第十二章 主成分分析和因子分析

合集下载

主成分分析与因子分析

主成分分析与因子分析
主成分分析与因子分析
汇报人:张 强 组员:林培鸿 曾志成 邦锦阳 郝 超 蔡凌峰 杨 辉 张 强
一、主成分分析
一、主成分分析基本思想
通过原来变量的少数几个线性组合来解释原来变量绝大 多数信息的一种多元统计方法。
该方法主要基于众多变量之间有一定的相关性,则必然 存在着起支配作用的共同因素这一想法,通过对原始变量相 关矩阵或协方差矩阵内部结构关系进行研究,利用原始变量 的线性组合形成几个综合指标,即主成分。
有时为了使公共因子的实际意义更容易解释,往往需要放 弃公共因子之间不相关的约束而进行斜交旋转。最常用的 斜交旋转方法为Promax方法。
参数设置
结果分析
由模式矩阵可知,变量X2,X3,X4在第一公共因子上的载荷 均较大,尤其X3的载荷最大,因此第一公共因子主要反映 水泥企业的规模;变量X6,X7在第二公共因子上的载荷较大, 则第二公共因子主要反映水泥企业的营业能力。总之,两 个公共因子均较未旋转前更容易解释。
主成分分析与因子分析的区别
二者的本质不同主要体现在以下几个方面:
(1) 因子分析把诸多变量看成是对每一个变量都有作用的一 些公共因子和一些仅对某一个变量有作用的特殊因子的线 性组合。因此,其目的就是要从数据中探查能对变量起解 释作用的公共因子和特殊因子,以及公共因子和特殊因子 的组合系数。主成分分析则简单一些,它只是从空间生成 的角度寻找能解释诸多变量绝大部分变异的几组彼此不相 关的新变量(主成分),它是一种可逆的数据变换。
相关性检验结果
由表可知,除了变量X7,原始各变量之间存在较强的相关性。 KMO统计量的值为0.785,在0.01的显著性水平下,球形检 验拒绝相关阵为单位阵的原假设,说明适合做因子分析, 并且因子分析的效果较好。

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用一、相似之处:1.降低数据维度:主成分分析和因子分析都是降维方法,通过将原始变量进行线性组合,生成一组新变量,减少原始数据的维度。

2.揭示变量之间的关系:主成分分析和因子分析都可以揭示数据中变量之间的相关性和潜在结构,更好地理解变量之间的关系。

3.数据依赖:主成分分析和因子分析都依赖原始数据的线性关系。

二、主成分分析的特点和应用:1.数据探索:主成分分析可以用于对数据进行探索性分析,揭示数据中的模式和变量之间的关系。

2.特征选择:主成分分析可以用于提取最相关的变量,帮助选择最能代表数据信息的特征。

3.数据压缩:通过保留主要的主成分,主成分分析可以将数据压缩成较低维度,减少存储和计算的开销。

4.降噪:主成分分析可以通过去除与主成分相关较小的维度,减少噪声的影响。

三、因子分析的特点和应用:因子分析的目标是通过找到能够解释原始变量间共同方差的不可观测因子,来揭示变量背后的潜在结构。

因子分析的原理是通过将多个变量通过线性函数关系表示为少数几个潜在因子的和。

因子分析可以用于以下场景:1.变量间关系建模:因子分析可以用于建立变量之间的概念模型,识别变量的共同因子、独特因子和测量误差。

2.假设测试:因子分析可以用于检验变量之间的因果关系,以验证一些假设。

3.变量缩减:通过识别共同的因子,并组合成新的因子变量,因子分析可以减少数据集的维度。

4.数据恢复:因子分析可以通过基于因子提取的结果,恢复原始变量的丢失信息。

四、主成分分析与因子分析的区别:1.目标:主成分分析的目标是将原始变量转化为一组新的不相关的维度,以解释数据方差最大化;而因子分析的目标是将原始变量转化为一组潜在因子,以解释变量间的共同方差。

2.变量假设:主成分分析假设所有变量是观测变量的线性组合,而因子分析假设所有变量既有观测变量,也有不可观测的因子变量。

3.因素解释:主成分分析的主要解释对象是方差,因而主成分的解释目标是能够包含尽可能多的方差;而因子分析的解释对象是共同方差,因而因子的解释目标是能够解释原始变量之间的共同方差。

