新人教版八年级下册第18章 平行四边形 单元测试试卷(A卷)
人教版初二数学8年级下册 第18章(平行四边形)单元测试卷3(含答案)
人教版八年级下册第18章《平行四边形》单元测试卷一、选择题(每小题3分,共30分)1.如图,四边形ABCD是平行四边形,将BC延长至点E,若∠A=100°,则∠1等于( )A. 110°B. 35°C. 80°D. 55°2.如图,在四边形ABCD中,AB//CD,添加下列一个条件后,定能判定四边形ABCD是平行四边形的是( )A. AB=BCB. AC=BDC. ∠A=∠CD. ∠A=∠B3.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是( )A. 5B. 5.5C. 6D. 6.54.如图,在▱ABCD中,AB=6,BC=4,BE平分∠ABC,交CD于点E,则DE的长度是( )A. 32B. 2 C. 52D. 35.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=4,AB=6.BD=m,那么m的取值范围是( )A. 4<m<8B. 4<m<10C. 6<m<14D. 8<m<166.矩形ABCD中,点M在对角线AC上,过M作AB的平行线交AD于E,交BC于F,连接DM和BM,已知,DE=2,ME=4,则图中阴影部分的面积是( )A. 12B. 10C. 8D. 67.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是( )A. 2B. 52C. 3D. 48.如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,AB,连接OE.下列结论:①S平行四边形ABCD=AD⋅BD;②DB平∠BCD=60°,AD=12分∠CDE;③AO=DE;④OE垂直平分BD.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个9.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且A(−3,0),B(2,b),则b的值为( )A. 3B. 2C. −3D. −210.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为6和8,若S△APC=15,那么点P到对角线BD的长是( )A. 65B. 95C. 125D. 245二、填空题(每小题3分,共18分)11.在▱ABCD中,如果∠A+∠C=140°,那么∠C等于______ .12.一个三角形的周长是12cm,则这个三角形各边中点围成的三角形的周长为______.13.如图,在长方形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,AB=2,OA=OB,则CO的长为______.14.如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为______cm.15.如图,在平面直角坐标系中,已知OA=3,OB=1,菱形ABCD的顶点C在x轴的正半轴上,则对角线BD的长为______.16.如图,在平面直角坐标系中,已知正方形ABCD的边长为8,与y轴交于点M(0,5),顶点C(6,−3),将一条长为2020个单位长度且没有弹性的细绳一端固定在点M处,从点M 出发将细绳紧绕在正方形ABCD的边上,则细绳的另一端到达的位置点N的坐标为______ .三、解答题(每小题8分,共64分)17.如图,平行四边形ABCD,E、F是直线DB上两点,且DF=BE.求证:四边形AECF是平行四边形.18.在平行四边形ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交边AD、BC于点E、F.求证:DE=BF.19.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.(1)求证:EF=AE+CF;(2)当AE=1时,求EF的长.20.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)OE______ AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.21.在▱ABCD中,E为BC边上一点,F为对角线AC上一点,连接DE、BF,若∠ADE与∠CBF的平分线DG、BG交于AC上一点G,连接EG.(1)如图1,点B、G、D在同一直线上,若∠CBF=90°,CD=3,EG=2,求CE的长;(2)如图2,若AG=AB,∠DEG=∠BCD,求证:AD=BF+DE.22.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.(1)当点B′恰好落在边CD上时,线段BM的长为______cm;(2)点M从点A运动到点B的过程中,若边MB′与边CD交于点E,求点E相应运动的路径长度.(3)当点A与点B′距离最短时,求AM的长.23.如图,在四边形ABCD中,∠A=∠B=∠BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=______;(2)当t=______时,点P运动到∠B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.24.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点,6).E、D,且D点坐标是(52(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.答案和解析1.【答案】C【解析】解:∵平行四边形ABCD中,∠A=100°,∴∠BCD=∠A=100°,∴∠1=180°−∠BCD=180°−100°=80°.故选:C.根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.2.【答案】C【解析】解:如图所示:∵AB//CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD//BC,则四边形ABCD是平行四边形.故选:C.利用平行线的判定与性质结合平行四边形的判定得出即可.此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD//BC是解题关键.3.【答案】C【解析】【分析】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB =2DE =10,∵AE =8,∴由勾股定理得:BE =AB 2−AE 2=6.故选C .4.【答案】B【解析】解:∵四边形ABCD 为平行四边形,∴AB//CD ,CD =AB =6,∴∠ABE =∠CEB ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠CBE =∠CEB ,∴CE =BC =4,∴DE =CD−CE =6−4=2.故选:B .根据四边形ABCD 为平行四边形可得AB//CD ,根据平行线的性质和角平分线的性质可得出∠CBE =∠CEB ,可得CE =BC =4,即可求得DE 的长度本题考查了平行四边形的性质、等腰三角形的判定以及角平分线定义等知识,解答本题的关键是根据平行线的性质和角平分线的性质得出∠CBE =∠CEB .5.【答案】D【解析】解:∵四边形ABCD 是平行四边形,AC =4,BD =m ,∴AO =12AC =2,OB =OD =12m ,在△AOB 中,AB−AO <BO <AB +AO ,即4<BO <8,∴8<2BO <16.即8<m <16.故选:D .根据平行四边形的性质,在△AOB 中,可根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边进行求解.本题主要考查平行四边形的性质和三角形三边关系的运用,属于基础题,注意掌握三角形的两边之和大于第三边,两边之差小于第三边.6.【答案】C【解析】解:过M 作MP ⊥AB 于P ,交DC 于Q ,如图所示:则四边形DEMQ ,四边形QMFC ,四边形AEMP ,四边形MPBF 都是矩形,∴S △DEM =S △DQM ,S △QCM =S △MFC ,S △AEM =S △APM ,S △MPB =S △MFB ,S △ABC =S △ADC ,∴S △ABC −S △AMP −S △MCF =S △ADC −S △AEM −S △MQC ,∴S 四边形DEMQ =S 四边形MPBF ,∵DE =CF =2,∴S △DEM =S △MFB =12×2×4=4,∴S 阴=4+4=8,故选:C .根据矩形的性质和三角形面积关系可证明S △DEM =S △BFM ,即可求解.本题考查了矩形的判定与性质、三角形的面积等知识,解题的关键是证明S 四边形DEMQ =S 四边形MPBF .7.【答案】B【解析】解:∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OB =12BD =12×6=3,OA =OC =12AC =12×8=4,AC ⊥BD ,由勾股定理得,BC =OB 2+OC 2=32+42=5,∴AD =5,∵OE =CE ,∴∠DCA =∠EOC ,∵四边形ABCD 是菱形,∴∠DCA =∠DAC ,∴∠DAC =∠EOC ,∴OE//AD ,∵AO =OC ,∴OE是△ADC的中位线,AD=2.5,∴OE=12故选:B.根据菱形的对角线互相垂直平分求出OB,OC,AC⊥BD,再利用勾股定理列式求出BC,然后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记性质与定理是解题的关键.8.【答案】C【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,AB,∴AD=AE=12∴E是AB的中点,∴DE=BE,∠AED=30°,∴∠BDE=12∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,∴OE//AD,∵∠ADB=90°,∴∠EOB=90°,∴EO⊥DB,∴OE垂直平分BD.故④正确.故选:C.AB,求得∠ADB=90°,证得△ADE是等边三角形,由等边三角形的性质得出AD=AE=12即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;由三角形的中位线定理可得出OE//AD,则可得出EO⊥BD,则可得出结论.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及三角形的中位线定理的综合运用,熟练掌握性质定理和判定定理是解题的关键.9.【答案】C【解析】解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,在△DAO和△ABM中,∠DAO=∠ABM∠AOD=∠AMB=90°,AD=AB∴△DAO≌△ABM(AAS),∴BM=OA,∵A(−3,0),B(2,b),∴BM=OA=3,∴b=−3.故选:C.作BM⊥x轴于M.只要证明△DAO≌△ABM,推出OA=BM,AM=OD,由A(−3,0),B(2,b),推出OA=3,可得b=−3.本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质,解题的关键是学会添加常用辅助线构造全等三角形解决问题.10.【答案】B【解析】解:连接OP ,作PE ⊥AC ,PF ⊥BD 于点E ,F ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB ⋅BC =48,OA =OC ,OB =OD ,AC =BD =AB 2+BC 2=10,∴OA =OD =5,∴S △ACD =12S 矩形ABCD =24,∴S △AOD =12S △ACD =12,∵S △AOD =S △AOP +S △DOP =12OA ⋅PE +12OD ⋅PF =12×5×PE +12×5×PF =52(PE +PF)=12,解得:PE +PF =245,∵S △APC =12AC ⋅PE =12×10×PE =15,∴PE =3,∴PF =245−PE =245−3=95.故选:B .首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA =OD =5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =12OA ⋅PE +12OD ⋅PF 求得答案.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.【答案】70°【解析】解:∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A +∠C =140°,∴∠C =70°.故答案为:70°.由四边形ABCD 是平行四边形,根据平行四边形的对角相等,可得:∠A =∠C ,又由∠A +∠C =140°,即可求得答案.此题考查了平行四边形的性质.注意熟记定理是解此题的关键.12.【答案】6cm【解析】解:根据题意,画出图形如图示,∵点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE 、DF 、EF 都是△ABC 的中位线,∴DE =12BC ,DF =12AC ,EF =12AB ,∵△ABC 的周长是12cm ,∴AB +CB +AC =12cm ,∴DE +DF +FE =24÷2=6(cm).故答案是:6cm .先画出图形,由三角形的中位线定理可知:DE =12BC ,DF =12AC ,EF =12AB ,则以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.本题主要考查了三角形的中位线定理以及三角形周长,解决问题的关键是熟练掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.13.【答案】2【解析】解:在矩形ABCD 中,对角线AC ,BD 交于点O ,∴AO =BO =CO =DO .∵∠AOD =120°,∴∠AOB =60°.∴△AOB 是等边三角形.∴AO =AB =2,∴CO =2,故答案为:2.依据矩形的性质可知△AOB 是等边三角形,所以AO =AB =2,则OC =AO =2.本题主要考查了矩形的性质,矩形中对角线相等且互相平分,则其分成的四条线段都相等.14.【答案】12【解析】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=6cm,∴AB=2CD=12cm.故答案是:12.根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.15.【答案】23【解析】解:如图,连接AC,BD,∵OA=3,OB=1,∴AB=OA2+OB2=3+1=2,∵四边形ABCD是菱形,∴AB=BC=2,AC⊥BD,∴OC=1,∴AC=OA2+OC2=3+1=2,×AC×BD=BC×AO,∵S菱形ABCD=12=23,∴BD=2×2×32故答案为:23.由勾股定理可求AB,AC的长,由菱形的面积公式可求解.本题考查了菱形的性质,坐标与图形的性质,勾股定理等知识,掌握菱形的性质是解决问题的关键.16.【答案】(−2,3)或(4,5)【解析】解:∵正方形ABCD的边长为8,∴CD=DA=BC=AB=8,∵M(0,5),C(6,−3),∴A(−2,5),B(6,5),D(−2,−3),∴AM=2,BM=6,∴绕正方形ABCD一周的细线长度为8×4=32,∵2020÷32=63…4,∴细线另一端在绕正方形第63圈的第4个单位长度的位置,即在AB边或在AD边上,∴点N的坐标为(−2,3)或(4,5).故答案为:(−2,3)或(4,5).根据题意求出各点的坐标和正方形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.本题利用点的坐标考查了数字变化规律,根据点的坐标和正方形ABCD一周的长度,从而确定2020个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.17.【答案】证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵DF=BE,∴OD+DF=OB+BE,即OF=OE,又∵OA=OC,∴四边形AECF是平行四边形.【解析】连接AC交BD于O,由平行四边形的性质得OA=OC,OB=OD,再证OF=OE,即可得出四边形AECF是平行四边形.本题考查了平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AD//BC,OB=OD,∴∠ODE=∠OBF,在△DOE和△BOF中,∠ODE=∠OBFOB=OD,∠DOE=∠BOF∴△△DOE≌△BOF(ASA),∴DE=BF.【解析】由四边形ABCD是平行四边形,可得AD//BC,OB=OD,继而可利用ASA,判定△DOE≌△BOF,继而证得DE=BF.本题主要考查平行四边形的性质及全等三角形的判定,应熟练掌握.19.【答案】解:(1)证明:延长BC至H,使CH=AE,连接DH,如图,∵四边形ABCD是正方形,∴AD=CD,∠A=∠DCE=90°.∴△DAE≌△DCH(SAS).∴DE=DH,∠ADE=∠CDH.∵∠ADC=90°,∠EDF=45°,∴∠ADE+∠FDC=45°.∴∠FDC+∠CDH=45°.即∠FDH=45°.∴∠EDF=∠FDH=45°.在△EDF和△HDF中,DE=DH∠EDF=∠HDF.DF=DF∴△EDF≌△HDF(SAS).∴EF=FH.∵FH=FC+CH=FC+AE,∴EF=AE+FC.(2)设EF=x,则FH=x.∵正方形ABCD的边长为3,∴AB=BC=3.∵AE=1,∴BE=2,CH=1.∴FC=x−1.∴BF=BC−CF=3−(x−1)=4−x.在Rt△BEF中,∵BE2+BF2=EF2,∴22+(4−x)2=x2..解得:x=52∴EF=5.2【解析】(1)延长BC至H,使CH=AE,连接DH,可得△DAE≌△DCH,则DE=DH,∠ADE=∠CDH;由于∠ADE+∠FDC=45°,所以∠FDC+∠HCD=45°,可得∠EDF=∠HDF,这样△EDF≌△HDF,可得EF=FH,结论得证;(2)设EF=x,由(1)的结论可知CF=x−1,BF=4−x,在Rt△BEF中,由勾股定理列出方程,解方程即可求解.本题主要考查了正方形的性质,三角形的全等的判定与性质,勾股定理.证明一条线段等于两条线段的和的题目一般采用补短法或截长法,通过构造三角形的全等来解决.20.【答案】=【解析】(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,AD=AE,∴OE=12故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,AD=5;∴OE=AE=12由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=AE2−EF2=52−42=3,∴BG=AB−AF−FG=10−3−5=2.(1)由菱形的性质得AC⊥BD,再由直角三角形的性质即可得出答案;(2)先证OE是三角形ABD的中位线,得到推出OE//FG,再证四边形OEFG是平行四边形,然后由矩形的判定定理即可得到结论;(3)先由菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=5;再由菱形的性质得FG=OE=5,然后由勾股定理得到AF=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,平行四边形的判定与性质,勾股定理,直角三角形的性质等知识;熟练掌握矩形的判定与性质是解题的关键.21.【答案】解:(1)∵∠CBF=90°,BD平分∠CBF,∴∠DBC=∠DBF=45°,∵四边形ABCD是平行四边形,∴AD//BC,BG=DG,∴∠ADB=∠DBC=45°,∵BD平分∠ADE,∴∠BDE=45°=∠DBC,∴△BDE是等腰直角三角形,∴BE=DE,∠BED=90°,BD=2DE,∵EG=2,BG=DG,∴DB=4,∴DE=22,在Rt△DEC中,CE=DC2−DE2=9−8=1;(2)如图2,在AD上截取MD=DE,连接MG,在△DGM和△DGE中,MD=DE∠ADG=∠EDG,DG=DG∴△DGM≌△DGE(SAS),∴∠DEG=∠DMG,∵∠DEG=∠BCD=∠BAD,∴∠DMG=∠BAD,∴AB//MG,∴∠BAF=∠AGM,∵AG=AB,∴∠ABG=∠AGB,∵∠ABG=∠ABF+∠FBG,∠AGB=∠GBC+∠GCB,∴∠ABF=∠BCG,又∵AD//BC,∴∠DAC=∠ACB=∠ABF,在△BAF和△AGM中,∠BAF=∠AGMAB=AG,∠ABF=∠MAG∴△BAF≌△AGM(ASA),∴AM=BF,∴AD=AM+DM=BF+DE.【解析】(1)由角平分线的性质和平行线的性质可证△BDE是等腰直角三角形,可求DE=22,在Rt△DEC中,利用勾股定理可求CE的长;(2)在AD上截取MD=DE,连接MG,由“SAS”可证△DGM≌△DGE,可得∠DEG=∠DMG,由“ASA”可证△DGM≌△DGE,可得AM=FB,可得结论.本题考查了平行四边形的性质,全等三角形的判定和性质,角平分线的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.22.【答案】5【解析】解:(1)如图1中,∵四边形ABCD是矩形,∴AB//CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=B′C′2+C′N2=22+12=5(cm),∴BM=NB′=5(cm).