压力检测仪表
第三章第二节压力检测及仪表
(4).力矩平衡式压力变送器 工作原理:是一种典型的自平衡检测仪表,利用力矩平衡 和负反馈的工作原理。 结构:测量部分、杠杆系统、位移检测放大器、波纹管 反馈机构(气动压力变送器)或电磁反馈机构(电动 压力变送器)。 特点:测量精度高、工作稳定可靠、线性好、不灵敏区 小等。
DDZ-Ⅲ型电动力矩平衡压力变送器 直流电源24V,输出4-20mA (DC),两线制,安全防暴。 1.测量膜片; 2.轴封膜片; 3.主杠杆;4.矢量机构; 5.量程调整螺钉; 6.连杆; 7.副杠杆; 8.检测片; 9.差动变压器; 10.反馈线圈 11.放大器; 12.调零弹簧; 13.永久磁钢;
第二节 压力检测及仪表
一、压力单位及测压仪表 1.压力:指均匀垂直地作用在单位面积上的力。 单位(SI):帕斯卡,简称帕(Pa)。 F p 1Pa=1N/m2 1MPa=1X106Pa S
2.几种压力表示法 在压力测量中,常有表压.绝对压力.负压或真空度。 表压:是绝对压力和大气压力之差, 即 P表压 = P绝对压力 -P大气压力 真空度(负压):当被测压力低 于大气压力时,大气压力和 绝对压力之差,即 P真空度 =P大气压力 -P绝对压力
三、电气式压力计 1.定义:把压力转换为电信号进行传输及显示的仪表。 2.组成:压力传感器、测量电路和信号处理装置。 3.测量范围:7×10-5Pa---5×102MPa,测量范围广。 4.压力传感器作用:把压力信号检测出来,并转换成电信 号进行输出。当输出的电信号转换成标准信号时,压 力传感器称为压力变送器。 标准信号:是指物理量的形式和数值范围都符合国际标 准的信号。如直流电流4-20mA (0-10mA),空气压力 0.02-0.1MPa都为标准信号。 5.压力传感器分类:霍尔片式、应变片式、压阻式压力 传感器和力平衡式 、电容式压力变送器。
压力测量仪表
压力变送器和差压变送器测量的参数不同, 但它们的结构和原理基本相同,只是测量敏感元 件和受力方式不同。压力变送器的敏感元件是弹 簧管和波纹管,而且是单侧受压。差压变送器的 敏感元件是膜盒或膜片等,且为双侧受压(在壳体 上标有“十”、 “一”符号)。
在DDZ型变送器系列中,DBY是压力变送器, DBC是差压变送器,DBL是流量变送器。
几种压力之间的关系
绝对压力
。
。 真空度
。 表压力
完 全 真 空
负压力
︵
☉
环大
境气
0 Pa
压压
力力
︶
。 表示标准压力
☉ 表示任意压力值
二、弹性压力计 弹簧管压力表
1、弹簧管压力表结构及工作原理
弹簧管在压力的作用下,其自由端产生 位移,并通过拉杆带动放大传动机构,使指 针偏转并在刻度盘上指示出被测压力值。
比例发生了变化,只要移动调整螺钉的位置,改变传动比,
就可将误差调整到允许的范围内。当被检表的误差为正值,
并随压力的增加而增大时,将调整螺钉向右移,降低传动
比。当被检表的误差为负值,并随压力的增加而增大时,
将调整螺钉向左移,增大传动比。弹簧管压力表的调校与
检修.doc
习题讲解:
检定一只测量范围为0~10MPa,准确度为1.5级 的弹簧管式压力表,所用的精密压力表的量程和准确 度等级为多少?
式中 p---压力,Pa; F---垂直作用力,N; S---受力面积,m2。
压力的单位也取法定计量单位,名 称是“帕斯卡”,简称“帕”,用符号
“Pa”表示。实际应用中,“Pa”的单 位太小,工程上习惯以“帕”的 1×106倍为单位,即“M Pa。
几种压力单位之间的换算:
第三章 压力检测仪表
mm m dyn/cm2 lb/in2
常见压力传感器外形
工业压力变送器 数字压力变送器 通用压力变送器 隔离压力变送器 高温压力变送器 隔离压差变送器 隔离液位变送器 微压变送器 电容压力变送器 隔膜压力变送器 绝压变送器 双膜压差变送器
微型探针压力计 暖风空调压力计 湿式压力变送器 本安压力变送器
§3.1 概 述 一、测量过程与测量误差
1.测量过程:不论检测方法和仪表结构多么不同, 测量的实质都是将被测参数与其所对应的测量 单位进行比较的过程,而测量仪表是实现这种 比较的工具。尽管测量原理各式各样,但都是 将被测参数经过一次或多次能量的转换,最终 获得一种便于显示和传递的信号形式的过程。 例如:采用热电偶进行温度的测量 (温度-> 电流信号->毫伏测量表指针偏转->与温度标 尺进行比较)
示值之比,即:Y= Δ/ X0=(X-X0)/X0
二、检测仪表的性能指标
1. 准确度与允许误差
• 准确度(精度):反映测量值与其真值的接近程度;
• 仪表的精度不仅与绝对误差(通常指各测量点绝对误 差中的最大值)有关,而且与仪表的测量范围有关, 因此,工业中不是用绝对误差来表示精度,而是用相 对百分误差δ或者允许误差δ允来表示, δ允越大,精度 越低,反之,精度越高。
OEM血压计
OEM压力芯片
压力计的分类与工作原理
工业压力计通常按敏感元件的类型及转换原 理的不同进行分类: • 液柱式压力计 • 活塞式压力计 • 弹性式压力计 • 电气式压力计
1. 液柱式压力计
测量原理: 根据流体静力学原理,将被测压力转换为液柱高度的 测量。 即:P=ρgh 所以 : h=P / ρg
该类传感器利用电阻应变原理构成。(金属、半导体应变片两类) (1)当应变片产生压缩应变时,其阻值减小; (2)当应变片产生拉伸应变时,其阻值增加。 应变片式压力计将应变片阻值的变化,通过桥式电路转换 成相应的毫伏级电势输出,并用毫伏计或其他仪表显示出 被测压力的大小。
压力测量仪表有哪几种
用于压力测量的仪表种类很多,按其转换原理可大致分为以下几种。
