SX1308升压芯片(中文资料)
sx1308
sx1308标题:SX1308 - 低功耗窄带物联网调制解调器摘要:SX1308是一款低功耗窄带物联网调制解调器芯片,可以在能耗限制条件下实现长距离、低功耗的通信。
本文主要介绍SX1308的特点、功能、应用领域以及未来发展趋势。
1. 引言随着物联网的快速发展,越来越多的设备和物品需要进行远程监控和控制。
然而,传统的无线通信技术在能耗方面存在一定的挑战,这对于需求低功耗、长距离通信的物联网设备来说是一个问题。
为了解决这个问题,SX1308应运而生。
2. SX1308的特点2.1 低功耗SX1308采用了一系列低功耗的设计策略,例如休眠模式和自适应功率控制。
这使得SX1308能够在保持通信质量的同时,尽量减少功耗。
2.2 长距离通信SX1308支持较远距离的通信,可以覆盖数公里的范围。
这在物联网场景中非常重要,特别是在需要远程监控和控制的应用中。
2.3 窄带通信SX1308采用窄带通信技术,可以在噪声环境中提供更好的通信质量和抗干扰能力。
这使得SX1308在复杂的无线环境中能够稳定地工作。
3. SX1308的功能3.1 通信协议支持SX1308支持多种通信协议,如LoRaWAN、Sigfox等。
这使得SX1308可以与不同的物联网平台和设备进行兼容,并提供灵活的解决方案。
3.2 数据安全性SX1308支持数据的加密和认证功能,可以保证数据的安全传输。
这对于一些敏感信息(如金融数据、健康数据等)的传输非常重要。
3.3 设备管理SX1308具备设备管理功能,可以对相关设备进行监控和管理。
这使得用户能够更好地了解各个设备的状态和工作情况,并可以及时进行维护和升级。
4. SX1308的应用领域4.1 智能城市SX1308可以应用于智能城市中的远程监控和管理系统,例如智能路灯、智能交通监控等。
它可以通过使用较少的设备覆盖更广的范围,从而减少成本和功耗。
4.2 农业SX1308可以用于农业监测和远程灌溉系统,以实现农田的自动化管理。
SX1318 5升12升16V太阳能升压芯片
400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC ConverterFeaturesWide 5V to 32V Input Voltage RangePositive or Negative Output Voltage Programming with a Single Feedback Pin Current Mode Control Provides Excellent Transient Response1.25V reference adjustable version Fixed 400KHz Switching Frequency Maximum 2A Switching Current SW PIN Built in Over Voltage Protection Excellent line and load regulationEN PIN TTL shutdown capabilityInternal Optimize Power MOSFETHigh efficiency up to 90% Built in Frequency CompensationBuilt in Soft-Start FunctionBuilt in Thermal Shutdown FunctionBuilt in Current Limit FunctionAvailable in SOIC-8 packageApplications Automotive and Industrial Boost / Buck-Boost / Inverting Converters Portable Electronic Equipment General DescriptionThe SX1318 regulator is a wide input range, current mode, DC/DC converter which is capable of generating either positive or negative output voltages. It can be configured as either a boost, flyback, SEPIC or inverting converter. The SX1318 built in N-channel power MOSFET and fixed frequency oscillator, current-mode architecture results in stable operation over a wide range of supply and output voltages.The SX1318 regulator is special design for portable electronic equipment.Figure1. Package Type of SX131813544263532Q2247114050400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC ConverterSX1318Figure4. SX1315 Typical Applicatio400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC ConverterSX1318Figure5. SX1318 Typical System Application (Boost Converter)400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC ConverterFigure6. SX1318 Typical System Application (SEPIC Buck-Boost Converter)Typical System Application for Boost High Voltage Converter– FLYBACK Boost Topology (Input 10V~30V Figure7. SX1318 Typical System Application (Flyback Boost Converter)SX1318SX1318400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter400KHz 42V 2A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter Package InformationSOP8 Package Mechanical Dimensions。
