2011届高考数学 必看之-知识点总结 立体几何

合集下载

高中数学立体几何重要知识点(经典)

高中数学立体几何重要知识点(经典)

高中数学立体几何重要知识点(经典)立体几何知识点1、柱、锥、台、球的结构特征1)棱柱:有两个对应边平行的全等多边形作为底面,侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。

2)棱锥:侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3)棱台:上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。

4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成,底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。

5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成,底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。

6)圆台:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成,上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。

7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,球的截面是圆,球面上任意一点到球心的距离等于半径。

2、柱体、锥体、台体的表面积与体积1)几何体的表面积为几何体各个面的面积的和。

2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线):直棱柱侧面积=chS,圆柱侧面积=2πrhS,正棱锥侧面积=1/2ch'S,圆锥侧面积=πrl2,正棱台侧面积=1/2(c1+c2)h'S,圆台侧面积=(r+R)πl,圆锥表面积=πr(r+l)S,圆台表面积=πr2+rl+Rl+R2S,圆柱表面积=2πr(r+l)。

3)柱体、锥体、台体的体积公式:直棱柱体积=ShV,圆柱体积=Sh=πr2hV,直棱锥体积=1/3ShV,圆锥体积=1/3πr2h,直棱台体积=(S+SS+S)h=π(r2+rR+R2)hV,圆台体积=1/3S(R2+rR+r2)hV。

4)球体的表面积和体积公式:球体体积=4/3πR3,球面积=4πR2.3、平面及基本性质公理1:如果点A在直线l上,点B也在直线l上,点A 在平面α上,点B也在平面α上,则直线l在平面α上。

