2019人教版九年级数学上册第25章概率单元测试题精品教育.doc
2019年人教版九年级上数学《第25章概率初步》单元测试(带答案)
人教版九上数学第25章概率初步单元测试一、单选题1. 在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是( ) A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢2. 如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.61B.41C.31D.127 3. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为 10% ,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为 10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球 4. 下列说法正确的是( )A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2=0.3,S 2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为75. 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个 不透明的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )6. 甲乙两人轮流在黑板上写下不超过 10 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略. A.10 B.9 C.8 D.67. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数A.32 B.61 C.31 的概率是( )D.21 8. 有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A.54B.53C.52D.519. 某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( ) A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球10. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )A.21B.31C.103D.51 11. 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
2019年人教版九年级上册数学《第25章概率初步》单元测试卷(解析版)
2019年人教版九年级上册数学《第25章概率初步》单元测试卷一.选择题(共12小题)1.若一组数据为:2,3,1,3,3.则下列说法错误的是()A.这组数据的众数是3B.事件“在这组数据中随机抽取1个数,抽到的数是0.“是不可能事件C.这组数据的中位数是3D.这组数据的平均数是32.下列叙述正确的是()A.“如果a,b是实数,那么a+b=b+a”是不确定事件B.“某班50位同学中恰有2位同学生日是同一天”是随机事件C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适D.某种彩票的中奖概率为,是指买7张彩票一定有一张中奖3.从一副普通的54张的扑克牌中随意抽出一张,有4个事件:①抽到大王;②抽到小王;③抽到2;④抽到梅花.则这4个事件发生的可能性最大的是()A.①B.②C.③D.④4.一个袋子中有15个红球,5个白球,每个球除颜色外都相同,任意摸出一个球,摸到()的可能性较大.A.红球B.蓝球C.白球D.都一样5.下列说法正确的是()A.调查某省中学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.任意买一张电影票,座位号是2的倍数,这是随机事件6.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生7.某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.8.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为()A.2B.3C.5D.79.如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中灰色部分的概率,P (乙)表示小球停留在乙区域中灰色部分的概率,下列说法中正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定10.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是()A.B.C.D.11.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.12.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是()A.B.C.D.1二.填空题(共6小题)13.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=.14.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加上述同种型号的1个球,使得从中随机抽取1个球,白颜色的球被抽到的可能性是,那么添加的球是.15.一只不透明的布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出蓝球的概率是.16.在一个袋子中装有大小相同的5个小球,其中2个蓝色,3个红色,从袋中随机摸出1个,则摸到的是蓝色小球的概率是.17.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.如图所示,可见卖油翁的技艺之高超,若铜钱直径为4cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入口中的概率是.18.在一个不透明袋子中装有除颜色外无其他差别的红球2个,绿球3个,从中随机摸出一个球,放回并摇匀,再随机摸出一个球,则两次摸出的球中“有一个红球,一个绿球”的概率是.三.解答题(共4小题)19.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名.(1)当n为何值时,男生小强参加是确定事件?(2)当n为何值时,男生小强参加是随机事件?20.在5个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8红2白球,3号袋中有5红5白球,4号袋中有1红9白球,5号袋中有10个白球,从各个袋子中摸到白球的可能性一样吗?请将袋子的序号按摸到白球的可能性从小到大的顺序排列.21.如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)22.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如图所示的统计图:(1)这次调查的家长总数为人,家长表示“不赞同”的人数为人;(2)请把条形统计图补充完整;(3)表示家长“无所谓”的扇形圆心角的度数是;(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是多少?2019年人教版九年级上册数学《第25章概率初步》单元测试卷参考答案与试题解析一.选择题(共12小题)1.若一组数据为:2,3,1,3,3.则下列说法错误的是()A.这组数据的众数是3B.事件“在这组数据中随机抽取1个数,抽到的数是0.“是不可能事件C.这组数据的中位数是3D.这组数据的平均数是3【分析】分别根据众数、随机事件、中位数、平均数的定义解答.【解答】解:A、3出现了3次,在该组数据中出现的次数最多,是该组数据的众数,不符合题意;B、事件“在这组数据中随机抽取1个数,抽到的数是0.”是不可能事件,不符合题意;C、将该组数据从小到大排列:1,2,3,3,3,处于中间位置的数为3,中位数为3,不符合题意;D、这组数据的平均数为(1+2+3+3+3)÷5=2.4,符合题意.故选:D.【点评】本题考查了众数、随机事件、中位数、平均数,知道各统计量是解题的关键.2.下列叙述正确的是()A.“如果a,b是实数,那么a+b=b+a”是不确定事件B.“某班50位同学中恰有2位同学生日是同一天”是随机事件C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适D.某种彩票的中奖概率为,是指买7张彩票一定有一张中奖【分析】必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查方式应采用抽样调查.据此判断即可.【解答】解:A.是必然事件,故A选项错误;B.“某班50位同学中恰有2位同学生日是同一天”是随机事件,故B选项正确;C.了解炮弹的杀伤力,数量较多,且具有破坏性,故适宜采用抽样调查的方法,故C选项错误;D.彩票的中奖概率为,属于不确定事件,可能中奖,也可能不中奖,故D选项错误.故选:B.【点评】本题除了考查统计调查,还考查了随机事件,注意④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.也是对的.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查方式应采用抽样调查.3.从一副普通的54张的扑克牌中随意抽出一张,有4个事件:①抽到大王;②抽到小王;③抽到2;④抽到梅花.则这4个事件发生的可能性最大的是()A.①B.②C.③D.④【分析】可以根据每种牌数量的多少,直接判断可能性的大小即可.【解答】解:一副普通的54张的扑克牌中,①大王有一张;②小王有一张;③2有4张;④梅花有13张;∵13>4>1,∴这4个事件发生的可能性最大的是④.故选:D.【点评】此题主要考查了可能性的大小,要熟练掌握,解答此题的关键是要明确:不需要计算可能性的大小的准确值时,可以根据每种牌数量的多少,直接判断可能性的大小.4.一个袋子中有15个红球,5个白球,每个球除颜色外都相同,任意摸出一个球,摸到()的可能性较大.A.红球B.蓝球C.白球D.都一样【分析】根据题意,根据概率的计算方法得到相应的可能性,比较即可.【解答】解:根据题意可知:摸到红色球的可能性为=,摸到白色球的可能性为=,故摸到红色球的可能性大.故选:A.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.5.下列说法正确的是()A.调查某省中学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.任意买一张电影票,座位号是2的倍数,这是随机事件【分析】直接利用概率的意义以及全面调查以及抽样调查的意义分别分析得出答案.【解答】解:A、调查某省中学生的身高情况,适宜采用抽样调查,此选项错误;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、任意买一张电影票,座位号是2的倍数,这是随机事件,此选项正确;故选:D.【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.6.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.【解答】解:∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选:C.【点评】本题考查概率的意义,解题的关键是明确概率的意义,理论联系实际.7.某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【分析】先求出等车时间不超过10分钟的时间,再根据概率公式求解即可.【解答】解:等车时间不超过10分钟的时间段是7:50~8:00,8:20~8:30,一共20分钟,7:50至8:30一共40分钟,则他等车时间不超过10分钟的概率是20÷40=.故选:B.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为()A.2B.3C.5D.7【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2.故选:A.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.9.如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中灰色部分的概率,P (乙)表示小球停留在乙区域中灰色部分的概率,下列说法中正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定【分析】小球停在灰色三角形上的概率就是灰色三角形面积与总面积的比值,比较即可.【解答】解:观察两个图可知:黑色三角形面积都占总面积的,所以其概率相等,即P(甲)=P(乙).故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.10.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是()A.B.C.D.【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【解答】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即=.故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.12.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是()A.B.C.D.1【分析】先利用列表法展示所以6种等可能的结果,其中小华站在排头的的结果占2个,然后根据概率定义求解.【解答】解;如图所示:共有6种等可能的结果,小华站在排头的结果有2个,∴小华站在排头的概率为=;故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.二.填空题(共6小题)13.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=1.【分析】根据必然事件的概念解答即可.【解答】解:选四名学生参加学校举行的“中华古诗文朗诵大赛”,如果规定女生选1名,则3名男生都能参加,男生小强参加是必然事件,故答案为:1.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加上述同种型号的1个球,使得从中随机抽取1个球,白颜色的球被抽到的可能性是,那么添加的球是红球或黄球.【分析】首先根据可能性大小的求法,求出原来白颜色的球被抽到的可能性是多少;然后把它和比较大小,判定出添加的球是什么颜色的即可.【解答】解:∵2÷(2+2+1)=,∴原来白颜色的球被抽到的可能性是;∵>,∴添加的球是红球或黄球.故答案为:红球或黄球.【点评】此题主要考查了可能性的大小,解答此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据每种球数量的多少,直接判断可能性的大小.15.一只不透明的布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出蓝球的概率是.【分析】根据概率的意义解答.【解答】解:∵共有2+3+5=10个小球,5个蓝球,∴第10次摸出蓝球的概率是:=.故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.在一个袋子中装有大小相同的5个小球,其中2个蓝色,3个红色,从袋中随机摸出1个,则摸到的是蓝色小球的概率是.【分析】根据概率公式列出算式计算即可求解.【解答】解:∵5个小球中,有2个蓝色小球,∴P(蓝色小球)=.故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.17.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.如图所示,可见卖油翁的技艺之高超,若铜钱直径为4cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入口中的概率是.【分析】分别求出铜钱的面积和正方形小孔的面积,由几何概率公式即可得出结果.【解答】解:∵直径为4cm的铜钱的面积=π×22=4π,边长为1cm的正方形小孔的面积=1×1=1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入口中的概率=;故答案为:.【点评】本题考查了几何概率公式、圆的面积公式、正方形面积公式,熟记概率公式,求出圆面积和正方形面积是解题关键.18.在一个不透明袋子中装有除颜色外无其他差别的红球2个,绿球3个,从中随机摸出一个球,放回并摇匀,再随机摸出一个球,则两次摸出的球中“有一个红球,一个绿球”的概率是.【分析】画树状图展示所有25种等可能的结果数,找出两次摸出的球中“有一个红球,一个绿球”的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示:共有25个等可能的结果,两次摸出的球中“有一个红球,一个绿球”的结果有12个,∴两次摸出的球中“有一个红球,一个绿球”的概率为;故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.三.解答题(共4小题)19.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名.(1)当n为何值时,男生小强参加是确定事件?(2)当n为何值时,男生小强参加是随机事件?【分析】(1)根据确定事件包括必然事件和不可能事件两种情况解答;(2)根据随机事件的定义解答.【解答】解:(1)当女生选1名时,三名男生都能选上,男生小强参加是必然事件,确定事件,当女生选4名时,三名男生都不能选上,男生小强参加是不可能事件,确定事件,综上所述,当n=1或4时,男生小强参加是确定事件;(2)当n=2或3时,男生小强参加是随机事件.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.在5个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8红2白球,3号袋中有5红5白球,4号袋中有1红9白球,5号袋中有10个白球,从各个袋子中摸到白球的可能性一样吗?请将袋子的序号按摸到白球的可能性从小到大的顺序排列.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:1号袋子摸到红球的可能性=1;2号个袋子摸到红球的可能性==;3号个袋子摸到红球的可能性==;4号个袋子摸到红球的可能性=,5号个袋子摸到红球的可能性=0.故排序为:1号,2号,3号,4号,5号.【点评】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.21.如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)【分析】(1)依据第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,即可得到小明继续游戏可以获胜的概率;(2)依据小明第一次摸出的数字是3,画出树状图,即可得到6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况,进而得出小明获胜的概率.【解答】解:(1)小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,∴可以获胜的概率为,故答案为:;(2)画树状图如下:共有6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况:(3,1,2),则P(小明能获胜)=.【点评】此题主要考查了概率的意义以及树状图法与列表法的运用,当有两个元素时,可用树形图列举,也可以列表列举.利用树状图或者列表法列举出所有可能是解题关键.22.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如图所示的统计图:(1)这次调查的家长总数为600人,家长表示“不赞同”的人数为80人;(2)请把条形统计图补充完整;(3)表示家长“无所谓”的扇形圆心角的度数是24°;(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是多少?【分析】(1)根据赞同的人数与所占的百分比求出调查的总人数,再根据很赞同的人数所占的百分比求出很赞同的人数,然后求出不赞成的人数;(2)根据(1)求出的很赞同的人数、不赞成的人数,从而补全统计图;(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解;(4)用“赞同”的人数除以调查的总人数即可得出“赞同”的家长的概率.。