故答案为:5;(2)如图1中,点B′恰好落在边CD上时,BM=NB′=5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=x cm,在Rt△ADE中,则有x2=22+(4−x)2,解得x=52,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5−1−2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5−1−5=(4−5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2−(4−5)=(5−32)(cm).(3)如图5中,连接AN,当点B′落在AN上时,AB′的值最小,此时MN平分∠ANB.过点M 作MP ⊥AN 于点P ,MQ ⊥BN 于点Q .在Rt △ADN 中,AN =AD 2+DN 2=22+42=25,∵S △AMNS △MNB =AM BM =12⋅AN ⋅MP 12⋅BN ⋅MQ =255=2,∴AM =23AB =103.(1)运用矩形性质和翻折性质得出:MB′=NB′,再利用勾股定理即可求得答案;(2)探究点E 的运动轨迹,寻找特殊位置解决问题即可.(3)如图5中,连接AN ,当点B′落在AN 上时,AB′的值最小,此时MN 平分∠ANB.利用面积法求出AM :BM =2,可得结论.本题属于四边形综合题,考查了矩形的性质,翻折变换,勾股定理,轨迹等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型.23.【答案】6 8【解析】解:(1)BP =2t =2×3=6,故答案为:6;(2)作∠B 的角平分线交AD 于F ,∴∠ABF =∠FBC ,∵∠A =∠ABC =∠BCD =90°,∴四边形ABCD 是矩形,∵AD//BC ,∴∠AFB =∠FBC ,∴∠ABF =∠AFB ,∴AF=AB=4,∴DF=AD−AF=8−4=4,∴BC+CD+DF=8+4+4=16,∴2t=16,解得t=8.∴当t=8时,点P运动到∠ABC的角平分线上;故答案为:8;(3)根据题意分3种情况讨论:①当点P在BC上运动时,S△ABP=12×BP×AB=12×2t×4=4t;(0<t<4);②当点P在CD上运动时,S△ABP=12×AB×BC=12×4×8=16;(4≤t≤6);③当点P在AD上运动时,S△ABP=12×AB×AP=12×4×(20−2t)=−4t+40;(6<t≤10);(4)当0<t<6时,点P在BC、CD边上运动,根据题意分情况讨论:①当点P在BC上,点P到四边形ABED相邻两边距离相等,∴点P到AD边的距离为4,∴点P到AB边的距离也为4,即BP=4,∴2t=4,解得t=2s;②当点P在BC上,点P到AD边的距离为4,∴点P到DE边的距离也为4,∴PE=DE=5,∴PC=PE−CE=2,∴8−2t=2,解得t=3s;③当点P在CD上,如图,过点P作PH⊥DE于点H,点P到DE、BE边的距离相等,即PC=PH,∵PC=2t−8,∴PD =DC−PC =12−2t ,∴2t−812−2t =35,解得t =194.综上所述:t =2s 或t =3s 或t =194s 时,点P 到四边形ABED 相邻两边距离相等.(1)根据题意可得BP =2t ,进而可得结果;(2)根据∠A =∠B =∠BCD =90°,可得四边形ABCD 是矩形,根据角平分线定义可得AF =AB =4,得DF =4,进而可得t 的值;(3)根据题意分3种情况讨论:①当点P 在BC 上运动时,②当点P 在CD 上运动时,③当点P 在AD 上运动时,分别用含t 的代数式表示△ABP 的面积S 即可;(4)当0<t <6时,点P 在BC 、CD 边上运动,根据题意分情况讨论:①当点P 在BC 上,点P 到AD 边的距离为4,点P 到AB 边的距离也为4,②当点P 在BC 上,点P 到AD 边的距离为4,点P 到DE 边的距离也为4,③当点P 在CD 上,点P 到AB 边的距离为8,但点P 到AB 、BC 边的距离都小于8,进而可得当t =2s 或t =3s 时,点P 到四边形ABED 相邻两边距离相等.本题考查了平行四边形的性质、角平分线定义、三角形的面积、全等三角形的判定与性质,解决本题的关键是综合运用以上知识.24.【答案】解:(1)∵点D 坐标是(52,6),B 点的坐标是(4,6),四边形OABC 为矩形,∴BC =AO =4,OC =AB =6,CD =52,BD =BC−CD =32,∵将矩形沿直线DE 折叠,∴DF =CD =52,∴BF =DF 2−DB 2=254−94=2,∴AF =6−2=4,∴点F(4,4).(2)如图2中,连接PF 交DE 于J .当四边形EFDP 是矩形时,△PDE≌△FED≌△CED ,∵C(0,6),F(4,4),∴直线CF 的解析式为y =−12x +6,∵DE 垂直平分线段CF ,∴直线DE 的解析式为y =2x +1,∴E(0,1),D(52,6),∵DJ =JE ,∴J(54,72),∵PJ =JF ,∴P(−32,3).(3)如图3中,连接FN ,以FN 为对角线构造正方形NMFM′,连接MM′交FN 于K .设N(m,2m +1),则K(m +42,2m +52),M(7−m 2,3m +12),M′(3m +12,m +92),当点M 落在x 轴上时,3m +12=0,解得m =−13,当点M′落在X 轴上时,m +92=0,解得m =−9,∴满足条件的点N 的坐标为(−13,13)或(−9,−17).【解析】(1)由折叠的性质可得DF =CD =52,由勾股定理可求BF 的长,即可求解;(2)如图2中,连接PF 交DE 于J.当四边形EFDP 是矩形时,△PDE≌△FED≌△CED ,构建一次函数求出点E ,点D 坐标,求出点J 的坐标即可解决问题.(3)如图3中,连接FN ,以FN 为对角线构造正方形NMFM′,连接MM′交FN 于K.用m 的代数式表示出点M,M′的坐标,根据点M,M′在x轴上时,纵坐标为0构建方程求解即可.本题属于四边形综合题,考查了矩形的性质,翻折变换,一次函数的应用等知识,解题的关键是学会构建一次函数解决问题,学会利用参数解决问题,属于中考压轴题.。
人教版八年级数学下册单元测试《第18章平行四边形》(a卷)(解析版)
初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试(A卷)一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于度,外角和等于度.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形的内角和等于它的外角和的3倍,它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.7.平行四边形ABCD,加一个条件,它就是菱形.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为cm.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为cm.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=,EF分梯形所得的两个梯形的面积比S1:S2为.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?新人教版八年级下册《第18章平行四边形》单元测试(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于360度,外角和等于360度.【考点】多边形内角与外角.【专题】计算题.【分析】n边形的内角和是(n﹣2)•180度,因而代入公式就可以求出四边形的内角和;任何凸多边形的外角和都是360度.【解答】解:四边形的内角和=(4﹣2)•180=360度,四边形的外角和等于360度.【点评】本题主要考查了多边形的内角和公式与外角和定理,是需要熟记的内容.2.正方形的面积为4,则它的边长为2,一条对角线长为2.【考点】正方形的性质.【分析】根据正方形的面积公式可得到正方形的边长,根据正方形的对角线的求法可得对角线的长.【解答】解:设正方形的边长为x,则对角线长为=x;由正方形的面积为4,即x2=4;解可得x=2,故对角线长为2;故正方形的边长为2,对角线长为2.故答案为2,2.【点评】本题考查正方形的面积公式以及正方形的性质,此题是基础题,比较简单.3.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.如果四边形ABCD满足四边形ABCD是菱形或正方形条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).【考点】正方形的性质;菱形的性质.【专题】开放型.【分析】符合对角线互相垂直的四边形有:菱形、正方形,选择一个即可.【解答】解:根据四边形的性质可得到对角线互相垂直的有菱形和正方形,从而答案为:四边形ABCD是菱形或正方形.【点评】此题主要考查菱形和正方形的对角线的性质.5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为2cm.【考点】正方形的性质.【专题】计算题.【分析】先求出长方形的面积,因为长方形的面积和正方形的面积相等,再根据正方形的面积公式即可求得其边长.【解答】解:边长分别为4cm和5cm的矩形的面积是20cm2,所以正方形的面积是20cm2,则这个正方形的边长为=2(cm).故答案为2.【点评】本题主要考查了正方形的面积计算公式,即边长乘边长.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半即可求得其面积.【解答】解:由已知得,菱形面积=×5×8=20cm2.故答案为20.【点评】本题主要考查了菱形的面积的计算公式.7.平行四边形ABCD,加一个条件一组邻边相等或对角线互相垂直,它就是菱形.【考点】菱形的判定.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.所以,可添加:一组邻边相等或对角线互相垂直.【解答】解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:一组邻边相等或对角线互相垂直.【点评】本题考查菱形的判定.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为24+4 cm.【考点】等腰梯形的性质;勾股定理.【分析】过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【解答】解:过A,D作下底BC的垂线,则BE=CF=(14﹣10)=2cm,在直角△ABE中根据勾股定理得到:AB=CD==2,所以等腰梯形的周长=10+14+2×2=24+4cm.故答案为:24+4cm.【点评】等腰梯形的问题可以通过作高线转化为直角三角形的问题来解决.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为5cm.【考点】菱形的性质.【专题】计算题.【分析】设另一条对角线长为x,然后根据菱形的面积计算公式列方程求解即可.【解答】解:设另一条对角线长为xcm,则×12x=30,解之得x=5.故答案为5.【点评】主要考查菱形的面积公式:两条对角线的积的一半.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.【考点】平行四边形的性质.【专题】几何图形问题.【分析】平行四边形的面积=底×高,根据已知,代入数据计算即可.【解答】解:连接AC,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),=S△CDA,∴S△ABC即BC•AE=CD•AF,∵CD=AB=4,∴AF=.故答案为:.【点评】“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=6,EF分梯形所得的两个梯形的面积比S1:S2为5:7.【考点】梯形中位线定理;梯形.【分析】要求EF的长,只需根据梯形的中位线定理求解;根据平行线等分线段定理,知两个梯形的高相等,只需根据梯形的面积公式,即可求得两个梯形的面积比.【解答】解:∵AD=4,BC=8,E、F分别为AB、DC的中点,∴EF=(4+8)=6,则S1=(4+6)=h,S2=(6+8)=.则S1:S2=5:7.【点评】此题主要考查梯形的中位线定理和梯形的面积公式.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形②(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】通过动手操作易得出答案.【解答】解:对于①剪开后能拼出平行四边形和梯形两种,对于②剪开后能拼出三种图形,对于③剪开后能拼出三角形和平行四边形两种,对于④剪开后能拼出平行四边形,对于⑤剪开后能拼出平行四边形和梯形两种,故符合条件的图形为②.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是)n﹣1.【考点】正方形的性质;三角形中位线定理.【专题】压轴题;规律型.【分析】根据正方形的性质及三角形中位线的定理可分别求得第二个,第三个正方形的面积从而不难发现规律,根据规律即可求得第n个正方形的面积.【解答】解:根据三角形中位线定理得,第二个正方形的边长为=,面积为,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为.【点评】根据中位线定理和正方形的性质计算出正方形的面积,找出规律,即可解答.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的性质和角平分线的性质求解.【解答】解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选D.【点评】本题考查了平行四边形的性质,并利用了两直线平行,同旁内角互补和角的平分线的性质.16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形【考点】中心对称图形;轴对称图形.【专题】方案型.【分析】根据轴对称图形与中心对称图形的概念和等腰三角形、正三角形、等腰梯形、菱形的性质求解.【解答】解:等腰三角形、正三角形、等腰梯形都只是轴对称图形;菱形既是轴对称图形,也是中心对称图形.故选:D.【点评】解题时要注意中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条【考点】多边形内角与外角;多边形的对角线.【分析】先求出多边形的边数,再求从这个多边形的一个顶点出发的对角线的条数即可.【解答】解:∵多边形的每一个内角都等于140°,∴每个外角是180°﹣140°=40°,∴这个多边形的边数是360°÷40°=9,∴从这个多边形的一个顶点出发的对角线的条数是6条.故选:A.【点评】本题考查多边形的外角和及对角线的知识点,找出它们之间的关系是本题解题关键.18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4【考点】矩形的性质;全等三角形的判定.【分析】共有四对,分别为△ABO≌△C′DO,△ABD≌△CDB,△ABD≌△C′DB,△CDB ≌△C′DB.【解答】解:∵△BDC′是将矩形ABCD沿对角线BD折叠得到的∴C′D=CD,∠C=∠C′,BD=BD∴△CDB≌△C′DB同理可证其它三对三角形全等.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.【考点】平行四边形的性质.【分析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.【解答】解:在△DBC中,∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°﹣∠ADB=90°﹣70°=20°.【点评】此题主要考查了平行四边形的基本性质,以及等腰三角形的性质,难易程度适中.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.【考点】平行四边形的判定;三角形中位线定理.【专题】证明题.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题中给了两条中位线,利用中位线的性质,可利用一组对边平行且相等来证明.【解答】解:在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?【考点】平行四边形的性质.【专题】分类讨论.【分析】此题注意要分情况讨论:根据角平分线的定义以及平行线的性质,可以发现一个等腰三角形,即较短的边是2cm或3cm,又较长的边是2+3=5cm,所以平行四边形的周长是2(2+5)=14或2(3+5)=16cm.【解答】解:如图所示:∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE.又∠ABE=∠CBE∴∠ABE=∠AEB∴AB=AE.(1)当AE=2时,则平行四边形的周长=2(2+5)=14.(2)当AE=3时,则平行四边形的周长=2(3+5)=16.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.【考点】平行四边形的判定与性质.【专题】证明题.【分析】此题要证明AC与EF互相平分,只需证明以AC,EF为对角线的四边形是平行四边形就可.根据已知的平行四边形,只需证明AE=CF.根据已知平行四边形的对边相等,即AB=CD,再加上已知BE=DF,就可证明AE=CF.根据一组对边平行且相等的四边形是平行四边形就可.【解答】解:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵BE=DF∴AB+BE=CD+DF即AE=CF∴四边形AECF是平行四边形.∴AC与EF互相平分.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.【考点】正方形的性质.【分析】一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,有101块黑色瓷砖,由正方形的特殊性质知正方形知每边有(101+1)÷2=51块瓷砖,那么可求出瓷砖的总数.【解答】解:根据题意得正方形每边有(101+1)÷2=51块瓷砖,所以总数为:51×51=2601(块).【点评】解答本题要充分利用正方形的特殊性质.对角线上的瓷砖数等于每边的瓷砖数.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.【考点】等腰梯形的性质;三角形中位线定理;菱形的判定.【专题】综合题.【分析】由题意写出已知,画出图形,写出求证.由等腰梯形可得AC=BD,再由三角形中位线定理可得出小四边形四边的关系,即可知它是什么四边形.【解答】解:是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=AC,GH=AC,EH=BD,GF=BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴EF=GH=EH=GF∴四边形EFGH菱形.【点评】本题考查了等腰梯形的性质和三角形中位线的性质.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?【考点】正方形的判定;等腰三角形的判定与性质;矩形的判定.【专题】探究型.【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点评】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.【考点】等腰梯形的性质;菱形的判定与性质;矩形的判定与性质;等腰梯形的判定.【专题】开放型.【分析】设四边形DBCE的中点分别为OPMN,根据已知条件及平行四边形的性质可得到是一个平行四边形;根据各四边的性质进行分析即可.【解答】解:(1)设四边形DBCE的中点分别为OPMN,则PM=ON,且PM∥ON⇒顺次连接任意四边形各边中点得到平行四边形;(2)平行四边形,矩形,菱形,根据各个四边形的性质:当四边形为菱形时,连接菱形各边中点所得出的为矩形;当四边形为矩形时,连接各边中点所得出的为菱形;当四边形为等腰梯形时,连接各边中点所得为菱形.【点评】本题考查的是各个四边形的性质以及等腰梯形的性质的运用.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定.【分析】(1)四边形ADEF是平行四边形,可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形,理由如下:∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC满足角A=60°时,四边形ADEF不存在.【点评】此题主要考查了用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.。
人教版平行四边形单元测试试卷三套题