1、液柱式压力表液柱式压力表是根据静力学原理,将被测压力转换成液柱高度来进行压力测量的。
这类仪表包括U形管压力计、单管压力计、斜管压力计等。
常用的测压指示液体有酒精、水、四氯化碳和水银。
这类仪表的优点是结构简单,反应灵敏,测量准确;缺点是受到液体密度的限制,测压范围较窄,在压力剧烈波动时,液柱不易稳定,而且对安装位置和姿势有严格要求。
一般仅用于测量低压和真空度,多在实验室中使用。
2、弹性式压力表弹性式压力表是根据弹性元件受力变形的原理,将被测压力转换成元件的位移来测量压力的。
常见的有弹簧管压力表、波纹管压力表、膜片(或膜盒)式压力表。
这类测压仪表结构简单,牢固耐用,价格便宜,工作可靠,测量范围宽,适用于低压、中压、高压多种生产场合,是工业中应用最广泛的一类压力测量仪表。
不过弹性式压力表的测量精度不是很高,且多数采用机械指针输出,主要用于生产现场的就地指示。
当需要信号远传时,必须配上附加装置。
3、压力传感器和压力变送器压力传感器和压力变送器是利用物体某些物理特性,通过不同的转换元件将被测压力转换成各种电量信号,并根据这些信号的变化来间接测量压力的。
根据转换元件的不同,压力传感器和压力变送器可分为电阻式、电容式、应变式、电感式、压电式、霍尔片等形式。
这类压力测量仪表的最大特点就是输出信号易于远传,可以方便地与各种显示、记录和调节仪表配套使用,从而为压力集中监测和控制创造条件。
在生产过程自动化系统中被大量采用。
扩展资料:用途:压力表可以指示、记录压力值,并可附加报警或控制装置。
仪表所测压力包括绝对压力、大气压力、正压力(习惯上称表压)、负压(习惯上称真空)和差压。
工程技术上所测量的多为表压。
压力的国际单位为帕,其他单位还有:工程大气压、巴、毫米水柱、毫米汞柱等。
压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。
压力测量仪表的分类
压力测量仪表的分类压力测量仪表是工业自动化控制系统中常用的一种仪表设备,用于测量和监测流体、气体或固体等介质中的压力变化。
根据其测量原理和结构特点的不同,压力测量仪表可以分为多种不同的类型。
本文将对压力测量仪表进行分类,并详细介绍每种类型的原理和应用。
一、机械式压力测量仪表机械式压力测量仪表是最常见的一种类型,其测量原理基于力的平衡或变形的原理。
其中,弹簧式压力计是最简单的一种机械式压力测量仪表,其原理是利用弹簧的变形来测量压力。
压力通过连接在弹簧上的指针或指示器显示出来。
弹簧式压力计广泛应用于工业自动化领域,例如汽车制造、化工、石油等行业。
二、电子式压力测量仪表电子式压力测量仪表利用电信号的变化来测量压力。
其中,压阻式压力传感器是最常用的一种电子式压力测量仪表。
其原理是利用电阻的变化来测量压力。
当压力作用于压阻式传感器时,电阻值随之发生变化,通过检测电阻值的变化可以得到压力的数值。
压阻式压力传感器具有测量范围广、精度高、响应速度快等优点,被广泛应用于工业自动化控制系统中。
三、压电式压力测量仪表压电式压力测量仪表是利用压电效应来测量压力的一种仪表。
压电效应是指某些晶体在受到外力作用时会产生电荷的现象。
压电式压力传感器由压电晶体和电路组成,当压力作用于压电晶体时,其产生的电荷通过电路进行放大和处理,最终得到压力的数值。
压电式压力传感器具有高灵敏度、快速响应等特点,被广泛应用于航空航天、军事等领域。
四、气体式压力测量仪表气体式压力测量仪表是利用气体的特性来测量压力的一种仪表。
其中,差压式压力计是最常见的一种气体式压力测量仪表。
其原理是将被测介质与参比介质隔开,通过测量两者之间的压差来得到压力的数值。
差压式压力计广泛应用于空调、供热、给排水等系统中,用于测量气体或液体的压力。
五、液位式压力测量仪表液位式压力测量仪表是利用液体的压力来测量压力的一种仪表。
其中,液位计是最常见的一种液位式压力测量仪表。
其原理是利用液体的压力高度与压力成正比的关系来测量压力。
压力(差压)检测仪表的正确选用
一、压力(差压)检测仪表的正确选用压力检测仪表的正确选用主要包括确定仪表的型式、量程、范围、准确度和灵敏度、外形尺寸以及是否需要远传和具有其他功能,如指示、记录、调节、报警等。
选用的主要依据:1.工艺生产过程对测量的要求,包括量程和准确度。
在静态测试(或变化缓慢)的情况下,规定被测压力的最大值选用压力表满刻度值的三分之二;在脉动(波动)压力的情况下,被测压力的最大值选用压力表满刻度值的二分之一。
常用压力检测仪表的准确度等级有0.4级、1.0级、1.5级和2.5级4个级等,应从生产工艺准确度要求和最经济角度选用。
仪表的最大允许误差是仪表的量程与准确度等级百分比的乘积,如果误差值超过工艺要求准确度,则需更换准确度高一级的压力仪表。
2.被测介质的性质,如状态(气体、液体)、温度、粘度、腐蚀性、法污程度、易燃和易爆程度等。
如氧气表、乙炔表,带有“禁油”标志,专用于特殊介质的耐腐蚀压力表、耐高温压力表、隔膜压力表等。
3.现场的环境条件,如环境温度、腐蚀情况、振动、潮湿程度等。
如用于振动环境条件的防震压力表。
4.适于工作人员的观测。
根据检测仪表所处位置和照明情况选用表径(外形尺寸)不等的仪表。
二、压力(差压)检测仪表的检定和校准仪表在使用之前,必须检定和校准。
长期使用的仪表也应定期检定,其周期应视使用频繁程度和重点程度而定。
当仪表带有远距离传送系统及二次仪表时,应连同二次仪表一起检定、校准。
三、压力(差压)检测仪表的正确安装及有关事项进行压力检测,实际上需要一个测量系统来实现。
要做到准确测量,除对仪表进行正确选择和检定(校准)外,还必须注意整个系统的正确安装。
如果只是仪表本身准确,其示值并不能完全代表被测介质的实际参数,因为测量系统的误差并不等于仪表的误差。