高考立体几何的知识点总结

高考立体几何的知识点总结

高考立体几何的知识点总结立体几何作为高考数学中的一个重要考点,是让很多学生头痛的内容之一。

但只要掌握了一些基本的知识点和解题方法,立体几何也能够拿到不错的分数。

本文将总结高考立体几何的知识点,希望对广大考生有所帮助。

首先,让我们来回顾一下几何体的基本定义。

几何体是由平面图形旋转、平移、折叠等操作得到的立体图形。

常见的几何体有立方体、长方体、圆柱体、圆锥体、球等。

这些几何体都有自己的特点和性质,下面我们依次进行介绍。

一、立方体立方体是一种六面相等、相互平行的多面体,其所有面都是正方形。

立方体的特点是:所有的棱和面都相等,体对角线的长度等于边长的根号2,对称线的交点为几何体的中心。

二、长方体长方体是一种六面相等、相互平行的多面体,其相邻面都是矩形。

长方体的特点是:对称线的交点为几何体的中心,底面的面积与高的乘积等于体积,侧面的面积等于底面的周长乘以高。

三、圆柱体圆柱体是一种两个底面相同且平行的多面体,其侧面是一个弯曲的矩形。

圆柱体的特点是:侧面积等于底面周长乘以高,体积等于底面面积乘以高。

四、圆锥体圆锥体是一种一个底面和一个顶点的多面体,其侧面是一个弯曲的三角形。

圆锥体的特点是:侧面积等于底面周长乘以高的一半,体积等于底面积乘以高的一半。

五、球球是一种所有点到球心的距离相等的立体图形。

球的特点是:表面积等于4πr²,体积等于4/3πr³。

其中,r是球的半径。

在解决立体几何题目时,我们需要运用到许多的定理和性质,下面我们来总结一些常用的定理。

首先,平行线截立体当一个平面与两个或多个平面平行时,它截断的各部分与截断的立体对应的部分全等。

其次,等角面截立体当两个平面相交的两个直角相等时,它截断的各部分与截断的立体对应的部分全等。

再次,等比线段截圆柱以圆柱母线上一点为一定点,引过它的直线交柱面于两点,这两点的连线与圆柱底面上所对的两点的连线等长。

最后,底面面积比与体积比如果两个立体的底面面积比相等,那么这两个立体的体积比也相等。

(完整版)高中立体几何知识点总结

(完整版)高中立体几何知识点总结

高中立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

2011年高考数学知识点总结

2011年高考数学知识点总结

高中数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。

本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。

一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。

2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。

3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。

二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。

2. 四棱锥:底面为四边形,侧面为三角形的五面体。

3. 五棱锥:底面为五边形,侧面为三角形的六面体。

4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。

5. 正方体:六个面都是正方形的多面体。

6. 正四面体:四个面都是正三角形的多面体。

7. 正六面体:六个面都是正方形的多面体。

三、平面图形与立体图形1. 投影:图形在投影面上的图象。

2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。

3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。

4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。

5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。

四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。

2. 垂直关系:两条直线在同一个平面上,且相交成直角。

五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。

2. 平面角:两个相交的平面所夹的角,范围为0到180度。

3. 相对角:两个相交直线上相对的两个角。

六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。

2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。

七、相交与相切1. 相交:两个或多个图形交叠在一起。

2. 相切:两个或多个图形只有一个点是共同的。

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。

XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。

四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。

改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。

其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。

二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。

基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。

在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。

直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。

三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。

圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。

球的表面积和体积分别为4πR²和(4/3)πR³。

四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结1500字高中立体几何是高中数学的一个重要分支,它研究的是空间中的物体以及它们之间的关系。

在高中立体几何中,我们主要学习物体的表面积、体积、投影等这些基本概念和计算方法。

下面是关于高中立体几何的知识点总结。

一、几何体的表面积和体积1.立体几何的基本概念:点、线、面、体2.立体几何的基本性质:平行面、平面交线、平面垂直于线、线垂直于面3.立体几何的基本公式:表面积公式:正方体(A=6a²)、长方体(A=2(ab+bc+ca))、正方体锥(A=πr²+πrl)、球(A=4πr²)、圆锥(A=πr²+πrl)、圆柱(A=2πr²+2πrh)体积公式:正方体(V=a³)、长方体(V=abc)、正方体锥(V=1/3πr²h)、球(V=4/3πr³)、圆锥(V=1/3πr²h)、圆柱(V=πr²h)二、平行截面的性质1.平行截面的基本概念:平行截面、柱体、锥体2.平行截面的性质:平行截面的面积比等于相应部分高度的比例三、投影1.平行投影和中心投影的概念2.平行投影和中心投影的性质:平行投影和中心投影的形状和面积相等,但长度有变化3.平行投影和中心投影的应用:建筑物的投影、光学现象等四、旋转体的性质1.旋转体的基本概念:旋转体、回转体2.圆锥、圆柱、球、棱柱、棱锥的性质3.通过平行、垂直截面计算旋转体的体积五、两线垂直、两面垂直的关系1.两线垂直的性质:两直线垂直的充分必要条件是它们的斜率的乘积为-12.两面垂直的性质:两平面垂直的充分必要条件是它们的法向量的点积为0六、空间距离的计算1.空间点、直线、平面之间的距离计算2.空间点到直线、平面的距离计算七、几何体的相交关系1.两直线相交的性质:两条直线相交的充分必要条件是它们的方向向量不共线2.两平面相交的性质:两平面相交的充分必要条件是它们的法向量不平行3.直线与平面的相交:直线与平面相交的充分必要条件是直线不与平面平行且经过平面内一点4.点与几何体的关系:点与几何体的关系分为共面和异面两种情况八、立体几何的应用1.建筑结构中的立体几何:建筑物的设计和施工中,立体几何是十分重要的2.机械工程中的立体几何:机械制图和设计中,立体几何是必不可少的3.地理学中的立体几何:地球的表面积计算、地图的制作等都需要用到立体几何的知识以上是关于高中立体几何的知识点总结,希望对你有所帮助!。