新人教版八年级下册第18章平行四边形单元测试试卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件_________,就可得BE=DF .2.将一矩形纸条,按如图所示折叠,则∠1 = _______度.3.如图,矩形ABCD中,MN∥AD,PQ∥AB,则S1与S2的大小关系是______.第1题第2题第11题4.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是.5.菱形的一条对角线长为6cm,面积为6cm2,则菱形另一条对角线长为___ ___cm.6.如果梯形的面积为216cm2,且两底长的比为4:5,高为16cm,那么两底长分别为_____.7.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为.8.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′=______.9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的度数等于______.10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a + b ),宽为(a + b )的矩形,则需要A 类卡片 张,B 类卡片 张,C 类卡片 张.11. 如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE =60,且DE =1,则边BC 的长为 .12.如图,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 cm ,四边形EFGH 的面积等于 cm 2.13.如图,将一块边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为_______.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有___ __个.第10题EABHGFE D CBA ABCDEGF第11题 第12题 第13题第14题O1123-3 -2 -2-3 -1-1 2yx二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围为( )A .4<a<16B .14<a<26C .12<a<20D .以上答案都不正确16.在菱形ABCD 中,AC 与BD 相交于点O ,则下列说法不正确的是 ( ) A .AO ⊥BO B .∠ABD=∠CBD C .AO=BO D .AD=CD17.等腰梯形的两底差等于一腰的长,则它的腰与下底的夹角是 ( )A .15°B .30°C .45°D .60°18.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不变D .线段EF 的长与点P 的位置有关 三、解答题(共60分)19.(5分)我们学习了四边形和一些特殊的四边形,右图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.RPDCBAEF 第18题20.(5分)已知:如图,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF .求证:(1)△ADF ≌△CBE ;(2)EB ∥DF .21.(5分)如图,在梯形纸片ABCD 中,AD//BC ,AD>CD ,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C′E . 求证:四边形CDC′E 是菱形.22.(6分)如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥.(1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.A DE B CC ′23.(6分)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.24.(6分)如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.DE D B AO25.(6分)如图8,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形; (2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.26.(6分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D′ 处,折痕为EF .(1)求证:△ABE ≌△AD′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.BGA E F HDA DF D ′27.(7分)四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.28.(8分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.N参考答案一、填空题1.答案不唯一,如AE=CF或BE∥DF等2.52 3.S1=S24.1 5.2 6.12 cm和15cm 7.96 8.50°9.30 10.2,1,3.11.3 12.13.13 14.40 二、选择题15.B 16.C 17.D 18.C三、解答题19.③有一个内角为直角;④一组邻边相等;⑤一组邻边相等;⑥有一个内角为直角;⑦两腰相等;⑧一条腰垂直于底边20.略21.略22.(1)略;(2)菱形23.略24.(1)AD=CF;(2)略25.略26.(1)略;(3)四边形AECF是菱形27.(1)略;(2)猜想:AE⊥CG,证明略28.(1)略;(2)AD=12BC等(答案不唯一)新人教版八年级下册第18章平行四边形单元测试试卷(A卷)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于º,外角和等于º.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形,若它的内角和等于外角和的3倍,则它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm.7.平行四边形ABCD,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分)1S 2S 第10题 第11题30°30°30°A第13题15.如图,ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于()A.100°B.80°C.60°D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条B.7条C.8条D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4 第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD 是正方形等 5.25 6.20 7.一组邻边相等或对角线互相垂直 8.24+42 9.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°第18章 平行四边形单元综合检测(三)一、选择题(每小题4分,共28分)1.已知四边形ABCD 是平行四边形,则下列各图中∠1与∠2一定不相等的是( )2.如图,已知菱形ABCD 的对角线AC,BD 的长分别是6cm,8cm,AE ⊥BC 于点E,则AE 的长是( ) A.5cm B.2cmC.cmD.cm3.如图,在平行四边形ABCD中,DE是∠A DC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶24.(2013·邵阳中考)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE 交CD于点O,连接AO,下列结论不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为( )A.平行四边形B.矩形C.菱形D.正方形6.(2013·威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF7.如图,△ABC中,AB=AC,点D,E分别是边AB,AC的中点,点G,F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为( )A.3cmB.4cmC.2cmD.2cm二、填空题(每小题5分,共25分)8.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为.9.(2013·厦门中考)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.10.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.11.(2013·牡丹江中考)如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.12.(2013·钦州中考)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题(共47分)13.(10分)(2013·大连中考)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且AE=CF.求证:BE=DF.14.(12分)(2013·晋江中考)如图,BD是菱形ABCD的对角线,点E,F分别在边CD,DA上,且CE=AF.求证:BE=BF.15.(12分)(2013·铁岭中考)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.16.(13分)(2013·济宁中考)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.答案解析1.【解析】选C.A项,根据两直线平行内错角相等可得到,故正确;B项,根据对顶角相等可得到,故正确;C项,根据两直线平行内错角相等可得到∠1=∠ACB,∠2为一外角,所以不相等,故不正确;D项,根据平行四边形对角相等可得到,故正确.2.【解析】选 D.由于菱形ABCD的对角线AC,BD的长分别是6cm,8cm,所以菱形边长为=5,所以×6×8=5AE,解得AE=.3.【解析】选A.∵四边形ABCD是平行四边形,∴∠CDE=∠DEA.∵DE是∠ADC的平分线,∴∠CDE=∠ADE,∴∠DEA=∠ADE,∴AE=AD=4.∵F是AB的中点,∴AF=AB=3.∴EF=AE-AF=1,BE=AB-AE=2,∴AE∶EF∶BE=4∶1∶2.4.【解析】选A.∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,∴△AOD≌△EOD;∵在△AOD和△BOC中,∴△AOD≌△BOC;∵△AOD≌△EOD,∴△BOC≌△EOD;故B,C,D选项均正确.5.【解析】选C.∵EH∥BD,FG∥BD,∴EH∥FG,又EF∥AC,∴四边形AEFC是平行四边形,∴EF=AC,同理GH=AC,EH=BD,FG=BD.∵在矩形ABCD中,AC=BD,∴EF=FG=GH=EH,∴四边形EFGH是菱形.6.【解析】选D.∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形.当BC=AC时,∵∠ACB=90°,则∠A=45°.∵∠A=45°,∠ACB=90°,∴∠EBC=45°.∴∠EBF=2∠EBC=2×45°=90°,∴菱形BECF是正方形.当CF⊥BF时,利用正方形的判定定理得出,菱形BECF是正方形;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形;当AC=BF时,无法得出菱形BECF是正方形,故选项D符合题意.7.【解析】选D.∵点D,E分别是边AB,AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1cm,∴EC=,∴AC=2cm.8.【解析】设CE与AD相交于点F.∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°-53°=37°,∴∠DFC=37°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.答案:37°9.【解析】∵▱ABCD的对角线AC,BD相交于点O,AC+BD=24厘米,∴OA+OB=12厘米. ∵△OAB的周长是18厘米,∴AB=6厘米.∵点E,F分别是线段AO,BO的中点,∴EF=3厘米.答案:310.【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD=4,OA=OC=OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形C ODE的周长为4OC=4×2=8.答案:811.【解析】连接DB,∵四边形ABCD是菱形,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n-1.答案:()n-112.【解析】如图,连接DE,交AC于点P,连接BP, 则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B,D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.答案:1013.【证明】∵四边形ABCD是平行四边形,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.14.【证明】∵四边形ABCD是菱形,∴AB=BC,∠A=∠C.在△ABF和△CBE中,∴△ABF≌△CBE(SAS),∴BF=BE.15.【解析】(1)∵点O为AB的中点,连接DO并延长到点E,使OE=OD, ∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形.即四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由:∵∠BA C=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.16.【解析】(1)在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴AF=BE.(2)MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于点F,过点B作BE∥NQ交AD于点E,则与(1)的情况完全相同.而MP=AF,NQ=BE,∴MP=NQ.附赠材料:如何提高答题的准确率审题三原则如何提高答题的准确率?这是很多初中生想要解决的一个问题。
人教版八年级下册数学 第18章 平行四边形 单元测试卷
人教版八年级下册数学第18章平行四边形单元测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列条件中,能判定四边形是平行四边形的条件是( )A. 一组对边平行,一组邻角互补B. 一组对边平行,另一组对边相等C. 一组对边平行,一组对角相等D. 一组对边相等,一组邻角相等2. 下列命题,其中是真命题的为( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 一组邻边相等的矩形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形3. 如下图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为1.6km,则M,C 两点间的距离为( )A. 0.5kmB. 0.6kmC. 0.8kmD. 1.2km4. 下列命题是假命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直且平分的四边形是正方形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直且相等的平行四边形是正方形5. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 46. 如图四边ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=5,则S=( )四边形ABCDA. 20B. 25C. 18D. 247. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.58. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )A. 18B. 18√3C. 36D. 36√3二、填空题(本大题共8小题,共24分)9. 如图,两条射线AM//BN,点C,D分别在射线BN,AM上,只需添加一个条件,即可证明四边形ABCD 是平行四边形,这个条件可以是(写出一个即可).10. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为______.11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM−PN的最大值为______.12.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为______.13. 已知正方形ABCD的边长为6,如果P是正方形内一点,且PB=PD=2√5,那么AP的长为.14. 已知两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.15如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为..16. 如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为______ .三、解答题(本大题共9小题,共72分。
人教版八年级数学下第18章《平行四边形》单元测试题(含答案)
第十八章 平行四边形单元测试题时限:100分钟 满分:150分一、选择题(每小题4分,共40分)1.在平行四边形ABCD 中,∠B=60°,那么下列各式中,不能成立的是( )A .∠D=60°B . ∠A=120°C .∠C+∠D=180°D .∠C+∠A=180°2.矩形,菱形,正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直3.如图,▱ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长为( )A . 6cmB . 12cmC . 4cmD . 8cm第3题 第4题 第5题4.如图所示,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12,BD=10,AB=m ,则m 的取值范围是( )A .10<m <12B .2<m <22 C. 1<m <11 D .5<m <65.如图,如果平行四边形ABCD 的对角线AC 和BD 相交于点O ,那么图中的全等三角形共有( )A . 1对B . 2对C . 3对D . 4对6.已知菱形的边长为6cm ,一个内角为60°,则菱形较短的对角线长是( )A . 6cmB . cmC . 3cmD .cm7.(2017河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥.③∵四边形ABCD 是菱形, ④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②8.菱形的周长为20cm ,两邻角的比为1:2,则较长的对角线长为( )A . 4.5cmB . 4cmC . 5cmD . 4cm9.矩形的四个内角平分线围成的四边形( )A .一定是正方形B .是矩形C .菱形D .只能是平行四边形10.在△ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为( )A . 9.5B .10.5C . 11D . 15.5二、填空题(每小题4分,共32分)11.已知正方形的一条对角线长为4cm ,则它的面积是 cm 2.12.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为 cm ,面积为 cm 2.13.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 . 14.(2017年十堰)如图:菱形ABCD 中,AC 交BD 于O ,OE BC ⊥于E ,连接OE ,若140ABC ∠=︒,则OED ∠= ..第13题 第14题 第15题 第16题15.如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm ,则△DEF 的周长是 cm .16.(2017宁夏)如图,将平行四边形CD AB 沿对角线D B 折叠,使点A 落在点'A 处.若1250∠=∠= ,则'∠A 为 .17.(2017六盘水市)如图,在正方形ABCD 中,等边三角形AEF 的顶点E 、F 分别在边BC 和CD 上,则AEB =∠ 度.18.将七个边长都为1的正方形如图所示摆放,点A 1、A 2、A 3、A 4、A 5、A 6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是 .三、解答题(共7小题,共78分)19.(10分)如图,在△ABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点.证明:四边形DECF 是平行四边形.20.(2017大连)(10分)如图,在▱ABCD 中,BE ⊥AC ,垂足E 在CA 的延长线上,DF ⊥AC ,垂足F 在AC 的延长线上,求证:AE=CF .21.(10分)已知:如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;第17题 第18题22.(2017安顺)(10分)如图,DB∥AC,且DB=错误!未找到引用源。
人教版初二数学8年级下册 第18章(平行四边形)单元测试题(含答案)