系统的正确安装包括取压口的开口位置、连接导管的合理铺设和仪表安装位置的正确等。
1.取压口的位置选择(1)避免处于管路弯曲、分叉及流束形成涡流的区域。
(2)当管路中有突出物体(如测温元件)时,取压口应取在其前面。
常见压力检测仪表简介
缺点
结构较复杂,价
二、弹性式压力表
弹性式压力计是利用各种形式的弹性元件, 在被测介质压力的作用下,使弹性元件受压后 产生弹性变形的原理而制成的测压仪表。
优点
具有结构简单、使用可靠、读数清晰、牢 固可靠、价格低廉、测量范围宽以及有足够的 精度等优点。 可用来测量几百帕到数千兆帕范围内的压 力。
压力检测仪表简介
一、液柱式压力计
它根据流体静力学原理,将被测压力转换成液柱高度进行测量。
优点
这类压力计结构简单、使用方便 其精度受工作液的毛细管作用、密度及视 差等因素的影响,测量范围较窄,一般用来测 量较低压力、真空度或压力差。
缺点
一、液柱式压力计
血压计
一、液柱式压力计
一、液柱式压力计
图2-2弹性元件示意图
弹簧管压力计
膜片式压力计
膜片式压力计
三、电气式压力表
它是通过机械和电气元件将被测压力转换成电量(如 电压、电流、频率等)来进行测量的仪表。
四、活塞式压力表
它是根据水压机液体传送压力的原理,将被测压力转 换成活塞上所加平衡砝码的质量来进行测量的。
优点
测量精度很高,允许误差可小到0.05%~0.02%。
压力检测仪表课程设计
压力检测仪表课程设计一、课程目标知识目标:1. 让学生理解压力检测仪表的基本原理和结构,掌握其工作方式和应用领域。
2. 使学生掌握压力单位及换算,了解不同类型压力传感器的特点及适用场合。
3. 让学生了解压力检测仪表在工业、日常生活和科学研究中的应用,理解其在保障安全、提高效率等方面的重要性。
技能目标:1. 培养学生能够正确操作压力检测仪表,进行简单的压力测量和数据处理。
2. 提高学生运用压力检测仪表解决实际问题的能力,例如分析压力异常的原因并提出解决方案。
3. 培养学生通过查阅资料、进行实验等方法,对压力检测仪表进行深入研究的能力。
情感态度价值观目标:1. 激发学生对压力检测仪表的兴趣,培养其探索精神和动手实践能力。
2. 培养学生关注安全生产,提高其安全意识和责任心。
3. 通过课程学习,使学生认识到科技在现实生活中的重要作用,增强其创新意识和团队合作精神。
课程性质:本课程为实践性较强的学科课程,结合理论知识与实践操作,培养学生对压力检测仪表的全面了解和应用能力。
学生特点:考虑到学生所在年级的特点,课程内容将结合学生的认知水平和兴趣,注重理论联系实际,提高学生的动手能力和解决问题的能力。
教学要求:教师应充分准备课程资源,注重启发式教学,引导学生主动参与课堂讨论和实践活动,确保学生能够达到课程目标。
同时,关注学生的学习进度和个体差异,给予个性化指导,使学生在课程学习中获得最佳成果。
二、教学内容1. 压力检测仪表基本概念:包括压力定义、压力单位及换算、压力传感器类型等,对应教材第一章内容。
2. 压力检测仪表原理与结构:详细讲解各种压力检测仪表的工作原理、结构特点及应用场合,对应教材第二章内容。
3. 压力检测仪表的使用与维护:教授压力检测仪表的正确操作方法、维护保养技巧和故障排除,对应教材第三章内容。
4. 压力检测仪表在实际应用中的案例分析:分析工业、日常生活和科学研究中压力检测仪表的应用案例,对应教材第四章内容。
压力检测及仪表的内容培训资料
•。显然:
α 为中心齿轮产生的角位移
•β 为扇形齿轮的圆心角
•c 为中心齿轮的半径
•
•α= β
• 将 β= Δ X 代入α= β
•调整a 即可调 整放大系统的 放大倍数。
•则
路漫漫其悠远
•三、电接点压力表
• 电接点压力表就是在普通弹簧管压力表的基础 上,增加了一个动触点,两个静触点。常用于压力 测量、压力报警和压力控制。
•PA=0
路漫漫其悠远
•(3)斜管式压力计
•因为L>h •因此提高了仪 表的灵敏度。 •一般我们可以用斜管式压力计测微压。
路漫漫其悠远
•液柱式压力计在读数时应当注意:
•对于侵润型工作液(水、酒精等)应在最低 点读数(切线) •对于非侵润型工作液(水银)应在最高点读 数(切线)
路漫漫其悠远
•二、弹性式压力计
路漫漫其悠远
•压力检测仪表的内 容 •一、压力单位及测压仪表
•二、弹性式压力表 •三、电气式压力表 •四、压力变送器 •五、压力表的选择与安装
路漫漫其悠远
•一、压力单位及测压仪表
•压力是指垂直作用在单位面积上的力
•P 表示压力 •F 表示垂直作用力 •S 表示受力面积
•1MPa= 103 KPa •1KPa= 103 Pa
•另外还可用测量范围分类 压力表、微压计、真空表
。•用精度等级分类 精密表、标准表、工业用表
•用安装及指示特点分类 基地式(现场)压力表、远传
•
压力表、 指示型压力表、记录
•
型压力表等。
路漫漫其悠远
•1、液柱式压力计
• 根据流体静力学原理,将被测压力转换成液柱 高度进行测量。 •结构形式:U型管压力计、单管压力计、斜管压 力计等。 • 特点:结构简单、使用方便。 • 缺点:精度受工作液的毛细管作用、密度及视 差等因素的影响,测量范围较窄,一般用来测量 校低压力、真空度或压力差。
液柱式压力检测仪表
当p1< p2时,两边管内液面便会产生高度差。p 1 p 2
p1
p2
根据液体静力学原理可知:
Δp=p2-p1=ρg h
h
ρ为U形管内液体的密度。
U形玻璃管压力测量原理图
(a )
Байду номын сангаас
(b )
• 如把压力p1一侧改为通大气P0, 则上式可改写为:
p2=ρgh
• 单管或斜管, 测压原理与U形管相同.
