编译原理——语法分析
《编译原理》实验3_PL0语法分析
《编译原理》实验3_PL0语法分析编译原理是计算机科学中的重要课程,它涉及了程序语言的设计、编译器的构建以及编程语言的解释和执行等方面。
在编译原理的实验部分中,PL0语法分析是一个重要的实验项目。
PL0语法分析是基于PL0语言的语法规则来构建语法分析器,实现对PL0代码的分析和解释。
在这个实验中,我们将完成PL0语法分析器的设计和实现,并对其进行测试。
首先,我们需要了解PL0语言的语法规则。
PL0语言是一种过程型语言,类似于Pascal语言。
它有一套严格的语法规则,包括声明语句、赋值语句、条件语句、循环语句等。
我们需要先从PL0语言文法中提取出规则,然后将其转化为一个语法分析器。
接下来,我们需要设计和实现语法分析器。
语法分析器的主要任务是根据PL0语言的文法规则来分析和解释PL0代码。
我们可以选择使用自顶向下的语法分析方法,如递归下降分析法。
递归下降分析法是一种简单直观的语法分析方法,它通过递归调用子程序来分析和解释代码。
在设计语法分析器时,我们需要根据PL0语言的文法规则来设计相应的文法产生式和语法分析程序。
文法产生式描述了PL0语言的句子结构,它由非终结符和终结符组成,并用箭头“->”来表示产生关系。
语法分析程序则是根据产生式来解释和分析代码。
最后,我们需要编写测试代码来验证语法分析器的正确性。
测试代码应该包含PL0语言的各种语法结构和语法错误,从而验证语法分析器在不同情况下的正确性和鲁棒性。
通过完成这个实验项目,我们能够深入了解编译原理中的语法分析技术,并提升我们的编程能力和问题解决能力。
同时,我们也能够加深对PL0语言的理解,为以后的编程工作打下坚实的基础。
03-第3章-语法分析-编译原理-中国科技大学(共13讲)
• 例 ( {id, +, , , (, )}, {expr, op}, expr, P )
expr expr op expr expr expr op +
3.2 语言和文法
• 无二义的文法 stmt matched _stmt | unmatched_stmt matched_stmt if expr then matched_stmt else matched_stmt | other unmatched_stmt if expr then stmt | if expr then matched_stmt else unmatched_stmt
3.2 语言和文法
expr expr + term | term term term factor | factor factor id | (expr)
expr term
term expr factor id term factor id expr + term * factor id id + id id 分析树
3.2 语言和文法
3.2.3 验证文法产生的语言 G : S (S) S | L(G) = 配对的括号串的集合 • 按串长进行归纳:配对括号串可由S推出
–归纳基础: S – 归纳假设:长度小于2n的都可以从S推导出来 – 归纳步骤:考虑长度为2n(n 1)的w = (x) y S (S)S * (x) S * (x) y
编译原理和技术
中国科学技术大学 计算机科学与技术学院 陈意云
C语言编译原理词法分析和语法分析
C语言编译原理词法分析和语法分析编程语言的编写和使用离不开编译器的支持,而编译器的核心功能之一就是对代码进行词法分析和语法分析。
C语言作为一种常用的高级编程语言,也有着自己的词法分析和语法分析规则。
一、词法分析词法分析是编译器的第一阶段,也是将源代码拆分为一个个独立单词(token)的过程。
在C语言中,常见的单词包括关键字(如if、while等)、标识符(如变量名)、常量(如数字、字符常量)等。
词法分析器会根据预定义的规则对源代码进行扫描,并将扫描到的单词转化为对应的符号表示。
词法分析的过程可以通过有限自动机来实现,其中包括各种状态和状态转换规则。
词法分析器通常会使用正则表达式和有限自动机的方法来进行实现。
通过词法分析,源代码可以被分解为一个个符号,为后续的语法分析提供基础。
二、语法分析语法分析是编译器的第二阶段,也是将词法分析得到的单词序列转换为一棵具有语法结构的抽象语法树(AST)的过程。
在C语言中,语法分析器会根据C语言的文法规则,逐句解析源代码,并生成相应的语法树。
C语言的语法规则相对复杂,其中包括了各种语句、表达式、声明等。
语法分析的过程主要通过递归下降分析法、LR分析法等来实现。
语法分析器会根据文法规则建立语法树的分析过程,对每个语法结构进行逐步推导和分析,最终生成一棵完整的语法树。
三、编译器中的词法分析和语法分析在编译器中实现词法分析和语法分析是一项重要的技术任务。
编译器通常会将词法分析和语法分析整合在一起,形成一个完整的前端。
在C语言编译器中,词法分析和语法分析器会根据C语言的词法规则和文法规则,对源代码进行解析,并生成相应的中间表示形式,如语法树或者中间代码。
词法分析和语法分析的结果会成为后续编译器中各个阶段的输入,如语义分析、中间代码生成、目标代码生成等。
编译器的优化和错误处理也与词法分析和语法分析有密切关系。
因此,对词法分析和语法分析的理解和实现对于编译器开发者而言是非常重要的。
编译原理_课件_第三章_语法分析1
3.2 推导和语法树
推导、规范推导 短语、句柄、素短语 语法树 文法的二义性
30
【例】设有文法G[N]: N →D|ND
D→0|1|2|3|4|5|6|7|8|9 则句子 12可由三种不同的推导序列推导出来:
(1) N ? ND ? N2 ? D2 ? 12 (2) N ? ND ? DD ? 1D ? 12 (3) N ? ND ? DD ? D2 ? 12
u∈V* ;且 V=VN∪VT。
U称为规则(产生式)左部 ,u称为规则(产生式) 右部。 ? 非终结符号 :需要进一步定义的符号,不会出现在 程序中。 ? 终结符号 :不需要再定义,会出现在程序中。
10
注意:
1、VN∩VT=? ,即文法中的任意一个符号要么是非 终结符,要么是终结符。
2、只用一个产生式并不足以定义一个语法范畴, 一般都需要几个产生式,特别是需要含有 递归的 产生式。
6
3.1.1 文法概述
引例1:
<句子>::=<主语><谓语><状语> <主语>::=<名词> <谓语>::=<动词> <状语>::=<介词><名词> <名词>::=Peter | Berry | river <动词>::=swims <介词>::=in 注:<句子>为要定义的目标,称为识别符号或开始符号。