人教版八年级数学下册 第十八章 平行四边形 单元测试题一、选择题(30分)1.甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )A .甲量得窗框的一组邻边相等B .乙量得窗框两组对边分别相等C .丙量得窗框的对角线长相等D .丁量得窗框的两组对边分别相等且两条对角线也相等2.菱形ABCD 的边长为5,一条对角线长为6,则菱形面积为( )A .20B .24C .30D .483.平行四边形ABCD 中,若∠A =2∠B ,则∠C 的度数为( )A .120°B .60°C .30°D .15°4.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,H 为CD 边中点,正方形ABCD 的周长为8,则OH 的长为( )A .4B .3C .2D .15.如图,菱形ABCD 的面积为24cm 2,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE ⊥BC 交CB 的延长线于点E ,连接OE ,则线段OE 的长度是( )A .3cmB .4cmC .4.8cmD .5cm 6.如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则()ABCD 6AB =BD BED BC =A.8B.10C.12D.147.将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形B.菱形C.正方形D.梯形8.如图,为了测量池塘边A、B两地之间的距离,在线段AB的一侧取一点C,连接CA并延长至点D,连接CB并延长至点E,使A、B分别是CD、CE的中点,若DE=16m,则线段AB的长度是( )A.12m B.10m C.9m D.8m9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10.如图,在平行四边形ABCD 中,,,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于的长为半径画弧,两弧相交于点N,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .1B .2C .3D .4二、填空题(15分)11.已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.13.如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则等于______.14.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.15.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.①;②;③.上述结论正确的是__________.4AB =5BC =12PQ PE PF +BG CE =CE BG ⊥120AME ∠=︒三、解答题(75分)16.如图,点O 是△ABC 外一点,连接OB 、OC ,线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,连接DE 、EF 、FG 、GD .(1)判断四边形DEFG 的形状,并说明理由;(2)若M 为EF 的中点,OM =2,∠OBC 和∠OCB 互余,求线段DG 的长.17. 如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1)求证:BD =EC .(2)当∠DAB =60°时,四边形BECD 为菱形吗?请说明理由.18.如图,四边形是平行四边形.求:(1)和的度数;(2)和的长度.19.如图,在矩形ABCD 中,已知AB =4,∠DBC =30°,求AC的长.ABCD ADC ∠BCD ∠AB BC20.如图,在中,点E ,H ,F ,G 分别在边上,,,与相交于点O ,图中共有多少个平行四边形?21.如图,A ,B 两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A ,B 间的距离:先在外选一点C ,然后步测出的中点M ,N ,并测出的长,如果M ,N 两点之间还有阻隔,你有什么解决办法?说明你的理由.22.如图,在平行四边形中,过点作于点,点在边上,且,连接、.(1)求证:四边形是矩形;(2)若平分,,,求的长.23.如图,在四边形ABCD 中,,,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作交AB 的延长线于点E.ABCD ,,,AB BC CD DA //AD EF //CD GH EFGH AB ,AC BCMN ABCD D DE AB ⊥E F CD FC A E =AFBF DEBF AF DAB ∠6FC =10DF =BF AB DC ∥AB AD =CE AB⊥(1)求证:四边形ABCD 是菱形;(2)若,,求CE 的长.【参考答案】1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.D 9.B 10.A11.412.513.814.15.①②16.解:(1)四边形DEFG 是平行四边形,理由是:∵线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,∴EF ∥BC ,EF=BC ,DG ∥BC ,DG =BC ,∴EF ∥DG ,EF =DG ,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =180°﹣90°=90°,∴∠EOF =90°,△EOF 为直角三角形,∵M 为EF 的中点,OM =2,∴EF =2OM =4,∵EF =DG ,∴DG =4.17.(1)证明:四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,又∵BE =AB ,∴BE =CD ,BE ∥CD ,∴四边形BECD 是平行四边形,∴BD =EC ;(2)解:结论:四边形BECD 是菱形.理由:∵四边形ABCD 是菱形,8AC =6BD =6+1212∴AD =AB ,∵∠DAB =60°,∴△ADB ,△DCB 都是等边三角形,∴DC =DB ,∵四边形BECD 是平行四边形,∴四边形BECD 是菱形.18.解:(1)∵四边形ABCD 是平行四边形∴ ,∵∴(2)∵四边形ABCD 是平行四边形∴∵∴19.解:∵四边形ABCD 是矩形,∴CD =AB =4,AC =BD ,∠BCD =90°,又∵∠DBC =30°,∴BD =2CD =2×4=8,∴AC =8.20.四边形是平行四边形,,,,平行四边形有:ABCD ,ABHG ,CDGH ,BCFE ,ADFE ,AGOE ,BEOH ,OFCH ,OGDF 共9个,共有9个平行四边形.21.解:用步测出CM ,CN 中点D 、E , 只要测量出DE 长便可求出AB ,∵点D 、E 分别为CM ,CN 的中点,∴DE =(三角形的中位线平行于第三边,并且等于第三边的一半),又∵点M ,N 分别为的中点,∴MN =(三角形的中位线平行于第三边,并且等于第三边的一半),∴AB =2MN =4DE .∴只要测量出DE 长便可求AB .=ADC B ∠∠180B BCD ∠+∠=56B =∠5618056124ADC BCD ∠=∠=-=,=,AB DC BC AD=25,30DC AD ==25,30AB BC == ABCD ∴//,//AB CD AD BC //AD EF //CD GH //,//AB GH BC EF∴∴ ∴12MN ,AC BC 12AB22.解:(1)证明:∵四边形是平行四边形,∴,,∵,∴,即,∴四边形是平行四边形,又∵,∴,∴平行四边形是矩形;(2)∵平分,∴,∵,∴,∴,∴,在中,,由勾股定理得:,由(1)得四边形是矩形,∴.23.(1)证明:∵,∴,∵AC 平分∠BAD ,∴,∴,∴,∵AB=AD ,∴,∵,ABCD //CD AB CD AB =FC A E =CD FC AB AE -=-DF BE =DEBF DE AB ⊥90DEB ∠=︒DEBF AF DAB ∠DAF BAF ∠=∠//CD AB DFA BAF ∠=∠DFA DAF ∠=∠10AD DF ==Rt AED △6AE FC ==8DE ===DEBF 8BF DE ==//AB DC OAB DCA ∠=∠OAB DAC ∠=∠DAC DCA ∠=∠CD AD =AB CD =//AB DC∴四边形ABCD 是平行四边形,又∵,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =6,AC =8,∴,,,∴,在中,根据勾股定理可知,,∴菱形的面积,∵,∴菱形面积,∴AB AD =118422OA OC AC ===⨯=BD AC ⊥116322OB OD BD ===⨯=90AOB ∠=︒Rt AOB△5AB ===11862422S AC BD ==⨯⨯= CE AB ⊥524S AB CE CE === 245CE =。
人教新版八年级下册数学《第18章 平行四边形》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第18章平行四边形》单元测试卷(2)一、单选题1.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm2.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为25,则平行四边形ABCD的两条对角线的和是()A.18B.28C.38D.463.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等4.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N 分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是()A.AB=CD,AB⊥CD B.AB=CD,AD=BCC.AB=CD,AC⊥BD D.AB=CD,AD∥BC5.如图,已知在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10cm B.6cm C.5cm D.4cm6.顺次连接矩形四边中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形7.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.7C.7D.8.如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是()A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5a,AE=a,CF=2a,则BG长是()A.a B.a C.a D.a二、填空题11.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.12.直角三角形中,两直角边长分别为12和5,则斜边中线长是.13.如图,在平行四边形ABCD中,点E是BC的中点,∠BOE=30°,OD=2,cos∠ADB =.则CD=.14.如图,△ABC中,∠BAC=90°,∠ACB=30°,AB=a,点D在边AC上运动(不与A,C重合),以BD为边作正方形BDEF,使点A在正方形BDEF内,连接EC,则下列结论:①△BCD≌△ECD;②当∠ADE=30°时,CD=2AD;③点F到直线AB的距离为a;④△CDE面积的最大值是.其中正确的结论是(填写所有正确结论的序号).15.如图,点P在正方形ABCD的对角线AC上,PE⊥PB于点P,交AD于点E,若△PAE 的面积占正方形ABCD面积的,则=.16.一个长方形院子要在三面建砖墙,院子的对角线长比一面砖墙长2m,另外的两面砖墙都是长10m,则三面砖墙共长米.三、解答题17.在四边形ABCD中,对角线AC、BD交于点O,若AD=12,OD=OB=5,AC=26,∠ADB=90°,求证:四边形ABCD为平行四边形.18.如图,在矩形ABCD中,点E在边AB上,连接DE,将矩形ABCD沿DE折叠,点A 的对称点F落在边CD上,连接EF.求证:四边形ADFE是正方形.19.如图,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB 分别交AC,BC于点E,F,过点P作GH∥BC分别交AB,AC于点G,H,过点P作MN∥AC分别交AB,BC于点M,N,猜想EF+GH+MN的值是多少.其值是否随点P位置的改变而改变?并说明理由.四、综合题20.如图,点E,F分别是锐角∠A两边上的点,分别以点E,F为圆心,以AF,AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)若AE=AF,请判断此四边形的形状,并说明理由.21.如图,点O是菱形ABCD对角线的交点,CE∥BD,BE∥AC,连接OE.(1)求证:OE=CB;(2)若菱形的边长为2,∠ADC=60°,求四边形OCEB的面积.人教新版八年级下册《第18章平行四边形》单元测试卷(2)参考答案与试题解析一、单选题1.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【考点】平行四边形的性质.【分析】根据平行四边形的性质可得AD=BC,AB=CD,再由周长为40cm可得邻边之和为20cm,然后根据AB和BC的关系计算出BC即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.2.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为25,则平行四边形ABCD的两条对角线的和是()A.18B.28C.38D.46【考点】平行四边形的性质.【分析】根据平行四边形的性质解得即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为25,∴OD+OC=25﹣6=19,∵BD=2OD,AC=2OC,∴▱ABCD的两条对角线的和BD+AC=2(OD+OC)=38.故选:C.3.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分可得答案.【解答】解:平行四边形的对角线互相平分,故选:B.4.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N 分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是()A.AB=CD,AB⊥CD B.AB=CD,AD=BCC.AB=CD,AC⊥BD D.AB=CD,AD∥BC【考点】正方形的判定;三角形中位线定理;平行四边形的判定与性质.【分析】证出EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,得出EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,证出四边形EMFN 为平行四边形,当AB=CD时,EN=FM=ME=NF,得出平行四边形EMFN是菱形;当AB⊥CD时,EN⊥ME,则∠MEN=90°,即可得出菱形EMFN是正方形.【解答】解:∵点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,∴EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,∴四边形EMFN为平行四边形,当AB=CD时,EN=FM=ME=NF,∴平行四边形EMFN是菱形;当AB⊥CD时,EN⊥ME,则∠MEN=90°,∴菱形EMFN是正方形;故选:A.5.如图,已知在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10cm B.6cm C.5cm D.4cm【考点】平行四边形的性质.【分析】利用平行四边形的对边相等的性质,可知四边长,可求周长.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC=3,AB=CD=2,∴▱ABCD的周长=2×(AD+AB)=2×(3+2)=10cm.故选:A.6.顺次连接矩形四边中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.7.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.7C.7D.【考点】正方形的性质.【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=AM,推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,∴AD的最大值为,故选:D.8.如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是()A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD【考点】平行线之间的距离;垂线.【分析】根据平行四边形的性质、平行线之间距离的定义对各选项进行逐一分析即可.【解答】解:A、∵FG⊥l2于点G,∴l1与l2两平行线间的距离就是线段FG的长度,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴四边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误;D、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AC=BD,故本选项正确;故选:C.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB 中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.=S△ACD+S△ADB,解法二:根据S△ABC可得×6×8=×6×x+×10×x,解得x=3.故选:B.10.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5a,AE=a,CF=2a,则BG长是()A.a B.a C.a D.a【考点】正方形的性质.=EF•BG=S正方形ABCD 【分析】连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF﹣S△BCF﹣S△DEF,列出方程即可解决问题.﹣S△ABE【解答】解:如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5a,∵AE=a,AF=2a,∴DE=4a,DF=3a,∴根据勾股定理求得EF=5a,=•EF•BG=S正方形ABCD﹣S△ABE﹣S△BCF﹣S△DEF,∵S△BEF∴•5a•BG=25a2﹣•5a•a﹣•5a•2a﹣•3a•4a,∴BG=.故选:B.二、填空题11.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).12.直角三角形中,两直角边长分别为12和5,则斜边中线长是.【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出斜边,根据直角三角形斜边上的中线是斜边的一半计算即可.【解答】解:∵直角三角形中,两直角边长分别为12和5,∴斜边==13,则斜边中线长是,故答案为:.13.如图,在平行四边形ABCD中,点E是BC的中点,∠BOE=30°,OD=2,cos∠ADB=.则CD=.【考点】平行四边形的性质;三角形中位线定理.【分析】先由已知条件求出∠ADB=30°,再由平行四边形的性质得出∠ADB=∠CBD =30°,证出OE是△BCD的中位线,得出OE∥CD,证出BC=CD,得出四边形ABCD 是菱形,得出AC⊥BD,根据三角函数即可求出CD.【解答】解:∵cos∠ADB=,∴∠ADB=30°,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD=2,∴∠ADB=∠CBD=30°,∵点E是BC的中点,∴OE是△BCD的中位线,∴OE∥CD,∴∠CDB=∠BOE=30°,∴∠CBD=∠CDB,∴BC=CD,∴四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴CD===;故答案为:.14.如图,△ABC中,∠BAC=90°,∠ACB=30°,AB=a,点D在边AC上运动(不与A,C重合),以BD为边作正方形BDEF,使点A在正方形BDEF内,连接EC,则下列结论:①△BCD≌△ECD;②当∠ADE=30°时,CD=2AD;③点F到直线AB的距离为a;④△CDE面积的最大值是.其中正确的结论是②③④(填写所有正确结论的序号).【考点】正方形的性质;全等三角形的判定与性质;含30度角的直角三角形.【分析】①根据“两边对应相等,而夹角不一定相等,这样的两个三角形不一定全等”进行判断;②由勾股定理求得AC,进而解Rt△ABD得∠ADB,便可得∠ADE的度数;③过F作FG⊥AB于点G,证明△ABD≌△GFB得AB=GF=a便可;④过点E作EH⊥AC于点H,证明△ABD≌△HDE,得AD=EH,进而解直角三角形,用a表示AD、CD,再根据三角形的面积公式求得△CDE面积关于a的解析式,利用完全平方式求得其最小值.【解答】解:①∵四边形BDEF是正方形,∴BD=ED,∠BDE=90°,∵CD=CD,当∠ADB≠45°时,∠ADB≠∠ADE,此时∠BDC≠∠EDC,则△BCD不全等于△ECD,故①错误;②∵△ABC中,∠BAC=90°,AB=BC=a,∴AC=a,∵CD=2AD,∴AD=a,∴tan∠ADB==,∴∠ADB=60°,∴∠ADE=∠BDE﹣∠ADB=30°,故②正确;③过F作FG⊥AB于点G,∵四边形BDEF是正方形,∴BD=FB,∠DBF=∠BAD=∠FGB=90°,∴∠ABD+∠ABF=∠ABF+∠GFB=90°,∴∠ABD=∠GFB,∴△ABD≌△GFB(AAS),∴AB=GF=a,∴点F到直线AB的距离为a,故③正确;④过点E作EH⊥AC于点H,∵四边形BDEF是正方形,∴BD=DE,∠BDE=∠BAD=∠DHE=90°,∴∠ABD+∠BDA=∠BDA+∠HDE=90°,∴∠ABD=∠HDE,∴△ABD≌△HDE(AAS),∴AD=HE,∵AD=AB•tan∠ABD=a•tan∠ABD,AC=a,∴CD=AC﹣AD=(﹣tan∠ABD)a,=CD•HE∴S△CDE=(﹣tan∠ABD)a•a•tan∠ABD=(﹣tan2∠ABD+tan∠ABD)a2=[﹣(tan∠ABD﹣)2]a2≤a2,∴△CDE面积的最大值是a2,故④正确;故答案为:②③④.15.