单管压力计
p=ρgh
斜管式压力计
压力检测仪表的选用
·根据生产工艺的要求;
气体
·被测介质的物理化学性质 液体
·现场的环境条件。
载荷
量程的确定
被测压力值在压 力计全量程的30 %~70%之间 为宜,根据被测 压力的工作范围 来确定
精度等级的选择
根据实际使用的需 要合理选择压力计 精度,以寻求性能 价格比的最佳选择
概述
压力为均匀而垂直作用于单位面积上的力。
表达式为:
P F A
式中,P——压力; F——作用力; A——作用面积。
压力单位换算表
几种不同的压力表示方法:
(1)绝对压力:作用于物体表面积上的全部压力, (2)大气压力:空气柱重量所产生的压力, (3)表压力:绝对压力与大气压力之差,
当绝对压力小于 大气压力, 则表压力 为负压(如测炉膛和 烟道气体的压力均是 负压)。
在满足工艺要求的前 提下,应尽可能选用 精度较低、价廉耐用 的仪表
用途 (对仪表输出信号的 要求)
压力检测信号是作为 指示用还是要作为控 制用
决定了所选用的压力 计是无输出的还是标 准电流(电压)信号输 出
压力检测仪表的校验
《压力检测及仪表》课件
压力仪表无法通讯
检查通讯线路、接口是否正常,协议是否匹 配
CHAPTER
05
新型压力检测技术及发展趋势
新型压力检测技术的特点与应用
特点
高精度、快速响应、低成本、智能化
应用领域
工业自动化、航空航天、医疗设备、科研实验等
新型压力检测技术的发展趋势与展望
发展趋势
集成化、微型化、网络化、智能化
压力检测是利用各种传感器和测 量仪表来测量气体或液体的压力
,以了解其压力状态的过程。
压力检测在工业生产、航空航天 、医疗等领域具有重要意义,是 保证设备和系统安全、稳定运行
的关键。
压力检测的原理与分类
01
总结词:压力检测的原理与分类
02
压力检测的原理主要是基于压力传感器的物理效应,如压阻效
应、压电效应等。
《压力检测及仪表》 PPT课件
CONTENTS
目录
• 压力检测技术概述 • 压力仪表的种类与特点 • 压力检测系统的设计与应用 • 压力仪表的校准与维护 • 新型压力检测技术及发展趋势 • 压力检测及仪表行业的发展前景
CHAPTER
01
压力检测技术概述
压力检测的定义与重要性
总结词:压力检测的定义与重要 性
电容式压力传感器
利用电容效应,将压力转换为 电容量变化,再通过电子测量 电路转换为电压或电流信号输 出。
压阻式压力传感器
利用半导体材料的压阻效应, 将压力转换为电阻值变化,再 通过测量电路转换为电压或电
流信号输出。
压力仪表的特点与应用
弹簧管压力表
膜片压力表
结构简单、价格低廉、使用方便,适用于 一般工业气体、液体和蒸汽的压力检测。
压力检测仪表
主要内容
测量仪表性能评价
1 3
2
3 3 4 5 3
压力测量概述
压力仪表的选用 压力仪表的校验 智能压力变送器
小结
一、测量过程和测量误差、绝对误差、相对误差
二、测量仪表的性能指标:
1、准确度 2、变差
3、灵敏度
4、分辨力 5、线性度 6、反(响)应时间 7、零点漂移
将 差 值 乘 以 过 调 系 数 0 . 2 得 到 过 调 量
[0.1×0.2=0.02(mA)],然后根据过调量的大小来调整量 程。
阻尼调整
阻尼调整:用于消除被测压力频繁波动所造成的变
送器的输出波动。它可以通过调整阻尼调节电位器来
完成(电路板标记为“D”),出厂时,电位器处于反时
针极限位置,阻尼时间为0.2s,顺时针可调整阻尼时 间范围为0.2~1.67s。注意不要猛拧电位器,超过限 位时电位器将损坏。
4、压力仪表的校验
变送器的调整(对于常规型号的压力变送器)
零位调整。当压力回零时,变送器输出显示不在零位,
就需要做零位调整。零位越高,电流输出越大,计算值越 大。
输入变送器压力信号为 0MPa,调整变送器外壳铭牌的 后 面 标有 “ Z” 的调节 螺 钉 , 直 到 变送器 的 输出电 流 为
3、压力仪表的选用
在正常使用条件下,测量仪表的稳定性很重要,它表征测量仪
表的计量特性随时间长期不变的能力。一般来说,人们都要求
测量仪表具有高的可靠性;在极重要的情况下,比如在核反应 堆、空间飞行器中,为确保万无一失,有时还要选备两套相同
的测量仪表,以保证测量仪表绝对可靠。
在选择测量仪表时,还应注意该仪表的额定操作条件和极限 条件。这些条件给出了被测量值的范围、影响量的范围以及其
压力测量仪表的分类
压力测量仪表的分类压力测量仪表是一种用来测量和监测压力的设备,广泛应用于工业、科研、医疗等领域。
根据其原理和用途的不同,压力测量仪表可以分为多个分类。
一、机械式压力测量仪表机械式压力测量仪表是一种使用机械原理来测量压力的仪表。
常见的机械式压力测量仪表包括压力表和压力计。
压力表通过弹簧或膜片的弯曲变形来显示压力值,适用于一般工业场合。
压力计则是利用液体的静压力来测量压力,常用于实验室和科研领域。
二、电子式压力测量仪表电子式压力测量仪表是一种利用电子技术来测量压力的仪表。
常见的电子式压力测量仪表包括压力传感器和数字压力计。
