的过程中,注意分类讨论中的类比,可以帮助我们更方便地切入和解题。
QB PAOCxyQBPA O Cxy例题2 在Rt △ABC 中,∠C =90°,AC =4,∠A =60°,CD 是边AB 上的中线,直线BM //AC ,E 是边CA 延长线上的一点, ED 的延长线交直线BM 于点F ,将△EDC 沿着CD 翻折得到 △E ’DC ,射线D ’E 交直线BM 于点G (1)当G 在点F 的右侧时,①找到两个与△BDF 相似的三角形,并证明。
②设AE =x ,△DFG 面积为y ,试求y 关于x 的函数解析式,及x 的范围; (2)如果△DFG 的面积为63,求AE 的长DCBMA练习2分析:本题的关键在于G 点和F 点的位置关系不同,在草稿纸上尝试之后,不难得出有以下两种图形。
虽然两个图的结构明显不同,但是图形的关系(直线的位置关系,三角形的相似等)并没有发生改变,第一小问的中得到的相似关系,在第二小问中应该仍然成立,这就大大降低了我们解题的工作量。
帮助我们找到题目中的各种关系。
对于翻折类的问题,我们要关注对应边和对应角的相等关系,这样能帮助我们寻找到相似的图形。
本题中比较容易看到的是△ADE∽△BDF ,不过要发现和证明第二组三角形相似,就要用到角的转化和分析的手段了。
至于其他的部分,看似复杂,结合类比思想,找到相似关系,建立方程组以后就迎刃而解了。
解答:(1)①△BGD 和△ADE 为所求三角形。
∵AC //BM∴△ADE ∽△BDF ,∵CD 为直角三角形ACB 斜边中线 ∴AD =CD =BD∵∠BAC =60°∴∠ACD =60°由题意:△ECD ≌△E ’CD ,∴∠ECE ’ = 2∠ECD =120°,∠DE ’C = ∠DEC∴AB //CE ’ ∴∠BDG =∠DE ’C ∵AC //BM∴∠DEC = ∠BFD∴∠BFD =∠BDG又∵∠DBF = ∠FBD∴△BDG ∽△BFD 。
∴△BDF ∽△BGD ∽△ADE ②由于:△BDF ∽△BGD ∴2BD BGBD BG BF BF BD=⇒=⋅ ∵△BDF ∽△ADE ,D 为AB 的中点 ∴BF =AE =x∵△ACB 中,∠ACB =90° ∴cos ACCAB AB∠= ∵∠CAB =60°,AC =4 ∴AB =8∵M 为AB 的中点,∴BD =4 ∵BG ·BF =BD 2∴16BG x=, 于是16,4FG x x x=-> 不难得到D 到FG 的距离为23,∴2(16)3DFGx y S x∆-==,4x >。
(2)当F在G的右边时,同理:△BDF∽△BGD∽△ADE,仿照②的解法,我们知道:2(16)3,04 DFGxy S xx∆-==<<。
[1]x>4时,212(16)3632(),8 DFGxy S x xx∆-===⇒=-=舍。
[2]0<x<4时,212(16)3632,8() DFGxy S x xx∆-===⇒==-舍。
综上,AE=2或者8。
例题4 如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图中与BEF ∆相似的三角形; (2)证明图中其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若1AE =,试求GMN ∆的面积.第三题分析本题的关键点有以下两个:(1)我们注意到因为∠EFG =∠B =∠C =60°,有这样的一线三等角的关系,所以存在△BEF 和△CFN 的相似性。
同时,反复利用相似三角形的判定定理1,我们可以得到四个三角形的两两相似关系。
并且这样的相似关系不随着点的运动而变化。
(2)本题中,E 是射线BA 上的一点,要分成E 在BA 上和E 在BA 的延长线上两种情形进行讨论。
而M 和N 又是直线EG 、FG 和直线AC 的交点,还要对M 和N 的位置进行具体的分析,所以讨论点比较多。
考虑E 的动态运动过程。
a) 当E 接近B 的时候,N 在CA 的延长线上,M 在AC 上;b) 当E 继续沿着BA 运动后,M 和N 在EG 和FG 的延长线上,且M 、N 在AC 上 c) 当E 继续运动后,M 和N 在EG 和FG 上,同时也在AC 上。
本题的解题的过程中,通过类比的思想,考察题(1)中的相似三角形进行研究即可。
解答:(1)△BEF ∽△CFN ∽△GMN ∽△AME(2)∵∠EFC =∠EFG +∠GFC =∠B +∠BEF 且∠EFG =∠B =60° ∴∠NFC =∠BEF ∴△BEF ∽△CFN又∵∠C =∠G ∠FNC =∠MNG∴△CFN ∽△GMN∵∠G =∠A ∠GMN =∠AME ∴△GMN ∽△AME综上所述:△BEF ∽△CFN ∽△GMN ∽△AME(3)∵△BEF ∽△CFN ∽△GMN ∽△AME∴,BE BF BE BFCF CN AM AE== 关于G 、M 、N 的位置进行讨论。
[1]N 在CA 和FG 的延长线上时,如图1,2233,2x x CN AM x -=>=23223323642,023x x MN CN CA AM x x x x x x -∴=-+=+--+-+=<<[2]N 是FG 的延长线和AC 的交点,如图2,2322332364,220,13x x MN CN CA AM x x x x x MN x -∴=-+=+--+-+=>∴≤<[3]N 是线段FG 和AC 的交点,M 是AC 和EG 的交点,如图3由前得:223,2x x CN AM x -==∴32364,132x x x MN AC AM CN x x-+-=--=≤≤[4]N 是线段AC 和FG 的交点,M 是GE 和CA 延长线的交点,如图4,由前得:223,2x xCN AM x -==∴32364,32x x x MN AC AM CN x x-+-=+-=>综上所述:xx x x y 246323-+--=(10≤<x )或xx x x y 246323-+-= (x ≥1)。