如图,点P在正方形ABCD的对角线AC上,PE⊥PB于点P,交AD于点E,若△PAE的面积占正方形ABCD面积的,则=.【考点】正方形的性质;全等三角形的判定与性质.【分析】过P作PF⊥AD于F,PH⊥AB于H,根据正方形的性质和全等三角形的判定和性质解答即可.【解答】解:如图,过P作PF⊥AD于F,PH⊥AB于H,∵∠FPE+∠EPH=∠BPH+∠EPH,∴∠FPE=∠BPH,∵四边形AFPH为正方形,∴PF=PH,∵∠PFE=∠PHB,∴△PFE≌△PHB(ASA),∴EF=BH,又∵PF=AF=AE+EF,且AE+EF=AH,AH+BH=AB=AD=AF+FD,∴BH=FD=EF,∴AE+2EF=AD,∴EF=,=S正方形ABCD,∵S△P AE∴AE×PF=AD2,∴AE[AE+]=AD2,∴AE2+AE×AD﹣AD2=0,∴(AE﹣AD)(AE+AD)=0,解得:=或=﹣(舍);故答案为:.16.一个长方形院子要在三面建砖墙,院子的对角线长比一面砖墙长2m,另外的两面砖墙都是长10m,则三面砖墙共长44米.【考点】勾股定理的应用.【分析】先设出未知面墙的长度,再根据勾股定理列出方程求解即可.【解答】解:设未知面墙的长度为x米,则院子对角线的长为(x+2)米,由勾股定理得,(x+2)2=x2+102,解得x=24米.故三面砖墙共长为10+10+24=44米.三、解答题17.在四边形ABCD中,对角线AC、BD交于点O,若AD=12,OD=OB=5,AC=26,∠ADB=90°,求证:四边形ABCD为平行四边形.【考点】平行四边形的判定.【分析】根据勾股定理得出AO,进而利用平行四边形的判定解答即可.【解答】证明:∵AD=12,OD=5,∠ADB=90°,∴AO=13,∵AC=26,∴AO=OC=13,且DO=OB=5,∴四边形ABCD为平行四边形.18.如图,在矩形ABCD中,点E在边AB上,连接DE,将矩形ABCD沿DE折叠,点A 的对称点F落在边CD上,连接EF.求证:四边形ADFE是正方形.【考点】正方形的判定;矩形的性质.【分析】根据矩形的性质和判定以及正方形的判定解答即可.【解答】证明:∵四边形ABCD是矩形,∴∠A=∠ADC=90°.由折叠,得∠A=∠DFE=90°∴∠A=∠ADF=∠DFE=90°.∴四边形AEFD是矩形.∵AE=AD,∴四边形AEFD是正方形.19.如图,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB 分别交AC,BC于点E,F,过点P作GH∥BC分别交AB,AC于点G,H,过点P作MN∥AC分别交AB,BC于点M,N,猜想EF+GH+MN的值是多少.其值是否随点P位置的改变而改变?并说明理由.【考点】平行四边形的判定与性质;等边三角形的性质.【分析】根据题意判定四边形AMPE是平行四边形,则根据平行四边形的性质和等边△AGH的性质将EF+GH+MN转化为AM+GB+AM+MG+MG+GB=2(AM+MG+GB)=2AB =2a.【解答】解:EF+GH+MN=2a,EF+GH+MN的值不随点P位置的改变而改变.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵GH∥BC,∴∠AGH=∠B=60°,∠AHG=∠C=60°.∴△AGH是等边三角形,∴GH=AG=AM+MG.①同理△BMN是等边三角形,∴MN=MB=MG+GB.②∵MN∥AC,EF∥AB,∴四边形AMPE是平行四边形,∴PE=AM.同理可证四边形BFPG是平行四边形,∴PF=GB.∴EF=PE+PF=AM+GB.③由①②③,得EF+GH+MN=(AM+GB)+(AM+MG)+(MG+GB)=2(AM+MG+GB)=2AB=2a.四、综合题20.如图,点E,F分别是锐角∠A两边上的点,分别以点E,F为圆心,以AF,AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)若AE=AF,请判断此四边形的形状,并说明理由.【考点】菱形的判定;平行四边形的判定.【分析】(1)根据题意得出ED=AF,AE=DF,进而利用平行四边形的判定解答即可;(2)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF 是菱形;【解答】解:(1)四边形AEDF是平行四边形,理由如下:根据题意可得:ED=AF,AE=DF,∴四边形AEDF是平行四边形;(2)四边形AEDF是菱形.理由如下:根据题意可得:ED=AF,AE=DF,∵AE=AF,∴AE=AF=ED=DF,∴四边形AEDF是菱形;21.如图,点O是菱形ABCD对角线的交点,CE∥BD,BE∥AC,连接OE.(1)求证:OE=CB;(2)若菱形的边长为2,∠ADC=60°,求四边形OCEB的面积.【考点】矩形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.【分析】(1)由CE∥BD、EB∥AC可得出四边形OBEC为平行四边形,由菱形的性质可得出∠BOC=90°,进而可得出四边形OBEC为矩形,根据矩形的性质即可证出OE=CB.(2)解直角三角形求出OC,OB即可解决问题.【解答】(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形,∴OE=CB.(2)∵四边形ABCD是菱形,∴∠ADC=∠ABC=60°,∴∠CBO=∠ABC=30°,∵BC=2,∠BOC=90°,∴OC=BC=1,OB=OC=,∴矩形COBE的面积=.。
人教版八年级下《第18章平行四边形》单元检测试卷含答案
人教版八年级下《第18章平行四边形》单元检测试卷含答案平行四边形单元检测一、选择题1.在平行四边形ABCD 中,60B ∠=,那么下列各式中,不能..成立的是( ) A .60D ∠= B .120A ∠= C .180C D ∠+∠= D .180C A ∠+∠= 2.如图,Rt ABC △沿直角边BC 所在的直线向右平移得到DEF △,下列结论中错误的是( ) A.ABC DEF △≌△ B.90DEF ∠= C.AC DF = D.EC CF =3.如图,88⨯方格纸的两条对称轴EF MN ,相交于点O ,对图a 分别作下列变换: ① 先以直线MN 为对称轴作轴对称图形,再向上平移4格; ② ②先以点O 为中心旋转180,再向右平移1格;③ ③先以直线EF 为对称轴作轴对称图形,再向右平移4格, 其中能将图a 变换成图b 的是( ) A .①② B .①③ C .②③ D .③4.如图所示的阴影部分图案是由方格纸上3个小方格组成,我们称这样的图案为L 形.那么在由4×5个小方格组成的方格纸上最多可以画出不同位置的L 形图案的个数是 ( ) A .16个 B .32个 C .48个 D .64个5.在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为( )A .2B .35 C .53D .15 6.在平行四边形ABCD 中,对角线AC BD ,交于点O ,下列式子中一定成立的是( )A .AC BD ⊥B .OA OC = C .AC BD = D .AO OD =7.如图4,在平行四边形ABCD 中,53AD AB ==,,AE 平分BAD ∠交BC 边于点E ,则线段BE EC ,的长度分别为( ) A.2和3 B.3和2 C.4和1 D.1和48.如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论中正确的个数有( )结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=. A.1个 B.2个 C.3个 D.4个9. ABC △与平行四边形DEFG 如图放置,点D G ,分别在边AB AC ,上,点E F ,在边BC 上.已知BE DE =,CF FG =,则A ∠的度数() A .等于80 B .等于90 C .等于100 D .条件不足,无法判断 10.如图,ACD △和AEB △都是等腰直角三角形,90CAD EAB ∠=∠=,四边形ABCD 是平行四边形,下列结论中错误的是( )A .ACE △以点A 为旋转中心,逆时针方向旋转90后与ADB △重合 B .ACB △以点A 为旋转中心,顺时针方向旋转270后与DAC △重合 C .沿AE 所在直线折叠后,ACE △与ADE △重合D .沿AD 所在直线折叠后,ADB △与ADE △重合 11.如图,在平行四边形ABCD 中,DE 是ADC ∠的平分线,F 是AB 的中点,6AB =,A BE CF D 1 2 3 4BEA DBCE4AD =,则::AE EF BE 为()A .4:1:2B .4:1:3C .3:1:2D .5:1:2 12.下面几组条件中,能判断一个四边形是平行四边形的是( )A .一组对边相等B .两条对角线互相平分C .一组对边平行D .两条对角线互相垂直 二、填空题13.将线段AB 平移1cm ,得到线段A B '',则对应点A 与A '的距离为 cm .14.)已知任意直线l 把平行四边形ABCD 分成两部分,要使这两部分的面积相等,直线l 所在的位置需满足的条件是________________________________________________.(只要填上一个你认为合适的条件). 15.如图,AB DC ∥,AD BC ∥,如果50B ∠=,那么D ∠= .16.如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个适当的条件: ,使四边形AECF 是平行四边形.17.如图,在平行四边形ABCD 中,E F ,分别是边AD BC ,的中点,AC 分别交BE DF ,于点M N ,.给出下列结论:①ABM CDN △≌△;②13AM AC =;③2DN NF =;④ 12AMB ABC S S =△△.其中正确的结论是 .(只填番号)三、解答题18.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图是一副七巧板,若已知1BIC S =△,请你根据对七巧板制作过程的认识,解决下列问题:(1)求一只蚂蚁从点A 沿A B C H E →→→→所走的路线的总长(结果精确到0.01); (2)求平行四边形EFGH 的面积. 解:19.如图,已知:平行四边形ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =.20.已知:如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE . 求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.A BCE FGDA DCE FBM ND C21.已知任意..四边形ABCD ,且线段AB 、BC 、CD 、DA 、AC 、BD 的中点分别是E 、F 、G 、H 、P 、Q .(1)若四边形ABCD 如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”). 甲:顺次连接EF 、FG 、GH 、HE 一定得到平行四边形;( ) 乙:顺次连接EQ 、QG 、GP 、PE 一定得到平行四边形.( ) (2)请选择甲、乙中的一个,证明你对它的判断.(3)若四边形ABCD 如图②,请你判断(1)中的两个结论是否成立?22. 如图,在平行四边形ABCD 中,E 为BC 边上一点,且AB AE =.(1)求证:ABC EAD △≌△. (2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.23. 如图,在平行四边形ABCD 中,AE ,BF 分别平分DAB ∠和ABC ∠,交CD 于点E ,F ,AE ,BF 相交于点M .(1)试说明:AE BF ⊥;(2)判断线段DF 与CE 的大小关系,并予以说明.图② A DC B F B E A DC H P 图① G Q24.如图,在ABCD 中,点E 是CD 的中点,AE 的延长线与BC 的延长线相交于点F . (1)求证:△ADE ≌△FCE ;(2)连结AC 、DF ,则四边形ACFD 是下列选项中的( ). A.梯形 B.菱形 C.正方形 D.平行四边形25.如图-1,P 为Rt ABC △所在平面内任意一点(不在直线AC 上),90ACB ∠=,M 为AB 边中点.操作:以PA PC ,为邻边作平行四边形PADC ,连结PM 并延长到点E ,使ME PM =,连结DE . 探究:(1)请猜想与线段DE 有关的三个结论;(2)请你利用图14-2,图14-3选择不同位置的点P 按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图14-2或图14-3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt ABC △”改为“任意ABC △”,其他条件不变,利用图14-4操作,并写出与线段DE 有关的结论(直接写答案).CB MM AB图-2图-3图-4图-1CDB EM A P答案一、选择题 1.D 2.D 3.D 4.C 5.C 6.B 7.B 8.C 9.B 10.B 11.A 12.B二、填空题 13.114.直线过AC 与BD 交点或经过AD 和BC 的中点或经过A ,C 两点等 15.5016.BE DF =等(只要符合条件即可) 17.①②③ 三、计算题18.解:(1)由七巧板性质可知BI IC CH HE ===. 又190BIC S BIC ==,△∠,2BI IC ∴==222BC BI IC ∴+=. AB BC CH HE ∴+++ 2BC BC BI BI =+++, 32BC BI =+, 3222=⨯+,66 2.8288.83=++≈.即蚂蚁沿A B C H E →→→→所走的路线的总长为8.83. (2)(法一)2EF BC ==,2FG EH BI === ∴点G 到EF 245,AH(21题图)N BE G I∴平行四边形EFGH 的面积为:22sin 45222EF==. (法二)连接GE ,则可知平行四边形EFGH 的面积为:22BIC S =△.19.证明:四边形ABCD 是平行四边形(已知),AD BC ∴∥,AB CD =(平行四边形的对边平行,对边相等)1分 GBC BGA ∴∠=∠,BCE CED ∠=∠(两直线平行,内错角相等) 2分 又BG 平分ABC ∠,CE 平分BCD ∠(已知),ABG GBC ∴∠=∠,BCE ECD ∠=∠(角平分线定义) 3分 ABG GBA ∴∠=∠,ECD CED ∠=∠.4分 AB AG ∴=,CE DE =(在同一个三角形中,等角对等边) 5分 AG DE ∴=6分 AG EG DE EG ∴-=-,即AE DG =. 7分20..证明:(1)DF BE DFA BEC ∠=∠∵∥,∴. D F BE AF ==∵,, ∴△AFD ≌△CEB . (2)∵△AFD ≌△CEB ,A DC BD A F B =∠=∠∴,. A D C B ∴∥.∴四边形ABCD 是平行四边形.21.解:(1)甲 √ 乙 ×(2)证明(1)中对甲的判断: 连接EF 、FG 、GH 、HE ,E ∵、F 分别是AB 、BC 的中点,∴EF 是△ABC 的中位线.∴EF AC ∥,12EF AC =, 同理,HG AC ∥,12HG AC =,∴EF HG ∥,EF HG =.∴四边形EFGH 是平行四边形.注:可反例说明(1)中对乙的判断:举矩形、菱形、等腰梯形等例子(用文字或图形说明,也给5分).若将乙看作是正确的命题去证明,过程准确,给3分.(3)类似于(1)中的结论甲、乙都成立(只对一个给2分). 22.(1)四边形ABCD 为平行四边形, AD BC AD BC ∴=∥,. DAE AEB ∴=∠∠. AB AE AEB B =∴=,∠∠. B DAE ∴=∠∠.ABC EAD ∴△≌△.(2)DAE BAE DAE AEB ==∠∠,∠∠, BAE AEB B ∴==∠∠∠. ABE ∴△为等边三角形. 60BAE ∴=∠. 2585EAC BAC =∴=∠,∠. ABC EAD △≌△,85AED BAC ∴==∠∠.23.解:(1)方法一:如图①在ABCD 中,AD BC ∥ 180DAB ABC ∴+=∠∠AE ,BF 分别平分DAB ∠和ABC ∠ 2DAB BAE ∴=∠∠,2ABC ABF =∠∠ 22180BAE ABF ∴+=∠∠即90BAE ABF +=∠∠ 90AMB ∴=∠ AE BF ∴⊥.方法二:如图②,延长BC ,AE 相交于点P在ABCD 中,AD BC ∥ DAP APB ∴=∠∠ AE 平分DAB ∠ DAP PAB ∴=∠∠ APB PAB ∴=∠∠ AB BP ∴=BF 平分ABP ∠ AP BF ∴⊥ 即AE BF ⊥.(2)方法一:线段DF 与CE 是相等关系,即DF CE =在ABCD 中,CD AB ∥ DEA EAB ∴=∠∠ 又AE 平分DAB ∠ DAE EAB ∴=∠∠ DEA DAE ∴=∠∠ DE AD ∴=同理可得,CF BC =又在ABCD 中,AD BC = DE CF ∴=DE EF CF EF ∴-=- 即DF CE =.方法二:如右图,延长BC ,AE 相交于点P ,延长AD ,BF 相交于点O在ABCD 中,AD BC ∥DAP APB ∴=∠∠AE 平分DAB ∠ DAP PAB ∴=∠∠ APB PAB ∴=∠∠ BP AB ∴=同理可得,AO AB =AO BP ∴=在ABCD 中,AD BC = OD PC ∴=又在ABCD 中,DC AB ∥ODF OAB ∴△∽△,PCE PBA △∽△OD DF OA AB ∴=,PC ECPB AB= 图① A B D M 图② A BCD EF M P A B CD E F M PDF CE ∴=.24.证明:(1)∵ 四边形ABCD 是平行四边形,∴ AD ∥BF ,∴ ∠D=∠ECF. …………………… 3分∵ E 是CD 的中点,∴ DE = CE .又 ∠AED=∠FEC , ………………………………… 4分∴ △ADE ≌△FCE . ………………………………… 5分 (2) D.或填“平行四边形”.………………………… 8分25解:(1)DE BC ∥,DE BC DE AC =⊥,. (2)如图1,如图2(每图1分).(3)方法一: 如图3,连结BE ,PM ME AM MB PMA EMB ==∠=∠,,, PMA EMB ∴△≌△.PA BE MPA MEB PA BE =∠=∠∴,,∥. ,PA DC PA DC ∴=,∥. BE DC BE DC ∴=,∥,∴四边形DEBC 是平行四边形. DE BC DE BC ∴=,∥. 90ACB BC AC DE AC ∠=∴⊥∴⊥,,. 方法二:如图4,连结BE PB AE ,,,PM ME AM MB ==,, ∴四边形PAEB 是平行四边形. PA BE PA BE ∴=,∥.余下部分同方法一.方法三:如图5,连结PD ,交AC 于N ,连结MN , ,AN NC PN ND ∴==,. AM BM AN NC ==,, 12MN BC MN BC ∴=,∥.又PN ND PM ME ==,,MN DE ∴∥,12MN DE =. DE BC DE BC ∴=,∥. 90ACB ∠=,BC AC ∴⊥.DE AC ∴⊥. (4)如图6,DE BC ∥,DE BC =.C D A P M E B图2 C D B E MA P图1 CDBEM A P 图3C D BEM AP图4C D BEM AP图5N CDP(说明:(1)问写错一个结论,后来能找出反例加以说明,(1)问得1分,(3)问也得1分,此时,其他证明得5分)。
人教版八年级下数学《第18章平行四边形》单元测试(含答案)
人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。
人教新版八年级数学下册第18章平行四边形单元测试卷
人教新版八年级数学下册第18章平行四边形单元测试卷时间:90分钟满分:120分一、选择题(共10小题,每小题3分,满分30分)1、下列说法中,不正确的是()A、两组对边分别平行的四边形是平行四边形B、一组对边平行另外一组对边相等的四边形是平行四边形C、对角线互相平分且垂直的四边形是菱形D、有一组邻边相等的矩形是正方形2、如图,在平面直角坐标系中,若菱形A BCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是()A、(-3,4)B、(-2,3)C、(-5,4)D、(5,4)3、如图,在∆ABC中,点D,E分别是AB,AC的中点,如果DE=3,则BC的长为()A、4B、5C、6D、74、如图,在∆ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则DF 的长为()A、32B、16C、8D、45、在菱形ABCD中,∠ABC=800,BA=BE,则∠BAE=()A、700B、400C、750D、3006、如图,在∆ABC中,∠C=900,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC 于点F,连结EF,则线段EF的最小值为()A、24B、3.6C、4.8D、57、如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A、10B、12C、8D、168、如图,在Rt∆ABC中,CD是斜边AB上的中线,若∠A=260,则∠BDC的度数为()A、260B、380C、420D、5209、如图,延长正方形ABCD的边AB至点E,使BE=AC,则∠BED等于()A、200B、300C、22.50D、32.5010、在平行四边形ABCD中,AE与DE交于点E,若AE平分∠BAD,AE⊥DE,则()A、∠ADE=300B、∠ADE=450C、∠ADC=2∠ADED、∠ADC=3∠ADE二、填空题(本大题共6小题,每小题4分,满分24分)11、如图,在平行四边形ABCD中,已知∠D=1300,则∠B=________度。
人教新版八年级下册第18章平行四边形单元测试卷(含答案解析)
16.平行四边形ABCD中,∠A比∠B小20°,那么∠C=_____.
