单项式与多项式相乘练习题

合集下载

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。

单项式乘多项式练习题(含答案)

单项式乘多项式练习题(含答案)

单项式乘多项式练习一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3ab ﹣4ab ﹣5ab ﹣1)•(﹣2ab )= ﹣6a b +8a b +10a b +2ab .5.计算:﹣6a•(﹣﹣a+2)﹣a+26.﹣3x•(2x 2﹣x+4)7.先化简,再求值3a (2a 2﹣4a+3)﹣2a 2(3a+4),其中a=﹣2(﹣,﹣;故答案为:﹣a解:(﹣b a+),a•b a)(﹣a(﹣a•a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+×aa+a aba ab10.2ab(5ab+3a2b)11.计算:.解:(﹣xx x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.①,∴有方程组.。

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:2222=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

七年级数学下册 1.4 整式的乘法 第2课时 单项式与多项式的乘法同步练习 (新版)北师大版-(新版

七年级数学下册 1.4 整式的乘法 第2课时 单项式与多项式的乘法同步练习 (新版)北师大版-(新版

4 第2课时 单项式与多项式的乘法一、选择题1.计算2x (3x 2+1),正确的结果是()A .5x 3+2xB .6x 3+1C .6x 3+2xD .6x 2+2x2.下列计算正确的是 ()A .(2xy 2-3x 2y )·2xy =4x 2y 2-6x 3yB .-x (2x +3x 2-2)=-3x 2-2x 3-2xC.⎝ ⎛⎭⎪⎫34a n +1-b 2·ab =34a n +2b -12ab 2 D .-2ab (ab -3ab 2-1)=-2a 2b 2+6a 2b 3-2ab3.有两个连续的奇数,若较小的奇数是n ,则它们的积为()A .n 2B .n 2+2nC .n 2-2nD .n 2-n4.一个长方体的长、宽、高分别为3a -4,2a ,a ,则它的体积等于()A .3a 3-4a 2B .a 2C .6a 3-8a 2D .6a 3-8a5.已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是 ()A .-2B .0C .2D .46.要使(y 2-ky +2y )·(-y )的展开式中不含y 2项,则k 的值为()A .-2B .0C .2D .37.通过计算几何图形的面积可得到一些代数恒等式,如图K -7-1可表示的代数恒等式是()图K -7-1A .(a -b )2=a 2-2ab +b 2B .2a (a +b )=2a 2+2abC .(a +b )2=a 2+2ab +b 2D .(a +b )(a -b )=a 2-b 2二、填空题8.计算:-2a 2(a -3)=________.9.已知3x ·(x n +5)=3x n +1-30,那么x =________.10.若一个直角三角形的两条直角边的长分别为4a 2,8(a +b ),则此直角三角形的面积是________.11.已知x (x +3)=1,则代数式2x 2+6x -5的值为________.12.当x =________时,3x (2x -5)+2x (1-3x )=52.三、解答题13.计算:(1)(x 2-2x )·x 2;(2)-2a 2(3ab 2-5ab 3);(3)-12ab (23ab 2-2ab +1).14.