主成分分析与因子分析法

主成分分析与因子分析法

主成分分析与因子分析法主成分分析(PCA)是一种无监督的降维技术,通过将原始数据投影到新的正交坐标系上,使得投影后的数据具有最大的方差。

具体而言,PCA根据数据的协方差矩阵或相关矩阵生成一组称为主成分的新变量,其中每个主成分都是原始数据的线性组合。

这些主成分按照方差递减的顺序排列,因此前几个主成分能够解释原始数据中大部分的方差。

通过选择保留的主成分数量,可以将数据集的维度降低到较低的维度,从而更容易进行进一步的分析和可视化。

PCA的主要应用有:数据预处理(如去除冗余信息和噪声)、特征提取、数据可视化和模式识别等。

在特征提取中,选择前k个主成分可以将原始数据变换到一个k维的子空间中,实现数据降维的目的。

此外,PCA还可以通过计算原始数据与主成分之间的相关性,识别出数据中的关键特征。

因子分析法(Factor Analysis)是一种用于探索多个观测变量之间潜在因子(Latent Factor)的关系的统计方法。

潜在因子是无法直接观测到的,但是可以通过多个相关变量的共同变异性来间接测量。

因子分析的目标是找到最小数目的潜在因子,以解释原始数据中的共同变化。

与PCA不同,因子分析法假设观测变量与潜在因子之间存在线性关系,并且观测变量之间的相关性可以被这些潜在因子所解释。

通过因子载荷矩阵,我们可以了解每个观测变量与每个潜在因子之间的相关性大小。

而通过解释因子的方差贡献率,我们可以了解每个因子对数据变异性的解释程度。

因子分析方法还可以用于探索主要的潜在因素,并构建潜在因子模型,以便进行进一步分析和预测。

因子分析的主要应用有:确认性因子分析(Confirmatory Factor Analysis,CFA)用于检验理论模型的拟合度;在心理学和教育领域中,用于构建潜在因子模型并验证心理学量表的可信度和效度;在市场研究中,用于构建品牌形象的因子模型,分析消费者对不同品牌特征的感知。

总的来说,主成分分析和因子分析法都是多变量分析方法,用于探索和减少数据集的维度。

因子分析、主成分分析

因子分析、主成分分析

通过主成分分析,可以研究多个变量之间的相关性,揭示变量
之间的内在联系。
多元回归分析
03
在多元回归分析中,主成分分析可以用来消除变量间的多重共
线性,提高回归分析的准确性和稳定性。
金融数据分析
风险评估
在金融数据分析中,主成分分析可以用来评估投资组合的风险, 通过提取主要因子来反映市场的整体波动。
市场趋势分析
主成分分析案例:金融数据分析
总结词
主成分分析用于金融数据分析中,能够 降低数据维度并揭示主要经济趋势。
VS
详细描述
在金融领域,主成分分析被广泛应用于股 票、债券等资产组合的风险评估和优化。 通过对大量金融数据进行主成分分析,可 以提取出几个关键主成分,这些主成分代 表了市场的主要经济趋势。投资者可以利 用这些信息进行资产配置和风险管理。
特征提取
主成分分析能够提取出数据中的 主要特征,突出数据中的主要变 化方向,有助于揭示数据的内在 规律。
数据可视化
降低数据维度后,数据的可视化 变得更加容易,有助于直观地理 解和分析数据。
多元统计
多元数据描述
01
主成分分析可以用来描述多元数据的总体特征,提供对多元数
据分布的整体理解。
多元相关分析
02
目的
通过找出影响观测变量的潜在结构, 更好地理解数据的意义,简化复杂数 据的分析,并解决诸如多重共线性等 问题。
因子分析的原理
1 2 3
基于相关性
因子分析基于观测变量之间的相关性,通过找出 这些相关性背后的公因子来解释变量之间的依赖 关系。
降维
通过提取公因子,将多个观测变量的复杂关系简 化为少数几个潜在因子的线性组合,实现数据的 降维。

主成分分析 因子分析

主成分分析 因子分析

主成分分析 因子分析主成分分析和因子分析是很重要的统计分析方法。

两者都是用于对一组同质或异质的变量进行数据探索研究的技术,它们都可以提供有价值的结论,增强数据有意义的理解。

1. 主成分分析主成分分析(Principal Component Analysis,简称PCA)是从一大组变量中提取具有代表性的正交变量,组成一个新的变量集合。

PCA通过减少变量数量,减少多变量间相关性带来的重复性,从而提升数据分析的准确性和有效性。

注意减少变量数量不是减少观测样本数量,而是把原先高维度的变量合并成一组较低维度的变量。

PCA算法的基本思想是:它分析原始数据集中的变异,并从中提取主要的变量,然后将这些变量的组合(叫做主成分)用推断法来重新构建原来的数据集,最后能够说明原始变量的结构,对被研究的变量结构有系统的解释。

2. 因子分析因子分析(Factor Analysis,简称FA)是一种用来探索相关变量之间潜在关系的统计分析方法。

这一方法注重的是把一系列的变量映射到一个尽可能少的多个隐变量的过程。

其中,这些隐变量就是“因子”,它们是原来变量的代表性变量,且变量之间有因果或相关的结构关系。

FA的基本思想是,将一组变量之间的复杂的相关关系映射到一组基本关系,即因子上。

然后,当每个变量映射到一个或几个因子上后,只需要解释因子就能够完全解释自变量变化的原因。

常用的因子模型有因子旋转、因子分层、因子波动等。

相比较,主成分分析和因子分析都有各自的专业领域,它们都有不同的数据需求和分析方法,在不同的数据处理中也表现出各自的优势和劣势。

主成分分析处理比较复杂的数据,可以根据原始变量的关系构建视图,但不涉及因果关系的推断;而因子分析可以推导出被研究的变量之间的关系,进而探索或验证其原因。

主成分分析和因子分析(朱艳科)

主成分分析和因子分析(朱艳科)

主成分分析和因子分析法一、主成分分析概论主成分分析的工作对象是样本点×定量变量类型的数据表。

它的工作目标,就是要对这种多变量的平面数据表进行最佳综合简化。

也就是说,要在力保数据信息丢失最少的原则下,对高维变量空间进行降维处理。

很显然,识辨系统在一个低维空间要比一个高维空间容易得多。

英国统计学家斯格特(M.Scott )在1961年对157个英国城镇发展水平进行调查时,原始测量的变量有57个。

而通过主成分分析发现,只需5个新的综合变量(它们是原变量的线性组合),就可以95%的精度表示原数据的变异情况,这样,对问题的研究一下子从57维降到5维。

可以想象,在5维空间中对系统进行任何分析,都比在57维中更加快捷、有效。

另一项十分著名的工作是美国的统计学家斯通(Stone)在1947年关于国民经济的研究。

他曾利用美国1929~1938年各年的数据,得到了17个反映国民收入与支出的变量要素,例如雇主补贴、消费资料和生产资料、纯公共支出、净增库存、股息、利息和外贸平衡等等。