2019九年级数学上册 第25章 概率初步单元测试卷(含解析)(新版)新人教版
第25章概率初步考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于22.(4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于123.(4分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A.众数 B.中位数 C.平均数 D.方差4.(4分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球5.(4分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .32 B .61 C .31 D .216.(4分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A .21 B .31 C .41 D .617.(4分)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点8.(4分)甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是( ) A .游戏的规则由甲方确定 B .游戏的规则由乙方确定 C .游戏的规则由甲乙双方商定 D .游戏双方要各有50%赢的机会9.(4分)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过910.(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色,黑色球的概率稳定在15%和40%,则口袋中白色球的个数很可能是()A.25 B.26 C.29 D.27二.填空题(共4小题,满分20分,每小题5分)11.(5分)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.12.(5分)新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x﹣3)◎(3+x)的值为非负数的概率是.13.(5分)2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.14.(5分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.三.解答题(共9小题,满分90分)15.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是54,求m 的值. 16.(8分)抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后: (1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?17.(8分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.18.(8分)动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?19.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.21.(12分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是 ;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.22.(12分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了 名学生; (2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有 人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .23.(14分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.(1)该事件最有可能是 (填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯的概率; ②掷一枚硬币,正面朝上;③暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球. (2)你设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字 正面朝上,该事件发生的概率接近于31.2018年秋九年级上学期 第25章 概率初步 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可. 【解答】解:∵抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,∴A 、面朝上的点数是6的概率为61; B 、面朝上的点数是偶数的概率为63=21;C 、面朝上的点数大于2的概率为64=32;D 、面朝上的点数小于2的概率为61;故选:C .【点评】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm . 2.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 【解答】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误; B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误; C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误; D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确; 故选:D .【点评】此题主要考查了随机事件,关键是掌握随机事件定义. 3.【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选:B .【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数 4.【分析】直接利用概率的意义分析得出答案.【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球. 故选:C .【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键. 5.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个, ∴P (大于3)=63=21; 故选:D .【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm . 6.【分析】直接根据题意画出树状图,再利用概率公式求出答案. 【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:41.故选:C.【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.7.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.【分析】根据游戏是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【点评】此题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.9.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为53,不符合题意; B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为21,不符合题意; C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为41,不符合题意; D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为31,符合题意; 故选:D .【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 10.【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数. 【解答】解:∵摸到红色球、黑色球的频率稳定在15%和40%, ∴摸到白球的频率为1﹣15%﹣40%=45%, 故口袋中白色球的个数可能是60×45%=27个. 故选:D .【点评】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.二.填空题(共4小题,满分20分,每小题5分) 11.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为21. 故答案为:21. 【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm .12.【分析】对于任意有理数a 、b ,都有a◎b=a 2﹣ab+b ﹣1,即可得到(x ﹣3)◎(3+x )=(x ﹣3)2﹣(x ﹣3)(3+x )+3+x ﹣1=﹣5x+20,进而得出代数式(x ﹣3)◎(3+x )的值为非负数的概率. 【解答】解:∵对于任意有理数a 、b ,都有a◎b=a 2﹣ab+b ﹣1, ∴(x ﹣3)◎(3+x )=(x ﹣3)2﹣(x ﹣3)(3+x )+3+x ﹣1=﹣5x+20, 当x=1时,﹣5x+20=15; 当x=2时,﹣5x+20=10; 当x=3时,﹣5x+20=5; 当x=4时,﹣5x+20=0; 当x=5时,﹣5x+20=﹣5; 当x=6时,﹣5x+20=﹣10;∴代数式(x ﹣3)◎(3+x )的值为非负数的概率=64=32, 故答案为:32. 【点评】本题主要考查了概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 13.【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可; 【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能, 所以恰好选到经过西流湾大桥的路线的概率=62=31. 故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 14.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×4=12(m 2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近, ∴世界杯图案占长方形世界杯宣传画的40%, ∴世界杯图案的面积约为:12×40%=4.8m 2, 故答案为:4.8.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件; (2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件; ∵m >1,当摸出2个或3个红球时,摸到黑球为随机事件,故答案为:4;2、3.(2)依题意,得54106=+m , 解得 m=2, 所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm. 16.【分析】(1)根据题意得出落地后朝上的点数可能是1、2、3、4、5、6,再根据概率公式即可得出答案;(2)根据概率公式先分别求出朝上的点数是奇数和朝上的点数是偶数的概率,再进行比较即可; (3)先求出朝上的点数大于4的概率和朝上的点数不大于4的概率,再进行比较即可.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6, 所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是21,朝上的点数是奇数的有2,4,6,它们发生的可能性是21 所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是62=31, 朝上的点数不大于4的数有1,2,3,4,发生可能性是64=32,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等. 17.【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可; (3)用样本平均数估算总体的平均数.【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17, 故答案是16,17; (2)()26203171512970101++⨯+++++⨯=14, 答:这10位居民一周内使用共享单车的平均次数是14次; (3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错. 18.【分析】根据概率的和差,可得答案.【解答】解;现年20岁的这种动物活到25岁的概率为8.05.0=0.625, 现年25岁的这种动物活到30岁的概率为5.03.0=0.6, 答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6. 【点评】本题考查了概率的意义,利用了概率的和差. 19.【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值; (2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人), 所以m=5010×100=20; 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人), 如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=5012=256, 3000×256=720, 估计这3000人中大约有720人是A 型血.【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了统计图. 20.【分析】(1)依据C 部分的数据,即可得到本次一共调查的人数; (2)依据总人数以及其余各部分的人数,即可得到B 对应的人数; (3)列表将所有等可能的结果列举出来,利用概率公式求解即可. 【解答】解:(1)本次一共调查:15÷30%=50(人); 故答案为:50;(2)B 对应的人数为:50﹣16﹣15﹣7=12, 如图所示:(3)列表:∵共有12种等可能的结果,恰好选中A 、B 的有2种, ∴P (选中A 、B )=122=61. 【点评】本题考查了条形统计图、扇形统计图,列表与树状图的应用,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解. 21.【分析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案; (2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【解答】解:(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件; 故答案为:必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:53; 故答案为:53;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:208=52; 则选择乙的概率为:53, 故此游戏不公平.【点评】此题主要考查了游戏公平性,正确列出树状图是解题关键. 22.【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数; (2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形. (3)利用样本估计总体即可估计爱好运动的学生人数.(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率. 【解答】解:(1)爱好运动的人数为40,所占百分比为40% ∴共调查人数为:40÷40%=100 (2)爱好上网的人数所占百分比为10% ∴爱好上网人数为:100×10%=10, ∴爱好阅读人数为:100﹣40﹣20﹣10=30, 补全条形统计图,如图所示, (3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600 (4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为103故答案为:(1)100;(3)600;(4)103【点评】本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型. 23.【分析】(1)根据统计图可知发生的频率接近31,从而可以解答本题; (2)本题答案不唯一,设计的只要能说明该事件发生的概率接近于31即可.【解答】解:(1)由折线统计图可得,该事件最有可能是暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球, 故答案为:③;(2)设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字1和2正面朝上,该事件发生的概率接近于31, 故答案为:1和2.【点评】本题考查利用频率估计概率、频数分布折线图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。