? 形式语言,只是从语法上研究语言。它是抽象的数学系统, 用于模拟程序设计语言的语法,或者是并不很成功地模拟 自然语言如英语的语法。
? 形式语言理论是编译理论的重要基础,它主要研究组成符 号语言的符号串的集合及它们的表示法、结构与特性。
编译原理语法分析(1)
例如, 考虑句子 i+i*i 按文法G[E]的推导 最左推导: EE+Ei+Ei+E*E i+i*E i+i*i 最右推导: EE+EE+E*EE+E*i E+i*ii+i*i 注意: 推导过程不唯一, 通常只考虑最左 推导或最右推导。 最右推导又称为规范推导。 规范推导的逆过程称为规范归约。
+ 。 * 意味着或 = , 或 即1 n 1 n 1 n
例如,考虑算术表达式文法G[E]: E→E+E∣E*E∣(E)│i 非终结符E代表一类算术表达式, 从E出发可进行一系列推导, 表达式 i+i*i 的推导如下: E E+E E+E*E E+E*i E+i*i i+i*I 注意: 在每一步推 导中,只能对其中一个 非终结符用其对应的产生式右部的 一个候选式来替换。
文法可表示为 VN为非空非终结符集,且VT∩VN=Φ; (3) S为文法开始符, S∈VN; (4)ξ是产生式的非空有限集, 其中每个 产生式(规则)记作 → 或 ::= 左部∈(VT∪VN)+至少含一非终结符, 右部∈(VT∪VN)*。
B
3.1.3 正规式与上下文无关文法 1. 正规式到上下文无关文法的转换 由正规式构造CFG的一种方法: (1)构造正规式的NFA; (2)若0为初始状态, 则A0为开始符; (3)若存在映射关系f(i,a)=j, 则定义产生式Ai →aAj; (4)若存在映射关系f(i,ε)=j, 则定义产生式Ai →Aj; (5) 若i为终态, 则定义产生式Ai →ε。
产生式 (也称产生式规则或规则) 是 定义语法实体的一种书写规则。一个语 法实体的相关规则可能不止一个, 如: P→1, P→2 , P→n 相同左部的产生式可合并为一个: P→ 1| 2|„| n 其中, i(i=1,2,„,n)称为P的候选式。
编译原理 第五章 语法分析-自下而上分析
5.2.2 算符优先分析算法
• 素短语:
–是一个短语,它至少含有一个终结符,并且,除 它自身之外不再含任何更小的素短语。
• 最左素短语:
–最左边的素短语是最左素短语。
• 例子:
– 对文法(5.3)p*p和i是句型p*p+i的素短语,而p*p+i 本身也是素短语。
பைடு நூலகம்
• 算符优先文法:
算符优先文法,我们把句型(括在两个#之间) 的一般形式写成: #N1a1N2a2…NnanNn+1# 其中,每个ai都是终结符,Ni是可有可无的非终结 符。 文法G的任何短语是满足如下条件的最左子串 Njaj…NiaiNi+1 aj-1⋖ aj aj ≖ aj+1 , …,aj-1 ≖ ai ai ⋗ ai+1
– 对于每个终结符a(包括#)令其对应两个符号fa 和ga ,画一张以fa 和ga 所有符号为结点的方向图, 如 果 a⋗≖b, 那 么 , 就 从 fa 画 一 箭 弧 至 gb ; 如 果 a ⋖≖b,就画一条从gb到fa的箭弧。 – 对每个结点都赋予一个数,此数等于从该结点能 到达结点(包括出发结点自身在内)的个数。赋 给fa的数作为f(a),赋给gb的数作为g(b)。 –检查所构造出来的函数f和g,看它们 同原来的关 系表是否有矛盾。如果没有矛盾,则f和g就是所 要的优先函数。如果有矛盾,那么,就不存在优 先函数。
• 例子:假定文法G
S→aAcBe A→b A→Ab B→d 输入串abbcde归约到S过程。
图5.1 规约中符号栈的变迁
步骤 动作
1 进 a
2 进 b
3 归 (2)
4 进 b
5 归 (3)
6 进 c
7 进 d d
编译原理语法分析器
编译原理语法分析器编译原理语法分析器是编译器中的重要组成部分,它负责将源代码解析成抽象语法树,为后续的语义分析和代码生成做准备。
本文将介绍语法分析器的原理、分类和常用算法。
一、语法分析器的原理语法分析器的主要任务是根据给定的文法定义,将源代码解析成一个个语法单元,并构建出一棵抽象语法树。
它通过递归下降、预测分析和LR分析等算法来实现。
1. 递归下降法递归下降法是一种基于产生式的自顶向下分析方法。
它从文法的开始符号出发,通过不断地推导和回溯,逐步地构建抽象语法树。
递归下降法易于理解和实现,但对左递归和回溯有一定的局限性。
2. 预测分析法预测分析法也是自顶向下的分析方法,它通过预测下一个输入符号来选择适当的产生式进行推导。
为了提高效率,预测分析法使用预测分析表来存储各个非终结符和终结符的关系。
3. LR分析法LR分析法是一种自底向上的分析方法,它使用LR自动机和LR分析表来进行分析。
LR自动机是一个有限状态控制器,通过状态转移和规约动作来解析源代码。
LR分析表存储了状态转移和规约的规则。
二、语法分析器的分类根据语法分析器的特性和实现方式,可以将其分为LL分析器和LR 分析器。
1. LL分析器LL分析器是基于递归下降法和预测分析法的一类分析器。
它从左到右、从左到右地扫描源代码,并根据预测分析表进行推导。
常见的LL分析器有LL(1)分析器和LL(k)分析器。
2. LR分析器LR分析器是基于LR分析法的一类分析器。
它先通过移进-归约的方式建立一棵语法树,然后再进行规约操作。
LR分析器具有强大的语法处理能力,常见的LR分析器有LR(0)、SLR(1)、LR(1)和LALR(1)分析器。
三、常用的语法分析算法除了递归下降法、预测分析法和LR分析法,还有一些其他的语法分析算法。
1. LL算法LL算法是一种递归下降法的改进算法,它通过构造LL表和预测分析表实现分析过程。
LL算法具有很好的可读性和易于理解的特点。
2. LR算法LR算法是一种自底向上的分析方法,它通过建立LR自动机和构造LR分析表来进行分析。
编译原理的词法分析与语法分析
编译原理的词法分析与语法分析编译原理是计算机科学中的一门重要课程,它研究如何将源代码转换为可执行的机器代码。
在编译过程中,词法分析和语法分析是其中两个基本的阶段。
本文将分别介绍词法分析和语法分析的基本概念、原理以及实现方法。
1. 词法分析词法分析是编译过程中的第一个阶段,主要任务是将输入的源代码分解成一个个的词法单元。
词法单元是指具有独立意义的最小语法单位,比如变量名、关键字、操作符等。
词法分析器通常使用有限自动机(finite automaton)来实现。
在词法分析的过程中,需要定义词法规则,即描述每个词法单元的模式。
常见的词法规则有正则表达式和有限自动机。
词法分析器会根据这些规则匹配输入的字符序列,并生成相应的词法单元。