SH366006 标准版用户手册_V1.0
XC1308datasheet
管脚描述 SOP8 双岛封装
CS
1
8
OC
CPC
2
7
OC
FB
3
6
GND
VDD
4
5
GND
版本:0.1
hien technology
XC1308
管脚序号 1 管脚名称 CS I/O I 管脚说明 电流采样输入,接原边电流感应电阻,控制器通过检测电阻上电 压来检测原边电流,电压达到阈值将关断功率管,达到逐周期限 流的目的 CV 回路补偿引脚,接补偿电容到地 辅助线圈电压反馈引脚;接辅边反馈分压电阻,CV 和 CC 通过该 引脚采样来调整。 电源 接地端 高压功率管集电极引脚;连接到变压器的初级
2 3 4 5/6 7/8
CPC FB VDD GND OC
I I P P O
函数功能块:
版本:0.1
hien technology
XC1308
典型应用图: 5V/1A 充电器应用
L N
- V-
V+
+
XC1308
4 2 6 5
VDD CPC GND GND OC OC FB CS
8 7 3 1
极限参数
功能描述
XC1308 是一款低成本的离线式低功率 PFM 开关电源芯片, 能使 AC/DC 的应 用电路(包括电池充电器和适配器)最优化。它工作在原边采样与调制,因此不需要 光耦与 TL431。专有的内置恒压与恒流控制能使 CC/CV 控制达到很高的精度,满 足大多数适配器和充电器应用需要。 启动电流和工作电流 XC1308 启动电流设计为 nA 级,在保证快速启动的同时,可以用很大的充 电电阻以减小待机功耗;XC1308 工作电流低至 0.5mA,如此低的工作电流能使芯片 有良好的效率。 恒压(CV)工作 在 DCM 反激变压器中,输出电压通过辅助线圈被采样。 辅助电压反映了输出电压如图 1 所示,并且由下式给出
SX1302大电流升压芯片参数应用
SX1302大电流升压芯片参数应用首先,我们来了解一下SX1302的主要参数。
SX1302是一款大电流输入升压芯片,可以提供高达3.6A的电流输出。
它采用了高效的升压转换技术,可以将输入电压从3.3V提升到5V。
SX1302还具有输入电压范围广、低电流波动等特点,适用于各种电子设备的电源管理。
SX1302具有多种保护功能,包括输出短路保护、过温保护、欠压保护等。
这些保护功能可以有效保护电子设备不受短路、过热等问题影响,提高了设备的可靠性。
另外,SX1302还支持软启动功能,可以减少开关机时的电流冲击,延长设备的使用寿命。
SX1302的应用非常广泛。
首先,它可以用于手机、平板电脑等移动设备的电源管理。
移动设备对电源管理要求严格,需要稳定的电压输出和高效的电流转换。
SX1302的高电流输出和多重保护功能满足了移动设备的需求。
此外,SX1302还可以应用于家用电器、工业设备等领域。
对于家用电器来说,稳定的电压输出和高效的电流转换是确保设备正常运行的关键。
SX1302可以提供稳定的电压输出,保证电器设备的正常使用。
对于工业设备来说,SX1302的多重保护功能可以提供额外的安全保障,防止设备因电流过大或短路等问题受损。
另外,SX1302还可以应用于充电器、电池管理系统等领域。
充电器需要提供适当的电流输出,以确保设备的快速充电和安全使用。
SX1302的高电流输出和保护功能可以满足充电器的需求。
电池管理系统可以利用SX1302的低电流波动特点,提供稳定的电源输出,确保电池系统的正常工作。
除了以上应用,SX1302还可以用于无线通信设备、LED照明等领域。
在无线通信设备中,SX1302可以为射频模块提供稳定的电压输出,确保通信的可靠性。
对于LED照明来说,SX1302可以提供恒流驱动,确保LED 的亮度稳定,延长LED的使用寿命。
综上所述,SX1302是一款应用广泛的大电流升压芯片。
它不仅具有高电流输出和多重保护功能,还适用于多种电子设备的电源管理。
一种用于智能家居的语音控制方法
VCC
IR 0UT2
IR OUT GND
2 IR
A*
IR
2
图8红外发射电路原理图
2.4无线通信模块 本方法使用了成都亿佰特电子科技有限公
司的E32-TTL-100模块做为系统的无线通信方 案.E32-TTL-100是一款功率为lOOmW的无线 串口模块,工作频段为410MHz到441MHz,可 实现数据的透明传输•无线通信模块的电路原 理图如图9所示,若单片机的TXD输出低电平 则三极管导通,此时无线串口模块的RXD接口 读取到低电平信号•反之,三极管截止,无线串 口模块的RXD被电阻拉至高电平;当无线串口 模块的TXD输出为高电平时,单片机的RXD被 内部上拉电阻拉至高电平,否则单片机RXD接 口的电压被钳位在0.7V (与二极管类型有关), 为低电平• 2.5继电器电路
1方案设计
本方法将系统主要分为手持端、红外控制 端和电闸端,通过433MHz的无线串口模块进 行通信.手持端、红外控制端和电闸端的电路框 图分别如图1、图2、图3所示.
手持端主要具有语音识别功能和语音合 成功能,语音识别功能采用ICRoute公司的 LD3320方案实现,而语音合成功能则采用宇 音天下公司的SYN6288芯片来实现,并且使用 STC11L08XE单片机作为主控芯片,方便与同为 3.3V工作电压的LD3320进行通信.由于手持 端具有可移动性,所以需在电路中加入相应的 充电电路以及电压转换电路.本方法以聚合物 锂电池作为手持端的电源,通过TP4056芯片对 电池进行充电•由于无线串口模块在5V供电 时能达到较大的发射功率,所以电路中还加入 T SX1308芯片进行电压转换.