2019年人教版数学九年级上《第25章概率初步》检测题(含答案)
概率初步检测题(满分:120分 时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列事件中,是确定事件的是( ) A .打雷后会下雨 B .明天是晴天C .1小时等于60分钟D .下雨后有彩虹2.掷一枚有正反面的均匀硬币,正确的说法是( ) A .正面一定朝上 B .反面一定朝上C .正面比反面朝上的概率大D .正面和反面朝上的概率都是0.5 3.从图25-1中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是( )图25-1A.14B.12C.34 D .1 4.如图25-2,在平行四边形纸片上做随机扎针实验,针头扎在阴影区域内的概率为( )A.13B.14C.15D.16图25-2 图25-35.如图25-3,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( )A.16B.13C.12D.23 6.如图25-4所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为( )图25-4A.12B.13C.14D.187.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( )A .6B .3C .2D .1 8.一只蚂蚁在如图25-5所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是( )图25-5A.12B.13C.14D.169.某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到绿灯的概率为59,那么他遇到黄灯的概率为( )A.49B.13C.59D.19 10.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(6个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于54n 2,则算过关;否则不算过关.则能过第二关的概率是( )A.1318B.518C.14D.19二、填空题(本大题共6小题,每小题4分,共24分)11.下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为__________;必然发生的事件为____________;不可能发生的事件为____________(只填序号).12.不透明的袋中装有2个红球和3个黑球,它们除颜色外没有任何其他区别,小红搅匀后从中随机摸出1个球,摸出红球的概率是________.1314.现有四条线段,长度依次是:2 cm,3 cm,4 cm,5 cm ,从中任选三条,能组成三角形的概率是________. 15.图25-6是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是________.图25-616.如图25-7,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是________.图25-7三、解答题(一)(本大题共3小题,每小题6分,共18分)17.一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球,请问: (1)“摸出的球是白球”是什么事件?它的概率是多少? (2)“摸出的球是黄球”是什么事件?它的概率是多少?(3)“摸出的球是红球或黄球”是什么事件?它的概率是多少?18.将A ,B ,C ,D 四名同学随机排在甲、乙两张课桌上,每张课桌坐两人,A 同学坐在甲课桌上的概率是多少?19.如图25-8所示的三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张,第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母,用列表法或画树状图法求能组成分式的概率是多少?图25-8四、解答题(二)(本大题共3小题,每小题7分,共21分) 20.在如图25-9的直角坐标系中,(1)请写出在▱ABCD 内(不包括边界)横、纵坐标均为整数,且和为零的点的坐标;(2)在▱ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求该点的横、纵坐标之和为零的概率.图25-921.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅摸球的次数n100 200 300 500 摸到白球的次数m65 124 178 302 摸到白球的频率mn0.65 0.62 0.593 0.604 摸球的次数n800 1000 3000 摸到白球的次数m481 599 1803 摸到白球的频率mn0.601 0.599 0.601 (1)请估计当n(2)假如你摸一次,你摸到白球的概率P(白球)=________;(3)试估算盒子里黑、白两种颜色的球各有多少个?22.如图25-10,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.图25-10五、解答题(三)(本大题共3小题,每小题9分,共27分)23.将如图25-11所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是________;(2)从中随机抽出两张牌,两张牌牌面数字的和是5的概率是________;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是4的倍数的概率.图25-1124.有一块表面是咖啡色,内部是白色,形状是正方体的烤面包,小明用刀在它的上表面、前表面和右侧表面沿虚线各切两刀,如图25-12,将它切成若干块小正方体形面包.(1)小明从若干块小面包中任取一块,求该块面包有且只有两个面是咖啡色的概率;(2)小明和弟弟边吃边玩,游戏规则是:从中任取一块小面包,若它有奇数个面为咖啡色时,小明赢;否则弟弟赢,你认为这样的游戏规则公平吗?为什么?图25-1225.小红和小明在操场做游戏,他们先在地面上画了半径分别2 m和3 m的同心圆,如图25-13,蒙上眼睛在一定距离外向圈内掷小石子,掷中阴影小红胜;否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明思考“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)图25-13参考答案1.C 2.D 3.A 4.B 5.B 6.C 7.B 8.B 9.D 10.A 11.④ ③ ①② 12.25 13.0.8 14.34 15.125 16.1617.解:(1)“摸出的球是白球”是不可能事件,它的概率为0.(2)黄球数=10-6=4,“摸出的球是黄球”是不确定事件,它的概率=4÷10=0.4. (3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 18.解:所有可能的结果如下表:甲AB AC AD BC BD CD 乙CD BD BC AD AC AB ∴P (A 在甲课桌)=36=12.19.解:表略,共有6种不同结果,其中能组成分式的有 x -1x ,x x -1,2x ,2x -1, ∴P (能组成分式)=46=23.20.解:(1)(-1,1),(0,0),(1,-1).(2)∵▱ABCD 内横纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,∴所求概率p =315=15.21.(1)0.6 解析:∵摸到白球的频率为(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6, ∴当n 很大时,摸到白球的频率将会接近0.6. (2)0.6 解析:∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P (白球)=0.6.(3)解:盒子里白球有40×0.6=24(个).盒子里黑球有40-24=16. 22.解:(1)方法一:(列表法)由列表法可知:会产生12种结果,它们出现的机会相等,其中和为1的有3种结果.∴P (乙获胜)=312=14.方法二:(树状图)如图D94.图D94由树状图可知:会产生12种结果,它们出现的机会相等,其中和为1的有3种结果.∴P (乙获胜)=312=14.(2)公平.∵P (乙获胜)=14,P (甲获胜)=312=14.∴P (乙获胜)=P (甲获胜). ∴游戏公平.23.解:(1)12 (2)13(3)根据题意,画树状图,如图D95:图D95由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44. 其中恰好是4的倍数的共有4种:12,24,32,44.所以P (4的倍数)=416=14.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以P (4的倍数)=416=14.24.解:(1)由题意可知将面包切成27块小面包,有且只有两个面是咖啡色的小面包有12块,所以所求概率为1227=49. (2)27块小面包中有8块是有且只有3个面是咖啡色,6块是有且只有1个面是咖啡色.从中任取一块小面包,有且只有奇数个面为咖啡色的共有14块,剩余的面包共有13块,小明赢的概率是1427,弟弟赢的概率是1327.所以按照上述规则弟弟赢的概率小于小明赢的概率,游戏不公平.25.解:(1)不公平.理由如下:∵P (阴影)=9π-4π9π=59,即小红胜的概率为59,小明胜的概率为49,∴游戏对双方不公平.(2)能利用频率估计概率的试验方法估算非规则图形的面积. 设计方案:①画一个可测量面积的规则图形将非规则图形包围在其中,如图D96,设规则图形的面积为S ;②往图形中掷石子,掷在图形外不作记录;③当次数很大时,记录并统计结果,投掷入正方形内m 次,其中n 次掷于不规则图形内;④设非规则图形的面积为S 1,用频率估计概率,P (投入不规则图形内)=n m ,∴n m =S 1S ,即S 1≈nSm.图D96。
2019年新人教版数学九年级上第25章概率初步检测题含答案
第25章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.以下事件中,必然发生的是( C )A .打开电视机,正在播放体育节目B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点2.(2014·宜宾)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是( B )A .19B .13C .12D .233.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( A )A .1B .2C .3D .4 4.下列说法正确的是( C )A .若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B .某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率为50%C .明天我市会下雨是随机事件D .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖5.一只小鸟自由地在空中飞行,然后随意地落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( B )A .12B .13C .14D .15,第5题图) ,第7题图) ,第8题图),第10题图)6.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率( D )A .34B .14C .13D .127.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( C )A .15B .25C .35D .458.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( C )A .12B .29C .49D .139.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A .110B .19C .16D .1510.(2014·河北)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( D )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D .掷一个质地均匀的正六面体骰子,向上一面的点数是4 二、填空题(每小题3分,共24分)11.某中学九(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,则组长是男生的概率为__47___.12.小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是__25___.13.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明的打通了一次热线电话,他成为“幸运观众”的概率是__150___.14.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__13___.15.平行四边形中,AC ,BD 是两条对角线,现从以下四个关系式:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中,任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为__12___.16.从-3,1,-2这三个数中任取两个不同的数,积为正数的概率是__13___.17.(2014·兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀.从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y ,则点P(x ,y)落在直线y =-x +5上的概率是__14___.18.一个不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球__28___个.三、解答题(共66分)19.(8分)掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数;(2)点数大于2且小于5.解:(1)12 (2)1320.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.解:(1)14 (2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2.经检验x =2是方程的解且符合题意,即从袋中取出黑球个数为221.(8分)(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者.求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)13 (2)2322.(10分)现有20名志愿者准备参加某次博览会的服务工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.解:(1)35(2)画树状图(略),牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9,共12种,其中和为偶数的有:6,8,6,8,故甲参加的概率为P(和为偶数)=412=13,而乙参加的概率为P(和为奇数)=23.因为13≠23,所以游戏不公平23.(10分)中秋节期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”“20元”“30元”“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得__20___元购物券,最多可得__80___元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.解:画树状图(略),∵共有16种等可能结果,该顾客所获奖券金额不低于50元的有10种,∴该顾客所获购物券金额不低于50元的概率为P =1016=5824.(10分)(1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少? 解:(1)0.5 (2)622×0.5=311,故估计投中的次数约是311次25.(12分)小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出吗?(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.解:(1)列表(略),一共出现16种等可能结果,其中在同一层出电梯的有4种结果,则P(甲、乙在同一层出电梯)=416=14 (2)甲、乙在同一层或相邻楼层出电梯的有10种结果,故P(小亮胜)=1016=58,P(小芳胜)=1-58=38,∵58>38,∴游戏不公平.修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜;若甲、乙相隔一层或三层出电梯,则小芳胜。
2019届初三数学九年级上《第25章 概率初步》检测(附答案)