在进行主成分分析后,竟以97.4%的精度,用三个新变量就取代了原17个变量。

根据经济学知识,斯通给这三个新变量要别命名为总收入1F 、总收入变化率2F 和经济发展或衰退的趋势3F (是时间t 的线性项)。

更有意思的是,这三个变量其实都是可以直接测量的。

二、主成分分析的基本思想与理论1、主成分分析的基本思想在对某一事物进行实证研究中,为了更全面、准确地反映出事物的特征及其发展规律,人们往往要考虑与其有关系的多个指标,这些指标在多元统计中也称为变量。

这样就产生了如下问题:一方面人们为了避免遗漏重要的信息而考虑尽可能多的指标,而另一方面随着考虑指标的增多增加了问题的复杂性,同时也由于各指标均是对同一事物的反映,不可避免地造成信息的大量重叠,这种信息有时甚至会抹杀事物的真正特征与内在规律。

基于上述问题,人们就希望在定量研究中涉及的变量较少,而得到的信息量又较多。

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析在数据分析领域,因子分析和主成分分析是两种常用的多变量分析方法。

它们可以用来处理大量的数据,找出数据的内在规律,并将数据简化为更少的变量。

本文将介绍因子分析和主成分分析的定义、应用以及它们在数据分析中的区别和联系。

一、因子分析因子分析是一种用于研究多个变量之间的潜在因素结构及其影响的统计方法。

它通过将多个观测变量转化为少数几个无关的因子,来解释变量之间的相关性。

因子分析的基本思想是将多个相关观测变量归因于少数几个潜在因子,这些潜在因子不能被观测到,但可以通过观测变量的变化来间接地推断出来。

因子分析通常包括两个主要步骤:提取因子和旋转因子。

提取因子是指确定能够解释原始变量方差的主要共性因子,常用的方法有主成分分析法和最大似然估计法。

旋转因子是为了减少因子之间的相关性,使得因子更易于解释。

常用的旋转方法有正交旋转和斜交旋转。

因子分析的应用非常广泛,可以用于市场研究、社会科学调查、心理学、金融等领域。

例如,在市场研究中,因子分析可以用来确定消费者购买行为背后的潜在因素,从而更好地理解市场需求。

二、主成分分析主成分分析是一种通过线性变换将原始变量转化为一组线性无关的主成分的统计方法。

主成分是原始变量的线性组合,具有较大的方差,能够尽可能多地解释原始数据。

主成分分析的主要思想是将原始变量投影到一个新的坐标系中,使得新坐标系上的第一主成分具有最大方差,第二主成分具有次最大方差,以此类推。

通过选择解释原始数据方差较多的前几个主成分,我们可以实现数据的降维和主要信息提取。

主成分分析在数据降维、特征提取和数据可视化等领域有广泛的应用。

例如,在图像处理中,主成分分析可以用来压缩图像数据、提取重要特征,并且可以在保留图像主要信息的同时减少存储空间的需求。

三、因子分析和主成分分析的区别和联系因子分析和主成分分析在某些方面有相似之处,但也存在明显的区别。

首先,因子分析是用于研究多个观测变量之间的潜在因素结构,而主成分分析是通过线性变换将原始变量转化为一组线性无关的主成分。

主成分分析与因子分析

主成分分析与因子分析

标题: 主成分分析和因子分析的区别1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。

2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。

3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。

4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。

5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。

在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。

和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。

大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。

而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。

当然,这中情况也可以使用因子得分做到。

所以这中区分不是绝对的。

总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。

主成分分析一般很少单独使用:a,了解数据。

(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。

(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

主成分分析、因子分析

主成分分析、因子分析

主成分分析在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。

多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。

如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。

盲目减少指标会损失很多信息,容易产生错误的结论。

因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。

由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。

主成分分析与因子分析就属于这类降维的方法。

主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。

主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。

因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

2. 问题描述下表1是某些学生的语文、数学、物理、化学成绩统计:首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系。

因子分析主成分分析

因子分析主成分分析

因子分析主成分分析因子分析和主成分分析是一种统计方法,用于探索多个变量之间的关系。

它们可以帮助人们理解数据的结构、降低变量维度、提取重要信息以及进行数据压缩等。

因子分析和主成分分析的基本思想是将一组观测变量转化为一组新的、不相关的变量(主成分或因子),以保留原始数据中的关键信息。

主成分分析(PCA)是一种线性降维方法,它通过寻找原始数据中方差最大的方向(主成分),将原始数据映射到一个低维子空间中。

这些主成分是原始数据中的线性组合,但它们是彼此正交的,也就是说,它们在数据中没有相关性。

主成分的数量通常比原始变量少,因此可以实现数据压缩和降维的目的。

主成分分析的步骤如下:1.标准化数据:将原始数据标准化为均值为0,标准差为1的数据集,以消除不同变量之间的量纲差异。

2.计算协方差矩阵:根据标准化后的数据计算协方差矩阵。

3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和特征向量。

4.选择主成分:根据特征值的大小选择前k个主成分,其中k是降维后的维度。

5.构建降维矩阵:将选定的主成分按照特征值大小的顺序组合起来,构成降维矩阵。

6.数据转化:将原始数据通过降维矩阵映射到低维子空间中,得到降维后的数据。

因子分析(Factor Analysis)是一种非线性降维方法,它假设观测数据是由若干个“潜在因子”造成的,这些因子不能直接观测到,只能通过相关的观测变量间接反映出来。