高考立体几何知识点总结

高考立体几何知识点总结

高考立体几何知识点总结一、基本概念1.点、线、面、立体的定义与性质。

2.点线面的共面与异面判定方法。

3.直线与平面的位置关系。

二、棱柱1.棱柱的定义与性质。

2.平行截面与全等截面。

3.正棱柱的性质:底面形状与面数关系、对角线的长度关系。

4.斜棱柱的性质:母线、准线、侧面积、表面积、体积的计算公式。

三、棱锥1.棱锥的定义与性质。

2.正棱锥的性质:底面形状与面数关系、高线的长度、母线、准线、侧面积、表面积、体积的计算公式。

3.斜棱锥的性质:底面形状与面数关系、高线的长度、母线、准线、侧面积、表面积、体积的计算公式。

四、平面与立体的位置关系1.点到平面的距离。

2.点到直线的距离。

3.线沿直线的平行线、垂线、倾斜线的条件与性质。

4.点到立体的距离。

五、体积与表面积计算1.平面图形的面积计算。

2.立体图形的表面积计算。

3.立体图形的体积计算。

六、球与球内切关系1.球的定义与性质。

2.球内接关系与判定方法。

3.共切、内切球的性质及条件。

七、圆锥与圆台1.圆锥的定义与性质。

2.圆台的定义与性质。

3.正圆锥、正圆台的性质:母线、准线、侧面积、表面积、体积的计算公式。

4.斜圆锥、斜圆台的性质:母线、准线、侧面积、表面积、体积的计算公式。

八、立体几何的应用1.立体几何在建筑设计中的应用。

2.立体几何在工程测量中的应用。

3.立体几何在物体的表面积和体积计算中的应用。

以上是高考立体几何的知识点总结。

掌握这些知识点可以帮助学生在高考中更好地应对立体几何问题,提高解题的能力与准确性。

希望同学们能够认真复习并进行大量的练习,熟练掌握这些知识点,取得优异的成绩!。

2011届高考数学知识点总结-立体几何

2011届高考数学知识点总结-立体几何

高中数学第九章-立体几何考试内容平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质。

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)

点、直线、平面之间的关系知识点总结(一)、立体几何网络图:(17)1、线线平行的判断:(1)、平行于同一直线的两直线平行。

(平行递推性)(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(线面平行)(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

( )(12)、垂直于同一平面的两直线平行。

(线面垂直 线线平行 ) 2、线线垂直的判断:(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

(线面垂直 )补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(线面平行 )(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

( 线面平行 )判定定理:性质定理:4、线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

即:(2)垂直于同一平面的两直线平行。

即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明。

⑵利用判定定理证明。

⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。

⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个。

⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。

5、面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

6、面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

如果两个平行平面同时和第三个平面相交,则交线平行。

8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

高考数学立体几何知识点梳理

高考数学立体几何知识点梳理

高考数学立体几何知识点梳理关键信息:1、立体几何基本概念与公理点、线、面的位置关系三公理及推论2、直线与平面的位置关系直线与平面平行直线与平面垂直3、平面与平面的位置关系平面与平面平行平面与平面垂直4、空间几何体棱柱棱锥棱台圆柱圆锥圆台球5、空间几何体的表面积与体积表面积公式体积公式6、空间向量在立体几何中的应用空间向量的坐标表示空间向量的数量积利用空间向量证明位置关系利用空间向量求空间角11 立体几何基本概念与公理111 点、线、面的位置关系点是空间中最基本的元素,线是由无数个点组成的,面是由无数条线组成的。

点动成线,线动成面。

直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交。

平面与平面的位置关系有:平行、相交。

112 三公理及推论公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理 2:过不在一条直线上的三点,有且只有一个平面。

公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推论 1:经过一条直线和这条直线外一点,有且只有一个平面。

推论 2:经过两条相交直线,有且只有一个平面。

推论 3:经过两条平行直线,有且只有一个平面。

21 直线与平面的位置关系211 直线与平面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行。

212 直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。

判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

性质定理:垂直于同一个平面的两条直线平行。

31 平面与平面的位置关系311 平面与平面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

312 平面与平面垂直定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

立体几何知识点总结高考

立体几何知识点总结高考

立体几何知识点总结高考1. 立体几何基本概念(1)点、线、面、体的概念立体几何中的基本概念有点、线、面、体等。

点是没有大小、只有位置的几何图形,用大写字母表示;线是由无限多个点连在一起形成的,具有长度的图形,用小写字母表示;面是由无限多个线构成的,具有面积的图形,用小写字母加上一个尖角字母表示;体是由无限多个面构成的,具有体积的图形,用大写字母加上一个倒三角字母表示。