另外,芯片还固化有多首和弦乐与提示音, 使用方便•芯片体积小,有利于节省电路板面 积.由于这些特点,SYN6288具有很强的应用 能力,主要可应用于排队叫号机、车载导航系
用SX1308制作一款最高输出电压为28V的超小型升压电路
用SX1308制作一款最高输出电压为28V的超小型升压电路本文介绍的超小型升压电路的输入电压范围为2~24V,可以使用一节锂电池或两节串联的干电池供电,其最高输出电压可达28V。
该升压电路可以给工作电流在数百mA以下的负载供电(譬如,用来代替数字万用表内的9V叠层电池)。
其电路原理如下图所示。
▲ SX1308升压电路原理图。
SX1308是一款常用的贴片升压IC,采用SOT23-6封装,其输入电压范围为2~24V,输出电压最高可达28V,输出电流最大为2A (实测输出电流根本达不到2A)。
该升压IC的内部振荡频率可达1.2MHz,并且带有过流、过热保护电路。
本电路的输出电压Vout由电阻R1、R2决定,其计算公式为Vout=0.6V x (1+R1/R2)。
一般通过改变R1阻值来调整输出电压。
制作时,电感L选用22μH的贴片功率电感。
VD选用SR360或1N5822肖特基二极管。
▲ SOT23-6封装的SX1308。
由于SOT23-6封装的SX1308的体积很小,故一般用丝印“B628”来表示型号。
▲成品的SX1308升压电路模块。
上图为成品的SX1308升压电路模块。
其输入电压范围为2~24V,输出电压可以通过电路板上的多圈电位器调整。
▲ 实测SX1308升压电路的带负载能力。
SX1308升压IC给出的最大输出电流为2A,实测根本达不到。
上图为实测的一个数值,SX1308升压电路模块的输入电压为3.49V,在负载电阻为9.8Ω(由4.7Ω和5.1Ω的水泥电阻串联而成)时,其输出电压为6.340V(实测空载时的输出电压为6.4V),负载电流为6.34V/9.8Ω≈0.647A。
此时若负载电阻不变,继续调高输出电压,SX1308的温升便会显著增大,其内部的保护电路开始起作用,使输出电压自动降低。
玩具雾化器电路详解
关于玩具级喷雾器的电路详解一:摘要1. 根据GB19865-2005所示,玩具任意两部分间的工作电压不应超过24V,故此我们根据国标对玩具的需求,制作了一款低于24V的升压可驱动雾化片的应用电路。
2. 目前市场上的喷雾玩具主要有:喷雾汽车,喷雾火车,喷雾恐龙,喷雾轮船,喷雾飞机等。
我们这次做的是喷雾汽车。
二:内容1.首先我来说说市场上雾化器的主要电路及应用:目前市场上消费类电子应用最多的雾化片为微孔陶瓷雾化片,主要用于:加湿器,补水仪,香薰仪,蒸脸仪等等。
下图为常用电路。
常用雾化片的电路,都是基于三脚电感升压,电压幅度通常为60-120V之间,雾化片频率通常为108KHz。
雾化片是加湿器中的核心,它是由压电陶瓷环和金属膜片组成,能将水变成雾的一个高频震荡的零件。
压电陶瓷是一种新型的功能材料,在给它供电时,它就能产生微小的形变。
雾化片正是利用了这一原理。
通过驱动电源供给的高频交流电压,使压电陶瓷产生每秒几十万次的振动,带动金属片振动。
雾化片的金属片和吸水棉条的一端紧密接触,从而金属片不停的拍打吸水棉条端面上的一层水,从而使水从金属片的微孔中喷出雾。
上述三脚电感电路具有升压高,功率强,且便宜稳定,电路简单,能达到雾化片起雾需求,是目前应用于陶瓷雾化片最多的电路。
此电路生产便宜,工艺简单,已经成为市场上的应用于雾化片的常规电路。
2.下面我们来说说关于雾化片24V的应用。
以下为简单稳压电路:这个电路是基于常用的三脚电感升压电路做稳压后所产生的电路,相当于先用三脚电感使电压升高至60-120V,再使用21V稳压管使电压降至24V以内,以便于应用在电子玩具产品上。
此电路由于使用稳压管做压降,所以功耗大,且对稳压管的电流电压要求都比较高,所以并不适用与玩具。
玩具通常使用3A电池或者锂电池供电,电池容量小,电压在5V以下,使用这个电路功耗太大,玩具使用时间过短,需要经常充电或者更换电池,是一个极差的体验。
下面我们使用升压IC:如上图,使用升压IC电路,对3-5V电源使用升压芯片SX1308进行升压,调节参数,使升压到18-24V之间。
XC1308 应用说明书_0.1
深圳海恩科技发展有限公司
芯潮微电子有限公司
XC1308
目
1. 2. 3.