2. 语法分析语法分析是编译过程中的第二个阶段,它的任务是将词法分析器生成的词法单元序列转换为语法树(syntax tree)或抽象语法树(abstract syntax tree)。
语法树是源代码的一种抽象表示方式,它反映了源代码中语法结构和运算优先级的关系。
语法分析器通常使用上下文无关文法(context-free grammar)来描述源代码的语法结构。
常见的语法分析算法有递归下降分析法、LR分析法和LL分析法等。
递归下降分析法是一种自顶向下的分析方法,它从源代码的起始符号开始,递归地展开产生式,直到匹配到输入的词法单元。
递归下降分析法的实现比较直观,但对于左递归的文法处理不方便。
LR分析法是一种自底向上的分析方法,它使用一个自动机来分析输入的词法单元,并根据文法规则进行规约操作,最终生成语法树。
常见的LR分析法有LR(0)、SLR、LR(1)和LALR等。
LL分析法是一种自顶向下的分析方法,它从源代码的起始符号开始,预测下一个要匹配的词法单元,并进行相应的推导规则。
LL分析法常用于编程语言中,如Java和Python。
3. 词法分析和语法分析的关系词法分析是语法分析的一个子阶段,它为语法分析器提供了一个符号序列,并根据语法规则进行分析和匹配。
编译原理实验二:LL(1)语法分析器
编译原理实验⼆:LL(1)语法分析器⼀、实验要求 1. 提取左公因⼦或消除左递归(实现了消除左递归) 2. 递归求First集和Follow集 其它的只要按照课本上的步骤顺序写下来就好(但是代码量超多...),下⾯我贴出实验的⼀些关键代码和算法思想。
⼆、基于预测分析表法的语法分析 2.1 代码结构 2.1.1 Grammar类 功能:主要⽤来处理输⼊的⽂法,包括将⽂法中的终结符和⾮终结符分别存储,检测直接左递归和左公因⼦,消除直接左递归,获得所有⾮终结符的First集,Follow集以及产⽣式的Select集。
#ifndef GRAMMAR_H#define GRAMMAR_H#include <string>#include <cstring>#include <iostream>#include <vector>#include <set>#include <iomanip>#include <algorithm>using namespace std;const int maxn = 110;//产⽣式结构体struct EXP{char left; //左部string right; //右部};class Grammar{public:Grammar(); //构造函数bool isNotTer(char x); //判断是否是终结符int getTer(char x); //获取终结符下标int getNonTer(char x); //获取⾮终结符下标void getFirst(char x); //获取某个⾮终结符的First集void getFollow(char x); //获取某个⾮终结符的Follow集void getSelect(char x); //获取产⽣式的Select集void input(); //输⼊⽂法void scanExp(); //扫描输⼊的产⽣式,检测是否有左递归和左公因⼦void remove(); //消除左递归void solve(); //处理⽂法,获得所有First集,Follow集以及Select集void display(); //打印First集,Follow集,Select集void debug(); //⽤于debug的函数~Grammar(); //析构函数protected:int cnt; //产⽣式数⽬EXP exp[maxn]; //产⽣式集合set<char> First[maxn]; //First集set<char> Follow[maxn]; //Follow集set<char> Select[maxn]; //select集vector<char> ter_copy; //去掉$的终结符vector<char> ter; //终结符vector<char> not_ter; //⾮终结符};#endif 2.1.2 AnalyzTable类 功能:得到预测分析表,判断输⼊的⽂法是否是LL(1)⽂法,⽤预测分析表法判断输⼊的符号串是否符合刚才输⼊的⽂法,并打印出分析过程。
编译原理-语法分析
自顶向下的语法分析方法简单直观,易于实现,但可能存在 左递归和回溯的问题。
自底向上的语法分析
01
自底向上的语法分析方法从源代码中的每个符号出发
,逐步归约到文法的起始符号。
02
该方法通常采用LR(0)、SLR(1)、LALR(1)等算法进行
实现。
03
自底向上的语法分析方法可以避免回溯问题,但需要
• 随着人工智能和机器学习技术的不断发展,可以利用这些技术来辅助语法分析 过程,提高语法分析的准确性和效率。例如,可以使用机器学习算法来自动识 别和处理语法规则和歧义问题。
• 另外,随着软件工程和代码质量的重视程度不断提高,对编译器和语法分析器 的要求也越来越高。未来的研究需要更加注重编译器和语法分析器的可维护性 和可扩展性,以满足不断变化的软件需求。
词法分析的算法
自底向上算法
自底向上算法是从源代码的左向右进行扫描,并从下到上构建语法结构。常见 的自底向上算法有预测分析法和移进-规约法。
自顶向下算法
自顶向下算法是从语法结构的顶层开始,向下进行推导,直到找到与源代码相 匹配的语法结构。常见的自顶向下算法有规范分析法和贪婪分析法。
语法分析概述
语法分析是编译过程的核心环节,其任务是将源代码分解成一系列的语法 结构,以便后续的语义分析和代码生成。
自底向上的算法,通过构建归 约表进行移进和规约操作。
LALR(1)算法
扩展的LR(0)算法,能够处理 更广泛的文法,生成更小的归 约表。
03
语义分析
语义分析概述
01
Байду номын сангаас02
03
语义分析是编译过程的 一个阶段,它是在语法
分析之后进行的。
语义分析的主要任务是 检查源代码的语义是否 正确,例如变量是否已 经声明,类型是否匹配
编译原理第四章语法分析-自上而下分析
• 例 4.4
4.4 递归下降分析程序构造
• 递归下降分析器:
这个分析程序由一组递归过程组成的,每个过程对应 文法的一个非终结符。 E→TE’ E’→+TE’| T→FT’ T’→*FT’| F→(E)|i
PROCEDURE E BEGIN T ; E’ END PROCEDURE E’ IF SYM=‘+’THEN BEGIN ADVANCE ; T ; E’ END
4.2 自上而下分析面临的问题
• 例4.1 假定有文法