计算:(1)-2xy (x 2-3y 2)-4xy (2x 2+y 2);(2)(6x 2-4xy +3y 2)·(-23x 2y )-y ·(-2xy )2.15.先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.16.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面的面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?17.下面是小宝和小贝的一段对话:小宝说:“我发现,对于代数式2x (7x +72)-7x (2x +12)+7(11x +4),当x =2019和x =2018时,值居然是相等的.”小贝说:“不可能,对于不同的x 的值,应该有不同的结果.”你认为谁说得对呢?说明你的理由.1.C 2.C3.[解析] B 两个连续奇数中较小的是n ,则较大的是n +2,它们的积为n·(n+2)=n 2+2n.4.[解析] C 根据“长方体的体积=长×宽×高”列出算式,再根据单项式乘多项式的运算法则计算.由题意知,V 长方体=(3a -4)·2a·a=6a 3-8a 2.故选C .5.B6.[解析] C 因为(y 2-ky +2y)(-y)的展开式中不含y 2项,所以-y 3+ky 2-2y 2中不含y 2项,所以k -2=0,解得k =2.故选C .7.[解析] B 长方形的面积等于2a(a +b),也等于四个小图形的面积之和a 2+a 2+ab +ab =2a 2+2ab ,即2a(a +b)=2a 2+2ab.故选B .8.-2a 3+6a 29.[答案] -2[解析] 因为3x·(x n +5)=3xn +1+15x =3x n +1-30,所以15x =-30,解得x =-2.故答案为-2.10.[答案] 16a 3+16a 2b[解析] 根据题意得S =12·4a 2·8(a+b)=16a 3+16a 2b ,故答案为16a 3+16a 2b. 11.-312.[答案] -4[解析] 先根据单项式与多项式的乘法法则去括号,然后合并同类项就可以求出x 的值.去括号,得6x 2-15x +2x -6x 2=52,-13x =52,解得x =-4.13.[解析] 根据单项式与多项式相乘的法则,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解:(1)原式=x 4-2x 3.(2)原式=-2a 2·3ab 2-2a 2·(-5ab 3)=-6a 3b 2+10a 3b 3.(3)原式=-13a 2b 3+a 2b 2-12ab. 14.解:(1)原式=-2x 3y +6xy 3-8x 3y -4xy 3=-10x 3y +2xy 3.(2)原式=-4x 4y +83x 3y 2-2x 2y 3-4x 2y 3=-4x 4y +83x 3y 2-6x 2y 3. 15.解:3a(2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a. 当a =-2时,原式=-20×4-9×2=-98.16.解:(1)S =12[a +(a +2b)]·12a =14a(2a +2b)=(12a 2+12ab)米2. 故防洪堤坝的横断面的面积为(12a 2+12ab)平方米. (2)V =Sh =(12a 2+12ab)×100=(50a 2+50ab)米2. 故这段防洪堤坝的体积是(50a 2+50ab)立方米.17.[解析] 将代数式化简,进而可得出结论.解:小宝说得对.理由:原式=14x 2+7x -14x 2-84x +77x +28=28.由于结果中不含字母x ,所以当x =2019和x =2018时代数式的值相等,均等于28.。