因子分析通过寻找观测数据中的共同因素,解释多变量之间的协方差结构,并试图从中识别出潜在的因素。

因子分析的步骤如下:1.确定因子数:通过确定潜在因素的数量,决定需要提取的因子个数。

2.选择提取方法:根据因素的假设和数据特点选择合适的提取方法,常用的有主成分法、极大似然法和最小残差法等。

3.估计因子载荷:根据选择的提取方法,估计每个观测变量与每个因子的相关程度,即因子载荷。

4.解释因子:根据因子载荷的结果解释因子的意义和潜在的因素。

5.因子旋转:将因子旋转到更容易解释和解读的位置,常用的旋转方法有方差最大化法、正交旋转法和斜交旋转法等。

主成分分析和因子分析

主成分分析和因子分析
这一类数据所涉及的问题可以推广到对企业, 对学校进行分析、排序、判别和分类等问题。
5
空间的点
• 例中的的数据点是六维的;也就是说,每个观测值是6维空间中 的一个点。我们希望把6维空间用低维空间表示。
• 先假定只有二维,即只有两个变量,它们由横坐标和纵坐标所 代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值; 如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态 的假定下是可能的)
.879
-.343
HISTORY
.911
-.201
ENGLISH
.913
-.216
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 3 iterations.
y1 -0.806x1 - 0.674x2 - 0.675x3 0.893x4 0.825x5 0.836x6
y2 0.353x1 0.531x2 0.513x3 0.306x4 0.435x5 0.425x6
• 这些系数称为主成分载荷(loading),它表示主成分和相应的 原先变量的相关系数。
3
.457
7.619
88.761
4
.323
5.376
94.137
5
.199
3.320
97.457
6
.153
2.543
100.000
Extraction Method: Principal Component Analysis.

主成分分析与因子分析的联系与区别

主成分分析与因子分析的联系与区别

一、问题的提出在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。

而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。

多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。

因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。

而主成分分析和因子分析正是为解因子分相关。

1.2.),3. 主成分的各系数,是唯一确定的、正交的。

不可以对系数矩阵进行任何的旋转,且系数大小并不代表原变量与主成分的相关程度;而因子模型的系数矩阵是不唯一的、可以进行旋转的,且该矩阵表明了原变量和公共因子的相关程度。

4. 主成分分析,可以通过可观测的原变量X直接求得主成分Y,并具有可逆性;因子分析中的载荷矩阵是不可逆的,只能通过可观测的原变量去估计不可观测的公共因子,即公共因子得分的估计值等于因子得分系数矩阵与原观测变量标准化后的矩阵相乘的结果。

还有,主成分分析不可以像因子分析那样进行因子旋转处理。

5.综合排名。

主成分分析一般依据第一主成分的得分排名,若第一主成分不能完全代替原始变量,则需要继续选择第二个主成分、第三个等等,此时综合得分=∑(各主成分得分×各主成分所对应的方差贡献率),主成分得分是将原始变量的标准化值,代入主成分表达式中计算得到;而因子分析的综合得分=∑(各因子得分×各因子所对应的方差贡献率)÷∑各因子的方差贡献率,因子得分是将原始变量的标准化值,代入因子得分函数中计算得到。