压力传感器是将压力转换为电信号的装置,通过测量电信号的变化来获取压力值。
数字压力计则是将电信号转换为数字显示,具有更高的精度和可靠性。
三、差压式压力测量仪表差压式压力测量仪表是一种通过测量两个压力之间的差值来获取压力值的仪表。
常见的差压式压力测量仪表包括差压变送器和差压计。
差压变送器通过测量两个压力传感器之间的差值来输出电信号,适用于需要远程传输信号的场合。
差压计则是利用液体或气体的静压力差来测量压力,常用于流体流量和液位的测量。
四、液位式压力测量仪表液位式压力测量仪表是一种利用液体的静压力来测量压力的仪表。
常见的液位式压力测量仪表包括液位计和液位变送器。
液位计通过液体的静压力来显示压力值,适用于液体介质的测量。
液位变送器则是将液位的静压力转换为电信号输出,适用于需要远程传输信号的场合。
五、气体浓度式压力测量仪表气体浓度式压力测量仪表是一种利用气体的浓度变化来测量压力的仪表。
常见的气体浓度式压力测量仪表包括气体浓度传感器和气体分析仪。
气体浓度传感器通过测量气体的浓度变化来判断压力值,适用于气体混合物的测量。
气体分析仪则是通过分析气体成分的变化来测量压力值,常用于环境监测和气体分析领域。
六、温度补偿式压力测量仪表温度补偿式压力测量仪表是一种通过补偿温度的影响来测量压力的仪表。
常见的温度补偿式压力测量仪表包括温度补偿压力传感器和温度补偿压力计。
压力测量仪表的分类
压力测量仪表的分类压力测量仪表是一种用于测量压力的设备,广泛应用于工业、科研、医疗等领域。
根据其工作原理和使用范围的不同,可以将压力测量仪表分为几个不同的分类。
第一类是机械式压力测量仪表。
这类仪表通过机械结构将受力转化为位移,并通过测量位移来确定压力值。
常见的机械式压力测量仪表有压力表和压力传感器。
压力表是一种直观、简单的测量仪表,通常由弹簧和指针组成,通过弹簧受力产生的位移来指示压力值。
压力传感器则是一种用于将压力转换为电信号的装置,常见的有应变片式传感器和电容式传感器。
第二类是液位式压力测量仪表。
这类仪表利用液体的压力作用来测量压力值。
液位式压力测量仪表通常由液体柱和刻度盘组成,通过读取刻度盘上的液位高度来确定压力值。
这种仪表具有结构简单、价格低廉的特点,常用于一些简单的压力测量场合。
第三类是电子式压力测量仪表。
这类仪表利用电子技术来测量压力值,具有精度高、响应快的特点。
常见的电子式压力测量仪表有压力变送器和压力传感器。
压力变送器是一种能够将压力信号转换为标准电信号输出的装置,常用于工业自动化控制系统中。
压力传感器则是一种能够将压力转换为电信号的装置,常用于科研和医疗领域。
第四类是无接触式压力测量仪表。
这类仪表利用无接触技术来测量压力值,具有非侵入性和高精度的特点。
常见的无接触式压力测量仪表有光纤传感器和激光干涉仪。
光纤传感器通过测量光纤中的光信号的变化来确定压力值,广泛应用于高温、高压和腐蚀性环境中。
激光干涉仪则利用激光干涉原理来测量压力值,具有极高的精度和稳定性,常用于精密测量和科学实验中。
压力测量仪表根据其工作原理和使用范围的不同,可以分为机械式、液位式、电子式和无接触式四个主要分类。
不同类型的压力测量仪表各具特点,在不同领域有着广泛的应用。
随着科技的不断进步和应用的不断拓展,压力测量仪表的分类和应用也会不断发展和完善,为各行各业的压力测量提供更准确、方便的解决方案。
压力检测仪表的正确选用
压力检测仪表的正确选用在工业生产和实验室等领域,压力检测仪表是十分重要的设备。
正确的选择和使用压力检测仪表可以提高工作效率,节省成本,降低安全风险。
那么我们应该如何正确选用压力检测仪表呢?了解压力检测仪表的种类在选用仪表之前,我们需要了解不同的仪表种类和其适用范围。
常见的压力检测仪表包括:•压力表:测量绝对压力、相对压力或差压。
•真空表:测量负压或真空度。
•差压表:测量两管道或系统之间的压力差。
•压力变送器:将被测压力转换为标准电信号输出。
确定测量范围在选用压力检测仪表之前,我们需要确定需要测量的压力范围。
这个范围可以通过以下几种方式确定:•根据工艺流程和设备的设计压力确定。
•通过分类选择,根据被测介质和流体特性来确定所需测量压力范围。
•根据测量数据和工程实践需要。
确定精度等级和准确度要求一般情况下,压力检测仪表的精度等级越高,价格越贵。
正确的选择需要根据实际需要来决定精度等级。
在此基础上,还需要确定准确度要求,即允许的误差范围。
在选用压力检测仪表时,需要考虑其准确度是否符合实际需求。
考虑环境因素压力检测仪表运行环境的影响因素包括温度、压力、振动、电磁干扰、腐蚀等。
在选用仪表前应充分考虑这些因素,选择能够适应工作环境的仪表。
选择合适的连接方式在确定好所需测量压力范围、精度、准确度以及运行环境后,需要选择合适的连接方式。
连接方式包括螺纹接口、法兰连接、卡箍连接等,需要根据被测介质、压力范围以及工作环境的特点来选择。
考虑维护和校准压力检测仪表需要进行定期校准和维护。
在选用仪表时,需要考虑是否具备维护和校准的条件。