2019届初三数学九年级上《第25章概率初步》检测(附答案)一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是()A.B.C.D.3.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D 表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?23.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.24.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.25.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.26.小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.(列表或画树状图)《第25章概率初步》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【考点】随机事件.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是()A.B.C.D.【考点】概率公式.【分析】在这九个数中,绝对值<2有﹣1、0、1这三个数,所以它的概率为三分之一.【解答】解:P(<2)==.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】新定义.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与与7组成“中高数”的情况,再利用概率公式即可求得答案.【解答】解:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是: =.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,则有3种可能.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定【考点】推理与论证.【专题】压轴题.【分析】由题意知道,甲和乙各与丙比赛了一场.丙当了三次裁判,说明甲和乙比赛了三场,这三场中间分别是甲和丙,乙和丙比赛.因此第一,三,五场比赛是甲和乙比赛,第二,四场是甲和丙,乙和丙比赛,并且丙都输了.故第二局输者是丙.【解答】解:由题意,知:三场比赛的对阵情况为:第一场:甲VS乙,丙当裁判;第二场:乙VS丙,甲当裁判;第三场:甲VS乙,丙当裁判;第四场:甲VS丙,乙当裁判;第五场:乙VS甲,丙当裁判;由于输球的人下局当裁判,因此第二场输的人是丙.故选C.【点评】解决本题的关键是推断出每场比赛的双方.9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【考点】概率公式.【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初一3班有2人,∴P(初一3班)==,故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56【考点】利用频率估计概率.【分析】根据对立事件的概率和为1计算.【解答】解:瓶盖只有两面,“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1﹣0.44=0.56.故选D.【点评】解答此题关键是要明白瓶盖只有两面,即凸面和凹面.二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可. 【解答】解:列表得,∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为: =,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是.【考点】概率公式.【分析】由共有6个面,A 与桌面接触的有3个面,直接利用概率公式求解即可求得答案. 【解答】解:∵共有6个面,A 与桌面接触的有3个面, ∴A 与桌面接触的概率是: =. 故答案为:.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.绕某个点旋转180°后能与自身重合的图形叫中心对称图形.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.【考点】几何概率.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.【考点】几何概率.【分析】首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出豆子落在阴影部分的概率.【解答】解:因为在两个同心圆中,三条直径把大圆分成六等份,利用整体思想,可知:阴影部分的面积是大圆面积的一半,因此若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.【点评】确定阴影部分的面积与大圆的面积之间的关系是解题的关键.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.【考点】概率公式;解一元一次不等式组.【分析】由关于x的不等式组有解,可求得a>5,然后利用概率公式求解即可求得答案.【解答】解:,由①得:x≥3,由②得:x<,∵关于x的不等式组有解,∴>3,解得:a>5,∴使关于x的不等式组有解的概率为:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.【考点】随机事件.【分析】必然事件就是一定发生的事件,不可能事件就是一定不会发生的事件,随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:(1)(4)(6)是必然事件,(2)(3)(5)是不可能事件,(7)是随机事件.【点评】本题考查了必然事件、不可能事件、随机事件的定义,需要正确理解概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是△DFG或△DHF (只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).【考点】作图—应用与设计作图;列表法与树状图法.【分析】(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;(2)利用树状图得出所有的结果,进而根据概率公式求出即可.【解答】解:(1)∵△ABC的面积为:×3×4=6,只有△DFG或△DHF的面积也为6且不与△ABC全等,∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)画树状图得出:由树状图可知共有出现的情况有△DHG,△DHF,△DGF,△EGH,△EFH,△EGF,6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,故所画三角形与△ABC面积相等的概率P==,答:所画三角形与△ABC面积相等的概率为.故答案为:△DFG或△DHF或△EGF【点评】此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.【解答】解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D 表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?【考点】游戏公平性;列表法与树状图法.【分析】这是一个由两步完成,无放回的实验,游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小明胜或小强胜的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)列表得:∴一共有12种情况;(2)不公平.∵A、B、不成立,C、D成立∴p(小明胜)==,p(小强胜)==,∴这个游戏不公平,对小强有利.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.。
人教版九年级上《第25章概率初步》单元测试(3)含答案解析.doc
《第25章概率初步》一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是()A.B.C.D.3.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?23.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.24.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.25.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.26.小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.(列表或画树状图)《第25章概率初步》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【考点】随机事件.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是()A.B.C.D.【考点】概率公式.【分析】在这九个数中,绝对值<2有﹣1、0、1这三个数,所以它的概率为三分之一.【解答】解:P(<2)==.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】新定义.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与与7组成“中高数”的情况,再利用概率公式即可求得答案.【解答】解:列表得:9 379 479 579 679 879 ﹣8 378 478 578 678 ﹣9786 376 476 576 ﹣876 9765 375 475 ﹣675 875 9754 374 ﹣574 674 874 9743 ﹣473 573 673 873 9733 4 5 6 8 9∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是: =.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,则有3种可能.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:男1 男2 男3 女1 女2男1 一一√√男2 一一√√男3 一一√√女1 √√√一女2 √√√一∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定【考点】推理与论证.【专题】压轴题.【分析】由题意知道,甲和乙各与丙比赛了一场.丙当了三次裁判,说明甲和乙比赛了三场,这三场中间分别是甲和丙,乙和丙比赛.因此第一,三,五场比赛是甲和乙比赛,第二,四场是甲和丙,乙和丙比赛,并且丙都输了.故第二局输者是丙.【解答】解:由题意,知:三场比赛的对阵情况为:第一场:甲VS乙,丙当裁判;第二场:乙VS丙,甲当裁判;第三场:甲VS乙,丙当裁判;第四场:甲VS丙,乙当裁判;第五场:乙VS甲,丙当裁判;由于输球的人下局当裁判,因此第二场输的人是丙.故选C.【点评】解决本题的关键是推断出每场比赛的双方.9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【考点】概率公式.【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初一3班有2人,∴P(初一3班)==,故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56【考点】利用频率估计概率.【分析】根据对立事件的概率和为1计算.【解答】解:瓶盖只有两面,“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1﹣0.44=0.56.故选D.【点评】解答此题关键是要明白瓶盖只有两面,即凸面和凹面.二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1 黑2 白1 白2 黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为: =,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.【考点】概率公式.【分析】由共有6个面,A与桌面接触的有3个面,直接利用概率公式求解即可求得答案.【解答】解:∵共有6个面,A与桌面接触的有3个面,∴A与桌面接触的概率是: =.故答案为:.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.绕某个点旋转180°后能与自身重合的图形叫中心对称图形.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.【考点】几何概率.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.【考点】几何概率.【分析】首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出豆子落在阴影部分的概率.【解答】解:因为在两个同心圆中,三条直径把大圆分成六等份,利用整体思想,可知:阴影部分的面积是大圆面积的一半,因此若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.【点评】确定阴影部分的面积与大圆的面积之间的关系是解题的关键.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.【考点】概率公式;解一元一次不等式组.【分析】由关于x的不等式组有解,可求得a>5,然后利用概率公式求解即可求得答案.【解答】解:,由①得:x≥3,由②得:x<,∵关于x的不等式组有解,∴>3,解得:a>5,∴使关于x的不等式组有解的概率为:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.【考点】随机事件.【分析】必然事件就是一定发生的事件,不可能事件就是一定不会发生的事件,随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:(1)(4)(6)是必然事件,(2)(3)(5)是不可能事件,(7)是随机事件.【点评】本题考查了必然事件、不可能事件、随机事件的定义,需要正确理解概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是△DFG或△DHF (只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).【考点】作图—应用与设计作图;列表法与树状图法.【分析】(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;(2)利用树状图得出所有的结果,进而根据概率公式求出即可.【解答】解:(1)∵△ABC的面积为:×3×4=6,只有△DFG或△DHF的面积也为6且不与△ABC全等,∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)画树状图得出:由树状图可知共有出现的情况有△DHG,△DHF,△DGF,△EGH,△EFH,△EGF,6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,故所画三角形与△ABC面积相等的概率P==,答:所画三角形与△ABC面积相等的概率为.故答案为:△DFG或△DHF或△EGF【点评】此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.【解答】解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?【考点】游戏公平性;列表法与树状图法.【分析】这是一个由两步完成,无放回的实验,游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小明胜或小强胜的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)列表得:(A,D)(B,D)(C,D)﹣(A,D)(B,C)﹣(D,C)(A,B)﹣(C,B)(D,B)﹣(B,C)(C,A)(D,A)∴一共有12种情况;(2)不公平.∵A、B、不成立,C、D成立∴p(小明胜)==,p(小强胜)==,∴这个游戏不公平,对小强有利.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【考点】列表法与树状图法.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:。
2019年新人教版数学九年级上第25章概率初步检测题含答案
第25章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.以下事件中,必然发生的是( C )A .打开电视机,正在播放体育节目B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点2.(2014·宜宾)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是( B )A .19B .13C .12D .233.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( A )A .1B .2C .3D .4 4.下列说法正确的是( C )A .若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B .某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率为50%C .明天我市会下雨是随机事件D .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖5.一只小鸟自由地在空中飞行,然后随意地落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( B )A .12B .13C .14D .15,第5题图) ,第7题图) ,第8题图),第10题图)6.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率( D )A .34B .14C .13D .127.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( C )A .15B .25C .35D .458.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( C )A .12B .29C .49D .139.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A .110B .19C .16D .1510.(2014·河北)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( D )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D .掷一个质地均匀的正六面体骰子,向上一面的点数是4 二、填空题(每小题3分,共24分)11.某中学九(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,则组长是男生的概率为__47___.12.小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是__25___.13.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明的打通了一次热线电话,他成为“幸运观众”的概率是__150___.14.