(2)平行线、垂直线平行线是在同一个平面内,既不相交也不相交的直线,用平行线符号“||”表示;垂直线是两条直线相交的两条线段的夹角为90度。

(3)平面与直线的位置关系平面与直线的位置关系有相交、平行、重合等。

2. 空间几何图形的性质(1)点、线、面、体的性质点没有面积,没有长度;线有长度,但没有面积;面有面积,但体积为零;体有体积,具有长度、宽度和高度。

(2)平行线的性质平行线的性质包括对顶角相等,内错角相等等。

3. 空间几何图形的计算(1)立体图形的表面积和体积立体图形的表面积和体积是对立体几何知识点的重点掌握内容。

包括长方体、正方体、圆柱体、圆锥体、球体等的表面积和体积的计算方法。

(2)空间几何图形的相似性空间几何图形的相似性是指两个或两个以上的几何图形的形状和大小都相同,称为相似图形。

在计算中,可利用相似三角形的性质进行计算。

4. 空间几何图形的展开(1)立体图形的展开立体图形的展开是将一个立体图形展开成平面图形的过程。

对不同的立体图形有不同的展开方式和规则,需要灵活运用。

5. 线段和角的表示(1)线段的表示线段是由两个端点所确定的一段直线。

用两个大写字母表示。

(2)角的表示角是由两条射线分界的平面角色,用三个字母表示,其中中间字母是角的顶点。

6. 平面几何图形和立体几何图形的关系平面几何图形和立体几何图形在空间中是相互联系、相互影响的。

在图形的计算和应用中,需要注意两者之间的转化和联系。

以上就是对高考立体几何知识点的总结,掌握这些知识可以帮助学生在高考数学中取得更好的成绩。

高考数学复习之立体几何必考知识点汇总

高考数学复习之立体几何必考知识点汇总

高考数学复习之立体几何平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b.③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.(2)两直线垂直的判定1.定义:若两直线成90°角,则这两直线互相垂直.2.一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a ⊥b,则a⊥c3.一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a ⊥α,b⊂α,a⊥b.4.如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.5.三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l⊄α,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A∉α,B∉α,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a⊄α,a⊄β,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,bα,b⊥a,则b∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或b⊂α)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB⊂α.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∉α,P∈β,β∥α,P∈a,a∥α,则a⊂β.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则b⊂α.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S ′=S ·cos α其中S 为二面角一个面内平面图形的面积,S ′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.空间的各种距离点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之. ②将线面距离转化为点面距离,然后运用解三角形或体积法求解之. ③作辅助垂直平面,把求线面距离转化为求点线距离.空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等3直观图:斜二测画法(角度等于45或者135)4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x 轴的线长度不变;(3).画法要写好。

2011年高考数学试题分类解析(八)——立体几何

2011年高考数学试题分类解析(八)——立体几何

2 1 年 的高考 已经 落下帷 幕 ,综 观全 国各地 的数 学试 卷 , 平面所成 的角 、二面角 的计算问题. 0 1 不难 发现对立 体几何 内容 的考 查 ,都严 格遵 循 《 普通 高 中数 学 课程标准 ( 实验) ( 《 学大纲》 》或 教 )和 O 1 1 年高考考试说 明》
的概念 ;会用几何 法和 向量法解决 异面直 线所成 的角 、直线 与
思维.分析 和研 究 2 1 高考 立体几何试题 的命题特 点、热点 0 1年 容的复 习教 学具有很 好的导向性和前瞻性. 关键 词 :立体几何 ;试题特点 ;命题 意 图;复 习建议
题 型和创 新试题 的命题意 图和解 法 ,对做好 新一轮 立体 几何 内 平行 、垂直 的有 关性质 与判定 ;会 用几何 法和 向量 方法证 明有
好的指导性和前瞻性.