主成分分析与因子分析法

主成分分析与因子分析法

主成分分析与因子分析法主成分分析是一种减少数据维度的统计学方法,通过将多变量数据投影到一个较低维度的空间中,实现数据的降维。

主成分分析的基本思想是将原始数据转换为一组新的变量,这些新的变量称为主成分,通过主成分的降序排列,能够使原始数据中较大方差的信息更好地保留下来。

1.数据标准化:根据数据的特点,将数据进行标准化处理,使得各个变量具有相同的尺度。

2.计算协方差矩阵:通过计算数据的协方差矩阵,了解各个变量之间的相关性。

3.求解特征向量和特征值:通过对协方差矩阵进行特征值分解,得到特征向量和特征值。

4.选择主成分:选取前k个特征向量对应的主成分,使得它们能够解释绝大部分的方差。

通常选择的标准是特征值大于1,或者解释方差的累积比例达到一定的阈值。

5.主成分系数:计算原始变量和主成分之间的线性关系,这个关系可以用主成分的特征向量作为系数矩阵进行表示。

1.降低维度:主成分分析能够将高维数据降维,提取出最能代表原始数据的主成分。

2.去除冗余信息:通过选择主成分,可以去除原始数据中的冗余信息,提取出最有用的信息。

3.可视化:降维后的数据可以更容易地可视化和解释。

二、因子分析法(Factor Analysis)因子分析法是一种用于确定多个观测变量之间的潜在结构的统计学方法。

它假设观测变量是由一组潜在因子决定的,通过观测变量和因子之间的相关性,可以推断出潜在因子之间的关系。

因子分析法的基本步骤如下:1.确定因子数:根据研究的目的和背景,确定潜在因子的个数。

2.求解因子载荷矩阵:通过最大似然估计或主因子方法,求解因子载荷矩阵,得到每个观测变量与潜在因子之间的相关关系。

3.提取因子:根据因子载荷矩阵,提取出与观测变量相关性最高的因子,将原始数据映射到潜在因子空间中。

4.旋转因子:通过旋转因子载荷矩阵,使得因子之间更易解释和解读,常用的旋转方法有正交旋转和斜交旋转。

5.因子得分:根据观测变量的信息和因子载荷矩阵,计算每个样本在每个因子上的得分。

主成分分析与因子分析的联系与区别

主成分分析与因子分析的联系与区别

主成分分析与因子分析的联系与区别相比之下,因子分析(Factor Analysis)更关注隐性的变量或者未观测到的结构。

因子分析假设观测到的变量由一组潜在的因子决定,这些因子通过线性组合来解释观测到的变量的协方差矩阵。

这些因子是未观测到的,但可以通过观测到的变量的线性组合来间接估计。

因子分析的目标是通过提取因子,找到能够解释原始数据方差的最少因子数量,以及变量与因子之间的关系。

相同点:1.数据降维:主成分分析和因子分析都是用于降低数据维度的方法。

它们能够将高维数据转化为低维的表示形式,从而更好地展示数据的结构。

2.可视化:主成分分析和因子分析都可以用于数据可视化。

通过降维,我们可以将数据在二维或三维平面上进行展示,以更好地理解变量之间的关系。

不同点:1.目标:主成分分析旨在最大化数据方差的解释,而因子分析旨在找到能够解释观测到的变量协方差矩阵的最少因子数量。

2.假设:主成分分析假设观测到的变量是线性相关的,而因子分析假设这些变量受到潜在因子的影响。

3.变量解释:在主成分分析中,主成分是原始变量的线性组合,它们解释了数据方差的不同比例。

而在因子分析中,因子是潜在的变量,通过观测到的变量的线性组合来间接估计。

4.其中一种程度上冗余度:主成分分析中的主成分是不相关的,而在因子分析中,因子之间可能存在一定的相关性。

5.数据特点:主成分分析适用于变量之间存在线性相关性的数据;而因子分析适用于存在潜在因子的数据,且变量之间的关系更加复杂。

需要注意的是,主成分分析和因子分析是统计方法,它们的结果需要进一步解释和解释。

研究者需要考虑数据的背景知识和分析的目标,以确定何时使用主成分分析还是因子分析。

主成分分析、因子分析

主成分分析、因子分析
揭示潜在结构
这些方法可用于揭示数据中的潜在结构或模式, 这些结构或模式可能不容易通过直接观察原始变 量来发现。
辅助决策制定
通过识别最重要的变量和潜在因子,主成分分析 和因子分析可以为决策制定提供有价值的见解。
主成分分析与因子分析概述
主成分分析(PCA)
一种线性降维技术,通过正交变换将原始特征 空间中的线性相关变量转换为新的正交特征空 间中的线性无关变量,称为主成分。
主成分分析优缺点
01
缺点
02
主成分解释性较差,不易于理解每个主成分 的具体含义。
03
对异常值和缺失值敏感,可能导致结果的不 稳定。
04
在某些情况下,主成分可能无法完全反映原 始数据的所有信息。
02 因子分析
CHAPTER
因子分析原理
公共因子与特殊因

因子分析试图用少数几个公共因 子和特殊因子描述原始变量的关 系。公共因子对所有变量都有影 响,而特殊因子只对个别变量起 作用。
05 结论与展望
CHAPTER
研究结论
主成分分析能够有效降低数 据维度,提取主要特征,简
化数据结构。
因子分析能够揭示变量之间 的内在关系,发现潜在因子
,解释数据变异。
主成分分析与因子分析在数 据处理、特征提取、模式识 别等领域具有广泛应用价值 。
研究不足与展望
在高维数据处理方面,主成分分析与因子分析 的计算效率有待提高,可以研究更加高效的算
案例二:因子分析在市场细分中的应用
01 02 03
背景介绍
市场细分是企业根据消费者需求、购买行为等方面的差异 ,将整体市场划分为若干个具有相似特征的子市场的过程 。因子分析是一种从多个变量中提取公共因子的统计方法 ,可以帮助我们更好地理解和描述市场细分的结构。

主成分分析与因子分析

主成分分析与因子分析

在实际工作中,为了全面的分析问题,往往会收集很多变量,这些变量之间通常都会存在大量重复信息,如果直接用来分析,不但计算繁琐,模型复杂,而且还有一个更严重的问题就是共线性问题,前面提到过共线性问题会导致模型误差增大,失去意义。

当面对变量过多时,通常的处理方法是降维,即设法将原来众多具有一定相关性的变量,重新组合成一组新的互相无关的综合变量,这些综合变量要尽可能多的反映原有变量的信息。

降维的方法有很多,其中最常用的就是主成分分析和因子分析一、主成分分析(Principal Component Analysis,PCA)1.基本思路设有n个原始变量,如果将它们都用散点图表示,会发现一些变量是存在某种线性关系的,这就是共线性,我们可以利用这个特点,创建一个变量Yi,使它成为某些原始变量的线性组合结果Yi =β+β1x1+...βnxn,这样处理之后,n个原始变量就转化为i个新变量,这i个新变量不同程度的反映了原始变量的信息,并且互不相关,这就解决了共线性问题。