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__13___.15.平行四边形中,AC ,BD 是两条对角线,现从以下四个关系式:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中,任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为__12___.16.从-3,1,-2这三个数中任取两个不同的数,积为正数的概率是__13___.17.(2014·兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀.从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y ,则点P(x ,y)落在直线y =-x +5上的概率是__14___.18.一个不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球__28___个.三、解答题(共66分)19.(8分)掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数;(2)点数大于2且小于5.解:(1)12 (2)1320.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.解:(1)14 (2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2.经检验x =2是方程的解且符合题意,即从袋中取出黑球个数为221.(8分)(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者.求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)13 (2)2322.(10分)现有20名志愿者准备参加某次博览会的服务工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.解:(1)35(2)画树状图(略),牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9,共12种,其中和为偶数的有:6,8,6,8,故甲参加的概率为P(和为偶数)=412=13,而乙参加的概率为P(和为奇数)=23.因为13≠23,所以游戏不公平23.(10分)中秋节期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”“20元”“30元”“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得__20___元购物券,最多可得__80___元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.解:画树状图(略),∵共有16种等可能结果,该顾客所获奖券金额不低于50元的有10种,∴该顾客所获购物券金额不低于50元的概率为P =1016=5824.(10分)(1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少? 解:(1)0.5 (2)622×0.5=311,故估计投中的次数约是311次25.(12分)小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出吗?(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.解:(1)列表(略),一共出现16种等可能结果,其中在同一层出电梯的有4种结果,则P(甲、乙在同一层出电梯)=416=14 (2)甲、乙在同一层或相邻楼层出电梯的有10种结果,故P(小亮胜)=1016=58,P(小芳胜)=1-58=38,∵58>38,∴游戏不公平.修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜;若甲、乙相隔一层或三层出电梯,则小芳胜。
2019年人教版九年级上第25章概率初步单元测试含答案解析
《第25章概率初步》一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x﹣1上方的概率为()A.B.C.D.13.下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天4.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.15.下列说法中不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.207.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.B.C.D.8.小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A.B.C.D.二、填空题9.有五张分别写有数字0,3,﹣,,﹣1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是______.10.“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是______.11.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是______.12.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为______.13.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为______.14.如图,是两个均匀的数字转盘,转盘停止转动时指针停在不同数字区域的可能性相同.分别转动两个转盘,用转盘A 停止转动时指针所指的数字a 作横坐标;转盘B 停止转动时指针所指的数字b 作纵坐标,则点(a ,b )在第四象限的概率=______.三、解答题15.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X 1)、排球(记为X 2)、足球(记为X 3)中任选一项.(1)每位考生将有______种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果; (2)求抽出的两支签中,1支为甲签、1支为丁签的概率.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a ,b ,c ,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P 1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P 2,请直接写出P 2的值,并比较P 1,P 2的大小.(2+3+2=7) 19. “爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.组别原因人数A 不想改变传统风俗习惯650B 增添节日喜庆气氛300C 祈福运、求吉利、辟邪害mD 没有可替代的庆祝方式150E 为了孩子的玩耍和快乐nF 其他100请根据图表中提供的信息解答下列问题:(1)填空:m=______,n=______,扇形统计图中D组所占的百分比为______.(2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示);(3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?20.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第______小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?《第25章概率初步》参考答案与试题解析一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.【考点】几何概率.【专题】探究型.【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【解答】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值==,∴最终停在阴影方砖上的概率为.故选B.【点评】本题考查的是几何概率,熟知概率公式是解答此题的关键.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x﹣1上方的概率为()A.B.C.D.1【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在直线y=﹣x﹣1上方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,点(x,y)在直线y=﹣x﹣1上方的有:(﹣2,1),(﹣1,1),(1,﹣1),∴点(x,y)在直线y=﹣x﹣1上方的概率为: =.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:明天会下雨,可能发生也可能不发生,故A是随机事件;小明数学成绩是99分,B为随机事件;一个数与它的相反数的和是0,正确,所以C为必然事件;明年一年共有367天,一定不会发生,为不可能事件;故选D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.1【考点】概率公式;轴对称图形.【分析】卡片共有四张,轴对称图形有等腰三角形、钝角、线段,根据概率公式即可得到卡片上所画图形恰好是轴对称图形的概率.【解答】解:卡片中,轴对称图形有等腰三角形、钝角、线段,根据概率公式,P(轴对称图形)=.故选:C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.下列说法中不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件【考点】随机事件.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“某射击运动员射击一次,正中把靶心”属于随机事件,正确;B、“13名同学至少有两名同学的出生月份相同”属于必然事件,正确;C、在标准大气压下,当温度降到﹣1℃时,水结成冰”属于必然事件;D、“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件,正确.故选C.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.20【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:设有20元的红包x个,根据题意得: =,解得:x=16,故选C.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.7.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形;中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的图形,再根据概率公式即可得出答案.【解答】解:∵①线段②正三角形③平行四边形④菱形⑤圆中是轴对称图形又是中心对称图形的是:①线段④菱形⑤圆,共三个,∴从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是;故选C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;然后根据题意列出表格,再由表格求得所有等可能的结果与恰好是同学送的那双的情况,然后利用概率公式求解即可求得答案.【解答】解:分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;列表得:d Ad ab Bd bc Cd cd Dd ﹣D AD aB BD bD CD cD ﹣dDc Ac ac Bc bc Cc ﹣Dc dcC AC aC BC bC ﹣cC DC dCb Ab ab Bb ﹣Cb cb Db dbB AB aB ﹣bB CB cB DB dBa Aa ﹣Ba ba Ca ca Da daA ﹣aA BA bA CA cA DA dAA aB bC cD d∵共有56种等可能的结果,恰好是同学送的那双的有2种情况,∴恰好是同学送的那双的概率为: =.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题9.有五张分别写有数字0,3,﹣,,﹣1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是.【考点】概率公式.【分析】先得到在所给的5个数中比0小的数有2个,即﹣,﹣1,然后根据概率公式求解.【解答】解:因为在数字0,3,﹣,,﹣1中,比0小的数有﹣,﹣1,所以从中任抽一张,那么抽到比0小的数的概率是.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.10.“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率为: =.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.【考点】列表法与树状图法.【分析】首先此题需要两步完成,直接运用树状图法或者采用列表法,再根据列举求出所用可能数,再求出只有一次正确的情况数根据概率公式解答即可.【解答】解:列表如下:第1次A B C D第2次A BA CA DAB AB CB DBC AC BC DCD AD BD CD由表可知一共有12种情况,其中抽取的两张卡片上的算式只有一个正确的有8种,所以两张卡片上的算式只有一个正确的概率=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据旋转的性质求出阴影区域的面积即可.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故答案为:.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三辆车全部继续直行,再利用概率公式即可求得答案;【解答】解:列树状图为:三辆车经过丁字路口的情况有8种,全部向右转的情况数为1种,以全部右转的概率.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,是两个均匀的数字转盘,转盘停止转动时指针停在不同数字区域的可能性相同.分别转动两个转盘,用转盘A停止转动时指针所指的数字a作横坐标;转盘B停止转动时指针所指的数字b作纵坐标,则点(a,b)在第四象限的概率= .【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:列表得:0 1 3 ﹣20 0,0 0,1 0,3 0,﹣2﹣1 ﹣1,0 ﹣1,1 ﹣1,3 ﹣1,﹣2﹣3 ﹣3,0 ﹣3,1 ﹣3,3 ﹣3,﹣22 2,0 2,1 2,3 2,﹣2∵共有16种等可能的结果,在第四象限的有4种,∴P(第四象限)==.故答案为:.【点评】考查了列表与树形图的知识,解题的关键是能够正确的通过列表或树形图将所有等可能的结果列举出来,难度不大.三、解答题15.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有 3 种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.【考点】列表法与树状图法.【分析】(1)根据题意得出每位考生的选择方案种类即可;(2)根据列表法求出所有可能,进而得出概率即可.【解答】解:(1)根据题意得出:每位考生有3种选择方案;故答案为:3;(2)列表法是:X 1X2X3X 1(X1,X1)(X1,X2)(X1,X3)X 2(X2,X1)(X2,X2)(X2,X3)X 3(X3,X1)(X3,X2)(X3,X3)由表中得知:共有9种不同的结果,而小颖和小华将选择同种方案的结果有3种,则:小颖与小华选择同种方案的概率为P==.【点评】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=.16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.【考点】列表法与树状图法.【分析】(1)列表或树状图将所有等可能的结果列举出来即可;(2)根据列表得到所有等可能的结果,然后利用概率公式求解即可.【解答】解:(1)画树状图,如图所示:(2)所有等可能的情况有12种,其中1支为甲签、1支为丁签的情况有2种,故P(1支为甲签、1支为丁签)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有9种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的结果数为3种,所有小玲两次抽出的卡片上的字母相同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P 1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P 2,请直接写出P 2的值,并比较P 1,P 2的大小.(2+3+2=7) 【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于不放回实验;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于放回实验.【解答】解:(1)∵一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别, ∴任取一球,共有4种不同结果,∴球上汉字刚好是“黄”的概率为:;(2)画树状图得:∵共有12种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,∴P 1==;(3)画树状图得:∵共有16种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,∴P2==,∴P1>P2.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.“爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.组别原因人数A 不想改变传统风俗习惯650B 增添节日喜庆气氛300C 祈福运、求吉利、辟邪害mD 没有可替代的庆祝方式150E 为了孩子的玩耍和快乐nF 其他100请根据图表中提供的信息解答下列问题:(1)填空:m= 600 ,n= 200 ,扇形统计图中D组所占的百分比为7.5% .(2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示);(3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?【考点】扇形统计图;用样本估计总体;统计表;概率公式.【分析】(1)根据B组的人数和所占百分比,求出总人数,总人数×C组所占的百分比得到C组的人数;用D组的人数÷总人数得到D组所占的百分比;(2)计算出B组所占的百分比,根据样本估计总体,即可解答;(3)根据概率公式,即可解答.【解答】解:(1)总人数为:300÷15%=2000(人),m=2000×30%=600,n=2000﹣650﹣300﹣600﹣150﹣100=200,扇形统计图中D组所占的百分比为:150÷2000×100%=7.5%,。