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。

单项式乘多项式练习题(含答案)

单项式乘多项式练习题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣a+26.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣b a+)a•a(﹣(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaa+a aba ab10.2ab(5ab+3a2b)11.计算:.(﹣xx x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.①∴有方程组.,得到方程组。

14.5单项式与多项式相乘

14.5单项式与多项式相乘

14.5 单项式与多项式相乘学习目标1.使学生能按步骤进行简单的单项式与多项式相乘的运算.2.经历探究单项与多项式相乘的方法,体验单项式与多项式的乘法运算规律,总结运算法则,认识到单项式与多项式相乘,结果仍是多项式,积的项数与因式中多项式的项数相同.重点:掌握单项式乘以多项式的运算方法.难点:对单项式乘以多项式法则的理解和领会.教学过程一、回顾1.口述单项式乘以单项式法则.2.回答下列各题:(1)(-5x)·(3x2)(2)(-3x)·(-x)(3)xy·xy2 (4)-5m2·(-mn)二、计算观察,探索规律1.做一做计算(1)2a2·(3a2-5b)(2)m(a+b+c)(补充题)三、举例应用例3 计算(-2a2)·(3ab2-5ab3).练习化简-3x2·(xy-y2)-10x·(x2y-xy2)例4 解方程8x(5-x)=19-2x(4x-3)四、随堂练习,巩固新知课本练习五、全课小结1.单项式与多项式相乘法则:单项式与多项式相乘,•就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)"不漏乘";(2)注意"符号".六、课内作业(一)判断题1.-2x·(3xy-2x2y)=-6x2y+4x3y ()2.-a(3a-a2-2)=-3a2+a3-2 ()3.(-2xy2)(-2xy-xyz+3)=4x2y3-2x2y3z+6xy2()4.x(x+y)-y(x+y)=x2-y2 ()5.x3-2x(3x-2y+5z)=x3-6x2+4xy-10xz ()6.x n+1(x2n+x n-1+1)=x3n+1+x2n+x n+1()(二)、填空题7.3x(5x-6y)=________8.(3xy2-5x2y)·(-xy)=______9.a n·(a m-a2-1)=________10.(-2.4x2y3)·(-0.5x4)=________11.(3×105)(2×106)-3×102·(103)3=________(三)、选择题12.-5x·(2x2-x+3)的计算结果是().A.-10x3+5x2-15x B.-10x3-5x2+15xC.10x3-5x2-15x D.-10x3+5x2-313.下列各式计算中,正确的是().A.(2x2-3xy-1)(-x2)=x4-x3y+ x2B.(-x)(x-x2+1)=-x2+x3+1C.(x n-1-xy)·xy= x n y-x2y2D.(5xy)2·(-x2-1)=-5x2y2-5x2y214.计算0.1254×(-8)5的结果是().A.8 B.-8 C.16 D.-1615.在下列各式中,正确的等式共有()个.(1)x-y=y-x (2)(x-y)2=(y-x)2(3)(x-y)2=-(y-x)2 (4)(x-y)3=(y-x)3(5)(x+y)(x-y)=(-x-y)(-x+y)A.1 B.2 C.3 D.4四、计算题16.5abc(2a-3b-c)17.(m3-mn+n3)(-3mn)18.(-4ab)(2a2-2ab-3b2)19.(-x2y)3·(-4xy3z)2五、先化简再求值20.2x(x-1)-x(x+2),其中x=3.21.(2xy)2(x2-y2)-(-3xy)2+9x2y4-9x4y2,其中x=-1,y=1.22.x2(x2-x-1)-x(x2-3x),其中x=-2.。

单项式与多项式练习题

单项式与多项式练习题

单项式与多项式练习题单项式与多项式练习题在代数学中,单项式与多项式是非常基础且重要的概念。

它们在代数运算、方程求解以及函数分析等方面都有广泛的应用。

掌握单项式与多项式的性质和运算规则,对于提高数学能力和解决实际问题都具有重要意义。

下面我们来通过一些练习题来加深对这两个概念的理解。

练习题一:单项式的展开与合并1. 将单项式 $3x^2y^3$ 展开。

解析:根据单项式的定义,$3x^2y^3$ 是由系数3和变量$x$、$y$的幂次组成的。

因此,展开后的结果为 $3 \cdot x^2 \cdot y^3 = 3x^2y^3$。

2. 将单项式 $-2ab^4c$ 与 $3abc^2$ 合并。

解析:要合并两个单项式,首先需要判断它们的字母部分是否相同。

在本题中,两个单项式的字母部分都包括字母$a$、$b$和$c$,因此可以合并。

合并后的结果为 $-2ab^4c + 3abc^2 = ab(-2b^3c + 3c^2)$。

练习题二:多项式的加减运算3. 计算多项式 $4x^3 - 2x^2 + 5x - 3$ 与 $-3x^3 + 6x^2 - x + 2$ 的和。

解析:多项式的加法运算需要将相同次数的项合并。

在本题中,两个多项式的各项次数分别为3、2、1和0,因此可以直接相加。

计算结果为 $(4x^3 - 3x^3) + (-2x^2 + 6x^2) + (5x - x) + (-3 + 2) = x^3 + 4x^2 + 4x - 1$。

4. 计算多项式 $3x^4 - 2x^3 + 5x^2 - 3x + 2$ 与 $-x^4 + 4x^3 - x^2 + 2x -1$ 的差。

解析:多项式的减法运算可以看作加法运算的特殊情况,只需要将被减数的各项系数取相反数即可。

计算结果为 $(3x^4 - x^4) + (-2x^3 + 4x^3) + (5x^2 - x^2) + (-3x + 2x) + (2 + 1) = 2x^4 + 2x^3 + 4x^2 - x + 3$。