(1) SxAy (2)A**|*
对输入串x*y,构造语法树。 • 构造过程:
(1)把S作为根 (2)用S的产生式构造子树 (3)让输入串指示器IP指向输入串的第一个符号。
S x A y x
S
A y x
S
A y
*
*
*
(4)调整输入串指示器IP与叶结点进行匹配。 (5)如果为非终结符,用A的下一个产生式构建子树。 (6)如果匹配成功则结束;否则,回溯到步骤(4)。
• 一个反例:
– 文法:SQc|c;QRb|b;RSa|a虽然不是直接 左递归,但S、Q、R都是左递归。
• 消除左递归算法:
– 算法的思想是:
• • • • 首先构造直接左递归; 再利用一般转换规则,消除直接左递归 化简文法。 下面算法在不含PP,也不含在右部产生式时可以消除 左递归。
• 消除一个文法的左递归算法:
(1) 把文法 G 的所有非终结符按任一种顺利排列成 P1…Pn;按此顺序执行; (2) FOR i:=1 TO n DO
BEGIN FOR j:=1 TO i-1 DO 把形如Pj+1→Pj 的规则改写成 Pj+11|1|…k| 。其中 Pj1|1|…k 是关于 Pj 的 所有规则; 消除关于Pi规则的直接左递归性。 END 化简由(2)所得的文法。即去除那些从开始符号出发永 远无法到达的非终结符的产生规则。
编译原理——语法分析程序设计实验报告
实验二语法分析程序设计[实验目的]:1.了解语法分析的主要任务。
2.熟悉编译程序的编制。
[实验内容]:根据某文法,构造一基本递归下降语法分析程序。
给出分析过程中所用的产生式序列。
[实验要求]:1.选择一个文法,进行实验,可选的文法包括以下三个:P190 4.8P190 4.9P190 4.102.设计语法分析程序的输出形式(输出应为语法树或推导),一个可以参考的例子,可见图1。
3.编写递归下降语法分析程序(参考P148-149 Topdown parsing byrecursive-descent),实现基本的递归下降分析器,能够分析任给的符号串是否为该文法所定义的合法句子。
实验报告中要说明分析使用的方法。
4.根据所作业题选项e所给出的input,生成并输出分析过程中所用的产生式序列(show the actions of parser):1 产生式12 产生式2……5.自已设计一个不合法的句子,作为输出进行分析,给出结果。
[实验过程]本次实验选择的文法为P190 4.8lexp->atom|listatom->number|identifierlist->(lexp-seq)lexp-seq->lexp lexp-seq1.写出实现的算法,并画流程图。
本次实验采用递归下降算法,算法流程图如下图1-1:图1-1 算法流程图2.根据你选择的文法,分析左递归或左因子是否会影响本算法的结果。
会影响本算法的结果。
递归下降分析法要求的文法是LL(1)文法,需要消除左递归和左因子的影响。
如果存在左因子,对相同的字符跳转到不同的函数,无法实现递归。
3.列举实验设计过程中出现的问题及解决的方法(至少3条,选择实验中最困扰的问题)。
1).会多次输出accept/error结果解决方案:所有的递归函数返回类型为int,若accept返回1,error返回0,在main主函数中统一判断输出语句。
编译原理语法分析—自上而下分析
对文法G的任何符号串=X1X2…Xn构造集 合FIRST()。
1. 置FIRST()=FIRST(X1)\{};
2. 若对任何1ji-1,FIRST(Xj), 则把FIRST(Xi)\{}加至FIRST()中; 特别是,若所有的FIRST(Xj)均含有, 1jn,则把也加至FIRST()中。显 然,若=则FIRST()={}。
T→T*F | F
F→(E) | i
经消去直接左递归后变成:
E→TE E→+TE | T→FT T→*FT | F→(E) | i
(4.2)
例如文法G(S): S→Qc|c Q→Rb|b R→Sa|a
虽没有直接左递归,但S、Q、R都是左递归的
SQcRbcSabc
(4.3)
一个文法消除左递归的条件: 不含以为右部的产生式 不含回路。
即A的任何两个不同候选 i和 j FIRST(i)∩FIRST( j)=
当要求A匹配输入串时,A就能根据它所面临的第
一个输入符号a,准确地指派某一个候选前去执
行任务。这个候选就是那个终结首符集含a的。
提取公共左因子:
假定关于A的规则是 A→ 1 | 2 | …| n | 1 | 2 | … | m (其中,每个 不以开头)
*
特别是,若S A ,则规定
#FOLLOW(A)
构造不带回溯的自上而下分析的文法条件
1. 文法不含左递归,
2. 对于文法中每一个非终结符A的各个产生式 的候选首符集两两不相交。即,若
A→ 1| 2|…| n 则 FIRST( i)∩FIRST( j)= (ij)
3. 对文法中的每个非终结符A,若它存在某个 候选首符集包含,则
1)算符优先分析法:按照算符的优先关系和结 合性质进行语法分析。适合分析表达式。
编译原理第三章语法分析
递归下降程序:
void F() { if(lookahead= =’i’) match(‘i’); else if(lookahead= =’(’) { match(‘(’); E(); if(lookahead= =’)’) match(‘)’); else error(); } else error(); }
输入串
id+id*id;# id+id*id;# id+id*id;# id+id*id;# id+id*id;# +id*id;# +id*id;#
动作
pop(L),push(E;L) pop(E),push(TE’) pop(T),push(FT’) pop(F),push(id) pop(id),next(ip) pop(T’)
形式语言分类
定义:若文法G=(N,T,P,S)的每个产生式α→β中,均有 α∈(N∪T)*N(N∪T)*,且至少含有一个非终结符, β∈(N∪T)*,则称G为0型文法(短语文法)。 ①1型文法(上下文有关文法):G的任何产生式α→β(S→ε 除外)均满足|α|≤| β| (|x|表示x中文法符号的个数); ②2型文法(上下文无关文法):G的任何产生式形如A→β, 其中A∈N,β∈(N∪T)*; ③3型文法(正规文法、线性文法):G的任何产生式形如A→a 或者A→aB(或者A→Ba),其中A,B∈N,a∈T*。
定义:将产生式A→γ的右部代替文法符号序列αAβ 中的A得到αγβ的过程,称为αAβ直接推导 出αγβ,记作:αAβαγβ。
编译原理--名词解释
名词解释编译:编译程序的翻译过程。