另外,校准应在有经验的专业人员的指导下进行。
结论选用压力检测仪表的正确性对生产和实验的顺利进行起着至关重要的作用。
在选用之前,需要充分考虑测量范围、精度、准确度要求、环境因素、连接方式以及维护和校准等方面的因素,选择适合自己需求的压力检测仪表。
第五章压力测量及其仪表
活塞式压力表
工作原理:加压泵压缩活塞内 的介质,使其具有压力P,这个压 力作用到活塞的有效面积F上形成 向上的作用力FP,当此力与活塞、 承重盘、砝码的总重量G平衡时, 那么介质的压力P=G/F,F为有效 面积,活塞压力计的有效面积在 铭牌或检定书上给出,一般为 1cm2、0.1cm2。
分类:①应变片:受压时,电阻的尺寸L、S发
生变化,引起电阻的变化。 ②半导体扩散硅:在压力的作用下,电阻
率发生变化。 通常半导体扩散硅电阻变化的灵敏度要远远高
于应变片,大约为100倍。
第五节 压力检测仪表的选择与校验
一.压力检测仪表的选择
①测压范围,②被测介质的物理化学性 质,③测试精度要求。
2. 重力加速度变化的影响及修正
标准重力加速 度下的工作液
柱高度
hn
g gn
h
使用地点的工 作液柱高度
3.毛细现象的影响 为了减少该误差,通常要求测量管的内径一 般不小于10mm。
问题?
1. 斜管式微压计用水作介质,可以吗?
2. 液柱式压力计,水作工作介质,为了便于读 数,在水中加入红墨水,可以吗?
简化为: P gh2
直管
存在问题?
三、斜管式压力计
主要用于测量微小的压力、负压和压
差。为了减少读数的相对误差,拉长
液柱,将测量管倾斜放置。
P1
h2 l sin a
P2
L
h1 A1
lA2
h1
A2 A1
l
h1
h2
(1h1
h2h)2)Pggg( (AAAA(12h12l1llhls2si)ninaa)g)(ggAA12
即1n的力垂直均匀作用在1m2的面积上所形成的压力值为的面积上所形成的压力值为1pa21222kgm1pa1nm11kgmsms?????二压力的表示方法?绝对压力pj?大气压力pd?表压力pbpbpjpd?真空度pz负压pzpdpj三压力的单位?过去采用的压力单位工程大气压力过去采用的压力单位工程大气压力kgfcm2毫米汞柱mmhg毫米水柱mmh2o物理大气压atm巴barpsi等均应改成法定计量单位帕
压力检测仪表
第三章压力检测仪表压力是工业生产过程中重要工艺参数之一。
许多工艺过程只有在一定的压力条件下进行,才能取得预期的效果;压力的监控也是安全生产的保证。
压力的检测和控制是保证工业生产过程经济性和安全性的重要环节。
压力测量仪表还广泛地应用于流量和液位测量方面。
1.压力概念和单位压力概念:在工程上,“压力”定义为垂直均匀地作用于单位面积上的力,通常用P表示,对应于物理学中的压强。
单位:国际标准单位为帕斯卡,简称为帕,符号为Pa,加上词头又有千帕、兆帕等,我国规定帕斯卡为压力的法定单位.目前,工程技术中仍常用的单位还有工程大气压、物理大气压、巴、毫米水柱、毫米汞柱等。
在工程上,压力有几种不同的表示方法,并且有相应的测量仪表.(1)绝对压力被测介质作用在容器表面积上的全部压力称为绝对压力。
用来测量绝对压力的仪表,称为绝对压力表。
(2)大气压力由地球表面空气柱重量形成的压力,称为大气压力。
它随地理纬度、海拔高度及气象条件而变化,其值用气压计测定。
(3)表压力通常压力测量仪表是处于大气之中,则其测得的压力值等于绝对压力和大气压力之差,称为表压力.一般地说,常用的压力测量仪表测得的压力值均是表压力。
(4)真空度当绝对压力小于大气压力时,表压力为负值(负压力),其绝对值称为真空度,用来测量真空度的仪表称为真空表。
(5)差压设备中两处的压力之差简称为差压。
生产过程中有时直接以差压作为工艺参数,差压测量还可作为流量和物位测量的间接手段。
压力检测的主要方法及分类:根据不同工作原理,主要的压力检测方法及分类有如下几种。
(1)重力平衡方法液柱式压力计基于液体静力学原理。
被测压力与一定高度的工作液体产生的重力相平衡,将被测压力转换为液柱高度来测量,其典型仪表是U形管压力计。
这类压力计的特点是结构简单、读数直观、价格低廉,但—般为就地测量,信号不能远传;可以测量压力、负压和压差;适合于低压测量,测量上限不超过0.1~0。
2 Mpa;精确度通常为0.02%~±0.15%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章压力检测仪表压力是工业生产过程中重要工艺参数之一。
许多工艺过程只有在一定的压力条件下进行,才能取得预期的效果;压力的监控也是安全生产的保证。
压力的检测和控制是保证工业生产过程经济性和安全性的重要环节。
压力测量仪表还广泛地应用于流量和液位测量方面。
1.压力概念和单位压力概念:在工程上,“压力”定义为垂直均匀地作用于单位面积上的力,通常用P表示,对应于物理学中的压强。
单位:国际标准单位为帕斯卡,简称为帕,符号为Pa,加上词头又有千帕、兆帕等,我国规定帕斯卡为压力的法定单位。