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题一.解答题〔共18小题〕1.先化简,再求值:2〔a 2b+ab 2〕﹣2〔a 2b ﹣1〕﹣ab 2﹣2,其中a=﹣2,b=2.2.计算:〔1〕6*2•3*y 〔2〕〔4a ﹣b 2〕〔﹣2b 〕3.〔3*2y ﹣2*+1〕〔﹣2*y 〕4.计算:〔1〕〔﹣12a 2b 2c 〕•〔﹣abc 2〕2=_________; 〔2〕〔3a 2b ﹣4ab 2﹣5ab ﹣1〕•〔﹣2ab 2〕=_________.5.计算:﹣6a •〔﹣﹣a+2〕 6.﹣3*•〔2*2﹣*+4〕7.先化简,再求值3a 〔2a 2﹣4a+3〕﹣2a 2〔3a+4〕,其中a=﹣2 8.〔﹣a 2b 〕〔b2﹣a+〕9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽〔a+2b 〕米,坝高米. 〔1〕求防洪堤坝的横断面积;〔2〕如果防洪堤坝长100米,则这段防洪堤坝的体积是多少立方米?10.2ab 〔5ab+3a 2b 〕 11.计算:. 12.计算:2*〔*2﹣*+3〕 13.〔﹣4a 3+12a 2b ﹣7a 3b 3〕〔﹣4a 2〕=_________.14.计算:*y 2〔3*2y ﹣*y 2+y 〕 15.〔﹣2ab 〕〔3a 2﹣2ab ﹣4b 2〕16.计算:〔﹣2a 2b 〕3〔3b 2﹣4a+6〕17.*同学在计算一个多项式乘以﹣3*2时,因抄错运算符号,算成了加上﹣3*2,得到的结果是*2﹣4*+1,则正确的计算结果是多少?18.对任意有理数*、y 定义运算如下:*△y=a*+by+c*y ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l △3=1×l+2×3+3×1×3=16,现所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d 使得对任意有理数*△d=*,求a 、b 、c 、d 的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.假设3k 〔2k-5〕+2k 〔1-3k 〕=52,则k=____ ___.4.如果*+y=-4,*-y=8,则代数式的值是cm 。

七年级单项式和多项式专项训练题

七年级单项式和多项式专项训练题

七年级单项式和多项式专项训练题一、单项式相关题目。

1. 下列式子中,是单项式的是()- A. x + y- B. -2x- C. (2)/(x)- D. x^2+2x + 1- 解析:单项式是由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

A选项x + y是多项式;C选项(2)/(x)分母含有字母,是分式不是单项式;D选项x^2+2x + 1是多项式;B选项-2x是数-2与字母x的积,是单项式,所以答案是B。

2. 单项式-frac{3x^2y}{4}的系数是()- A. -(3)/(4)- B. (3)/(4)- C. -3- D. 3.- 解析:单项式中的数字因数叫做这个单项式的系数。

对于单项式-frac{3x^2y}{4},其数字因数是-(3)/(4),所以系数是-(3)/(4),答案是A。

3. 单项式3x^2y^3的次数是()- A. 2.- B. 3.- C. 5.- D. 6.- 解析:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