词法分析,语法分析,语义分析,中间代码生成,代码优化,目标代码生成.语言:由文法G生成的语言记为L(G),它是文法G的一切句子的集合:L(G)={x|S =>* x,其中S为文法的开始符号,且x ∈VT*}二义文法:若一个文法存在某个句子对应两棵不同的语法树,则称这个文法是二义的。
或者,若一个文法存在某个句子有两个不同的最左(右)推导,则称这个文法是二义的。
二义语言:如果产生上下文无关语言的每一个文法都是二义的,则说此语言是先天二义的。
属性文法:属性文法(attribute grammar)是一个三元组:A=(G,V,F),其中G:是一个上下文无关文法,V:有穷的属性集,F:关于属性的属性断言或一组属性的计算规则(称为语义规则) 。
活动记录:一个过程的一次执行所需要的信息,使用一个连续的存储区来管理这个区(块),叫做一个活动记录AR。
词法:规定什么是正确的单词,boy 不能写成byo等等。
语法(文法):是指一组规则,用它可以形成和产生一个合适的程序。
(定义什么样的符号序列是合法的)语义:自然语言中词语的意义,逻辑形式系统中符号的解释。
(定义什么样的符号序列是有含义的)句子:有文法G[s],若S =>* x,且x∈VT*,则称x是文法G的句子。
句型:有文法G[s],若S =>* x,则称x是文法G的句型。
语法树:设G=( VN,VT,P,S)为一cfg,若一棵树满足下列4个条件,则此树称作G的语法树。
最左/最右推导:在推导的任何一步α β,其中α、β是句型,都是对α中的最左(右)非终结符进行替换。
自上而下分析:从文法的开始符号出发,反复使用文法的产生式,寻找与输入符号串匹配的推导,或者说,为输入串寻找一个最左推导。
自下而上分析:从输入符号串开始,逐步进行归约,直至归约到文法的开始符号。
短语:存在文法G[s],S =>* αAδ且 A =>+ β,则称β是句型αβδ相对于非终结符A的短语。
编译原理基础:词法分析与语法分析
编译原理基础:词法分析与语法分析一、引言- 编译器是一种将高级语言翻译成机器语言的重要工具,是计算机科学中的核心概念之一。
编译器的基本工作分为两个阶段:词法分析和语法分析。
本文将详细介绍和分析这两个步骤的内容和流程。
二、词法分析1. 定义- 词法分析是编译器的第一个阶段,也是最基本的阶段。
它负责对源代码进行词法单位的划分,生成词法单元流。
每个词法单元包括一个标识符和一个属性值。
2. 步骤- 读入源代码:编译器首先从源代码文件中读入整个代码内容。
- 去除空格和注释:通过正则表达式或其他方法,编译器去除源代码中的空格和注释,以便更好地处理剩余的代码。
- 划分词法单元:编译器根据一定的规则将代码划分为不同的词法单元,如关键字、标识符、运算符、常量等。
- 构建符号表:编译器将关键字和标识符添加到符号表中,以便后续的语法分析和语义分析过程中使用。
三、语法分析1. 定义- 语法分析是编译器的第二个阶段,它将词法分析生成的词法单元流作为输入,根据语法规则生成语法树或抽象语法树。
2. 步骤- 定义语法规则:编译器根据语言的语法规范定义语法规则,通常使用上下文无关文法(Context-Free Grammar)来描述。
- 构建语法分析器:编译器使用递归下降法或者LR分析法等算法来实现语法分析器。
递归下降法通过递归地调用子过程来实现语法分析,而LR分析法则通过建立一个有限状态机来分析源代码。
- 生成语法树或抽象语法树:编译器根据语法规则和输入的词法单元流,生成对应的语法树或抽象语法树。
语法树表示源代码的语法结构,抽象语法树还会剔除掉不必要的细节。
- 错误处理:在生成语法树或抽象语法树的过程中,编译器会检测到一些语法错误。
此时,编译器会输出错误信息,并尽可能恢复到正常的语法分析流程。
四、词法分析与语法分析的关系- 词法分析和语法分析是紧密关联的两个阶段。
词法分析阶段提供给语法分析阶段的词法单元流作为输入,语法分析阶段通过分析词法单元的序列来理解源代码的语法结构。
语法分析
编译原理实验二·语法分析一、实验目的通过动手实践,使学生对构造编译系统的基本理论、编译程序的基本结构有更为深入的理解和掌握;使学生掌握编译程序设计的基本方法和步骤;能够设计实现编译系统的重要环节。
同时增强编写和调试程序的能力。
二、实验内容及要求对某特定语言A ,构造其语法规则。
该语言的语法单位如下:实现识别该语言的语法分析器, 可以选用:细化的递归下降程序,或者预测分析程序等。
按语法单位出现的顺序,返回识别出的语法单位序列出现的语法错误,可以指出错误位置,及错误原因。
出现的标识符存放在标识符表,整型常数存放在常数表三、实验过程1、文法描述语言A的文法的描述如下:程序P的文法:P → program ID;语句S文法:S → SA | SD | SW | SC | SIF赋值语句的文法:SA → ID := E | ID := NUM定义语句的文法:SD → var int ID D’D’→ ,ID D’|ε循环语句的文法:SW → while B do S判断语句的文法:SIF → if B then S | if B then S else S复合语句的文法:SC → begin S C’C’→ ;S C’| ;end布尔表达式B的文法:B → TB′B′→ and TB′|εT → FT′T′→ or FT′|εF → not F |(B)| E rop E | Erop → > | < | >= | <= | <> | =算术表达式E的文法(此中的T、T’和F与上面不同):E → TE'E'→ + TE' | εT → FT'T' → * FT' | εF → (E) | I注:ID与NUM的文法与语法分析器中的定义相同。
2、单词种别定义3、运行环境本次实验采用win-tc进行代码的编写和编译及运行程序的运行环境为windows4、关键算法描述本程序采用细化的递归下降程序进行描述,所用到的主要函数有:main() //主函数,程序的入口P() //程序P文法判定函数S(int i) //语句S文法实现程序,i表示递归层数,下同SA(int i) //赋值语句文法实现程序SD(int i) //定义语句文法实现程序SW(int i) //循环语句文法实现语句SIF(int i) //判断语句文法实现语句SC(int i) //复合语句文法实现判断语句E() //算数表达式B() //布尔表达式errProc(int type) //出错处理语句,参数type表示错误类型,此函数与词法分析中的出错函数相同,是在原函数的基础上添加新的错误类型struct binary *lexicalAnalyze() //词法分析主函数,本程序通过此函数实现了与词法分析程序的连接语句S的程序流程图如下所示:主函数main()程序流程图如下所示:其他的文法分析函数SA()、SD()、SW()、SIF()、SC()、E()、B()和P()按照文法的产生式就可以得到具体的代码了。