录
简介............................................................................................................................................................................................................. 3 XC1308 内部框图.....................................................................................................................................................................................4 XC1308 各功能模块............................................................................................................................................................................... 5 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 启动和欠压锁定........................................................................................................................................................................ 5 恒流原理..................................................................................................................................................................................... 5 恒压原理..................................................................................................................................................................................... 6 逐周期过流检测........................................................................................................................................................................ 6 高低压峰值电流补偿............................................................................................................................................................... 7 保护功能模块............................................................................................................................................................................ 7 输出线补偿................................................................................................................................................................................ 8 原副边匝比 N PS ........................................................................................................................................................................ 8 原边电感量 LP .......................................................................................................................................................................... 8 原边匝数 N P 、副边匝数 N S 、辅助绕组匝数 N A .......................................................................................................... 8 绕组线径计算............................................................................................................................................................................ 9 输出二极管选型........................................................................................................................................................................ 9 采样电阻设计............................................................................................................................................................................ 9 FB 分压电阻设计......................................................................................................................................................................9 应用原理图.............................................................................................................................................................................. 10 元器件列表(BOM)..................................................................................................................................................................11 变压器绕制方法..................................................................................................................................................................... 12
基于SX1302芯片的LoRa网关射频模组性能简介
基于SX1302芯片的LoRa网关射频模组性能简介lora网关射频模块产品简介E106-433G27P2模组是基于SX1302芯片方案设计的LoRa网关射频模组,采用标准Mini PCI-e 形态封装,SPI接口,lora网关模组内置PA和LNA,半双工设计,方便用户快速开发LoRa 网关设备。
SX1302是Semtech推出的新一代LoRa网关基带芯片,搭载前端SX1250,可以支持扩频因子SF5~SF12。
相比上一代SX1301网关方案,可支持更高速率的数据通信,同时功耗大幅降低,简化了网关的热设计,性能显著提高。