那么接下来的问题是,n个变量的线性组合有很多种,我们取哪种结果作为新变量呢?经典的方法就是根据方差来判断,方差越大,变异越大,而我们的目的并不是消除变异,而是用尽可能少的新变量表示大部分原始变量,因此变异信息也必须尽量完整的反映。

我们将新变量按照方差大小排序,最大者也就是包含变异最多的为第一主成分,以此类推,通常只取前面几个最大的主成分,这样虽然损失部分信息,但是抓住了主要变异,如果全都取的话是没有意义的,因为原则上有多少个原始变量,就可以提取多少个主成分,但是这样做违背了降维的目的,多数情况下,取钱2-3个主成分就可以代表90%以上的变异信息,其余的可以忽略不计。

2.计算过程前面讲了PCA的基本思路,现在用具体数学算法来加以实现<1>数据标准化由于每个变量都有自己的数量级和量纲,首先要对变量进行标准化处理以消除这方面的差异<2>计算协方差矩阵或相关系数矩阵对于一维数据,也就是一个变量的数据,我们可以用均值、方差、标准差来描述,而协方差用于衡量两个变量的总体误差,如果多于两个变量,那就要用协方差矩阵来表示。

主成分分析与因子分析

主成分分析与因子分析

主成分分析与因⼦分析主成分分析,主成份是原始变量的线性组合,在考虑所有主成份的情况下主成份和原始变量间是可以逆转的。

即“简化变量”,将变量以不同的系数合起来,得到好⼏个复合变量,然后在从中挑⼏个能表⽰整体的复合变量就是主成份,然后计算得分。

因⼦分析,公共因⼦和原始变量的关系是不可逆转的,但是可以通过回归得到。

是将变量拆开,分成公共因⼦和特殊因⼦。

过程是:因⼦载荷计算,因⼦旋转,因⼦得分。

主成份分析主成份分析需要知道两变量之间的相关性,⽣成协⽅差举证和相关新矩阵,对应的⽣成的新向量矩阵Y还有特征值λi,对应是第I个新向量对总体信息的贡献率为λi/(λ1+λ2+...+λn),对应的还有⼀个累积贡献率。

确定主成份的个数的⽅法有:特征值⼤于1(要求原始数据的每⼀个变量⾄少能贡献1各单位的变异)、陡坡检验法(陡坡图中开始平坦的点之前的点的个数)、累积解释变异⽐例法(即(λ1+...+λi)/(λ1+λ2+...+λn)>70%)。

同时也可以知道主成分分析对应的⼏个难点①是使⽤协⽅差矩阵还是相关系数矩阵②如何确定主成份的个数。

当数据中不同变量的度量单位不同并且数值相差较⼤就⽤标准化后的相关系数矩阵,当数值相差不⼤并且指标的权重不⼀样时,考虑⽤协⽅差矩阵。

对于个数的确定就是我们⼀些边界问题是否1左右的也可以囊括进主成份中,是否难以确定开始变平坦的是那个点,是否70%不够。

等⼏个问题。

主成分分析可以⽤两个过程步完成PROC FACTORS 、PROC PRINCOMP。

后者能处理的数据量⼤⼀些,效率⾼⼀些,,前者输出的内容丰富些,还可以做旋转因⼦。

以下是主成分分析过程;proc princomp data=sashelp.cars out=car_component;var mpg_city mpg_highway weight wheelbase length;run;输出结果:先是输出统计结果,再是输出相关性矩阵,这⾥princomp步默认使⽤的是相关系数矩阵,实际应⽤过程中,可以通过cov选项来指定使⽤的矩阵。

主成分分析法与因子分析法的区别

主成分分析法与因子分析法的区别

主成分分析和因子分析有十大区别:1.原理不同主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。

因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。

就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)2.线性表示方向不同因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。

3.假设条件不同主成分分析:不需要有假设(assumptions),因子分析:需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。

4.求解方法不同求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。

(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。

此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况);求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。

主成分分析和因子分析

主成分分析和因子分析
3
成绩数据(student.sav)
• 100个学生的数学、物理、化学、语文、历史、英语的成绩如下 表(部分)。
4
从本例可能提出的问题
• 目前的问题是,能不能把这个数据的6个变量 用一两个综合变量来表示呢?
• 这一两个综合变量包含有多少原来的信息呢? • 能不能利用找到的综合变量来对学生排序呢?
.435
.002
.079 -.342 -.083
ENGLIS H .836
.425
.000
.074
.276 -.197
Extrac tion Method : Principal Component Analysis.
• 这a里.6每c一om列po代ne表nt一s 个ex主tr成ac分t作ed为. 原来变量线性组合的系数(比
21
• 对于我们的数据,SPSS因子分析输出为
R ot at ed C om po ne nt M at ri xa
Co mpon ent
MA TH
1 -. 387
2 .7 90
PH YS
-. 172
.8 41
CH EM
-. 184
.8 27
LI TERA T
.8 79
-. 343
HI STOR Y
• 这些系数称为主成分载荷(loading),它表示主成分和相应的 原先变量的相关系数。
• 比 变量如的y1表相示关式系中数x为1的-0系.80数6。为-0.806,这就是说第一主成分和数学 • 相关系数(绝对值)越大,主成分对该变量的代表性也越大。可
以看得出,第一主成分对各个变量解释得都很充分。而最后的 几个主成分和原先的变量就不那么相关了。
10