在单项式3x^2y^3中,x的次数是2,y的次数是3,所以单项式的次数为2 + 3=5,答案是C。

4. 写出一个系数为-2,含有字母x和y,且次数为4的单项式:______。

- 解析:根据单项式的系数和次数的定义,可写出-2x^3y(答案不唯一)。

因为x的次数是3,y的次数是1,3 + 1 = 4,系数为-2。

5. 若单项式2x^my^3与单项式-3x^2y^n是同类项,则m + n=______。

- 解析:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。

因为单项式2x^my^3与单项式-3x^2y^n是同类项,所以m = 2,n=3,则m + n=2 + 3 = 5。

6. 计算:(-3x^2y)×(4xy^2)- 解析:根据单项式乘法法则,系数与系数相乘,同底数幂相乘。

13.2.(2)单项式与多项式相乘

13.2.(2)单项式与多项式相乘

单项式乘以多项式
单项式与多项式相乘, 单项式与多项式相乘,只要将 单项式分别乘以多项式的每一 再将所得的积相加。 项,再将所得的积相加。
练习
(1)3m 3n·(2mn2-3mn) 6m 4 n 3 -9m4 n2 ) ( ) 2-ab+b2) 6a3 -2a2 b+2ab2 (2)2a·(3a ) ( (3)x(x2-1)+2x2(x+1)-3x(2x-5) ) ( ) ) ( ) 2-5ab (4)( 7)-2mn2·(3m3n-5mn2) )(-2a2)·(3ab( 3) )( ) ( ( =x³-x+2x³+2x²-6x²+15x =-6a³b²+10a³b³ 2n4 )-2a ( (5)-3x³-4x²+14x )- 3·(3a2-5b3) =-6m4n3+10m = (6)4ab3c·(5+10a3b3 ) =-6a -ab2+a2bc) ( ) (7)-2mn2·(2b5n-5mn23b4c ) =-4a 3m3c+4a ) (
课本: 课本:
页练习1、 。 第26页练习 、2。 页练习 页习题第3、 、 题 第28页习题第 、4、5题。 页习题第
1.你能用字母表示单项 你能用字母表示单项 式乘以多项式吗? 式乘以多项式吗?
a(m+n)=am+an
2.你能根据字母表示说出法则吗? 你能根据字母表示说出法则吗? 你能根据字母表示说出法则吗 单项式与多项式相乘, 单项式与多项式相乘,只要将 单项式分别乘以多项式的每一 再将所得的积相形的面积 4a 2.5a b 2a b b 3a 4a(3a+b+2a+b+b)- 2·2.5a·b ( ) =4a·(5a+3b)- 5ab =20a² +12ab-5ab =20a²+7ab

人教版八年级数学上册单项式与单项式、多项式相乘同步练习题

人教版八年级数学上册单项式与单项式、多项式相乘同步练习题

人教版八年级数学试题14.1.4 整式的乘法第1课时 单项式与单项式、多项式相乘1、填空:(每小题7分,共28分)(1) a (2a 2一3a +1)=_________; (2)3a b(2a 2b -a b+1) =_____________; (3)(34a b 2+3a b 一23b )(12a b)=_______;(4)(一22x )(2x -12x 一1) =_____. 2.选择题:(每小题6分,共18分)(1)下列各式中,计算正确的是 ( )A .(a -3b+1)(一6a )= -6a 2+18a b+6aB .()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .-a b(a 2一a -b) =-a 3b-a 2b-a b 2 (2)计算a 2(a +1) -a (a 2-2a -1)的结果为 ( )A .一a 2一aB .2a 2+a +1C .3a 2+aD .3a 2-a (3)一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( )A .22x —32xB .6x -3C .62x -9xD .6x 3-92x 3.计算(每小题6分,共30分)(1)323(23)x y xy xy ⋅-; (2)222(3)x x xy y ⋅-+;(3)222(1)(4)4a b ab a b --+⋅- (4)(2x 3一32x +4x -1)(一3x);(5)()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭.4.先化简,再求值.(每小题8分,共24分)(1) 22(1)2(1)3(25)x x x x x x-++--;其中12 x=-(2)m2(m+3)+2m(m2—3)一3m(m2+m-1),其中m52 =;⑶4a b(a2b-a b2+a b)一2a b2(2a2—3a b+2a),其中a=3,b=2.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

单项式乘多项式练习题(含标准答案)

单项式乘多项式练习题(含标准答案)

单项式乘多项式练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

单项式与多项式相乘练习

单项式与多项式相乘练习

单项式与多项式相乘练习几点注意:1.单项式乘多项式的结果仍是多项式,积的项数与原多项式的项数相同。

2.单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定:同号相乘得正,异号相乘得负.3.不要出现漏乘现象,运算要有顺序。