目前,工程技术中仍常用的单位还有工程大气压、物理大气压、巴、毫米水柱、毫米汞柱等。
在工程上,压力有几种不同的表示方法,并且有相应的测量仪表。
(1)绝对压力被测介质作用在容器表面积上的全部压力称为绝对压力。
用来测量绝对压力的仪表,称为绝对压力表。
(2)大气压力由地球表面空气柱重量形成的压力,称为大气压力。
它随地理纬度、海拔高度及气象条件而变化,其值用气压计测定。
(3)表压力通常压力测量仪表是处于大气之中,则其测得的压力值等于绝对压力和大气压力之差,称为表压力。
一般地说,常用的压力测量仪表测得的压力值均是表压力。
(4)真空度当绝对压力小于大气压力时,表压力为负值(负压力),其绝对值称为真空度,用来测量真空度的仪表称为真空表。
(5)差压设备中两处的压力之差简称为差压。
生产过程中有时直接以差压作为工艺参数,差压测量还可作为流量和物位测量的间接手段。
压力检测的主要方法及分类:根据不同工作原理,主要的压力检测方法及分类有如下几种。
(1)重力平衡方法液柱式压力计基于液体静力学原理。
被测压力与一定高度的工作液体产生的重力相平衡,将被测压力转换为液柱高度来测量,其典型仪表是U形管压力计。
这类压力计的特点是结构简单、读数直观、价格低廉,但—般为就地测量,信号不能远传;可以测量压力、负压和压差;适合于低压测量,测量上限不超过0.1~0.2 Mpa;精确度通常为0.02%~±0.15%。
高精度的液柱式压力计可用作基准器。
负荷式压力计基于重力平衡原理。
其主要型式为活塞式压力计。
被测压力与活塞以及加于活塞上的砝码的重量相平衡,将被测压力转换为平衡重物的重量来测量。
这类压力计测量范围宽、精确度高(可达±0.01%、性能稳定可靠,可以测正压、负压和绝对压力,多用作压力校验仪表。
单活塞压力计测量范围达0.04~2500MPa,此外还有测量低压和微压的其他类型的负荷式压力计。
(2)机械力平衡方法这种方法是将被测压力经变换元件转换成一个集中力,用外力与之平衡,通过测量平衡时的外力可以测知被测压力。
力平衡式仪表可以达到较高精度,但是结构复杂。
这种类型的压力、差压变送器在电动组合仪表和气动组合仪表系列中有较多应用。
(3)弹性力平衡方法此种方法利用弹性元件的弹性变形特性进行测量。
被测压力使测压弹性元件产生变形,因弹性变形而产生的弹性力与被测压力相平衡,测量弹性元件的变形大小可知被测压力。
此类压力计有多种类型,可以测量压力、负压、绝对压力和压差,其应用最为广泛。
(4)物性测量方法基于在压力的作用下,测压元件的某些物理特性发生变化的原理。
电测式压力计利用测压元件的压阻、压电等特性或其他物理特性,将被测压力直接转换为各种电量来测量。
多种电测式类型的压力传感器,可以适用于不同的测量场合。
其他新型压力计如集成式压力计、光纤压力计等。
2.液柱式压力计最早使用的一种压力计。
简单、可靠、精度比较高、价格低廉。
历史上曾是准确测量压力的唯一仪器。
虽然现在已出现一系列新型仪表。
实际上此种压力计还在使用,有时还用来检验其它型式的仪表。
液柱式压力计3.弹性式压力计弹性压力计利用弹性元件受压变形的原理。
弹性元件在弹性限度内受压变形,其变形大小与外力成比例,外作用力取消后,元件将恢复原有形状。
利用变形与外力的关系,对弹性元件的变形大小进行测量,可以求得被测压力。
弹性压力计的组成一般包括弹性元件、变换放大机构、指示机构和调整机构等几个主要环节。
弹性元件是仪表的核心部分,其作用是感受压力并产生弹性变形,弹性元件采用何种形式要根据测量要求选择和设计;变换放大机构作用是将弹性元件的变形进行变换和放大;指示机构如指针与刻度标尺,用于给出压力示值;调整机构是用于调整仪表的零点和量程。
弹性元件主要有以下几种形式。
(1)弹性膜片这是一种外缘固定的片状弹性元件,膜片的弹性特性一般由中心位移与压力的关系表示。
按剖面形状及特性,弹性膜片又分为平膜片、波纹膜片和挠性膜片。
平膜片的使用位移很小,弹性特性有良好的线性关系。
波纹膜片是压有环状同心波纹的圆膜片,波纹的形状有正弦形、锯齿形、梯形等。
其位移与压力的关系,由波纹的形状、深度和波纹数确定。
为了测量微小压力,还可以制成膜盒,以增大膜片位移。
挠性膜片仅作为隔离膜片使用,它要与测力弹簧配用。
(2)波纹管波纹管由整片弹性材料加工而成,是一种壁面具有多个同心环状波纹,一端封闭的薄壁圆管。
波纹管的开口端固定,由此引人被测压力。
在其内腔及周围介质的压差作用下,封闭端将产生位移,此位移与压力在一定的范围内呈线性关系。
在使用时一般要应用在线性段,也可以在波纹管内加螺旋弹簧以改善特性。
用波纹管作弹性元件的压力计,一般用于测量较低压力或压差。
(3)弹簧管弹簧管是一根弯成圆弧状的、具有不等轴截面的金属管。
常见的不等轴截面是扁圆和椭圆形。
弹簧管的一端封闭并处于自由状态为自由端,另一端开口为固定端,被测压力由固定端通人弹簧管内腔。
在压力的作用下,弹簧管横截面有变圆的趋向,弹簧管亦随之产生向外伸直的变形,从而引起自由端位移。
自由端的位移量与所加压力有关,可以由此得知裤被测压力的大小。
