四年级奥数详解答案 第16讲 行程问题

合集下载

四年级奥数讲解:行程问题

四年级奥数讲解:行程问题

四年级奥数讲解:行程问题行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这个周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

所以,两人20÷(6+4)=2 小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样持续来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗持续来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

奥数四年级--行程问题

奥数四年级--行程问题
陈沛每分钟走60米,刘毅每分钟走70米,两人的速度和是70+60=130米/ 分。距离=400-(70+60)×3 =10米
(2) 相背:
陈沛每分钟走60米,刘毅每分钟走70米,两人的速度和是70+60=130米/ 分。距离=400+(70+60)×3 =790米
(3) 同向:(走得快的在前)
走得快的在前,间距越来越大。两人的速度差是70-60=10米/分。 距离=400+(70-60)×3 =430米
经 典 题 型
例4、桐桐同学站在铁路边,一列900米长的火车,从他身边开过 用了2分钟。该火车用同样的速度通过一座大桥用了5分钟,这座 大桥长多少米?
分析:桐桐站铁路边不动,所以火车从他身边开过的路程就是车长。
速度=900÷2=450米/秒 注意:火车过桥,则是车头到桥头开始--到车尾离开桥的另一端结束。 过程中行驶的距离 = 桥长+火车长度 示意图如下:
需要208秒。求这辆汽车的速度和长度。
车速每秒8米,车长10米
练 10、一列火车长400米,铁路沿线的电线杆 习 间隔都是40米,从这列火车车头遇到第1根
电线杆,到车尾离开第51根电线杆,共用了 2分钟。这列火车每小时行多少千米?
每小时行72千米
∵ 5分钟行驶距离=450×5=2250米=桥长+ 900米 ∴ 桥长= 2250 - 900 = 1350 米
经 典 题 型
例5、公路两边的电线杆间距30米,一位乘客坐在行驶的汽车中, 他看到第一根电线杆到看到第26根电线杆正好是3分钟。这辆汽 车每小时行驶多少千米?
分析:首先搞清楚汽车3分钟行驶的路程, 前面学过种树问题,第1根 到 第26根电线杆间有 25 段 30米 × 25段 =750 米

(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。

行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。

行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。

在这三个量中,已知两个量,即可求出第三个量。

掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。

【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

四年级奥数之行程问题

四年级奥数之行程问题

行 程 问 题班级班级 姓名姓名姓名一、行程问题的类一、行程问题的类1 1.相遇问题——同时出发,相向而行,最后相遇;.相遇问题——同时出发,相向而行,最后相遇;2 2.背向问题——同一地点,同时出发;.背向问题——同一地点,同时出发;3.追击问题——同时行走,同向而行,最后追上。

二、知识要点:二、知识要点:1、相遇问题(或背向问题)、相遇问题(或背向问题)AB 两地的距离两地的距离==甲走的距离甲走的距离++乙走的距离乙走的距离=甲的速度×时间甲的速度×时间++乙的速度×时间乙的速度×时间=(甲的速度+乙的速度)×时间.2、追击问题:甲乙的距离、追击问题:甲乙的距离==甲走的距离甲走的距离--乙走的距离乙走的距离=甲的速度×时间甲的速度×时间--乙的速度×时间乙的速度×时间= (甲的速度-乙的速度)×追击的时间相 遇 问 题【经典例题】【经典例题】例1.甲乙二人分别从相距30千米的两地同时出发相向而行,千米的两地同时出发相向而行,甲每小时走甲每小时走6千米,千米,乙每小时走乙每小时走4千米,问:二人几小时后相遇?千米,问:二人几小时后相遇?例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,千米,55小时后两人相遇,问两人的速度各是多少?例 3. 3. 甲、乙两车分别从相距甲、乙两车分别从相距240千米的A 、B 两城同时出发,相向而行,已知甲车到达B 城需3小时,乙车到达A 城需6小时,问:两车出发后多长时间相遇?例例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米千米..两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

车的车长。

例例5.甲、乙两车同时从A 、B 两地出发相向而行,两车在离B 地64千米处第一次相遇千米处第一次相遇..相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A 地48千米处第二次相遇,问两次相遇点相距多少千米?例例6. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

奥数行程问题归纳总结及部分例题及答案

奥数行程问题归纳总结及部分例题及答案

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

小学奥数题目-四年级-行程问题类-流水行程

小学奥数题目-四年级-行程问题类-流水行程

流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?1.1.一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。

水流的速度是多少千米每小时?2.2.一只船,顺水每小时行20千米,逆水每小时行12千米。

水流的速度是多少千米每小时?3.3.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需多少小时?视频描述某船在静水中每小时行18千米,水流速度是每小时2千米。

小学四年级奥数题:行程问题及答案

小学四年级奥数题:行程问题及答案

三一文库()/小学四年级
〔小学四年级奥数题:行程问题及答案〕
米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过
来,8:00货车追上了米老鼠,又过了30秒货车超过了它;
另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了
12秒客车离开了它。