计算:13a 2·(6ab ); (2x )3·(-3xy 2)(-4x)·(2x 2+3x-1)ab ab ab 212322•⎪⎭⎫ ⎝⎛- ()()3432-⋅-x x ab ab ab 313432⋅⎪⎭⎫ ⎝⎛-a (2a -3)a 2 (1-3a )3x (x 2-2x -1)-2x 2y (3x 2-2x -3)(2x 2-3xy +4y 2)(-2xy )-4x (2x 2+3x -1)(-2a )·(2a 2-3a +1)(23ab 2-2ab )· 12ab(3x 2y -xy 2)·3xy2x (x 2-12x +1)(-3x 2)·(4x 2-49x +1)(-2ab 2)2·(3a 2b -2ab -4b 3)5a (a 2-3a +1)-a 2(1-a )2m 2-n (5m -n )-m (2m -5n )阅读与思考:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x、y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.多项式与多项式相乘练习友情提醒:1.不要漏乘;2.注意符号;3.结果最简计算(a+4)(a+3)(3x+1)( x-2)(2x-5y)(3x-y)(x-8y)( x-y)(x-1)(2x-3)(m-2n)(3m+n)(x-2)(x2+4)(x-y) (x2+xy+y2)n(n+1)(n+2)(2x+3y)(3x-2y)(3x-1)(4x+5)(-4x-y)(-5x+2y)(x+3)(x+4)-(x-1)(x-2)(x+2)(x+3)-(x+6)(x-1)(3x+2y)(2x+3y)-(x-3y)(3x+4y)填空:1、若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.2.若a2+a+1=2,则(5-a)(6+a)=__________.3.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于.平方差公式与完全平方公式练习(1)计算下列各式:(1)()()22-+x x(2)()()a a 3131-+(3)()()y x y x 55-+(4)20021998⨯(5))4)(2)(2(++-x x x(6))25)(25(y x y x ++-(7))1)(1)(1)(1)(1)(1(16842+++++-x x x x x x1、下列各式中哪些可以运用平方差公式计算(1)()()c a b a -+ (2)()()x y y x +-+(3)()()ab x x ab ---33 (4)()()n m n m +--2、判断:(1)()()22422b a a b b a -=-+ ( )(2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( )(5)()()6322-=-+a a a ( )(6)()()933-=-+xy y x ( ) 3、计算下列各式:(1)()()b a b a 7474+- (2)()()n m n m ---22(3)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 21312131(4)()()x x 2525-+-(5)()()233222-+a a(6)()()33221221--+-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-x x x x 4、填空:(1)()()=-+y x y x 3232(2)()()116142-=-a a(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab (4)()()229432y x y x -=-+ 五、拓展提升:1、求()()()22y x y x y x +-+的值,其中2,5==y x(2)()()()()()42212122224++---+-x x x x x x3、若)(,6,1222y x y x y x -=+=-求 你能具体求出的值,x 、y 的值吗?若能请你求出来.平方差公式与完全平方公式练习(2)1、下列各式中哪些可以运用完全平方公式计算(1)()()c a b a ++ (2)()()x y y x +-+(3)()()ab x x ab +--33 (4)()()n m n m +--2、计算下列各式:(1)()()b a b a 7474++ (2)()()n m n m +--22(3)()()x x 2525++ (4)()()232322--a a(6)()()33221221----+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+x x x x 1、填空:(1)()()=++y x y x 3232(2)()()1816142++=-a a a (3)()9_________49137122++=⎪⎭⎫ ⎝⎛+b a ab2、计算:2)13)(1(+x (2)2)3(b a -(3)2)22(y x + (4)2999(利用公式计算)(5)解方程:7)2()1)(1(2=+--+x x x五、拓展提升:1、化简再求()()()2y x y x y x ---+的值,其中2,5==y x2、若的值。

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--.例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+---- 例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x24433412x x x -+-=(2)ab ab b a ab m m 3232)1353(11+⋅++--.322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=--说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++ n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x (2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式. 例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档