17.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是_____.
18.如图, ABCD的对角线相交于点O,且M的周长为8,那么 ABCD的周长是__.
A.3种B.4种C.5种D.6种
2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BCB.AB=DC,AD=BC
C.AO=CO,BO=DOD.AB∥DC,AD=BC
3.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为( )
19.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=_____.
20.如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
三、解答题
21.如图,在平行四边形ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DEBF是平行四边形.
A.2B.4C. D.
11.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,AC=6,则菱形ABCD的面积是( )
A.18B.18 C.9 D.6
12.在四边形 中,对角线 , 相交于点 , , ,添加下列条件,不能判定四边形 是菱形的是( ).
A. B. C. D.
13.小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是( )
人教版初二数学8年级下册 第18章(平行四边形)单元测试(附答案)
人教版初中八年级数学下册第十八章 平行四边形班级:________ 姓名:________ 分数:________一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.菱形具有而矩形不一定具有的性质是( )A.两组对边分别平行 B.对角线相等C.对角线互相垂直 D.两组对边分别相等2.如图,一个矩形纸片,剪去一部分后得到一个三角形,则图中∠1+∠2的度数是( )A.30° B.60° C.90° D.120°3.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是( )A.32 B.24 C.40 D.204.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论中一定正确的是( )A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD5.如图,一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d;②b→d→c;③a→b→c.则正确的是( )A.仅① B.仅③ C.①② D.②③6.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB =10,AC=8,则四边形AFDE的周长等于( )A.18 B.16 C.14 D.127.如图,在正方形ABCD中,E为对角线BD上一点,连接AE,CE,∠BCE=70°,则∠EAD为( )A.10° B.15° C.20° D.30°8.如图,在矩形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的面积为( )A.15 B.16 C.22 D.289.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是( )A.25° B.50° C.60° D.80°10.如图,在▱ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是( )A.65° B.55° C.70° D.75°11.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E ,则线段DE 的长为( )A.125B.185 C .4 D.24512. 如图,在平行四边形ABCD 中,将△ABC 沿着AC 所在的直线折叠得到△AB ′C ,B ′C 交AD 于点E ,连接B ′D ,若∠B =60°,∠ACB =45°,AC 6,则B ′D 的长是( )A .1 B.2 C.3 D.62二、填空题:每小题4分,共16分.13.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,3),则点C 的坐标为__ _.14. 如图,在矩形ABCD 中,点E 在边AD 上,将△ABE 沿直线BE 翻折,点A 落在AD 与BC 之间的点F 处,如果∠CBF =20°,那么∠BEF =__ __.15.如图,在△ABC 中,BD ⊥AC 于点D ,E 为AB 的中点,AD =6,DE =5,则线段BD 的长等于__ __.16. 如图,BD 为平行四边形ABCD 的对角线,∠DBC =45°,DE ⊥BC于点E ,BF ⊥CD 于点F ,DE ,BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①CE =12BE ;②∠A =∠BHE ;③AB =BH ;④∠BHD =∠BDG.其中正确的结论是__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 如图,在Rt △ABC 中,∠ABC =90°,点D 是AC 的中点,BE ∥AC ,CE ∥BD ,BE 与CE 交于点E.求证:四边形BDCE 是菱形.18.(本题满分10分) 如图,在四边形ABCD 中,CD ∥AB ,连接AC ,E 是AC 的中点,连接DE 延长交AB 于点F.(1)求证:四边形AFCD 是平行四边形;(2)若BF =FC ,AB =10,则四边形AFCD 的周长为__ _.19.(本题满分10分)如图,在正方形ABCD 中,M ,N 分别是边CD ,AD 的中点,连接BN ,AM 交于点E.求证:AM ⊥BN.20.(本题满分10分) 如图,在矩形ABCD中,点E,F在对角线AC 上,且AE=CF,连接DE,BF.求证:∠ABF=∠CDE.21.(本题满分10分) 矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=4,求菱形ABCD的周长.22.(本题满分10分) 如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC,BE交于点P.求证:∠ANC=∠ABE.【应用】Q是线段BC的中点,若BC=6,则PQ的长度是__ __.23.(本题满分12分) 如图,在▱ABCD中,E为CD边的中点,连接BE 并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.24.(本题满分12分) 如图,在菱形ABCD中,AB=6,∠ABC=60°,将△BCD沿菱形ABCD的对角线BD由B向D方向平移得△EFG,连接AE,DF.(1)当四边形AEFD是矩形时,则AE的长为__ __;(2)当BE为何值时,△ABE是直角三角形?25.(本题满分12分) 如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)证明:不论E,F在BC,CD上如何滑动,总有BE=CF;(2)当点E,F在BC,CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.菱形具有而矩形不一定具有的性质是( C )A.两组对边分别平行 B.对角线相等C.对角线互相垂直 D.两组对边分别相等2.如图,一个矩形纸片,剪去一部分后得到一个三角形,则图中∠1+∠2的度数是( C )A.30° B.60° C.90° D.120°3.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是( D )A.32 B.24 C.40 D.204.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论中一定正确的是( A )A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD5.如图,一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d;②b→d→c;③a→b→c.则正确的是( C )A.仅① B.仅③ C.①② D.②③6.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB =10,AC=8,则四边形AFDE的周长等于( A )A.18 B.16 C.14 D.127.如图,在正方形ABCD中,E为对角线BD上一点,连接AE,CE,∠BCE=70°,则∠EAD为( C )A.10° B.15° C.20° D.30°8.如图,在矩形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的面积为( D )A.15 B.16 C.22 D.289.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是( B )A.25° B.50° C.60° D.80°10.如图,在▱ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是( A )A.65° B.55° C.70° D.75°11.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E ,则线段DE 的长为( D )A.125B.185 C .4 D.24512. 如图,在平行四边形ABCD 中,将△ABC 沿着AC 所在的直线折叠得到△AB ′C ,B ′C 交AD 于点E ,连接B ′D ,若∠B =60°,∠ACB =45°,AC 6,则B ′D 的长是( B )A .1 B.2 C.3 D.62二、填空题:每小题4分,共16分.13.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,3),则点C 的坐标为__(2,-3)__.14. 如图,在矩形ABCD 中,点E 在边AD 上,将△ABE 沿直线BE 翻折,点A 落在AD 与BC 之间的点F 处,如果∠CBF =20°,那么∠BEF =__55°__.15.如图,在△ABC 中,BD ⊥AC 于点D ,E 为AB 的中点,AD =6,DE =5,则线段BD 的长等于__8__.16. 如图,BD 为平行四边形ABCD 的对角线,∠DBC =45°,DE ⊥BC于点E ,BF ⊥CD 于点F ,DE ,BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①CE =12BE ;②∠A =∠BHE ;③AB =BH ;④∠BHD =∠BDG.其中正确的结论是__②③__.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 如图,在Rt △ABC 中,∠ABC =90°,点D 是AC 的中点,BE ∥AC ,CE ∥BD ,BE 与CE 交于点E.求证:四边形BDCE 是菱形.证明:∵CE ∥BD ,BE ∥AC ,∴四边形BDCE 是平行四边形,∵∠ABC =90°,点D 是AC 的中点,∴BD =AD =DC =12AC ,∴四边形BDCE 是菱形.18.(本题满分10分) 如图,在四边形ABCD 中,CD ∥AB ,连接AC ,E 是AC 的中点,连接DE 延长交AB 于点F.(1)求证:四边形AFCD 是平行四边形;(2)若BF =FC ,AB =10,则四边形AFCD 的周长为__20__.(1)证明:∵E 是AC 的中点,∴AE =CE ,∵CD ∥AB ,∴∠AFE =∠CDE ,在△AEF 和△CED 中,{∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AEF ≌△CED(AAS),∴AF =CD ,∵CD ∥AB ,即AF ∥CD ,∴四边形AFCD 是平行四边形.19.(本题满分10分)如图,在正方形ABCD 中,M ,N 分别是边CD ,AD 的中点,连接BN ,AM 交于点E.求证:AM ⊥BN.证明:∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,∠BAN =∠ADM =90°.∵M ,N 分别是边CD ,AD 的中点,∴AN =12AD ,DM =12CD ,∴AN =DM.在△ABN 和△DAM 中,{AB =DA ,∠BAN =∠ADM ,AN =DM ,∴△ABN ≌△DAM(SAS),∴∠ABN =∠DAM.∵∠DAM +∠BAE =90°,∴∠ABN +∠BAE =90°,∴∠AEB =90°,∴AM ⊥BN.20.(本题满分10分) 如图,在矩形ABCD 中,点E ,F 在对角线AC 上,且AE =CF ,连接DE ,BF.求证:∠ABF =∠CDE.证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD.∴∠BAC =∠DCA.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE.在△ABF 和△CDE 中,{AB =CD ,∠BAF =∠DCE ,AF =CE ,∴△ABF ≌△CDE(SAS),∴∠ABF =∠CDE.21.(本题满分10分) 矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG =DE ;(2)若E为AD中点,FH=4,求菱形ABCD的周长.(1)证明:在矩形EFGH中,EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE,在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH,在△BGF与△DEH中,{∠BFG=∠DHE,∠GBF=∠EDH,GF=EH,∴△BGF≌△DEH(AAS),∴BG=DE.(2)解:连接EG.在菱形ABCD中,AD∥BC,AD=BC,∵E为AD的中点,∴AE=ED,∵BG=DE,∴AE∥BG且AE=BG,∴四边形AEGB为平行四边形,∴AB =EG,∵在矩形EFGH中,EG=FH=4,∴AB=4,∴菱形ABCD的周长为16. 22.(本题满分10分) 如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC,BE交于点P.求证:∠ANC=∠ABE.【应用】Q是线段BC的中点,若BC=6,则PQ的长度是__3__.【探究】证明:∵四边形ANMB和ACDE是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,∴∠NAC=∠BAE,在△ANC和△ABE中,AN=AB,∠NAC=∠BAE,AC=AE,∴△ANC≌△ABE(SAS),∴∠ANC=∠ABE.23.(本题满分12分) 如图,在▱ABCD中,E为CD边的中点,连接BE 并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE=∠CBE,∵E为CD边的中点,∴DE=CE,在△BCE和△FDE中,{∠BEC=∠FED,∠CBE=∠DFE,CE=DE,∴△BCE≌△FDE(AAS).(2)解:四边形AEFG是矩形,理由:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AFB=∠FBC,由(1)得△BCE≌△FDE,∴BC=FD,BE=FE,∴FD=AD,∵GD=DE,∴四边形AEFG是平行四边形,∵BF平分∠ABC,∴∠FBC=∠ABF,∴∠AFB=∠ABF,∴AF=AB,∵BE=FE,∴AE⊥FE,∴∠AEF=90°,∴平行四边形AEFG是矩形.24.(本题满分12分) 如图,在菱形ABCD中,AB=6,∠ABC=60°,将△BCD沿菱形ABCD的对角线BD由B向D方向平移得△EFG,连接AE,DF.(1)当四边形AEFD是矩形时,则AE的长为__23__;(2)当BE为何值时,△ABE是直角三角形?解:(2)在Rt△ABE中,∠ABE=30°,①当∠AEB=90°时,AE=12AB=12×6=3,∴BE=3AE=33;②当∠BAE=90°时,AB=3AE,∴AE=23,∴BE=2AE=43.综上所述,当BE为33或43时,△ABE是直角三角形.25.(本题满分12分) 如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)证明:不论E,F在BC,CD上如何滑动,总有BE=CF;(2)当点E,F在BC,CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.(1)证明:连接AC,∵菱形ABCD,∠BAD=120°,∴∠BAC=∠DAC=60°,∴∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,BC∥AD,∴∠ABC=∠BAC=∠ACB=60°,∴△ABC,△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,{∠1=∠3,AB=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA).∴BE=CF.(2)解:四边形AECF的面积不变.由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC是定值,过点A作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=12BC·AH=12BC·AB2-BH2=43.。
新人教版八年级下册第18章 平行四边形单元测试A卷
人教版八下数学第18章平行四边形单元测试A卷班级姓名成绩一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.□ ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在□ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是(). A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在□ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若□ABCD•的周长为38cm,△ABD的周长比□ABCD的周长少10cm,则□ABCD的一组邻边长分别为______.14.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则□ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAE B23.如图所示,□ABCD的周长是,AB的长是,DE⊥AB于E,DF⊥CB交CB•的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.24.如图所示,□ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,•求∠C的度数.27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN 于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是□ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130° • • 15.10 16.结论题设 17.同旁内角互补,两直线平行18.5 19.13 直角三、21.□ABCD的周长为20cm 22.略23.(1)∠C=45°(2) 24.略25.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略。
新人教版八年级下册第18章 平行四边形 单元测试试卷(A卷)(含答案)
新人教版八年级下册第18章平行四边形单元测试试卷(A卷)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于º,外角和等于º .2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形,若它的内角和等于外角和的3倍,则它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm.7.平行四边形ABCD,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为______cm.9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为.10.如图,ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,则EF= ,EF分梯形所得的两个梯形的面积比S1:S2为.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n个正方形的面积是.二、填空题(共4小题,每题3分,共12分)1S2S第10题第11题30°30°30°第13题15.如图,Y ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于()A.100° B.80° C.60° D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是() A.等腰三角形 B.正三角形 C.等腰梯形 D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN ∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12 BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD 、 △BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5..20 7.一组邻边相等或对角线互相垂直 8. 9.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。
人教版八年级数学下册 第18章平行四边形 单元测试试题(解析版)