编译原理第五章语法分析——自下而上分析
第五章语法分析——自下而上分析要紧内容:[1]自下而上分析的大体问题[2]算符优先分析法[3]算符优先分析表和优先函数的构造[4]LR分析器的大体原理大体要求:[1]明白得自下而上分析法的大体思想[2]明白得有关归约、短语、句柄、标准归约等概念[3]把握算符优先分析法[4]了解算符优先表和优先函数的构造技术[5]了解LR 分析器大体原理和工作方式教学要点:本章介绍自下而上语法分析方式。
所谓自下而上分析法确实是从输入串开始,慢慢进行“归约”,直至归约到文法的开始符号;或说,从语法树的结尾开始,步步向上“归约”,直到根结。
讲义摘要:5.1 自下而上分析大体问题自下而上分析法的大体思想:从输入串开始,慢慢进行“归约”,直到文法的开始符号。
即从树结尾开始,构造语法树。
所谓归约,是指依照文法的产生式规那么,把产生式的右部替换成左部符号。
自上而下分析的核心问题是:如何判定符号串的可归约性,和如何归约。
即,识别可归约串的问题。
归约自下而上分析法事实上确实是一种“移进-归约”法,即,采纳“移进-归约”思想进行。
实现思想是:对输入符号串自左向右进行扫描,并将输入符逐个移入一个后进先出栈中,边移入边分析,一旦栈顶符号串形成某个句型的句柄时,(该句型对应某产生式的右部,即栈顶生成了某产生式的右部的文法符号串),就将栈顶的这一部份替换成 (归约为) 该产生式的左部符号,这称为归约。
重复这一进程直到归约到栈中只剩文法的开始符号时那么为分析成功,也就确认输入串是文法的句子。
现举例说明。
例1:设文法G[S]为:(1) S→aAcBe(2) A→b(3) A→Ab(4) B→d试对abbcde进行“移进-归约”分析。
步骤: 1 2 3 4 5 6 7 8 9 10解:动作: 进a 进b 归(2) 进b 归(3) 进c 进d 归(4) 进e 归(1)表1符合栈的转变进程自下而上语法分析的进程也可看成自底向上构造语法树的进程,每步归约都是构造一棵子树,最后当输入串终止时恰好构造出整个语法树,如图1所示。
编译原理 语法分析
#include <iostream>#include <string>#include <fstream>#include <queue>#include <string.h>#include <stdio.h>using namespace std;enum Datatype{ RESERVE_WORD=1,IDENTIFIER=2,DIGIT=3,OPERATOR=4,SEPRATOR =5 };struct OutputStruct{public:Datatype type;string value;};string operate[]={"sin","cos","pow"};string KeyWord[]={"main","int","if","char","cout"};const int MAX_SIZE=255;char BUFF[MAX_SIZE]; //buffer to contain a char line.ifstream inFile;ofstream outFileStream;queue<OutputStruct> tt;bool IsKeyWord(string& cs){for(int i=0;i<5;++i)if(cs==KeyWord[i])return true; //Existreturn false;}void ReadLineAndAnalyze(){int strSize=0;int i;int errFlag=0;char ch;string outStructStr,str;struct OutputStruct outStruct;{i=0;inFile.getline(BUFF,MAX_SIZE,'\n'); strSize=inFile.gcount();cout<<BUFF;do{str="";do{ch=BUFF[i];i++;}while(ch==' '||ch==' '||ch=='\n'); switch(ch){case '+':case '-':case '*':case '/':outStruct.type=OPERATOR;outStruct.value=ch;break;case '=':case '>':case '<':outStructStr=ch;if(BUFF[i]=='='){outStruct.type=OPERATOR;outStructStr+=BUFF[i];outStruct.value=outStructStr;i++;}else{outStruct.type=OPERATOR;outStruct.value=ch;};break;case ',':case ';':case '{':case '}':case '(':case ')':case '[':case ']':case '\"':outStruct.type=SEPRATOR;outStruct.value=ch;break;case '0':case '1':case '2':case '3':case '4':case '5':case '6':case '7':case '8':case '9':outStructStr+=ch;while(BUFF[i]>='0'&&BUFF[i]<='9'||BUFF[i]=='.'){outStructStr+=BUFF[i];i++;}//whileoutStruct.type=DIGIT;outStruct.value=outStructStr;break;default:if(ch>='a'&&ch<='z'||ch>='A'&&ch<='Z'){outStructStr+=ch;while(BUFF[i]>='a'&&BUFF[i]<='z'||BUFF[i]>='A'&&BUFF[i]<='Z') {outStructStr+=BUFF[i];i++;}//whileif(IsKeyWord(outStructStr)){outStruct.type=RESERVE_WORD;outStruct.value=outStructStr;}else{outStruct.type=IDENTIFIER;outStruct.value=outStructStr;}break;}elseerrFlag=1;}//switch;if(!errFlag)tt.push(outStruct);errFlag=0;outStructStr="";}while(i<strSize-1);}//while(i<MAX_SIZE&&!inFile.eof());//do_while