主成分分析和因子分析

主成分分析和因子分析

王中昭制作
• 为了方便设处理后的x*ij仍记为xij,下面 所有X均为标准化后的X,这时X有如下 特点: • (1)、能消除不同量纲可能带来的问题 (如不同量纲不能求和等)。 • (2)、X的每个变量的平均值为0(即每 列之和/个数等于0),x的每一列方差为1 (每列每个元素平方和/个数等于1)。
1 n 其中x j xij , n i 1 j 1,2,..., p
• 为方便起见,设经过标准化处理后的x*ij 仍记为Xij。
王中昭制作
2、计算样本相关矩阵R
x11 1 ' 1 x12 XX n n ... x 1p x21 ... xn1 x11 x22 ... xn1 x21 ... ... ... ... x1 p ... xnp xn1 x12 ... x1 p x22 ... x2 p ... ... ... xn 2 ... xnp
王中昭制作
二、因子分析(只介绍变量之 间相互关系的R型因子分析)
• 因子分析法的意义。 • 对于某个要研究的问题,往往希望尽可能多地收 集相关变量,以期能对问题有比较全面、完整的解释。 但是多个变量之间往往会存在相关性,在多元线性回 归分析中,多个解释变量出现相关性就会产生多重共 线性问题,这样会给回归方程带来许多麻烦,为了解 决此问题最简单方法就是削减变量个数,但这样必然 会导致信息丢失和信息不全面的问题,为此人们要寻 找一种更为合理的解决办法,它即能大大地减少参与 数据建模的变量个数,同时不会造成信息的大量丢失。 因子分析正是这样一种能够有效降低变量个数,并没 有过多地丢失信息的分析方法。
王中昭制作
• 注:特征值为负的修正方法详见《实用多 元统计分析》(上海科技出版社)P310。 • 第二步:确定m个主成分(公共因子), 由累计贡献率应大于85%(特征值的贡献 率)来选择。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因子分析方法在部分领域应用的一些例子
心理学:心理学家瑟斯登对56项测验的得分进行因子分 析,得出了7中主要智利因子:词语理解能力,语言流畅 能力、计数能力、空间能力、记忆力、知觉速度和推理 能力
教育学:某师范大学在对以幼儿园3~6岁幼儿为对象, 通过80名幼儿教师对480名幼儿好奇心行为特征描述的开 放式问卷调查,编制出60个项目的初始问卷,对500名幼 儿的初测结果进行探索性因子分析后,形成了33个项目 的正式问卷,对1000名幼儿的评价结果进行验证性因子 分析,结果表明:教师评价的3~6岁幼儿好奇心结构包 括敏感、对未知事物的关注、好问、喜欢摆弄、探索持 久和好奇体验6个因子
积型,后者属岩浆分异型。透辉石透闪岩石中铁的沉积与泥质
成分有关,属于正常沉积。由此推断石绿铁矿的主要成矿为沉 积作用,并据此提出了找矿标志和找矿方向
上市公司评价:某研究者选择35家能源类上市公司,根据 2007年的12项经营指标数据,采用因子分析法分别按盈利能 力、资产管理能力、偿债能力及经营业绩综合评分等方面对35 家上市公司进行了排名。其中:盈利能力排在前5位的是:神 火股份、海油工程、兰花科创、潞安环能和中国石油;经营业 绩综合得分排在前5位的是:神火股份、潞安环能、兰花科创、 海油工程和开滦股份
12 - 25
2020-9-25
统计学
STATISTICS (第四版)
根据什么选择主成分?
根据主成分贡献率
一般来说,主成分的累计方差贡献率达到80%以上的前 几个主成分,都可以选作最后的主成分
比如表13.3中前两个主成分的累计方差贡献率为95.57%
根据特特征根的大小
一般情况下,当特征根小于1时,就不再选作主成分了, 因为该主成分的解释力度还不如直接用原始变量解的释 力度大
Factor】,进入主对话框 第2步 在主对话框中将所有原始变量选入【Variables】 第3步 点击【Descriptives】,在【correlation Matrix】下选择
【Coefficirnts】,点击【Continue】回到主对话框 第4步 点击【Extraction】,在【Display】下选择【Scree
如果原来的变量之间的相关程度高,降维的效果 就会好一些,所选的主成分就会少一些,如果原 来的变量之间本身就不怎么相关,降维的效果自 然就不好
不相关的变量就只能自己代表自己了
12 - 18
2020-9-25
12.1 主成分分析 12.1.3 主成分分析的步骤
统计学
STATISTICS (第四版)
Plot】,点击【Continue】回到主对话框 第5步 点击【Rotation】,在【Display】下选择【Loading
Plot】,点击【Continue】回到主对话框 点击【OK】
12 - 22
主成分分析
2020-9-25
统计学
STATISTICS (第四版)
SPSS的输出结果
各变量之间的相关系数矩阵
如果第一个主成分不足以代表原来的个变量,在 考虑选择第二个主成分,依次类推
这些主成分互不相关,且方差递减
12 - 17
2020-9-25
统计学
STATISTICS (第四版)
主成分的选择
究竟选择几个主成分才合适呢?
一般要求所选主成分的方差总和占全部方差的 80%以上就可以了。当然,这只是一个大体标准 ,具体选择几个要看实际情况
12 - 16
2020-9-25
统计学
STATISTICS (第四版)
主成分的选择
选择几个主成分?选择标准是什么?
被选的主成分所代表的主轴的长度之和占了主轴 总程度之和的大部分