人教版九年级上册第25章 概率 单元测试(有答案)
第12题第5题第4题学校 班级 姓名 学号 装 订 线人教版九年级数学第一学期单元测试素质评价(第二十五章 概率的初步)题 号 一 二 三 四 五 总 分得 分一、选择题(每小题3分,共18分)1. 下列事件中是必然事件的是 ( )A. 明天我市天气晴朗B. 两个负数相乘,结果是正数C. 抛一枚硬币,正面朝下D. 在同一个圆中,任画两个圆周角,度数相等 2. 下列说法正确的是 ( )A. 某事件发生的概率为0.5,这就是说:在两次重复试验中,必有一次发生B. 一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C. 两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反.所以出现一正一反的概率是D. 全年级有400名同学,一定会有2人同一天过生日3. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为 ( )A.B. C.D.4. 如图,在4×4正方形网格中,任取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( ) A.B. C.D.5. 如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是 ( )A. 15B. 25C. 35D. 45 6. 甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么四名运动员在比赛过程中的接棒顺序有( )A. 3种B. 4种C. 6种D. 12种二、填空题(每小题3分,共24分)7. 投掷一颗正方体骰子一次,则出现向上一面的数字是偶数概率是_______.8. 在六盘水市组织的“五城连创”演讲比赛中,小明等25人进入总决赛,赛制规定,13人上午参赛,12人下午参赛,小明抽到上午比赛的概率是 .9. 下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 .10. 一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是 .11. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个.这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n = .12. 如图是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是________.13. 在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀.从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P (x ,y )落在直线y =-x +5上的概率是_____.14. 一个不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球 个. 三、(本大题共4小题,每小题6分,共24分)15.一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球,请问: (1)“摸出的球是白球”是什么事件?它的概率是多少? (2)“摸出的球是黄球”是什么事件?它的概率是多少? (3)“摸出的球是红球或黄球”是什么事件?它的概率是多少?16.如图所示的三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张,第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母,用列表法或画树状图法求能组成分式的概率是多少?17. 在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别. (1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.18.将A ,B ,C ,D 四名同学随机排在甲、乙两张课桌上,每张课桌坐两人,A 同学坐在甲课桌上的概率是多少?四、(本大题共2小题,每小题8分,共16分) 19.袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.20.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 摸到白球的次数m65 124 178 302 摸到白球的频率mn 0.65 0.62 0.593 0.604 摸球的次数n 800 1000 3000 … 摸到白球的次数m 481 599 1803 … 摸到白球的频率m n0.6010.5990.601…(1)请估计当n 很大时,摸到白球的频率将会接近________;(精确到0.1) (2)假如你摸一次,你摸到白球的概率P (白球)=________; (3)试估算盒子里黑、白两种颜色的球各有多少个?四、(本大题共2小题,每小题9分,共18分)21.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率.(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13 .问至少取出了多少黑球?22. 有两个可以自由转动的均匀转盘A B ,,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下: ①分别转动转盘A B ,;②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等份线上,那么重转一次,直到指针指向某一份为止)。
2019九年级数学上册第25章《概率初步》单元测试及答案III
2019-2020 年九年级数学上册第 25 章《概率初步》单元测试及答案 (III)一、选择题(每题 3 分,共 30 分)1. ( 08 新疆建设兵团)以下事件属于必定事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数 a < 0,则 2a < 0D .新疆的冬季不下雪2.在计算机键盘上,最常使用的是( )A. 字母键B. 空格键C.功能键D. 退格键3. (08 甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不一样其他都相同的球,假如口1袋中装有 4 个红 球且摸到红球的概率为 3 ,那么口袋中球的总数为()A.12个B.9个C.6个D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~ 6 的点数,掷得面向上的点数为奇数的概率为()1 111A.B.C.D.63 425.小明准备用 6 个球设计一个摸球游戏,下边四个方案中,你以为哪个不行功( )A. P (摸到白球)=1, P (摸到黑球)= 122B. P (摸到白球)=1, P (摸到黑球)=1, P (摸到红球)=1236(摸到白球)=2, P (摸到黑球)= P (摸到红球)=1313D. 摸到白球、黑球、红球的概率都是36.概率为 0.007 的随机事件在一次试验中( )A. 必定不发生B.可能发生,也可能不发生C.必定发生D. 以上都不对7.一个密闭不透明的盒子里有若干个白球,在不一样意将球倒出来数的状况下,为预计白球的个数,小刚向此中放入 8 个黑球,摇匀 后从中随机摸出一个球记下颜色,再把球放回 盒中,不停重复,共摸球400 次,此中 88 次摸到黑球,预计盒中大概有白球()A.28 个B.30 个个 D.42 个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有 40 个,除颜色外其他都完全相同,小明经过多次试验后发现此中摸到红色、黑色的频次分别为15%和 45%,则口袋中白色球的个数很可能是()9.如图 1,有 6 张写有汉字的卡片 ,它们的反面都相同,现将它们反面向上洗匀后如图2 摆放,从中任意打开一张是汉字“自”的概率是()1 12 1 A.B.C.D.2336图1 图210.如图,一个小球从 A 点沿轨道着落,在每个交错口都 有向左或向右两种时机相等的结果,小球最后抵达 H 点的概率是( )1111A. B. C. D.2468二、填空题(每题 3 分,共 24 分)11.投掷两枚分别标有1, 2, 3, 4,5,6 的正六面体骰子,写出这个试验中的一个随机事件: _______,写出这个试验中的一个必定发生的事件:_______.12.在 100 张奖券中,有 4 张中奖,小勇从中任抽 1 张,他中奖的概率是.13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在 4 张小卡片上分别写有实数0, 2 ,π,1,从中随机抽取一张卡片,抽到无理数的概率是 ________.315.在元旦游园晚会上有一个闯关活动,将 5 张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意打开一张,假如打开的图形是中心对称图形就能够过关,那么一次过关的概率是.16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和 3m 的齐心园,如图,而后蒙上眼睛在必定距离外向圈内掷小石子,掷中阴部分小红胜,不然小明胜,未掷入圈内不算,获胜可能性大的是.17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其他都相同),此中白球有 2 个,黄球有 1 个,现从中任意摸出一个白球的概率是1,则口袋里有蓝球___个. 618.飞机进行投弹演习,已知地面上有大小相同的9 个方块,如图2,其上分别标有1,2, 3,4, 5, 6,7,8, 9 九年数字,则飞机投弹两次都投中9 号方块的概率是_____;两次投中的号数之和是14 的概率是 ______.123456789三、解答题(共46 分)19.“元旦这天,小明与妈妈去逛商场,他们会买东西回家.”这是一个随机事件吗?为何?20.对某电视机厂生产的电视机进行抽样检测的数据以下,请你经过计算填出相应合格品的概率:抽取台数50 100200 3005001000合格品数(台)40 92192 285478954频率并求该厂生产的电视机次品的概率.21.某鱼塘捕到100 条鱼 ,称得总重为150 千克 ,这些鱼大小差不多在它们混入鱼群后又捕到102 条大小差不多的同种鱼,称得总重仍为有标志的鱼 ., 做好标志后放回鱼塘150 千克 ,此中有 2 条带,( 1)塘中种大有多少千克 ? ( 2)估个塘可种多少千克?22.一个密柜的密由四个数字成,每个数字都是0-9 十个数字中的一个,只有当四个数字与所定的密相同,才能将柜打开,马虎的刘芳忘了此中中的两个数字,他一次就能打开的概率是多少?23.将正面分有数字6,7,8,反面花色相同的三卡片洗匀后,反面向上放在桌面上.(1)随机地抽取一,求 P(偶数) .(2)随机地抽取一作个位上的数字(不放回),再抽取一作十位上的数字,能成哪些两位数?恰巧“ 68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分有数字1,2,3,4,5,6,?抛两次,向上的数字分是m、 n,若把 m、 n 作点 A 的横、坐,那么点A( m, n)在函数y =2x 的像上的概率是多少?四、能力提高(每10 分,共 20 分)25.田忌是一个人熟知的故事.国期,王与田忌各有上、中、下三匹,相同的中,王的比田忌的 .有一天,王要与田忌,两方定:比三局,每局各出一匹,每匹一次,得两局者,看子田忌仿佛没有什么的希望,可是田忌的士认识到主人的上、中等分比王的中、低等⋯(1)假如王将按上、中、下的序出比,那么田忌的怎样出,田忌才能取?(2)假如王将按上、中、下的序出,而田忌的随机出比,田忌的概率是多少?(要求写出两方的全部状况)26.( 08 江宿迁)不透明的口袋里装有、黄、三种色的小球(除色外其他都相1同),此中球有 2 个,球有 1个,从中任意摸出一个是球的概率2.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,用画状或列表法求两次摸到都是球的概率;(3)若定摸到球得5分,摸到黄球得3分,摸到球得 1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,小明有哪几种摸法?用:1.在一个不透明的口袋中,装有若干个除色不一样外其他都相同的球,假如口袋中装有4 个球且摸到球的概率,那么口袋中球的数() AA.12 个B.9 个C.6 个D.3 个2.一名保推人:“人有可能生病,也有可能不生病,所以,?生病与不生病的概率各占 50%”,他的法()CA. 正确B. 有正确,有不正确C.不正确D. 依据天气等条件确立3.袋中有16 个球, 7 个白球, 3个球, 6 个黄球,从中任取一个,获取球的概率是() BA.3B. 3C.1D.37162134.冰柜装有四种料, 5 瓶特种可, 12 瓶一般可, 9 瓶橘子水, 6 瓶啤酒, ?此中特种可和一般可是含有咖啡因的料,那么从冰柜里随机取一瓶料,料含有咖啡因的概率是()DA. 5B.3C.15D.17 32832325.某同学期中考试全班第一,则期末考试.(填“不行能”,“可能”或“必定”)全班第一.可能6.在标有 1,3,4,6,8 的五张卡片中,随机抽取两张,和为奇数的概率为7.在中考体育达标跳绳项目测试中, 1 分钟跳绳160 次为达标,小敏记录了他展望时1分钟跳的次数分别为145,155, 140,162,1 64,则他在该次测试中达标的概率是. 258.某人把 50 粒黄豆染色后与一袋黄豆充足混匀,接着抓出100粒黄豆,数出此中有10粒黄豆被染色,则这袋黄豆本来约有粒.4509.含有 4 栽花色的36 张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不停重复上述过程,记录抽到红心的频次为25%,那么其中扑克牌花色是红心的大概有张 .910.在中考体育达标跳绳项目测试中,1min 跳 160 次为达标. ?小敏记录了他展望时1min 跳的次数分别为145, 155, 140, 162,164,则他在该次展望中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得 3 分)没法确立其正确选项,于是他们就从每道题的四个选项中任意选择了某项。
2019年人教版初三数学上册第25章概率初步 单元试卷有答案
第1页 共22页 ◎ 第2页 共22页人教版九年级数学上册 第25章 概率初步 单元检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 以下事件中不可能事件是( ) A.一个角和它的余角的和是B.连接掷 次骰子都是 点朝上C.一个有理数与它的倒数之和等于D.一个有理数小于它的倒数2. 掷一枚均匀的骰子, 点朝上的概率为( ) A.B.C.D.3. 今年春节期间,我市某景区管理部门随机调查了 名游客,其中有 人对景区表示满意.对于这次调查以下说法正确的是( )A.若随机访问一位游客,则该游客表示满意的概率约为B.到景区的所有游客中,只有 名游客表示满意C.若随机访问 位游客,则一定有 位游客表示满意D.本次调查采用的方式是普查4. 一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球 个,红球 个,黄球 个,将它们搅匀后从袋中随机摸出 个球,则摸出黄球的概率是( ) A.B.C.D.5. 如图,两个标有数字的轮子分别被等分为 部分和 部分,它们可以分别绕轮子中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,这两个数字的和为偶数的概率是( )A.B.C.D.6. 在一个不透明的盒子里有形状、大小相同的黄球 个、红球 个,从盒子里任意摸出 个球,摸到红球的概率是( ) A.B.C.D.7. 甲从标有 , , , 的 张卡片中任抽 张,然后放回.乙再在 张卡片中任抽 张两人抽到的标号的和是 的倍数的(包括 )概率是( ) A.B.C.D.8. 在一个暗箱里放有 个除颜色外其他完全相同的球,这 个球中红球有 个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在 ,那么可以推算出 大约是( ) A.B.C.D.9. 两位同学玩“抢 ”的游戏,若改成“抢 ”,那么采取适当的策略,其结果是( ) A.先报数者胜B.后报数者胜C.两者都有可能性D.很难判断胜负10. 某人在做掷硬币实验时,投掷 次,正面朝上有 次(即正面朝上的频率是).则下列说法中正确的是( )A. 一定等于B. 一定不等于C.多投一次, 更接近D.投掷次数逐渐增加, 稳定在附近二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )第3页共22页◎第4页共22页11. 在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.12. 在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13. 随机掷一枚均匀的骰子,面向上的点数为奇数的概率是________.14. 两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.15. 用万元资金投资一项技术改造项目,如果成功,则可盈利万元;如果失败,将亏损全部投资.已知成功的概率是,这次投资项目期望大致可盈利________万元.16. 在一个不透明的布袋中有个白球和个黄球,它们除颜色不同外,其余的均相同,若从中随机摸出一个球,摸到黄球的概率是________.17. 甲、乙两队进行足球比赛,裁判员用掷一枚硬币的方法决定双方比赛场地,这样对两队________(填“公平”或“不公平”).18. 一个不透明的盒子里有张完全相同的卡片,它们的标号分别为,,,,,随机抽取一张,抽中标号为奇数的卡片的概率是________.19. 日植树节,老师想从甲、乙、丙、丁名同学中挑选名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.20. 在一个不透明的盒子里有个红球和个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则的值为________.