return;}float F();float T();float E();float S();float F(){float ret;if((tt.front().type==IDENTIFIER)||(tt.front().type==DIGIT)) {ret=atof(tt.front().value.c_str());if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();return ret;}if(tt.front().value=="("){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();ret=E();if(tt.front().value==")"){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();return ret;}else{cout<<"\b ----ERROR! "<<tt.front().value<<" 缺少右括号"<<endl;cout<<"Press \"enter\" to modify the data file!";getchar();system("notepad data.txt");exit(0);}}else{cout<<"\b ----ERROR! "<<tt.front().value<<" 缺少因子"<<endl; cout<<"Press \"enter\" to modify the data file!";getchar();system("notepad data.txt");exit(0);}}float T(){float i,j;i=F();if(tt.front().value=="*"){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();j=T();return i*j;}else if(tt.front().value=="/"){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();j=T();if(abs(j)<0.0000001){cout<<"\b ----ERROR! 除数为零!"<<endl;cout<<"Press \"enter\" to modify the data file!";getchar();system("notepad data.txt");exit(0);}return i/j;}return i;}float E(){float i,j;i=T();if(tt.front().value=="+"){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();j=E();i=i+j;}else if(tt.front().value=="-"){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();j=E();i=i-j;}if(tt.front().value==";"||tt.front().type==OPERATOR||tt.front().value==")") return i;else{cout<<"\b ----ERROR! "<<tt.front().value<<" 缺少运算符"<<endl; cout<<"Press \"enter\" to modify the data file!";getchar();system("notepad data.txt");exit (0);}}float S(){float i;i=E();if(tt.front().value==";"){if(tt.empty()){cout<<"END"<<endl;exit(0);}tt.pop();return i;}cout<<"\b ----ERROR! "<<tt.front().value<<" 缺少左括号"<<endl; cout<<"Press \"enter\" to modify the data file!";getchar();system("notepad data.txt");exit(0);}void GrammaAnalize(){float i;if(tt.empty()){cout<<"END"<<endl;exit(0); }i=S();cout<<"\b="<<i<<endl;}int main(){inFile.open("data.txt");if(!inFile){cout<<"打开源文件失败!"; return 1;}while(!inFile.eof()){ReadLineAndAnalyze(); GrammaAnalize();}inFile.close();return 0;}。
编译原理的语法分析
编译原理的语法分析一、概述编译原理是计算机科学与技术中的重要核心课程,它研究的是将高级语言转化为机器语言的过程。
语法分析是编译器的重要组成部分,它的主要任务是根据给定的文法规则,分析输入的源代码,判断其是否符合语法规范。
二、上下文无关文法在深入了解语法分析前,我们首先需要了解上下文无关文法的概念。
上下文无关文法(Context-Free Grammar,简称CFG)是一个四元组G=(V, Σ, R, S),其中V是非终结符的集合,Σ是终结符的集合,R是产生式规则的集合,S是语法分析的起始符号。
三、自顶向下分析自顶向下分析是一种从语法分析的起始符号开始,逐步扩展推导的方法。
常见的自顶向下分析方法有递归下降分析和LL分析。
1. 递归下降分析递归下降分析是自顶向下分析中最常用的方法之一。
它通过产生式规则的递归调用来实现对源代码的语法分析。
对于每个非终结符,我们可以编写一个对应的递归函数,并按照产生式规则进行展开和匹配。
2. LL分析LL分析是自顶向下分析的一种重要方法。
它的名称来源于产生式规则的左侧扫描(Left-to-right, Leftmost derivation)。
LL分析利用一个预测分析表来进行语法分析,预测分析表的构造基于文法的FIRST和FOLLOW集合。
四、自底向上分析自底向上分析是一种从源代码中的终结符开始,逐步合并生成非终结符的推导过程。