人教版八年级数学下册第18章平行四边形单元测试题一.选择题(共10小题)1.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形2.如图,四边形ABCD是菱形,BD=4,AD=2,点E是CD边上的一动点,过点E作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为()A.B.C.D.3.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.1个B.2个C.3个D.4个4.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是()A.BE=DF B.AF∥CE C.AE=CF D.∠BAE=∠DCF 5.如图,在△ABC中,∠ACB=90°,点D是AB的中点,CD=3,且∠A=30°,则△ABC 的周长为()A.6 B.9+3C.6+3D.36.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF >S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④7.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°8.已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12 B.13 C.14 D.159.如图,ABCD是平行四边形,则下列各角中最大的是()A.∠1 B.∠2 C.∠3 D.∠410.如图,EF过平行四边形ABCD对角线的交点O,交AD于E,交BC于F,若平行四边形ABCD的周长为36,OE=3,则四边形ABFE的周长为()A.24 B.26 C.28 D.20二.填空题(共8小题)11.△ABC中,三条中位线围成的三角形周长是15cm,则△ABC的周长是cm.12.如图,在△ABC中,AB=AC=12,BC=8,BE是高,且点D、F分别是边AB、BC的中点,则△DEF的周长等于.13.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为.14.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D的坐标为.15.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为.16.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE ⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是.17.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.18.如图,在平行四边形ABCD中,AB=13,AD=5,AC⊥BC,则BD=.三.解答题(共7小题)19.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.20.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.21.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.22.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC 于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)当线段DE与正方形ABCD的某条边的夹角是35°时,求∠EFC的度数.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.25.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.参考答案与试题解析一.选择题(共10小题)1.【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO =OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.2.【分析】由条件可知四边形OGEF是矩形,连接OE,则OE=GF,当OE⊥DC时,GF的值最小,可由OD•OC=DC•OE求出OE的值即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=DC,∵EF⊥OC于点F,EG⊥OD于点G,∴四边形OGEF是矩形,连接OE,则OE=GF,当OE⊥DC时,GF的值最小,∵BD=4,AD=2,∴OC==4,=OD•OC=DC•OE,∵S△ODC∴OD•OC=DC•OE,∴,故选:C.【点评】本题考查了菱形的性质、矩形的判定与性质、垂线段最短、勾股定理、三角形面积;熟练掌握菱形的性质,证明四边形OGEF为矩形是解决问题的关键.3.【分析】利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【解答】解:①对角线互相垂直的四边形不一定是菱形,故①错误;②矩形的对角线垂直且互相平分,故②错误;③对角线相等的四边形不一定是矩形,故③错误;④对角线相等的菱形是正方形,故④正确,⑤邻边相等的矩形是正方形,故⑤正确故选:B.【点评】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.4.【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;C、若AE=CF,则无法判断OE=OE,故本选项符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:C .【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.5.【分析】由直角三角形斜边上的中线等于斜边的一半求得AB =2CD =6;由含30度角直角三角形的性质求得BC 、AC 的长度;最后根据三角形周长定义解答.【解答】解:∵∠ACB =90°,点D 是AB 的中点,CD =3,∴AB =2CD =6,∵∠A =30°,∴BC =AB •sin30°=3,AC =AB •cos30°=3, ∴△ABC 的周长为AB +BC +AC =9+3. 故选:B .【点评】本题考查的是直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.6.【分析】由AAS 证明△ABG ≌△DEG ,得出AG =DG ,证出OG 是△ACD 的中位线,得出OG =CD =AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB =BD =AD ,因此OD =AG ,得出四边形ABDE 是菱形,④正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG ∥AB ,OG =AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;③不正确;即可得出结果.【解答】解:∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,AB ∥CD ,OA =OC ,OB =OD ,AC ⊥BD ,∴∠BAG =∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD ,∵CD =DE ,∴AB =DE ,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG (AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD 的面积=△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF :OF =2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;③不正确;正确的是①④.故选:A .【点评】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.7.【分析】根据矩形的判定得到四边形ABCD 是矩形,由矩形的性质求出∠DAB ,代入∠OAB =∠DAB ﹣∠OAD 求出即可.【解答】解:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵OA =OD ,∴AC =BD ,∴四边形ABCD 是矩形,∴∠DAB =90°,∵∠OAD =55°,∴∠OAB =∠DAB ﹣∠OAD =35°故选:A .【点评】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB 的度数是解此题的关键.8.【分析】根据相似的判定与性质每一层的靠上的边的长度,从而判定可放置的正方形的个数及层数.【解答】解:作CF ⊥AB 于点F ,设最下边的一排小正方形的上边的边所在的直线与△ABC 的边交于D 、E ,∵DE ∥AB , ∴=,即=,解得:DE=,而整数部分是4,∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.【点评】本题考查了相似三角形的性质与判定、正方形的性质等问题,解题的关键是在掌握所需知识点的同时,要具有综合分析问题、解决问题的能力.9.【分析】利用平行四边形的性质以及三角形的外角的性质即可判断.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BE,∴∠4=∠1,∵∠3>∠1,∠3>∠2,∴∠3>∠4,∴∠1,∠2,∠3,∠4中,最大的角是∠3,故选:C.【点评】本题考查平行四边形的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先利用ASA证明△AOE≌△COF,从而得OE=OF,AE=CF,再求得平行四边形周长的一半为多少,然后利用关系式AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.【解答】解:∵四边形ABCD为平行四边形,对角线的交点为O,∴OA=OC,AD∥BC,∴∠EAO=∠FCO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为36,∴AB+BC=×36=18,∴四边形ABFE的周长为:AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=18+6=24故选:A.【点评】本题考查了平行四边形的性质及全等三角形的判定与性质,难度不大,属于中档题.二.填空题(共8小题)11.【分析】设△ABC三边的中点分别为E、F、G,由三角形中位线定理可求得△ABC三边的和,可求得答案.【解答】解:设△ABC三边的中点分别为E、F、G,如图,∵D、E、F分别为AB、BC、AC的中点,∴AB=2EF,BC=2DF,AC=2DE,∴AB+BC+AC=2(EF+DF+DE),∵△DEF的周长为15cm,∴EF+DF+DE=15cm,∴AB+BC+AC=2×15cm=30cm,即△ABC的周长为30cm,故答案为:30.【点评】本题主要考查三角形中位线定理,掌握三角形中位线平行且等于第三边的一半是解题的关键.12.【分析】由三角形中位线定理和直角三角形斜边上的中线性质求出DF、EF、DE的长,即可得出答案.【解答】解:∵点D、F分别是边AB、BC的中点,AB=AC=12,BE是高,∴DF是△ABC的中位线,AF⊥BC,BE⊥AC,∴DF=AC=6,EF=BC=4,DE=AB=6,∴△DEF的周长=DF+EF+DE=6+4+6=16;故答案为:16.【点评】此题考查的直角三角形斜边上的中线性质、等腰三角形的性质、三角形中位线的性质,熟记以上性质是解题的关键.13.【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9﹣3t=5﹣t,解方程即可,②当Q运动到E和B之间时,设运动时间为t,则得:3t﹣9=5﹣t,解方程即可.【解答】解:∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9﹣3t=5﹣t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t﹣9=5﹣t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形,故答案为:2秒或3.5秒.【点评】本题考查了平行四边形的判定、分类讨论等知识,熟练掌握平行四边形的判定方法、进行分类讨论是解题的关键.14.【分析】直接利用平行四边形的性质得出D点坐标.【解答】解:连接AB、BC、CD、AD,如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴四边形ABCD是平行四边形,∴D点坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解题关键.15.【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=3cm,OB=4cm,∴AB==5(cm).故答案是:5cm.【点评】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.16.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【解答】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB===13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S=BC•AC=AB•CD,△ABC即×12×5=×13•CD,解得:CD=,∴EF=.故答案为:.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB 时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.17.【分析】过点B作BF⊥AD于点F,延长DF使FG=EC,由题意可证四边形CDFB是正方形,由正方形的性质可得CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,由全等三角形的性质可得AG=AE=5,可得AF=3,由勾股定理可得BC=DC=6.【解答】解:过点B作BF⊥AD于点F,延长DF使FG=EC,连接BG,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴AF=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:6【点评】本题考查了正方形的判定和性质,全等三角形的判定和性质,勾股定理,添加恰当的辅助线构造全等三角形是本题的关键.18.【分析】由平行四边形的性质求得BC的长及OA=OC,OB=OD;在Rt△ABC中油勾股定理求得AC的长;在Rt△BOC中由勾股定理求得OB的长,再乘以2即可得出BD的长.【解答】解:∵在平行四边形ABCD中,AB=13,AD=5,∴BC=AD=5∵AC⊥BC∴在Rt△ABC中,由勾股定理可知AC==12∵四边形ABCD为平行四边形∴OA=OC,OB=OD∴OC=AC=6∴在Rt△BOC中,由勾股定理得:OB===∴BD=2OB=2故答案为:2.【点评】本题考查了平行四边形的性质及勾股定理在计算中的应用,熟练掌握相关性质定理是解题的关键.三.解答题(共7小题)19.【分析】首先根据等腰三角形的性质可得F是AD中点,再根据三角形的中位线定理可得EF=BD.【解答】证明:∵CD=CA,CF平分∠ACB,∴F是AD中点,∵AE=EB,∴E是AB中点,∴EF是△ABD的中位线,∴EF=BD.【点评】此题主要考查了三角形中位线定理,以及等腰三角形的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.20.【分析】(1)根据余角的性质得到∠ECF=∠CAF,求得∠CAD=2∠DCB,由CD是斜边AB上的中线,得到CD=BD,推出∠CAB=2∠B,于是得到结论;(2)根据直角三角形的性质即可得到结论.【解答】解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.【点评】本题考查了直角三角形斜边上的中线,等腰三角形的性质,三角形的内角和,正确的识别图形是解题的关键.21.【分析】(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM=DN,BM∥DN,则由有一组对边平行且相等的四边形是平行四边形即可证明.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD又由(1)得AM=CN,∴BM=DN,BM∥DN,∴四边形BMDN是平行四边形.【点评】本题考查了平行四边形的判定及性质,全等三角形的判定,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.22.【分析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)分两种情况讨论即可.【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA=45°,∴EQ=EP,∵∠QEF+∠PEF=90°,∠PED+∠PEF=90°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)①当DE与AD的夹角为35°时,如图2,∵∠ADE=35°,∠ADC=90°∴∠EDC=55°∵∠EDC+∠DEF+∠EFC+∠FCD=360°∴∠EFC=360°﹣90°﹣90°﹣55°=125°②当DE与DC的夹角为35°时,如图3∵∠DEF=∠DCF=90°∴点D,点E,点C,点F四点共圆∴∠EDC=∠EFC=35°【点评】本题考查了正方形的判定和性质,矩形的性质,全等三角形判定和性质,利用分类讨论思想解决问题是本题的关键.23.【分析】(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC 得出AD=BC,即可得出结论;(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得OD=4,得出BD=2OD=8,再由直角三角形斜边上的中线性质即可得出结果.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.【点评】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.24.【分析】(1)根据∠ACB=90°,CD⊥AB,∠B=30°,AC=6,即可求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,根据菱形的判定即可判断四边形CEGF的形状,【解答】解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形【点评】本题考查了菱形的判定和性质,解决本题的关键是综合运用角平分线的性质、等腰三角形的判定、30度特殊角的直角三角形.25.【分析】(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义得到结论.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.【点评】本题考查了平行四边形的判定与性质,勾股定理和中线的定义,注意寻找求AB 和EB的长的方法和途径是解题的关键.。
人教版八年级数学下册《第十八章平行四边形》单元测试卷(带答案)
人教版八年级数学下册《第十八章平行四边形》单元测试卷(带答案)(本试卷三个大题,24个小题。
满分120分,考试时间120分钟。
)学校班级姓名学号一、选择题(本大题10个小题,每小题3分,共30分)1.在▱ABCD中,∠A=80°,则∠D的度数为()A.120° B.100° C.80° D.60°2.▱ABCD的周长为20,AB=4,AD等于()A.4 B.6 C.8 D.103.在菱形ABCD中,对角线AC,BD相交于点O,∠ADO=40°,则∠DAO的度数为()A.40° B.50° C.60° D.80°4.正方形具有而菱形不具有的性质是()A.四条边都相等 B.对角线互相垂直C.两组对角分别相等 D.四个角都是直角5.如图所示的▱ABCD,再添加下列某一个条件,不能判定▱ABCD是矩形的是()A.AC=BD B.AB⊥BCC.∠1=∠2 D.∠ABC=∠BCD第5题图第6题图第7题图第8题图6.如图,四边形ABCD为菱形,A,B两点的坐标分别是(3,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.8 B.4 C.6 D.57.如图,正方形ABCD中,E为对角线BD上一点,∠BEC=70°,那么∠DAE的度数为()A.10° B.15° C.25° D.30°8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.22a C.3a D.43 3a9.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.50° B.45° C.40° D.36°第9题图第10题图第11题图第13题图10.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC分别交于点G,F,点H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB=23,则3S△EDH=13S△DHC.其中结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题8个小题,每小题3分,共24分)11.如图,若直线AE∥BD,点C在直线BD上,且AE=5,BD=8,△ABD的面积为16,则△ACE 的面积为___.12.矩形两条对角线的夹角为60°,对角线长为14,则该矩形较短边的边长为____.13.如图,将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE,点D,F分别是斜边AB,AE的中点,连接CD,CF,则四边形ADCF的形状是____.14.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为____°.第14题图第15题图第 16题图第17题图第18题图15.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是____.16.如图,菱形ABCD中,AC=8,BD=6,BE⊥AD,则BE=____.17.如图,△ABC中,N是BC边上的中点,AM平分∠BAC,BM⊥AM于点M,若AB=8,MN=2,则AC=____.18.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为 .三、解答题(本大题6个小题,共66分)19.(8分)如图,在矩形ABCD中,BF=CE,求证:AE=DF.20.(8分)如图,在△ABC中,已知AB=AC=5,AD平分∠BAC,E是AC边的中点.(1)求DE的长;(2)若AD的长为4,求△DEC的面积.21.(10分)如图,已知▱ABCD中,点E为BC边的中点,连接DE并延长DE交AB的延长线于点F,求证:四边形DBFC是平行四边形.22.(12分)如图,矩形ABCD中,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE,当AC=4,∠ACB=30°时,求BE的长.23.(12分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.24.(16分)如图,已知△ABC和△DEF是两个边长都为1 cm的等边三角形,且点B,D,C,E 都在同一直线上,连接AD,CF.(1)求证:四边形ADFC是平行四边形;(2)若BD=0.3 cm,△ABC沿着BE的方向以每秒1 cm的速度运动,设△ABC运动的时间为t s.①当t为何值时,四边形ADFC是菱形?请说明理由;②四边形ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.参考答案与解析一、选择题(本大题10个小题,每小题3分,共30分)1.在▱ABCD中,∠A=80°,则∠D的度数为 ( B )A.120° B.100° C.80° D.60°2.▱ABCD的周长为20,AB=4,AD等于 ( B )A.4 B.6 C.8 D.103.在菱形ABCD中,对角线AC,BD相交于点O,∠ADO=40°,则∠DAO的度数为( B )A.40° B.50° C.60° D.80°4.正方形具有而菱形不具有的性质是 ( D )A.四条边都相等 B.对角线互相垂直C.两组对角分别相等 D.四个角都是直角5.如图所示的▱ABCD,再添加下列某一个条件,不能判定▱ABCD是矩形的是( C )A.AC=BD B.AB⊥BCC.∠1=∠2 D.∠ABC=∠BCD第5题图第6题图第7题图第8题图6.如图,四边形ABCD为菱形,A,B两点的坐标分别是(3,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于 ( A )A.8 B.4 C.6 D.57.如图,正方形ABCD中,E为对角线BD上一点,∠BEC=70°,那么∠DAE的度数为( C )A.10° B.15° C.25° D.30°8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是AB的中点,CD=DE=a,则AB 的长为 ( B )A.2a B.22a C.3a D.43 3a9.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( D )A.50° B.45° C.40° D.36°第9题图第10题图第11题图第13题图10.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC分别交于点G,F,点H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB=23,则3S△EDH=13S△DHC.其中结论正确的有 ( D )A.1个 B.2个 C.3个 D.4个二、填空题(本大题8个小题,每小题3分,共24分)11.如图,若直线AE∥BD,点C在直线BD上,且AE=5,BD=8,△ABD的面积为16,则△ACE 的面积为__10__.12.矩形两条对角线的夹角为60°,对角线长为14,则该矩形较短边的边长为__7__. 13.如图,将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE,点D,F分别是斜边AB,AE的中点,连接CD,CF,则四边形ADCF的形状是__菱形__.14.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为__135__°.第14题图第15题图第16题图第17题图第18题图15.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是__S1=S2__.16.如图,菱形ABCD中,AC=8,BD=6,BE⊥AD,则BE=__4.8__.17.如图,△ABC中,N是BC边上的中点,AM平分∠BAC,BM⊥AM于点M,若AB=8,MN=2,则AC=__12__.18.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为4 2.三、解答题(本大题6个小题,共66分)19.(8分) 如图,在矩形ABCD中,BF=CE,求证:AE=DF.证明:∵四边形ABCD 是矩形,∴AB =DC ,∠B =∠C =90°∵BF =CE ,∴BE =CF.在△ABE 和△DCF 中,⎩⎨⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(SAS),∴AE =DF.20.(8分)如图,在△ABC 中,已知AB =AC =5,AD 平分∠BAC ,E 是AC 边的中点.(1)求DE 的长;(2)若AD 的长为4,求△DEC 的面积.解:(1)∵AB =AC =5,AD 平分∠BAC ,∴AD ⊥BC∵E 是AC 边的中点,∴DE =52. (2)∵AB =AC =5,AD =4,∴CD =3,∴S △ADC =6,∴S △DEC =12S △ADC =3.21.(10分)如图,已知▱ABCD 中,点E 为BC 边的中点,连接DE 并延长DE 交AB 的延长线于点F ,求证:四边形DBFC 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠DCB =∠CBF∠CDF =∠DFB ,∵点E 为BC 边的中点,∴BE =CE∴△DEC ≌△FEB(AAS).∴BF =CD ,且AB ∥CD∴四边形DBFC是平行四边形.22.(12分)如图,矩形ABCD中,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE 交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE,当AC=4,∠ACB=30°时,求BE的长.(1)证明:∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE.又∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD.∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF∴AE=EF=AC=CF,∴四边形ACFE是菱形.(2)解:∵AC=4,∠ACB=30°,∠ABC=90°,∴AB=12AC=2∴BC=AC2-AB2=23,∴CD=AB=2=DE,∴BE=CE2+BC2=27.23.(12分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∵BE⊥BF,∴∠FBE=90°.∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF.∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:由BE⊥BF,BE=BF,得∠BEF=45°∴∠EGC=∠EBG+∠BEF=90°-∠ABE+∠BEF=90°-55°+45°=80°.24.(16分)如图,已知△ABC和△DEF是两个边长都为1 cm的等边三角形,且点B,D,C,E 都在同一直线上,连接AD,CF.(1)求证:四边形ADFC是平行四边形;(2)若BD=0.3 cm,△ABC沿着BE的方向以每秒1 cm的速度运动,设△ABC运动的时间为t s.①当t为何值时,四边形ADFC是菱形?请说明理由;②四边形ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.题图(1)证明:∵△ABC和△DEF是两个边长都为1 cm的等边三角形∴AC=DF=1 cm,∠ACB=∠FDE=60°,∴AC∥DF∴四边形ADFC是平行四边形.(2)解:①当t=0.3时,四边形ADFC是菱形理由:∵△ABC沿着BE的方向以每秒1 cm的速度运动∴当t=0.31=0.3时,点B与点D重合,如答图①所示则AD=AE=BC=DE=DF=EF,∴四边形ADFC是菱形.答图②有可能.若四边形ADFC是矩形,则∠ADF=90°,如答图②∴∠ADC=90°-60°=30°.同理∠DAB=30°=∠ADC,∴BA=BD.同理EC=EF∴点E与点B重合,∴t=(1+0.3)÷1=1.3.此时,在Rt△ADF中,∠ADF=90°,DF=1 cm,AF=2 cm∴AD=AF2-DF2=22-12=3(cm)∴矩形ADFC的面积=AD·DF= 3 cm2.即当t为1.3时,四边形ADFC是矩形,此矩形的面积为 3 cm2.第11页共11页。