LoRa网关射频模块通信特性1.采用PCI Express Mini Card 1.2标准接口;2.发送电流最大360mA,接收电流60mA;3.I-PEX天线接口,半双工通信;4.标准SPI数字接口;5.支持8接收通道,SF5~SF12全解,接收灵敏度低至-141dBm;6.支持1发送通道,发射功率最高27dBm(典型值26dBm);7.支持免授权频段:EU433、CN470、EU868、US915;模块方框图图1:E106-433G27P2 lora网关模块功能框图产品接口描述:接口定义E106-433G27P2的信号接口是标准的Mini PCI Express接口,下表给出了模块对应的52pin金手指管脚的功能定义以及说明。
电源接口E106-433G27P2模块使用3.3V供电,在TX模式下,瞬间峰值电流最大可能达到400mA,为防止电压跌落,使用的开关电源或LDO需要能够提供足够的电流,而且在模块供电端口处需加一个电容值较大的钽电容或电解电容。
若使用开关电源给模块供电,电路走线应尽量避开天线部分,以防止EMC干扰。
图2:DC-DC参考电路SPI接口E106-433G27P2模块的SPI接口信号定义如下表所示。
表5:SPI接口信号定义主控SPI需要支持全双工,具体时序请参照SX1302的Datasheet。
Silan SC1308L 音频耳机驱动器芯片说明书
SilanSemiconductorsSC1308LHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD1.01CLASS AB STEREO HEADPHONEDRIVERDESCRIPTIONThe SC1308L is a Class AB stereo headphone driver chiputilizing CMOS Technology specially designed for portabledigital audio applications.It is housed in an8-pin DIP or SOpackage and is functionally compatible with TDA1308.Pinassignment and application circuits are optimized for lowercost effectiveness and easy PCB Layout.FEATURES• Wide temperature range•CMOS Technology• Excellent power supply ripple rejection• Low power consumption• High signal-to-noise ratio,S/N=110dB• Low harmonic distortion• Large output voltage swing.•Low supply voltage availableDIP-8SOP-8APPLICATIONS• Portable digital audio• Hi-fi audio system• Walkman• CD-ROMPIN CONFIGURATIONS BLOCK DIAGRAM18OUT1IN1-IN1+V SSV DDOUT2IN2-IN2+1OUT1IN1-IN1+V SSV DDOUT2IN2-IN2+ABSOLUTE MAXIMUM RATINGCharacteristic Symbol Value Unit Supply Voltage V DD8V Storage temperature T STG-65~+150°C Operating Temperature T OPR-40~+80°CSilanSemiconductorsSC1308LHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD1.02ELECTRICAL CHARACTERISTICS (Tamb=25°C,unless otherwise specified)Parameter Symbol Test conditions Min Typ Max Unit Single power supply234Dual power supplyV DD+1.0+1.5+2.0V Single power supply000Dual power supplyV SS-1.0-1.5-2.0V Supply current I DD No load V DD=3V--2--mA Power dissipation PD No load V DD=3V15mWV DD=1.8V--4--THD=0.15%V DD=3V--15--V DD=1.8V--5--Maximum output power POTHD=3%V DD=3V--20--mWV O(p-p)=2V0.030.06Total harmonic distortion THDV O(p-p)=2V,R L=5KΩ0.001% Single-to-noise ratio S/N100110dB70Channel separation CSR L=5K Ohms105dB Power supply ripplerejectionPSRR F=100Hz,Vripple(p-p)=100mV90dB PIN DESCRIPTIONPIN No. Symbol I/O Description1OUT1O Output pin12IN1-I Inverting input pin13IN1+I Non-inverting input pin14V SS--Negative power supply5IN2+I Non-inverting input pin26IN2-I Inverting input pin27OUT2O Output pin28V DD--Positive power supplySilanSemiconductorsSC1308LHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD1.03TYPICAL APPLICATION CIRCUIT746V DDV IN1V REFV IN2V OUT1V OUT23.9K3.9K100F10FRL10K-Single power supply-+128V DD+V OUT1V OUT2V SS-V IN1V IN23.9K3.9K10K100F10FDual power supplySilanSemiconductorsSC1308LHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD1.041.259.203.45.83.315degree0.460.41。
SX1302大电流升压芯片参数应用
SX1302大电流升压芯片参数应用SX1302外置MOS大电流升压,输入电压2.2V-15V,输出电压3V-60V,19/4A 80W以内应用,开关频率100KHZ-1MHZ大功率升压IC,2.5V-60V输入输出3V-120V ,4V-6V升12V1.5A2.5升5V 3V升5V 2A。
SX1302大电流升压芯片:10V-15V输入,12V输出 5.3-7.5v输入5v 2A 同步升降压芯片6V升8.4V 9v-28v转12v 12v升16.8v 24转27V 2A3V升5V 2A 12V升19V 4A 4-6V升12V1.5A 9v-28v转12v3A 车充电源芯片12升24v 1A 12V升18V3AMID ipod 3.7v 升5v2A 应急电源升压ic 移动电源升压ic12v升28v 30v 移动打印机升压ic ups dc-dc电源芯片雾化器升压驱动方案、美容雾化器、医疗雾化器、车载雾化器、12升15v升18v升20v升24v 驱动电源。
IPAD 移动电源 Iphoen4 iPod touch 移动充电方案3.7v升5v 2.1A大电流9v~ 30v输入输出12v 3A 8v~32v输入输出5v 7.v 9v12v15v升降压电路太阳能升降压电源ic 10v~30v输入输出12v 15v 大电流,dc-dc12V/3V车充芯片电子器件IC 供应车载DVD供电芯片,SX1302[详细内容] 硕芯科技推出高效、同步整流升压和降压DC/DC转换器SX1302,当输入电压低于设定的输出电压时,芯片工作在升压状态、当输入电压高于设定的输出电压时工作在降压状态,从而成为处于电池电压范围内的单节锂离子电池(2.8V-4.2V)、汽车蓄电池(9V-28V)的便携供电设备能够保证输出的稳定,是便携设备供电的理想选择。
SX1302为一款频率可调、外置MOSFET大电流升压芯片,电路PWM输出直接驱动N沟道场效应管驱动升压实现大电流输出,芯片的供电范围为2.2~15V,该控制器采用独特的控制方案,PWM(脉冲宽度调制)的优越性,提供一个高效、较宽电压调节范围的电源。
硕芯科技产品手册2