在统计上,主成分所代表的原始变量的信息用其 方差来表示。因此,所选择的第一个主成分是所 有主成分中的方差最大者,即Var(yi)最大
胱癌、乳腺癌、结肠癌死亡率被解释的比例均在 77%以上,表明这10种恶性肿瘤之间存在中等偏 强的内在联系和地区分布特点
12 - 7
2020-9-25
统计学
STATISTICS (第四版)
因子分析得到的是什么?
地质学:海南岛的石绿铁矿及外围地区有透辉石透闪岩石和阳 起石两种岩石。地质工作者对两种岩石标本的11种化验数据进 行了因子分析,分别得到5种和4种主要因子。结果表明,透辉 石透闪岩石与阳起石有明显区别,前者的元素组合属碳酸盐沉
a22 x2
a2p xp
y p a p1x1 a p2 x2 a pp x p
主成分分析的数学模型
aij 为 第 i 个 主 成 分 yi 和 原 来的第j个变量xj之间的 线性相关系数,称为载
荷(loading)。比如,a11 表示第1主成分和原来的 第1个变量之间的相关系 数 , a21 表 示 第 2 主 成 分 和原来的第1个变量之间 的相关系数
统计学 数据分析
(方法与案例)
统计学
STATISTICS (第四版)
统计名言
模型选择是艺术,而不是科学。
——William Navidi
12 - 2
2020-9-25
第 12 章 主成分分析和因子分析
12.1 主成分分析 12.2 因子分析
统计学
STATISTICS (第四版)
学习目标
主成分分析和因子分析的基本原理 主成分分析和因子分析的异同 主成分分析和因子分析的数学模型 用SPSS进行主成分分析和因子分析
假定只有两个变量x1和x2,从散点图可见两个变量存 在相关关系,这意味着两个变量提供的信息有重叠
如果把两个变量用 一个变量来表示, 同时这一个新的变 量又尽可能包含原 来的两个变量的信 息,这就是降维的 过程
12 - 12
2020-9-25
统计学
STATISTICS (第四版)
主成分分析的基本思想
为能够充分利用数据,通常希望用较少的新变量代 替原来较多的旧变量,同时要求这些新变量尽可能 反映原变量的信息
主成分分析和因子分子正式解决这类问题的有效方 法。它们能够提取信息,使变量简化降维,从而使 问题更加简单直观
12 - 5
2020-9-25
统计学
STATISTICS (第四版)
因子分析得到的是什么?
12 - 6
2020-9-25
统计学
STATISTICS (第四版)
因子分析得到的是什么?
医学:一位研究者对山东某县2000~2002年3年
的全死因调查资料中不同地区各恶性肿瘤标化死
亡率进行因子分析后发现,该县居民恶性肿瘤的
发病和死亡具有明显的地区分布。在地区分布中,
各种恶性肿瘤的死亡具有一定程度的聚集性。经 因子分析得到的4个主因子可以解释10种恶性肿 瘤死亡率的74.54%;10种恶性肿瘤中,被解释 的比例最小也在62%以上;而胃癌、白血病、膀
用主成分分析和因子分析对实际问题进行 综合评价
12 - 4
2020-9-25
统计学
STATISTICS (第四版)
主成分分析和因子分析
(principal component analysis & factor analysis)
在研究实际问题时,往往需要收集多个变量。但这 样会使多个变量间存在较强的相关关系,即这些变 量间存在较多的信息重复,直接利用它们进行分析 ,不但模型复杂,还会因为变量间存在多重共线性 而引起较大的误差
变量之间的存在较强的相关关系,适合作主成分分析
12 - 23
2020-9-25
统计学
STATISTICS (第四版)
SPSS的输出结果
(选择主成分)
各主成分所解释的原始变量的方差
12 - 24
该表是选则主成分的主要依据
2020-9-25
统计学
STATISTICS (第四版)
根据什么选择主成分?
“Initial Eigenvalues”(初始特征根)
统计学
STATISTICS (第四版)
主成分分析的数学模型
数学上的处理是将原始的p个变量作线性组合,作为新的
变量
设p个原始变量为
为 y1,y2,,y p
x1,x2,,x p ,新的变量(即主成分)
,主成分和原始变量之间的关系表示为
y1 a11x1 a12 x2 a1p x p
y2
a 21 x1
部分变化的信息(变异)
此时,只需要用长轴方 向的变量就可以代表原 来两个变量的信息。这 样也就把原来的两个变 量降维成了一个变量。 长短轴相差越大,降维 也就越合理
12 - 13
2020-9-25
统计学
STATISTICS (第四版)
主成分分析的基本思想
(以两个变量为例)
多维变量的情形类似,只不过是一个高维椭球,无法 直观地观察
实际上就是本例中的6个主轴的长度
特征根反映了主成分对原始变量的影响程度,表示引入 该主成分后可以解释原始变量的信息
特征根又叫方差,某个特征根占总特征根的比例称为主 成分方差贡献率
p
设特征根为,则第i个主成分的方差贡献率为 i i i 1
比如,第一个主成分的特征根为3.963,占总特征根的的 比例(方差贡献率)为66.052%,这表示第一个主成分解释 了原始6个变量66.052%的信息,可见第一个主成分对原 来的6个变量解释的已经很充分了
12 - 8
2020-9-25
第 12 章 主成分分析和因子分析
12.1 主成分分析
12.1.1 主成分分析的基本原理 12.1.2 主成分分析的数学模型 12.1.3 主成分分析的步骤
12.1 主成分分析 12.1.1 主成分分析的基本原理
统计学

(principal component analysis)
相关文档
最新文档