单圈弹簧管中心角一般是2700,为了增加位移量,可以做成多圈弹簧管型式。
弹性元件常用的材料有铜合金、弹性合金、不锈钢等,各适用于不同的测压范围和被测介质。
近来半导体硅材料得到了更多的应用。
下表给出几种弹性元件的结构示意及特性。
各种弹性元件组成了多种型式的弹性压力计,它们通过各种传动放大机构直接指示被测压力值。
这类直读式测压仪表有弹簧管压力计、波纹管差压计、膜盒式压力计等。
弹簧管压力计是最常用的直读式测压仪表,其一般结构如下图所示。
被测压力由接口引入,使弹簧管自由端产生位移,通过拉杆使扇形齿轮逆时针偏转,并带动啮合的中心齿轮转动,与中心齿轮同轴的指针将同时顺时针偏转,并在面板的刻度标尺上指示出被测压力值。
通过调整螺钉可以改变拉杆与扇形齿轮的接合点位置,从而改变放大比,调整仪表的量程。
转动轴上装有游丝,用以消除两个齿轮啮合的间隙,减小仪表的变差。
直接改变指针套在转动轴上的角度,就可以调整仪表的机械零点。
工程中应用最广泛的压力仪表:弹性式压力计是利用弹性元件受压力作用后产生弹性形变,将变形转换成位移,通过位移变化来测试压力大小。
各种弹性元件输出的位移或力必须经过一定的机械传动(直接指示)或变送器转换成标准信号。
变送器有两种形式:开环式和闭环式。
开环式:位移(力) R、L、C等电参数,然后经一定的电路变成标准信号,这种变送器原理简单,但材料工艺和电路的要求比较高。
随着科技进步,此种压力变送器越来越多。
闭环式:利用负反馈保证仪表精度,目前应用较多的力平衡式变送器就属于这一类。
4.力平衡式压力变送器F作用于杠杆左端A点,使杠杆绕支点O作逆时针旋转,工作原理:被测量压力P经波纹管转换成iI。
此电流流过稍一偏转,位于杠杆右端的位移检测元件便有感觉,使电子放大器产生一定的输出电流oF,形成一个反馈线圈和变送器的负载,并与永久磁铁作用产生一定的电磁力,使杠杆B点受到反馈力f使杠杆作顺时针转动的反力矩。
由于位移检测放大器极其灵敏,杠杆实际上只要产生极微小的位移,放大I正比于被测器便有足够的输出电流形成反力矩与作用力矩相平衡。
当杠杆处于平衡状态时,输出电流o量压力P。
这种闭环式的力平衡结构的优点:首先在于当弹性材料的弹性模数温度系数较大时,可以减小温度的影响。
因为这里的平衡状态不是靠弹性元件的弹性反力来建立的,当位移检测放大器非常灵敏时,杠杆的位移量很小,若整个弹性系统的刚度设计的很小,那么弹性反力在平衡状态的建立中无足轻重,可以忽略不计。
这样,弹性元件的弹性力随温度的漂移就不会影响这类变送器的精度。
此外,由于变换过程中位移量很小,弹性元件的受力面积能保持恒定,因而线性度比较好。
由于位移量小,还可以减小弹性迟滞现象,减小仪表的变差。
为了说明这些优点,通过这种变送器的静态结构图(方框图)来分析。
作用力矩i M 与反馈力矩f M 之差M ∆使杠杆绕支点O 旋转,转角τθM ∆=。
这里τ是杠杆系统的扭转刚度,它的大小表示要使杠杆产生单位转角所需的力矩。
当杠杆转动时,位移检测点C 处就有位移θ⨯=OC l d ,其中OC l 为检测点C 到支点O 的距离。
该位移被检测并转换为电流输出o I 。
图中K 表示位移检测放大器的传递系数。
输出电流o I 流过反馈线圈,产生电磁反馈力o f I C F ⨯=,其中C 为电磁铁的传递系数。
此力乘力臂OB l 即为反馈力矩f M 。
系统的闭环传递函数为:i OA OB OC OC o P l S l C K l K l I ⋅⋅⋅⋅⋅⋅⋅+⋅⋅=ττ111 当开环增益很大,即11>>⋅⋅⋅⋅OB OC l C K l τ时,上式可简化为:i OBOA o P l C l S I ⋅⋅= 由此可知,这种变送器具有一切闭环系统的共同特点,即在开环增益足够大时,其输入量和输出量的关系只取决于输入环节及反馈环节的传递函数,而与正向通道环节的传递函数无关。
在上述的力平衡压力变送器中,杠杆系统(包括弹性测量元件)的刚度τ和位移检测放大器的传递系数K 都处于正向通道内,只要开环增益足够大,它们的变化不会影响输出值o I 。
因此,弹性测量元件的弹性模数随温度的变化,不会影响仪表的精度。
这里需要说明,力平衡仪表虽然对弹性反力的变化不甚敏感,但对杠杆系统任何一处存在的摩擦力却是十分敏感的,因为摩擦力矩的引入相当于在比较点引入干扰,会直接引起误差,造成死区和变差。
为此,力平衡仪表中支承点都使用弹簧钢片做成弹性支承,以避免摩擦力的引入。
从上面的分析看到,在力平衡变送器中,只要测压元件的有效面积S 能保持恒定,磁铁的磁场强度均匀稳定,力臂的长度OA l 、OB l 不变,便可得到较好的变换精度。
5. 微小位移电变换方法5.1)霍尔元件5.1.1)霍尔效应一块长为l 、宽为b 、厚为d 的半导体薄片置于磁感应强度为月的磁场(磁场方向垂直于薄片)中,如下图所示。
当有电流I 流过时,在垂直于电流和磁场的方向上将产生电动势H U 。
这种现象称为霍尔效应。
假设薄片为N 型半导体,在其左右两端通以电流I(称为控制电流)。