型号封装应用功率SX1301SOT23-6(3K/ tape&reel)内置MOS低电源升压,输入电压2.6-6V,输出电压3.3V-20V,3V升5V 1A典型应用,开关频率1MHZSX1315SOT23-5(3K/ tape&reel)外置MOS升压芯片,输入电压1.5~6.5V,输出电压1.5-15V,输出电流1A至3A可调,开关频率300KHzSX1318SOP-8(2.5K/ tape&reel)大电流升压,输入电压5V-32V,输出电压6V-40V,12V升18V 0.8A 12W以内应用,开关频率400KHZSX1328TO263-5(800pcs/ tape&reel)大电流升压,输入电压5V-32V,输出电压6V-40V,12V升18V 1.5A 28W以内应用,开关频率SX1302TSSOP-8(2.5K/ tape&reel)外置MOS大电流升压,输入电压2.2V-15V,输出电压3V-60V,19V/4A 80W以内应用,开关频率100KHZ-1MHZSX1303SOT23-5(3K/ tape&reel)外置MOS升压芯片,输入电压2~5V,输出电压固定5V,输出电流1A至2A可调,开关频率300KHzSX1308TO23-6(3K/ tape&reel)内置MOS低电源升压,输入电压2.6-6V,输出电压3.3V-20V,3V升5V 1.5A典型应用,开关频率1MHZSX3002SOP-8(2.5K/ tape&reel)降压恒流恒压芯片,输入电压4.5V-40V,输出电压1.235V-37V,5V/2A 8W以内应用,开关频率52KHZSX3003TO263-5(800pcs/ tape&reel)降压恒流恒压芯片,输入电压4.5V-40V,输出电压1.235V-37V,5V/3A12W以内应用,开关频率52KHZSX3478TO263-5(800pcs/ tape&reel)5A开关稳压电路,输入电压3.6V-32V,输出电压adj0.8V-30V,5V/5A 22W以内应用,开关频率300KHZSX2106SOT23-6(3K/ tape&reel)2A同步整流芯片,输入电压4.5-21V,输出电压0.8-17.85V,5V/2A 5W以内应用,开关频率450KHzSX2103SOP-8(2.5K/ tape&reel)3A同步整流芯片,输入电压4.75-23V,输出电压0.925V to 20V,5V/2A10W以内应用,开关频率600KHzSX2105SOP-8(2.5/ tape&reel)5A同步整流芯片,输入电压4.75-21V,输出电压 0.805V to 21V,5V/5A 25W以内应用,开关频率300KHz-800KHzSX3700DIP8(100PCS/Tube)40V-80v-400V输入高耐压降压型DC/DC稳压芯片,交流220V直接降压直流12V方案,输出电流200mA,SX3600SOP-8(2.5/ tape&reel)25VDC-75VDC高耐压降压型DC/DC芯片,振荡频率可以从10KHZ-100KHZ可调,输出电流500MASX3130SOP-8(2.5K/ tape&reel)外置MOS升压型LED驱动SX5055SOT23-5(3K/ tape&reel)500MA线性单节锂电4.2V充电芯片SX5058SOP-8(2.5K/ tape&reel)1000MA线性单节锂电4.2V充电芯片SX5201SOP-8(2.5K/ tape&reel)500MA线性双节锂电8.4V充电芯片SX5202SOP-8(2.5K/ tape&reel)1500MA开关型双节锂电8.4V充电芯片型号封装主要功能说明SX6116SOP-16(50PCS/Tube)内置MCU立体声接收芯片,输入电压1.8V-3.6V,接收频率76-108MHz SX6510SOP-10(2.5K/ tape&reel)64-125MHZ高性能低功耗调频立体声发射芯片SX750SMD(50PCS/Tube)I2C高性能、低功耗调频立体声发射模块,供电电压2.4V-3.6V,发射频率范围76MHz-110MHzSX710SMD(50PCS/Tube)I2C高性能、低功耗调频立体声发射模块,供电电压2.4V-3.6V,发射频率范围64MHz-125MHz电池管理FM收音IC FM发射深圳市硕芯科技有限公司产 品 手 册DC-DC升压系列DC-DC降压系列LED驱动系列。
基于BDS和GPRS的智能汽车定位器设计
基于BDS和GPRS的智能汽车定位器设计作者:方志鹏王帅谢正华来源:《中国新技术新产品》2018年第22期摘要:企事业单位及高校外来车辆进出频繁,单位及校园内部道路外来车辆随意停放现象日趋严重。
为了规范停车,本文提出了一种基于STM32F103C8T6/MC20的BDS和GPRS的智能汽车定位器。
在入口处派发定位器置于车内,出口处回收定位器。
如车辆停于禁停区,系统以SMS方式将汽车定位信息发送至巡逻保安手机,同时利用GPRS模块通过TCP/IP协议将车辆定位信息发送至保安控制中心的电脑主机,并报警提示。
实验结果符合预期,可以很好地对外来车辆进行管控。
关键词:汽车定位;BDS;GPRS;STM32;MC20中图分类号:TP391 文献标志码:A0 引言目前我国已进入汽车时代,汽车已成为大众出行的必备交通工具,随着经济的发展,企事业单位之间的交流,企事业与高校的交流,高校与高校之间的交流日渐频繁,加之日趋紧张的停车位问题,外来车辆的停放管理已成为目前各企事业单位和高校亟待解决的突出问题之一。
本文使用ST公司的STM32F103C8T6作为主控制芯片,配合上海移远通信科技有限公司的MC20模块,可以实现BDS定位信息的抓取,再通过GPRS网络发送至远端主机或以SMS方式将定位信息发送至手机,并提供相应的报警信息。
控制中心的主机根据上传的定位信息配合百度地图即可查看车辆位置,进而作出相应处理。
1 总体设计与整体结构本系统由MC20模块、STM32F103C8T6主控芯片、GSM天线、BDS天线、SIM卡槽、3.7V锂离子电池组成。
MC20是上海移远通信科技有限公司开发的一款超小尺寸GSM/GPRS/BDS/GPS一体化模块。
体积只有18.7×15.7×2.1,性能稳定。
模块采用邮票孔接口方式,装配可靠方便。
支持基站定位,支持BDS/GPS单双模定位。
采用该模块可将BDS定位信息通过GPRS网络传输至远端主机,BDS/GPS天线可以根据需要采用无源或有源连接。
sx1308 B628 dc-dc
High Efficiency 1.2MHz2A Step Up ConverterFEATURES• Integrated 80m Ω Power MOSFET• 2V to 24V Input Voltage• 1.2MHz Fixed Switching Frequency • Internal 4A Switch Current Limit • Adjustable Output Voltage • Internal Compensation • Up to 28V Output Voltage• Automatic Pulse Frequency Modulation Mode at Light Loads • up to 96% Efficiency• Available in a 6-Pin SOT23-6 PackageAPPLICATIONS• Battery-Powered Equipment• Set-Top Boxed • LCD Bais Supply• DSL and Cable Modems and Routers • Networking cards powered from PCI or PCI express slotsTYPICAL APPLICATIONFigure 1. Basic Application CircuitThe SX1308 is a constant frequency, 6-pin SOT23 current mode step-up converter intended for small, low power applications. The SX1308 switches at 1.2MHz and allows the use of tiny, low cost capacitors and inductors 2mm or less in height. Internal soft-start results in small inrush current and extends battery life.The SX1308 features automatic shifting to pulse frequency modulation mode at light loads. The SX1308 includes under-voltage lockout, current limiting, and thermal overload protection to prevent damage in the event of an output overload. The SX1308 is available in a small 6-pin SOT-23 package.EfficiencyIout (mA)Figure 2. Efficiency CurveE f f i c i e n c y (%)GENERAL DESCRIPTIONSX1308IN, EN voltages ………..