大纲 课程全 国文理卷 、四川文理 卷 、浙 江文理卷 、辽宁文 理卷

分 析 特 点
等 . 有个别试 卷以 “ t 题两 大题 ”的形 式出现 ,分值 为 2 也 -l , 9 分 ,占总分 比为 1 . 45 %,例如 江苏理科卷. 考查难度一般 为中等 ,解答题所处位置基本上 在前 3道题 。
N - 8 01 O7 2 1 —
J u n lo ie e Mah mais E u ain o r a fChn s te t d c t c o
21 0 1年
第 7 8期 —
摘要 :2 1 年 高考数 学已经落下帷幕 ,与 2 1 01 0 0年相 比,各 识别 三视 图所表示 的空 间几何体 ;理解三视 图和直观 图的联系 ,
三视 图 ;球 、柱 、锥 、台 的表 面积和体 积计算 ;空间位 置 离等.解答题 的考法 与往 年类似 ,仍然注重在一个具体 的立体几 关 系的判断与证明 ;空间角 、距离的计 算.

高考立体几何必背知识点

高考立体几何必背知识点

高考立体几何必背知识点立体几何是数学中的一个重要分支,它研究的是空间中的各种几何图形。

在高考中,立体几何是数学必考的一部分,它通常占据一定的分值比例。

为了在考试中取得好成绩,了解和掌握一些高考立体几何的必背知识点是非常重要的。

1. 空间几何体的基本概念在解题之前,我们首先需要了解一些空间几何体的基本概念。

例如,常见的立体几何体有正方体、长方体、棱柱、棱锥、圆柱、圆锥等。

我们需要清楚它们的定义和性质,比如正方体的六个面都是正方形,棱柱的底面是一个多边形,顶面与底面平行等等。

只有了解了几何体的基本概念,才能更好地应用到解题中。

2. 空间几何体的体积和表面积计算公式了解几何体的体积和表面积计算公式也是高考立体几何的必背知识点之一。

常见的几何体有特定的计算公式,例如正方体的体积公式是V=a³,表面积公式是S=6a²;而圆柱的体积公式是V=πr²h,表面积公式是S=2πrh+2πr²。

掌握这些公式,能够帮助我们在解题过程中直接运用,节省时间。

3. 空间几何体的投影投影是立体几何的一个重要概念。

在考试中,经常会出现空间几何体的投影问题。

例如,给定一个立方体在不同的投影中的面积或者比例,我们需要根据已知条件计算其它未知的面积或者比例。

对于投影问题,我们需要熟悉各种几何体的投影图形,例如平行投影和斜投影。

只有了解了几何体的投影,才能准确地解答考题。

4. 容斥原理在立体几何中的应用容斥原理是高中数学比较重要的一个概念,在高考立体几何中也有一定的应用。

容斥原理是指两个或者多个集合的并集可以通过减去这些集合的交集来计算。

在立体几何中,容斥原理可以用来计算同时属于两个或者多个几何体的点的个数。

掌握了容斥原理的应用方法,可以帮助我们更好地解决与立体几何相关的问题。

5. 立体几何与解析几何的联系立体几何和解析几何是数学中两个重要的分支,它们之间存在着密切的联系。

在高考中,有时会给出一些解析几何中的坐标,要求我们计算与之有关的立体几何的问题。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

高考数学立体几何知识点总结精选全文完整版

高考数学立体几何知识点总结精选全文完整版

可编辑修改精选全文完整版高考数学立体几何知识点总结(1)棱柱:定义:有两个面互相平行,别的各面都是四边形,且每相邻两个四边形的大众边都互相平行,由这些面所围成的几多体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各极点字母,如五棱柱或用对角线的端点字母,如五棱柱几多特性:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,别的各面都是有一个大众极点的三角形,由这些面所围成的几多体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥几多特性:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比即是极点到截面隔断与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台几多特性:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的极点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,别的三边旋转所成的曲面所围成的几多体几多特性:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几多体几多特性:①底面是一个圆;②母线交于圆锥的极点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几多特性:①上下底面是两个圆;②侧面母线交于原圆锥的极点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几多体几多特性:①球的截面是圆;②球面上恣意一点到球心的隔断即是半径。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结
立体几何是高中数学中的重要内容,它研究的是空间内的物体,包括点、线、面和体的性质和关系。