三、解答题(本题共计 8 小题,共计60分,)21. (6分)一只不透明袋子中装有个红球,22. (6分)小明和小丽在做游戏:有、全相同的小球,小球上分别标有数字,,,,球,小球上分别标有数字,,.先从的标号,再从布袋中随机取出一个小球,用游戏是否公平?第5页 共22页 ◎ 第6页 共22页23. (8分) 某小鱼塘放养鱼苗 尾,成活率为 ,成熟后,平均质量 斤以上的鱼为优质鱼,若在一天中随机捞出一条鱼,称出其质量,再放回去,不断重复上面的实验,共捞了 次,有 条鱼的平均质量在 斤以上,若优质鱼的利润为 元/斤,则这个小鱼塘在优质鱼上可获利多少元?24. (8分) 在一个大袋子中装有黑白两种芝麻,已知白芝麻每千克 元,黑芝麻每千克元,为了确定袋子中混合后芝麻的单价,做了如下实验:运用物理天平称出 克混合芝麻,把它们分开后再次称得白芝麻有 克,黑芝麻有 克.根据这些数据请你计算一下这袋混合芝麻的单价大约是多少?25. (8分) 某市中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在 个物理实验(用纸签 、 、 表示)和 个化学实验(用纸签 、 、 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个,求小刚抽到物理实验 和化学实验 (记作事件 )的概率是多少?26.(8分) 某校组织学生参观“周恩来纪念馆”,“周恩来童年读书处”和“钵池山”三处景点,景点的参观顺序,采用随机抽签方式. (1)请直接写出参观第一位景点是钵池山的概率;(2)请你用画树状图或列表的方法求出第一、第二景点都是和周恩来相关的景点的概率.第7页 共22页 ◎ 第8页 共22页27. (8分) 中央电视台“幸运 ”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在 个商标牌中,有 个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?28. (8分) 小红的妈妈买回了 枝钢笔,准备让小红挑一枝,剩下的给亲戚的孩子们分,小红一看,它们只有颜色不同,其中有黑色 枝、白色 枝、彩色 枝,小红每种颜色都喜欢,一时不能决定要哪一种颜色,便闭上眼睛随便拿了一枝,她拿到哪一种颜色的概率较大?这个概率是多少?第9页 共22页 ◎ 第10页 共22页参考答案与试题解析【期末专题复习】人教版九年级数学上册 第25章 概率初步 单元检测试卷 一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1. 【答案】 C 【考点】 随机事件 【解析】根据不可能事件是指在一定条件下,一定不发生的事件,可得答案. 2. 【答案】 D 【考点】 概率公式 【解析】一枚均匀的骰子有 个面,只有一面是 点,所以 点朝上的概率为六分之一. 3. 【答案】 A【考点】 概率的意义 【解析】根据概率的意义分析各个选项,找到正确选项即可. 4. 【答案】 A 【考点】 概率公式 【解析】根据概率公式用黄球的个数除以球的总个数即可. 5. 【答案】 C 【考点】 列表法与树状图法 【解析】先用树状图列出所有可能的结果,共有 种等可能结果数,然后找出和为偶数的个数,这样即可得到和为偶数的概率. 6.第11页共22页◎第12页共22页【答案】B【考点】概率公式【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.7.【答案】A【考点】列表法与树状图法【解析】抽次总共有种情况,计算出和是偶数的情况个数,利用概率公式进行计算.8.【答案】D【考点】利用频率估计概率【解析】关系入手,列出方程求解.9.【答案】A【考点】游戏公平性【解析】为了抢到,那就必须抢到,这样无论对方叫“”或“到,必需抢到即对方报个数字,你就报”整除的问题.10.【答案】D【考点】利用频率估计概率【解析】第13页 共22页 ◎ 第14页 共22页利用频率估计概率时,只有做大量试验,才能用频率会计概率. 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】从中任意摸出一个球是红球 【考点】 模拟实验 【解析】根据随机事件的概率是大于 小于 来设计即可. 12. 【答案】 【考点】模拟实验 【解析】利用大量反复试验下频率稳定值即概率,由估计出部分数目 总体数目乘以相应概率求出即可. 13. 【答案】 【考点】概率公式 【解析】掷一次骰子有 、 、 、 、 、 这六个结果,奇数点为 、 、 ,所以结果为二分之一. 14. 【答案】,【考点】 列表法与树状图法 【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及取出的两个球一个是白球一个是黄球与至少有一个是白球的情况,再利用概率公式求解即可求得答案. 15. 【答案】【考点】 概率的意义 【解析】根据期望值的公式作答即可. 16. 【答案】第15页共22页◎第16页共22页【考点】概率公式【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.17.【答案】公平【考点】游戏公平性【解析】要判断这种方法是否公平,只要看所选取的方法使这两个队选取比赛场地的可能性是否相等即可18.【答案】【考点】概率公式【解析】根据一个不透明的盒子里有奇数有,,,共个,再根据概率公式即可得出答案.19.【答案】【考点】列表法与树状图法【解析】画树状图展示所有公式求解.20.【答案】【考点】概率公式【解析】根据红球的概率结合概率公式列出关于的方程,求出三、解答题(本题共计 8 小题,共计60分)21.【答案】解:画树状图得:第17页 共22页 ◎ 第18页 共22页线…………∵共有 种等可能的结果,两次摸出的球都是红球的只有 种情况, ∴两次摸出的球都是红球的概率为:.【考点】列表法与树状图法 【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案. 22. 【答案】解:根据题意列表为:共有 中情况,其中是偶数的有 中情况,小明获胜的概率 小明胜, ∴小丽获胜的概率也是,∴游戏是公平的.【考点】 游戏公平性列表法与树状图法【解析】用列表法,写出有序数对,写出 的所有取值的和奇数和偶数的情况,从而可以求出小明获胜的概率. 23. 【答案】优质鱼上至少可获利 元. 【考点】 利用频率估计概率 【解析】由题意可得:池塘中有 斤以上鱼的概率为.因为池塘内鱼苗 尾成活率为 ,所以可以估计该池塘内 斤以上鱼的数量,进而得出答案. 24.【答案】这袋混合芝麻的单价大约是 元/千克. 【考点】 模拟实验 【解析】…………订※※线※※…………根据白芝麻每千克元,黑芝麻每千克元,再利用白芝麻有克,黑芝麻有克,求出它们的总钱数除以总质量即可.25.【答案】解:方法一:列表格如下:方法二:画树状图如下:所有可能出现的结果,,,,,,,,;从表格或树状图可以看出,所有可能出现的结果共有种,其中事件出现了一次,所以.【考点】列表法与树状图法【解析】事件的概率即可.26.【答案】解:(1)第一位景点是钵池山的概率;(2)画树状图为:(用、、“钵池山”三处景点)共有所以第一、第二景点都是和周恩来相关的景点的概率.【考点】列表法与树状图法【解析】(1)直接利用概率公式求解;(2)画树状图为(用、、池山”三处景点)展示所有的景点的结果数,然后根据概率公式求解.27.第19页共22页◎第20页共22页第21页 共22页 ◎ 第22页 共22页 【答案】 解:∵ 个商标中 个已翻出,还剩 张, 张中还有 张有奖的, ∴第三次翻牌获奖的概率是: . 【考点】 概率的意义【解析】先求出 个商标中还剩的张数,再求出其中有奖的张数,最后根据概率公式进行计算即可. 28.【答案】解:∵小红的妈妈买回了 枝钢笔,其中有黑色 枝、白色 枝、彩色 枝, ∴ (黑色) , (白色) , (彩色) ,∴她拿到彩色的概率较大,这个概率是 .【考点】概率公式【解析】由小红的妈妈买回了 枝钢笔,它们只有颜色不同,其中有黑色 枝、白色 枝、彩色 枝,即可求得拿到各种颜色的概率,比较即可求得答案.。
2018-2019学年度人教版数学九年级上册第25章《概率初步》单元测试卷含答案
2018-2019学年度人教版数学九年级上册 第25章《概率初步》单元测试卷含答案(考试时间:120分钟 满分:120分)一、选择题(每小题3分,总计36分。
请将唯一正确答案的字母填写在表格内)1.下列事件中是随机事件的有( )①早晨的太阳一定从东方升起 ②打开数学课本时刚好翻到第60页 ③从一定高度落下的图钉,落地后钉尖朝上 ④小红经过十字路口时,遇到红灯A .1个B .2个C .3个D .4个2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件必然发生的是( )A .摸出的4个球中至少有一个是白球B .摸出的4个球中至少有一个是黑球C .摸出的4个球中至少有两个是黑球D .摸出的4个球中至少有两个是白球3.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )A.14B.13C.12D.234.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A.17B.37C.47D.575.小明在做一道正确答案是2的计算题时,由于运算符号(“+”“-”“×”或“÷”)被墨迹污染,看见的算式是“4■2”,那么小明还能做对的概率是( )A.14B.13C.16D.126.某校举行春季运动会,需要在七年级选取一名志愿者,七(1)班、七(2)班、七(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是七(3)班同学的概率是( )A.16B.13C.12D.237.已知一个布袋里装有2个从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .48.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.129.一只不透明的袋子中有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.3410.在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y =x -2图象上的概率是( )A.12B.13C.14D.1611.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.1512.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么推算出n 大约是( )A .6B .10C .18D .20第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.(盐城中考)如图所示是一个飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在灰色区域的概率是____.第13题图 第15题图14.某校九(2)班在体育考试中全班所有学生的得分情况如表所示:从九(2)班的学生中随机抽取一人,恰好是获得30分的学生的概率是__ _.15.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__ _.16.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不到的情况下随机摸出两只袜子,它们恰好同色的概率是__ _.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是__ _.18. 在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:__ __三、解答题(本大题共8小题,共66分)19.(5分)下列事件中,哪些事件是必然事件,哪些事件是不可能事件,哪些事件是随机事件?(1)中秋节晚上一定能看到月亮;(2)各边相等的多边形是正多边形;(3)在面值为1元、2元、5元的三张人民币中任取两张,面值的和小于8元;(4)买一张彩票,末位数字是8;(5)从装有2个红球和3个黄球的袋子中摸出一个白球.20.(6分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.21.(8分)如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是0”发生的概率;(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.22.(8分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山居民(记为C)、李庄古镇(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为________;(2)用画树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.23.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是____;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.24.(10分)如图的方格地面上,标有编号A,B,C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?25.(10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排和第三排灯的概率.26.(11分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下表中部分数据:(1)将数据表补充完整;(2)从上表中可以估计出现方块的概率是________(精确到0.01);(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表法或画树状图法)加以分析说明.参考答案13.12. 14.58. 15.13. 16.13. 17.14. 18.40三、 解答题(本大题共8小题,共66分)19.(3)是必然事件,(1)(2)(4)是随机事件,(5)是不可能事件.20.(1)14;(2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2,经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2.21.(1)P (所指的数为0)=13;(2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)列表或画树状图略.P (所指两数的绝对值相等)=59.22.(1)14;(2)画树状图如下:根据树状图可知,共有16种等可能的结果,其中小明和小华都选择去兴文石海旅游的结果有1种,所以P (小明和小华都选择去兴文石海)=116. 23.(1)12(2)解:乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有(男,男),(男,女),(女,男),(女,女),共有4种,它们出现的可能性相同,所有的结果中,满足“至少一个孩子是女孩”(记为事件A )的结果有3种,所有P (A )=34.24.解:(1)P (小鸟落在草坪上)=69=23.(2)由列表可知,共有6种等可能结果,编号为A ,B 的2个小方格空地种植草坪有2种,所以P (编号为A ,B 的2个小方格空地种植草坪)=26=13.25.解:用A 1,A 2,A 3,A 4分别表示第一排,第二排,第三排,第四排日光灯,列表如图所示.∴共有12种情况,其中满足条件的有两种(A 3,A 1)(A 1,A 3), ∴P (关掉第一排和第三排)=212=16. 26. 解:(1)30;0.250;(2)0.25;(3)列表如下.所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,∴P (甲方赢)=29,P (乙方赢)=39=13,∴P (乙方赢)≠P (甲方赢),∴这个游戏对双方是不公平的,红球,3个白球和a 个黄球,这些球除颜色外其余都相同.。
精品解析:人教版2019届九年级数学上 第二十五章概率初步(解析版)
第二十五章检测试题一、选择题1. 指出下列事件中是随机事件的个数()①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560°;④购买一张彩票中奖.A. 0B. 1C. 2D. 3【答案】C【解析】解:掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件;所以随机事件是2个.故选C.2. 如图中任意画一个点,落在黑色区域的概率是()A. 1B.12C. πD. 50【答案】B【解析】【分析】抓住黑白面积相等,根据概率公式可求出概率. 【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是1 2 .故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.3. 某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是()A. 17B.18C.19D.110【答案】B 【解析】【分析】先求出题的总号数及8号的个数,再根据概率公式解答即可.【详解】前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为18.故选B【点睛】考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.4. 一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A. 袋子一定有三个白球B. 袋子中白球占小球总数的十分之三C. 再摸三次球,一定有一次是白球D. 再摸1000次,摸出白球的次数会接近330次【答案】D【解析】【分析】观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一常数附近,可以用此常数表示白球出现的概率,从而确定正确的选项.【详解】∵观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一33%附近,∴白球出现的概率为33%,∴再摸1000次,摸出白球的次数会接近330次,正确,其他错误,故选D.【点睛】本题考查了利用频率估计概率的知识,观察随着实验次数的增多而逐渐稳定在某个常数附近即可.5. 有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是().A 12B.13C.23D.14【答案】D【解析】试题分析:根据三角形的三边关系求出共有几种情况,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵长度为2cm、3cm、4cm、7cm的四条线段,从中任取三条线段共有2.3.4,2.3.7,3.4.7,2.4.7四种情况,而能组成三角形的有2、3、4;共有1种情况,所以能组成三角形的概率是14.故选D.考点:列表法与树状图法;三角形三边关系.6. 