….…… -0.3V to 26V Operating Temperature….... -40°C to +85°C FB Voltages ................................-0.3V to 6V Junction Temperature ………………...160°CSW Voltage ……………………..-0.3V to 30V Storage Temperature Range -65°C to 150°C Peak SW Sink and Source Current ………4A Lead Temperature (Soldering, 10s) ...+300°CPACKAGE/ORDER INFORMATION31246SOT23-5INGNDFBSWEN(MT3540)5NCPIN DESCRIPTIONPIN NAME FUNCTION1 SW Power Switch Output. SW is the drain of the internal MOSFET switch. Connect the power inductor and output rectifier to SW. SW can swing between GND and 28V.2 GND Ground Pin3 FB Feedback Input. The FB voltage is 0.6V. Connect a resistor divider to FB.4 EN Regulator On/Off Control Input. A high input at EN turns on the converter, and a low input turns it off. When not used, connect EN to the input supply for automatic startup.5 IN Input Supply Pin. Must be locally bypassed. 6NCNCABSOLUTE MAXIMUM RATINGS SOT23-6 (SX1308)ELECTRICAL CHARACTERISTICS(V IN=V EN=5V, T A = 25°C, unless otherwise noted.)Parameter Conditions MIN TYP MAX unit Operating Input Voltage 2 24 V Under Voltage Lockout 1.98 V Under Voltage Lockout Hysteresis 100 mV Current (Shutdown) V EN= 0V 0.1 1 µA Quiescent Current (PFM) V FB=0.7V,No switch 100 200 µA Quiescent Current (PWM) V FB=0.5V,switch 1.6 2.2 mA Switching Frequency 1.2 MHz Maximum Duty Cycle V FB = 0V 90 % EN Input High Voltage 1.5 V EN Input Low Voltage 0.4 V FB Voltage 0.588 0.6 0.612 V FB Input Bias Current V FB = 0.6V -50 -10 nA SW On Resistance (1) 80 150 mΩSW Current Limit (1) V IN= 5V, Duty cycle=50% 4 A SW Leakage V SW = 20V 1 μA Thermal Shutdown 155 ℃Note:1) Guaranteed by design, not tested.The SX1308 uses a fixed frequency, peak current mode boost regulator architecture to regulate voltage at the feedback pin. The operation of the SX1308 can be understood by referring to the block diagram of Figure 3. At the start of each oscillator cycle the MOSFET is turned on through the control circuitry. To prevent sub-harmonic oscillations at duty cycles greater than 50 percent, a stabilizing ramp is added to the output of the current sense amplifier and the result is fed into the negative input of the PWM comparator. When this voltage equalsThe output voltage of the error amplifier the powerMOSFET is turned off. The voltage at the output of the error amplifier is an amplified version of the difference between the 0.6V bandgap reference voltage and the feedback voltage. In this way the peak current level keeps the output in regulation. If the feedback voltage starts to drop, the output of the error amplifier increases. These results in more current to flow through the power MOSFET, thus increasing the power delivered to the output. TheSX1308 has internal soft start to limit the amount of input current at startup and to also limit the amount of overshoot on the output.Figure 3. Functional Block DiagramOPERATIONTYPICAL OPERATING CHARACTERISTICSEfficiency CurveIout (mA)line RegulationVin (V)Freq VS VinEfficiency CurveIout(mA)Load regualationIout (mA)Efficiency VS VinE f f i c i e n c yV o u t (V )C u r r e n t l i m i t (A )V o u t (V )SX1308Setting the Output VoltageThe internal reference VREF is 0.6V (Typical).Theoutput voltage is divided by a resistor divider,R1 and R2 to the FB pin. The output voltage is given by)1(21R R V V REF OUT +×= Inductor SelectionThe recommended values of inductor are 4.7 to 22μH. Smal l size and better efficiency are the major concerns for portable device, such as SX1308 used for mobile phone. The inductor should have low core loss at 1.2MHz and low DCR for better efficiency. To avoid inductor saturation current rating should be considered.Capacitor SelectionInput and output ceramic capacitors of 22μF are recommended for SX1308 applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.Diode SelectionSchottky diode is a good choice for SX1308 because of its low forward voltage drop and fast reverses