人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)
人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。
人教版八年级数学下册 第18章 平行四边形 单元练习卷含答案
人教版八年级数学下册第18章平行四边形单元练习卷含答案一.选择题(共6小题)1.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.73.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④4.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A.35°B.45°C.50°D.55°5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE ⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.B.C.D.56.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD 于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤二.填空题(共6小题)7.如图,E、F是平行四边形ABCD的对角线BD上的点,要使四边形AFCE是平行四边形,还需添加的一个条件是(只需添加一个正确的即可).8.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2,则∠EDF=°,线段AB的长度=.9.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为.10.如图,在矩形ABCD中,过点D作DE⊥AC,垂足为E,延长线ED至F,使DF=AC,连接BF交AD于G.若AB=1,AD=2,则∠ABG=,GF=.11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.12.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是.三.解答题13.如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=2,FN=1,求BN的长.14.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.15.如图,已知E是▱ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.(1)求证:四边形ABFC是平行四边形;(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形.16.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.17.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.18.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.19.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.参考答案与试题解析一.选择题(共6小题)1.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.7【分析】如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.构建S△BEG=S△BCE+S ECG﹣S△BCG计算即可;【解答】解:如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.∵BC=2AB,BH=CH,∠ABC=60°,∴BA=BH=CH,∴△ABH是等边三角形,∴HA=HB=HC,∴∠BAC=90°,∴∠ACB=30°,∵EC⊥BC,∠BCD=180°﹣∠ABC=120°,∴∠ACE=60°,∠ECM=30°,∵BC=2AB=8,∴CD=4,CN=EN=2,∴EC=4,EM=2,∴S△BEG=S△BCE+S ECG﹣S△BCG=×8×4+×2×2﹣S平行四边形ABCD=16+2﹣4=14故选:B.3.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG =CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.4.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A.35°B.45°C.50°D.55°【分析】延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而求得∠FPC的度数,根据余角的定义即可得到结果.【解答】解:如图,延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵∠BEP=90°,∴EF=PG=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°,∴∠EPF=90°﹣55°=35°,故选:A.5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE ⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.B.C.D.5【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【解答】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:B.6.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD 于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD∴∠AFH=∠AFE+∠GFH=90°+45°=135°∠EGH=180°﹣∠EGB=180°﹣45°=135°∴∠AFH=∠EGH∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG∴∠AHF+AHG=∠EHG+∠AHG即∠FHG=∠AHE=90°∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠FAH=∠GEH,∵∠BAF=CEG=90°∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH∴△EHF≌△AHD所以④正确.⑤设EC=FD=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.二.填空题(共6小题)7.如图,E、F是平行四边形ABCD的对角线BD上的点,要使四边形AFCE是平行四边形,还需添加的一个条件是BF=DE(答案不唯一)(只需添加一个正确的即可).【分析】由平行四边形的判定定理,通过对角线互相平分得出结论.【解答】解:添加的一个条件为BF=DE;理由如下:∵四边形ABCD是平行四边形,∴AO=CO、BO=DO,∵BF=DE,∴OE=OF,∴四边形AFCE是平行四边形;故答案为:BF=DE(答案不唯一).8.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2,则∠EDF=45 °,线段AB的长度=2.【分析】延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N,先证明∠EDF=45°,在Rt△EMN中求出EM,再证明△AEM是等腰直角三角形即可解决问题.【解答】解:如图,延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N.∵∠C=90°,∴∠BAC+∠B=90°,∵AE=AD,BF=BD,∴∠AED=∠ADE,∠BDF=∠BFD,∴2∠ADE+∠BAC=180°,2∠BDF+∠B=180°,∴2∠ADE+2∠BDF=270°,∴∠ADE+∠BDF=135°,∴∠EDF=180°﹣(∠ADE+∠BDF)=45°,∵∠END=90°,DE=,∴∠EDF=∠DEN=45°,∴EN=DN=1,在△DAM和△DBF中,,∴△ADM≌△BDF(SAS),∴BF=AM=BD=AD=AE,∠MAD=∠B,∴∠MAE=∠MAD+∠BAC=90°,∴EM=AM,在Rt△EMN中,∵EN=1,MN=DM+DN=3,∴EM==,∴AM=,AB=2AM=2.故答案为:45,2.9.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为(4,4)或(﹣5,).【分析】作AM⊥BC于M,由题意得出AD∥BC,OB=4,OC=1,OM=1得出AD=BC=5,BM=3,CM=2,①当点D在y轴的右侧时,由菱形的性质得出AB=BC=5,由勾股定理得出AM==4,得出点D的坐标为(4,4);②当点D在y轴的左侧时,由菱形的性质得出AB=BC=5,由勾股定理得出AM==,得出点D的坐标为(﹣6,).【解答】解:作AM⊥BC于M,∵A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,∴AD∥BC,OB=4,OC=1,OM=1,∴AD=BC=5,BM=3,CM=2,分两种情况:①当点D在y轴的右侧时,如图1所示:∵以点A、B、C、D为顶点的四边形是菱形,∴AB=BC=5,∴AM===4,∴点D的坐标为(4,4);②当点D在y轴的左侧时,如图2所示:∵以点A、B、C、D为顶点的四边形是菱形,∴AB=BC=5,∴AM===,∴点D的坐标为(﹣6,);综上所述,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为(4,4)或(﹣6,);故答案为:(4,4)或(﹣6,).10.如图,在矩形ABCD中,过点D作DE⊥AC,垂足为E,延长线ED至F,使DF=AC,连接BF交AD于G.若AB=1,AD=2,则∠ABG=45°,GF=2.【分析】如图,作FH⊥AD交AD的延长线于H.由△ADC≌△FHD(AAS),推出FH=AD=2,DH=CD=1,由AB∥FH,推出AG:GH=AB:FH=1:2,由AH=AD+DH=2+1=3,推出AG =1,GH=2,由此即可解决问题;【解答】解:如图,作FH⊥AD交AD的延长线于H.∵四边形ABCD是矩形,∴AD=BC=2,AB=CD=1,∠ADC=∠CDH=∠H=∠BAD=90°,∵∠ACD+∠CDE=90°,∠CDE+∠FDH=90°,∴∠ACD=∠FDH,∵AC=DF,∴△ADC≌△FHD(AAS)∴FH=AD=2,DH=CD=1,∵AB∥FH,∴AG:GH=AB:FH=1:2,∵AH=AD+DH=2+1=3,∴AG=1,GH=2,∴AB=AG=1,GH=FH=2,∴∠ABG=45°,FG==2,故答案为45°,2.11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.12.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是 6.5 .【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD=AB.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD=AB=6.5,故答案是:6.5.三.解答题13.如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=2,FN=1,求BN的长.【分析】(1)欲证明四边形AMCN是平行四边形,只要证明CM∥AN,AM∥CN即可;(2)首先证明△MDE≌△NBF,推出ME=NF=1,在Rt△DME中,根据勾股定理即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=1,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴BN=DM===.14.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【分析】(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由平行四边形的性质、等腰三角形的判定即可解决问题;【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.15.如图,已知E是▱ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.(1)求证:四边形ABFC是平行四边形;(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形.【分析】(1)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,(2)根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE 的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE =∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,(2)∵四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.16.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC,(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由▱ABDI 和▱ACHG的性质证得,AC=AB.【解答】(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.17.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【分析】(1)根据有三个角是直角的四边形是矩形证明四边形MANP是矩形,再根据角平分线的性质得:PM=PN,可得结论;(2)证明△EPM≌△BPN,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)18.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.19.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.【分析】(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE是平行四边形,再根据菱形的判定即可得出结论;(2)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,根据勾股定理可得62+x2=(18﹣x)2,BE=10,得到OB=BE=5,设PE =y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,根据勾股定理可得62+(8﹣y)2=y2,解得y=,在Rt△BOP中,根据勾股定理可得PO==,由PQ=2PO 即可求解.【解答】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵O,F分别为PQ,AB的中点,∴AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,BE=18﹣x=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,PO==,∴PQ=2PO=.。
人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)
第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。
D.8错误!未找到引用源。
3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。
C.4-2 错误!未找到引用源。
D.3 错误!未找到引用源。
-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册第18章 平行四边形
单元测试试卷(A 卷)
(时间90分钟 满分100分)
班级 学号 姓名 得分
一、填空题(共14小题,每题2分,共28分)
1.四边形的内角和等于 º,外角和等于 º .
2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.
4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).
5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .
6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.
8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .
10.如图,
ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长
为 .
11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分
梯形所得的两个梯形的面积比S 1 :S 2为 .
12
.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形
第10题 第11题
_______(请填图形下面的代号).
13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线
前进10米,又向左转30°,……照这样走下去,他第一次回到出发地
A点时,一共走了米.
14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次
连接第二个正方形各边的中点得到第三个正方形,按此方法继续下
去,若第一个正方形的边长为1,则第n个正方形的面积是.
二、填空题(共4小题,每题3分,共12分)
15.如图,ABCD中,AE平分∠DAB,∠B=100°,则∠DAE
等于()
A.100°B.80°C.60°D.40°
16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形
17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()
A.6条B.7条C.8条D.9条
18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,
图中(包括实线、虚线在内)共有全等三角形()对.
A.1 B.2 C.3 D.4
30°
30°
30°
A
第13题
第15题
第18题
三、解答题(共60分)
19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.
20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.
21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?
22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分
23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?
24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.
已知:
求证:
证明:
25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)判断OE与OF的大小关系?并说明理由?
(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.
26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且
DE=1
2
BC.•根据上面的结论:
(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.
(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.
27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?
28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.
参考答案
一、填空题
1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD
是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+4
9.5
10.
41511.6,
7
5
12.② 13.120 14.1
12n -⎛⎫
⎪
⎝⎭
二、选择题
15.•D •16.D 17.A 18.D 三、解答题
19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°
.....................................
使用本文档删除后面的即可
致力于打造全网一站式文档服务需求,
为大家节约时间
文档来源网络仅供参考
欢迎您下载可以编辑的word文档
谢谢你的下载
本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,
打造全网一站式精品需求!
欢迎您的下载,资料仅供参考!。