经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )A. 47B.49C.29D.19【答案】C【解析】画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果;两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆左转,一辆右转)= 2 9 .故选C.7. 红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A. 红红不是胜就是输,所以红红胜的概率为B. 红红胜或娜娜胜的概率相等C. 两人出相同手势的概率为D. 娜娜胜的概率和两人出相同手势的概率一样【答案】A【解析】试题解析:红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:红红石头剪刀布娜娜石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选A.考点:1.列表法与树状图法;2.命题与定理.8. 某商店为吸引顾客设计了促销活动:在一不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客一次性消费满400元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),某顾客刚好消费400元,则该顾客获得的金额不低于30元的概率是()A. 13B.12C.23D.34【答案】C【解析】【分析】列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【详解】解:列表:第二次第一次0 10 20 300 -- 10 20 3010 10 -- 30 4020 20 30 -- 5030 30 40 50 --从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=23.故选C【点睛】本题主要考查用列表法或树状图求概率.解决本题的关键是弄清题意,满400元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题9. 下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必然事件是,不可能事件是.(将事件的序号填上即可)【答案】④;③;【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别,即可解答.试题解析:这4个事件中,必然事件是④;不可能事件是③;考点:随机事件.10. 在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出n的值是.【答案】10【解析】试题分析:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴5n=0.5,解得:n=10.考点:模拟实验.11. 同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是___.【答案】.【解析】试题分析:画树状图得得:由树状图可知所有可能情况有8种,其中两枚正面向上,一枚正面向下的情况数为3种,所以两枚正面向上,一枚正面向下的概率=.考点:列表法与树状图法.12. 如图,在2×3的正方形网格格点上有两点A,B,在其他格点上随机取一点记为C,能使以A,B,C三点为顶点的三角形是等腰三角形的概率为__.【答案】25. 【解析】 【分析】首先找出可以组成的所有三角形的个数,然后再看其中的等腰三角形的个数,由此可得到所求的概率. 【详解】解:∵在格点上随机取一点记为C ,以A 、B 、C 三点为顶点的三角形有4×3-2=10个,其中等腰三角形有4个(图中所示),∴以A 、B 、C 三点为顶点的三角形是等腰三角形的概率为:42105=.故答案为25【点睛】本题考查了概率公式:概率=所求情况数与总情况数之比.同时考查了等腰三角形的判定. 13. 小王与小陈两个玩掷骰子游戏,如果小王掷出的点数是偶数,则小王获胜,如果掷出的点数是3的倍数,则小陈获胜,那么这个游戏__(填“公平”或“不公平”) 【答案】不公平. 【解析】 【分析】首先根据题意,可求得小王与小陈获胜的概率,比较概率的大小,即可得这个游戏是否公平. 【详解】解:∵骰子的点数分别为:1,2,3,4,5,6, ∴点数是偶数有:2,4,6;掷出的点数是3的倍数的有3,6; ∴P(小王获胜)=3162=,P (小陈获胜)=2163=, ∴P(小王获胜)≠P(小陈获胜), ∴这个游戏不公平. 故答案为不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.14. 从﹣2,﹣1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b 的系数k ,b ,则一次函数y=kx+b的图象不经过第四象限的概率是.【答案】1 6【解析】【分析】【详解】画树状图得:∵共有12种等可能的结果,一次函数y=kx+b的图象不经过第四象限的有:(1,2),(2,1),∴一次函数y=kx+b的图象不经过第四象限的概率为:212=16.三、解答题15. 某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为;(2)该地区已经移植这种树苗4万棵.①求这种树苗成活的大约棵数;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?【答案】(1)0.9;(2)3.6,16.【解析】【分析】(1)由图可知,成活概率在0.9上下波动,故可估计这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9;(2)4×成活率即为所求的成活的树苗棵树;(3)利用成活率求得需要树苗棵树,减去已移植树苗数即为所求的树苗的棵树.【详解】解:(1)这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9.(2)①估计这种树苗成活4×0.9=3.6(万棵);②18÷0.9-4=16(万棵).所以该地区需移植这种树苗约16万棵.故答案为(1)0.9;(2)3.6,16. 【点睛】本题考核知识点:用频率估计概率.解题关键点:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16. 如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作过程中,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.【答案】5 9 .【解析】【分析】根据题意列出所有情况,求出满足条件的情况,用概率公式可求出概率. 【详解】解:画树状图如图,所有可能出现的结果共有9种,其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=5 9 .【点睛】本题考核知识点:用列举法求概率.解题关键点:列出所有情况,熟记概率公式.17. 从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标____________;(2)求该点在第一象限的概率_____________.【答案】(1)所有可能的坐标为(1,3)、(1,﹣2)、(3,1)、(3,﹣2)、(﹣2,1)、(﹣2,3);(2)49.【解析】【分析】(1)列表表示出该点所有可能的坐标;(2)根据概率公式求解即可.【详解】(1)列表如图:(2)由表可知该点在第一象限的概率为4 9 .【点睛】考点:树状图或列表求概率18. 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共4只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);(2)试估算口袋中白种颜色的球有多少只?(3)请根据估算的结果思考从口袋中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?画出树状图(或列表)表示所有可能的结果,并计算概率.【答案】(1)0.25;(2)1;(3)1 2 .【解析】【分析】(1)由频率可估计概率,继而求得答案;(2)首先可求得摸出白球的概率,然后直接利用概率公式求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两只球颜色不同的情况,再利用概率公式即可求得答案.【详解】解:(1)当n很大时,摸到白球的频率将会接近0.25.(2)因为不透明的口袋里的球共4只,且白球的概率约为0.25,所以估算口袋中白种颜色的球有:4×0.25=1(只).(3)画树状图如下:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,两只球颜色不同的结果有6种,所以两只球颜色不同的概率为P=612=12.【点睛】此题考查了列表法或树状图法求概率以及利用频率估计概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.19. 如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).【答案】(1)34.(2)公平.【解析】【分析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.20. 某班在元旦游戏活动中,有一个摸奖游戏,规则如下:不透明的盒子内有4个除颜色外完全相同的球,其中有2个红球,2个白球,摇匀后让同学们去盒子内摸球,摸到红球的就获奖,摸到白球的不获奖.(1)现小颖有一次摸球机会,她从盒子中随机摸出1个球,求小颖获奖的概率;(2)如果小颖、小明都有两次摸球的机会,小颖先摸出1个球,放回后再摸出1个球;小明同时摸出2个球;他们摸出的2个球中只要有红球就获奖,他们获奖的机会相等吗?请用树状图(或列表)的方法说明理由.【答案】(1)12;(2)机会不相等.【解析】【分析】(1)直接利用概率公式求解;(2)对于小颖先摸出1个球,放回后再摸出1个球可画树状图展示所有16种等可能的结果数,找出两个球中有红球的结果数,利用概率公式可计算出小颖获奖的概率=34;对于小明同时摸出2个球,画树状图展示所有12种等可能的结果数,再找出两个球中有红球的结果数为,利用概率公式计算出小颖获奖的概率,然后比较两概率的大小即可判断他们获奖的机会是否相等.【详解】解:(1)小颖获奖的概率为P1=222+=12.(2)小颖先摸出1个球,放回后再摸出1个球,画树状图如图,共有16种等可能的结果数,其中两个球中有红球的结果数为12,所以小颖获奖的概率为P2=1216=34.小明同时摸出2个球,画树状图如图,共有12种等可能的结果数,其中两个球中有红球的结果数为10,所以小颖获奖的概率为P3=1012=56,而34≠56,所以他们获奖的机会不相等.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21. 我市长途客运站每天6:307:30-开往某县的三辆班车,票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序.两人采用不同的乘车方案:小张无论如何决定乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题:(1)三辆车按出现的先后顺序共有哪几种可能?(2)请列表分析哪种方案乘坐优等车的可能性大?为什么?【答案】(1)共6种可能;(2)乘坐优等车的可能性大.【解析】试题分析:(1)采用列举法比较简单,但是解题时要注意做到不重不漏;(2)考查了学生对表格的分析能力,解题的关键是理解题意,列得适宜的表格.试题解析:(1)三辆车按开来的先后顺序有:优、中、差;优、差、中;中、优、差;中、差、优;差、优、中;差、中、优,共6种可能.(2)根据三辆车开来的先后顺序,小张和小王乘车所有可能的情况如下表:顺序优,中,差优,差,中中,优,差中,差,优差,优,中差,中,优小张优优中中差差小王差中优优优中由表格可知:小张乘坐优等车的概率是13,而小王乘坐优等车的概率是12.所以小王的乘车方案乘坐优等车的可能性大.22. 小南、小铭和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层楼出电梯.(1)用列表或画树状图求出甲、乙两人在同一层楼出电梯的概率;(2)小南和小铭比赛,规则是:若甲、乙在同一层或相邻楼层出电梯,则小南胜,否则小铭胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.【答案】(1)14;(2)修改规则:若甲、乙在同一层或相邻楼层出电梯,则小南得3分,否则小铭得5分.【解析】【分析】(1)根据题意列表,求出所以情况,则P(甲、乙在同一层楼出电梯)=416=14.(2)分别求出P(小南胜)=P(同层或相邻楼层出电梯)=1016=58,P(小铭胜)=1-58=38,修改规则,使概率相等就算公平.【详解】解:(1)列表如下:甲乙1 2 3 41 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3)一共出现16种等可能结果,其中出现在同一层楼出电梯的有4种结果,则P(甲、乙在同一层楼出电梯)=416=14.(2)由(1)可知,甲、乙在同一层或相邻楼层的有10种结果,故P(小南胜)=P(同层或相邻楼层出电梯)=1016=58,P(小铭胜)=1-58=38,因为58>38,所以游戏不公平,修改规则:若甲、乙在同一层或相邻楼层出电梯,则小南得3分,否则小铭得5分.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率单元测试题
一、选择题.
1.下列事件中,必然事件是( )
A .中秋节晚上能看到月亮
B .今天考试小明能得满分
C .早晨的太阳从东方升起
D .明天气温会升高
2.随机掷两枚硬币,落地后全部正面朝上的概率是( )
A .1
B .12
C .13
D .14
3.下列事件中是随机事件有( )个.
(1)在标准大气压下水在0℃时开始结成冰;
(2)掷一枚六个面分别标有l ~6的数字的均匀骰子,骰子停止转动后偶数点朝上;
(3)从一副扑克牌中任意抽出一张牌,花色是红桃;
(4)打开电视机,正在转播足球比赛;
(5)小麦的亩产量为1000公斤.
A .1个
B .2个
C .3个
D .4个
4.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )
A .12
B .9
C .4
D .3
5.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为( )
A .12
B .13
C .14
D .15
6.小刚与小亮一起玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止.若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是( ).
A .21
B .94
C .95
D .32
7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )
A .15
B .29
C .14
D .518 8.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( ).
A.2
1 B.π63 C.π9
3 D.π3
3 9.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子
同时掷出,出现的数字分别为a ,b ,c ,则a ,b ,c ,正好是直角三角形三边长的概率是( )
A .1216
B .172
C .136
D .112 10.口袋中装有一红二黄二蓝共5个小球,它们大小、形状等完全一样,每次摸出两个小球恰为一黄一蓝的机会为( )
A .45
B .35
C .15
D .25 二、填空题.
1.“天有不测风云”这句话是说:世界上有很大事件具有偶然性,人们不能_____这些事情是否会发生.
2.“抛出的篮球会下落”,这个事件是 事件.(填“确定”或“不确定”)
3.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P (摸到数字2)= ,P (摸到奇数)= .
4.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是 .
5.掷两枚普通硬币,出现两个正面的概率是 .
6.小华与父母一同从南京乘火车到苏州乐园游玩,火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在父母中间的概率是 .
7.小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,谁取到最后剩下的一支铅笔的人获胜,如果小明获胜的概率为1,那么小明第一次应取走 支.
8.一副没有大小王的扑克,共52张,抽出一张是红桃的概率为 .
9.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父亲右边的概率是 .
10.如图所示.小李和小陈做转陀螺游戏.他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是_____________.
三、解答题.
1.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?
2.将一枚硬币连掷3次,出现“两正,一反”的概率是多少?
3.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为3
2,求男女生数各多少? 4.在学校举办的游艺活动中,数学俱乐部办了个掷骰子的游戏,玩这个游戏要花四枚5角钱的硬币,一个游戏者掷一次骰子,如果掷到点数6,游戏者得到奖品, 每个奖品要花费俱乐部8元,俱乐部能指望从这个游戏中赢利吗? 请说明理由.
5.在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意..
猜一个,求他猜中该商品价格的概率. 6.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?
参考答案
一、选择题.
1.C 2.D 3 .D 4.A 5.A 6. B 7.B 8.C 9.C 10.D
二、填空题.
1.确定 2.确定 3.
101,21 4.310 5.14 6.13 7.2 8.14 9.21 10.14
三、解答题.
1.红色弹珠21个,蓝色弹珠15个,白色弹珠24个
2.3 8
3.男生24人,女生12人
4.中奖的概率是1
6
,即平均每6个人玩,有一个人能中奖,即收2×6=12元,要送一个8元的奖品.因
为12>8,所以能盈利.
5.解:所有连在一起的四位数共有6个,商品的价格是其中的一个.由于参与者是随意猜的,因此,
他一次猜中商品价格的概率是1
6
.
6.因为已经限定在身高160厘米以上的女生中抽选旗手,在甲班被抽到的概率为1
3
,在乙甲班被抽到
的概率为1
8
,∵
1
3
>
1
8
,∴在甲班被抽到的机会大.。