下面是立体几何的一些重要知
识点的归纳总结:
1. 空间几何基本概念
- 空间中的点、线、面的概念;
- 空间中两点间的距离和线段;
- 空间中两线之间的位置关系;
- 空间中两线的夹角和平行关系;
- 空间中线与平面的位置关系;
- 空间中两平面的位置关系。

2. 空间几何基本性质
- 空间几何的公理和定理;
- 空间几何中的等距变换;
- 空间几何中的投影与轴测图。

3. 空间内角与平面角
- 空间内角的概念与判定;
- 平面角的概念与判定;
- 平面角的性质和运算。

4. 空间图形的性质
- 立体图形的概念和分类;
- 空间图形的投影与截面;
- 空间图形的变换和运动。

5. 三棱柱、三棱锥和四棱锥- 三棱柱的性质和判定方法;
- 三棱锥的性质和判定方法;
- 四棱锥的性质和判定方法。

6. 球的性质与运算
- 球的概念;
- 球的性质和判定方法;
- 球的切线与切平面。

以上是高中数学立体几何知识点的归纳总结,希望对您有所帮助!
参考文献:
- 《数学》高中教材。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第九章-立体几何考试内容平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质。

会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.(2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念.掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.(4)了解空间向量的基本定理;理解空间向量坐标的概念.掌握空间向量的坐标运算.(5)掌握空间向量的数量积的定义及其性质:掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离掌握直线和平面垂直的性质定理掌握两个平面平行、垂直的判定定理和性质定理.(8)了解多面体、凸多面体的概念。

了解正多面体的概念.(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(10)了解棱锥的概念,掌握正棱锥的性质。

会画正棱锥的直观图.(11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式.(考生可在9(A)和9(B)中任选其一)§09. 立体几何知识要点一、平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向)二、空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦ba,的位置关系为相交或平行或异a,是夹在两平行平面间的线段,若ba=,则b面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ) (斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 12方向相同12方向不相同POA a● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.艳荡芦花湾/s2460/ 奀莒咾推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤⎝⎛∈2,0πθ) 图1θθ1θ2图2P αβθM A B O7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是......矩形..;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. 推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1c o s c o s c o s 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2co s co s co s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行)③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==. ⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等 iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的l ab c距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等) ii.简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,,得-=⋅⇒=-=-=,,已知()(0,0=-⋅=-⋅c a b b c a 0=-⇒则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. ⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数. ②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.F E HG B C DAO'O rO R1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量,,共面即它们所在直线共面.(×) [可能异面] ③若∥,则存在小任一实数λ,使λ=.(×)[与=不成立] ④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.(4)①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31++=用=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a ±±±=+))(,,(321R a a a ∈=λλλλλ332211b a b a b a ++=⋅Da ∥)(,,332211Rb a b a b a ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a222321a a a ++==(用到常用的向量模与向量之间的转化:a a =⋅=) 232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).ABII. 竞赛知识要点一、四面体.1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质: ①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心; ②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心;③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; ②等腰四面体的外接球半径可表示为22242c b a R ++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=;④h = 4r.二、空间正余弦定理.空间正弦定理:sin∠ABD/sin∠A -BC-D=sin∠ABC/sin∠A -BD-C=sin∠CBD/sin∠C -BA-D空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A -BC-D立体几何知识要点一、知识提纲(一)空间的直线与平面⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑴公理四(平行线的传递性).等角定理.⑵异面直线的判定:判定定理、反证法.⑶异面直线所成的角:定义(求法)、范围.⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑴直线和平面垂直:定义、判定定理.⑵三垂线定理及逆定理.5.平面和平面平行 O A BCD两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平 面所成的角、直线和平面所成的角.⑵二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑴点到平面的距离.⑵直线到与它平行平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑴多面体.⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、 正方体;平行六面体的性质、长方体的性质.⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质. ⑸直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑴简单多面体的欧拉公式.⑵正多面体.11.球⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.⑵球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面B C A D A 1α体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。

相关文档
最新文档