常见的自底向上分析方法有SLR分析、LR分析和LALR分析。
1. SLR分析SLR分析是自底向上分析中的一种重要方法,它利用一个包含项目集的状态机来进行语法分析。
SLR分析器的构造基于LR(0)项目,使用LR(0)项目集家族来构建分析表。
2. LR分析LR分析是自底向上分析的高级方法,它分析的是LR文法,其中L 表示从左向右扫描,R表示右推导。
LR分析器的构造会产生广义项目集族、LR分析表和状态转换图,用于分析输入的源代码。
3. LALR分析LALR分析是对LR分析的改进和优化,LALR分析器的构造与LR 分析类似,但合并了具有相同前缀的状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int static_iden_number = 0;//模拟标志符的地址,自增
//Token节点
NormalNode * normalHead;//首结点
//错误节点
struct ErrorNode
实验报告
学院(系)名称:计算机与通信工程学院
姓名
Sky
学号
专业
计算机科学与技术
班级
2班
实验名称
语法分析
课程名称
编译原理
课程代码
0668056
实验时间
2016年4月21日08:00-10:00
2016年4月26日10:00-13:00
实验地点
7-220
批改意见
成绩
教师签字:
实验内容与要求:
实现如下表达式文法的语法分析器,可选择LL1分析法、算符优先分析法、LR分析法之一完成实验,要求输出全部分析过程:
(3)若X是一个非终结符,则查看预测分析表M。若M[A,a]中存放着关于X的一个产
生式,那么,首先把X弹出STACK栈顶,然后,把产生式的右部符号串按反序一一弹出STACK栈(若右部符号为ε,则不推什么东西进STACK栈)。若M[A,a]中存放着“出错标志”,则调用出错诊断程序ERROR。事实上,LL(1)的分析是根据文法构造的,它反映了相应文法所定义的语言的固定特征,因此在LL(1)分析器中,实际上是以LL(1)分析表代替相应方法来进行分析的。
using namespace std;
int leftSmall = 0;//左小括号
int rightSmall = 0;//右小括号
int leftMiddle = 0;//左中括号
int rightMiddle = 0;//右中括号
int leftBig = 0;//左大括号
int rightBig = 0;//右大括号
一个文法要能进行LL(1)分析,那么这个文法应该满足:无二义性,无左递归,无左公因子。当文法满足条件后,再分别构造文法每个非终结符的FIRST和FOLLOW集合,然后根据FIRST和FOLLOW集合构造LL(1)分析表,最后利用分析表,根据LL(1)语法分析构造一个分析器。LL(1)的语法分析程序包含了三个部分,总控程序,预测分析表函数,先进先出的语法分析栈,本程序也是采用了同样的方法进行语法分析,该程序是采用了C语言来编写。
连续使用上面的规则,直至每个集合FIRST不再增大为止。②FOLLOW集合的构造算法:
(1)对于文法的开始符号S,置#于FOLLOW(S)中;(2)若A→αBβ是一个产生式,则把FIRST(β)| {ε}加至FOLLOW(B)中;
(3)若A→αB是一个产生式,或A→αBβ是一个产生式而βε(即ε∈FIRST(β)),则把FOLLOW(A)加至FOLLOW(B)中。连续使用上面的规则,直至每个集合FOLLOW不再增大为止。现在来构造G[E]的LL(1)预测分析表。预测分析表M[A, a]是如下形式的一个矩阵。A为非终结符,a是终结符或‘#’。矩阵元素M[A, a]中存放这一条关于A的产生式,指出当A面临输入符号a是所应采用的规则。M[A, a]也可能存放一条“出错标志”,指出当A根本不该面临输入符号a。
LL(1)预测分析程序的总控程序在任何时候都是按STACK栈顶符号X和当前的输入符号a做哪种过程的。对于任何(X,a),总控程序每次都执行下述三种可能的动作之一:
(1)若X = a =‘#’,则宣布分析成功,停止分析过程。
(2)若X = a‘#’,则把X从STACK栈顶弹出,让a指向下一个输入符号。
(1)E→E+T | E-T | T
(2)T→T*F | T/F | F
(3)ห้องสมุดไป่ตู้→P^F | P
(4)P→(E) | i
实验内容:
LL(1)分析法:
所谓LL(1)分析法,就是指从左到右扫描输入串(源程序),同时采用最左推导,且对每次直接推导只需向前看一个输入符号,便可确定当前所应当选择的规则。实现LL(1)分析的程序又称为LL(1)分析程序或LL1(1)分析器。
在构造LL(1)预测分析表之前,首先要构造该文法的每个非终结符的FIRST和FOLLOW集合,按照下面描述的算法来构造这两个集合。
①FIRST集合的构造算法:
(1)若X∈VT,则FIRST(X)={X}。
(2)若X∈VN,且有产生式X→a……,则把a加入到FIRST(X)中;若X→ε也是一条产生式,则把ε也加到FIRST(X)中。(3)若X→Y……是一个产生式且Y∈VN,则把FIRST(Y)中的所有非ε-元素都加到FIRST(X)中;若X→Y1Y2…Yk是一个产生式,Y1,…,Yi-1都是非终结符,而且,对于任何j,1≤j≤i-1,FIRST(Yj)都含有ε(即Y1…Yi-1*ε),则把FIRST(Yj)中的所有非ε-元素都加到FIRST(X)中;特别是,若所有的FIRST(Yj)均含有ε,j=1,2,…,k,则把ε加到FIRST(X)中。
程序源码:
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <iomanip>
#include "LexAnalysis.h"
{
char content[30];//错误内容
char describe[30];//错误描述
int type;
int line;//所在行数
ErrorNode * next;//下一个节点
};
ErrorNode * errorHead;//首节点
//标志符节点
struct IdentiferNode
{
char content[30];//内容
char describe[30];//描述
int type;//种别码
int addr;//入口地址
int line;//所在行数
IdentiferNode * next;//下一个节点
};
IdentiferNode * idenHead;//首节点
vector<pair<const char *,int> > keyMap;