recovery. Using Schottky diode can get better efficiency. The high speed rectification is also a good characteristic of Schottky diode for high switching frequency. Current rating of the diode must meet the root mean square of the peak current and output average current multiplication as following :PEAKOUT D I I RMS I ×≈)(The diode ’ s reverse breakdown voltage should belarger than the output voltage.Layout ConsiderationFor best performance of the SX1308, the following guidelines must be strictly followed.Input and Output capacitors should be placedclose to the IC and connected to ground plane to reduce noise coupling.The GND should be connected to a strongground plane for heat sinking and noise protection.Keep the main current traces as possible asshort and wide.SW node of DC-DC converter is with highfrequency voltage swing. It should be kept at a small area.Place the feedback components as close aspossible to the IC and keep away from the noisy devices.APPLICATION INFORMATIONPACKAGE DESCRIPTIONTOP VIEW RECOMMENDED LAND PATTERNFRONT VIEW SIDE VIEWDETAIL “A”Figure 4. TSOT23-6/SOT23-6 Physical DimensionsNOTE:1)ALL DIMENSIONS ARE IN MILLIMETERS.2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH,PROTRUSION OR GATE BURR.3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION AB.6) DRAWING IS NOT TO SCALE.7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)。
MAX13088EASA+中文资料
General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简介
SX1308 是一款固定频率,SOT23-6 封装的电流
模式升压变换器, 高达 1.2MHz 的工作频率使得外 围电感电容可以选择更小的规格。内置软启动功能 减小了启动冲击电流。
SX1308 轻载时自动切换至 PFM 模式。 SX1308包含了输入欠压锁定,电流限制以及过热
保护功能。 小尺寸的封装给 PCB 省下更多的空间。
输入电容选择
在开关瞬态期间为确保 VIN 不会下降太多,输入电 容是很有必要的,输入电容的主要规格是电容值, 电压值, RMS 电流额定值和 ESL (等效串联电感) 。 推荐采用的输入电容值为 10uF~47uF,具体取决 于应用情况。 选择电容时,需要确认在工作电压和工作温度范围 内电容值是否产生任何明显变化。 强烈推荐采用 X7R 或者 X5R 的多层陶瓷电容 (MLCC) , 其对于输入输出电容而言都是较好的选 择,它们都具有极低的 ESL 值。
1
SX1308
引脚说明
引脚 1 2 3 4 5 6 名称 SW GND FB EN IN NC 开关节点,连接到电感 地 输出反馈脚(反馈电压 0.6V) 使能脚,驱动 EN 大于 1.5V 时激活工作,小于 0.4V 时关闭工作,不要将 EN 脚悬空处理 输入电源脚,必须靠近放置输入陶瓷电容 空置脚 功能
设置输出电压
通过调整反馈分压电阻 R1 和 R2 来设置输出电压:
R1 VOUT = VREF × 1 + R 2
例如以下电压设置 VOUT 5V 10V 12V 15V 20V 注: VOUT:输出电压 VREF:反馈电压(0.6V) R1:上边分压电阻 R2:下边分压电阻, R2 的合适值为 10kΩ R1 73.2 kΩ 158 kΩ 191 kΩ 240 kΩ 324 kΩ R2 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ
∆iL =
V × (VOUT − VIN ) VIN × DTS = IN L × VOUT × FSW L I × VOUT = γ OUT VIN
一般设置纹波电流ΔiL 为最大负载的 10%~30%
∆iL = γI IN
故所需电感值为:
L=
VIN × (VOUT − VIN ) γ × I OUT × VOUT 2 × FSW
2
SX1308
电感选择
采用输出电压 VOUT 与输入电压 VIN 的比值可迅速估 算出占空比 D: 选择电感时,首先确保电感峰值电流 ILPK 小于电感 饱和电流 ISAT,因为电感饱和会导致电感值骤降并 影响芯片正常工作。 考虑到 SX1308 的工作效率, 选择具有较低串联电 阻 RDCR 的电感可得到更高的工作效率。
SX1308
1.2MHZ,26V Step-up DC/DC Converter
特性
1、内部集成 80mΩ功率 MOSFET 2、2V 到 24V 的宽输入电压范围 3、1.2MHz 固定频率工作 4、内部 4A 电流限制 5、可调输出电压 6、芯片内部补偿,简化外围元件总数 7、输出电压最高支持到 28V 8、高效率:最高可达 97% 9、自动 PFM 10、SOT23-6 封装
功率二极管选择
推荐使用低导通电压快恢复的肖特基二极管,这样 可以得到更高的工作效率。 肖特基二极管的反向击穿电压必须大于输出电压。 对于二极管的额定电流,需满足:
I D ( RMS ) ≥ I OUT × I PEAK
∆VOUT =
I OUT × D ∆iL × RESR + 2 2 × FSW × COUT
D=
VOUT − VIN VOUT
考虑到二极管 D1 的正向压降造成的功耗,跨接在 内置 NMOS 开关上的压降, 电感直流电阻 RDCR 上 的压降和开关损耗,根据实际工作占空比,可以计 算出更精确的转换效率:
VOUT η = VIN 1− D
其中η是 SX1308 工作效率。 电感值确定了输入纹波电流。感值大则纹波电流 小,感值小则纹波电流大,但感值过大或过小都会 增加电感上的功耗。
4
PCB 布线注意事项
为使 SX1308工作在最佳状态,需要满足下述 LAYOUT 规则: ★输入输出电容地必须靠近 IC 的 GND 引脚以减小 电流环路面积。 ★大的交流电流会流过 VIN,SW 和 VOUT 走线, 所 以要保证这些走线短且宽。 ★SW 脚处铜皮,因其上有交变电压,为预防 EMI, 需要控制在一个比较小的面积。 ★FB 引脚是一个高阻抗节点,应当使 FB 走线足够 短以避免拾取噪声导致输出电压波动,将反馈电阻 尽可能靠近 IC 放置,同时 R2 的 GND 应尽量靠近 IC 的 GND 引脚放置,VOUT 到 R1 的布线应该远离 电感和开关节点。
2
注: VIN:输入电压 VOUT:输出电压 IIN:输入电流 IOUT:输出电流 FSW:开关频率 γ:纹波系数(0.1~0.3) 电感峰值电流为:
I LPK = I IN +
∆iL 2
ILPK 必须确保小于芯片选择
且无 SX1308 的工作频率允许采用陶瓷输出电容, 需对瞬态响应做出折衷。陶瓷电容允许更高的电感 纹波电流,同时不会明显增加输出纹波电压。 输出电容的选择基于所需纹波和瞬态响应,负载瞬 态的初始电流主要由输出电容提供,因此输出阻抗 能确定最大的电压扰动,转换器的输出纹波是关于 电容的容抗及其等效串联阻抗 ESR 的一个函数。
当采用 MLCC 电容时,其 ESR 值一般会表现得足 够低,使得电容纹波占据主导地位,当该情况发生 时,输出纹波近似为正弦波。 输出电容同样推荐采用 X7R 或者 X5R 的多层陶瓷 电容 MLCC,因为其能够旁路高频噪声。 特定数量的 开关边沿噪声会沿着寄生电容从电感耦合到输出 端, 陶瓷电容可以旁路该噪声, 而钽电容则做不到。 因为输出电容是影响控制环路稳定性的两个外置 器件之一,大多数的应用都需要最小值为 4.7uF 的 输出电容。