如果客车的长度是货车的2倍,客车的
速度是货车的3倍。

请问:客车和货车在什么时间相遇?两
车错车需要多长时间?
解答:行程问题中的三个量路程、速度和时间,如果题目
中只出现了一个的量的具体数值,那么我们可以设出来没出
现具体数值的两个量中的任意一个量。

当然也可以不设出来,
用设份数的方法来做,但这种方法比较抽象,这里我们采用
设数的方法。

设货车的长度为60米,则客车的长度为120米。

从追上米老鼠到超过,货车用30秒,所以货车与米老师的
第1页共2页
速度差是60÷30=2米/秒。

从和米老鼠相遇到离开,客车用12秒,所以客车与米老师
的速度和是120÷12=10米/秒。

所以我们可以知道客车与货车的速度和是10+2=12米/秒。

又知道客车的速度是货车速度的3倍,则可以求出客车的
速度是9米/秒,货车的速度是3米/秒。

然后可以求出米老
鼠的速度是1米/秒。

实际上本题就算不知道客车速度是货车速度的3倍,也是
可以做出来的。

当然,这时候就算不出客车、货车和米老鼠
的具体速度了。

但还是求出来的答案的。

22。

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?
乙每小时走4千米
甲、乙1小时共走多 少千米?走完这段路程 甲、乙一共需要几小时?
思维发散
1、A、B两地相距540千米。一列客车与一列货车分别从 A、B两地相向而行。客车每小时行120千米,货车每小 时行90千米,已知客车出发1小时后,货车才出发求货车 出发几小时后,两车相遇?
120千米
(540-120)千米
330÷(60+50) =330÷110 =3(小时)
80×3=240(千米)
骑摩托车的人与甲 乙两人是同时出发、同 时停止吗?那么骑摩托 车的人行驶的时间和甲、 乙两人的相遇时间有什 么关系?
答:摩托车行驶了240千米。
“中间往返”这类题目的核心就是往返行驶的时间与相遇时间相等。
思维发散
1、甲、乙两队同时从相隔50千米的两地出发,相向而行。 甲队每小时行15千米,乙队每小时行10千米,同时,一个 通讯员每小时行20千米,在两车队中间往返联络,问两队 相遇时,通讯员行了多少千米?
50÷(15+10)×20 =50÷25×20 =2×20 =40(千米)
答:通讯员行了多少千米。
通讯员行驶的时
间与两车队的相遇 时间有什么关系?
2、A、B两地相距648千米。甲、乙两列火车从A、B两地相 对开出,甲列火车每小时行驶60千米,乙列火车每小时行驶 48千米。乙出发时,从车厢里飞出一只鸽子,这只鸽子以每 小时80千米的速度在两列火车之间往返飞行(遇到一列车后 马上返回,向另一列车飞去)。当两列车相遇时,鸽子飞行 了多少千米?

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

2×2÷(12-10)×(12+10) =4÷2×22 =2×22 =44(千米)
答:两地相距44千米。
甲一共比乙多 走了多少千米?
2、两列火车同时从A、B两地同时开出。客车每小时行 60千米,货车每小时行驶54千米,几小时后客车在超过 中点18千米处与货车相遇?求A、B两地相距多少千米。
18×2÷(60-54) =36÷6 =6(小时)
行程问题
——
甲车
乙车
相遇问题是行程问题中的重要一部分,相遇问题的特 征是:两个物体从两地出发,相向而行,共同行一段路程, 直至相遇。这类问题的基本数量关系是:总路程=速度和 ×相遇时间,这里的“速度和”是指两个物体在单位时间 内共同行的路程,还可以推导出以下的数量关系:
1.速度和=总路程÷相遇时间 2.相遇时间=总路程÷速度和
本讲我们主要解决以下几种类型:
1、一般相遇问题:如果两个物体是同时出发,那 么相遇路程就是两个物体原来相距的路程;如果两 个物体不是同时出发,那么它们的相遇路程等于两 个物体原来相距的路程减去其中一个物体先走的路 程;
2、中点相遇问题:相遇路程等于相遇地点与中 点距离的两倍;
3、往返相遇问题:同时出发,同时停止,则中间往 返的时间就相遇时间;
A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?

四年级奥数——相遇、追及

四年级奥数——相遇、追及

四年级奥数——行程问题相遇问题1、南北两村相距90千米,甲从南村出发,他要在9分钟内赶到北村,那他每分钟至少要行多少千米?2、王叔叔因急事,以每小时78千米的车速从甲地赶往乙地,3小时后,他发现时间足够,又以每小时62千米的速度行驶了2小时,赶到了乙地,甲乙两地相距多少千米?3、小飞和小华同时从相距5320米的两地相向而行,两人行了40分钟后还相距1520米,问两人再走几分钟才能相遇?4、甲乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?5、小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发,相向而行,3小时后相遇。

小军从甲地到乙地要12小时,小明从乙地到甲地要几小时?6、甲、乙两车同时从东西两地相对开出,6小时相遇。

如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。

东西两地相距多少千米?7、A、B两车同时从甲、乙两站相对开出,两车第一次在距甲站50千米处相遇。

相遇后继续前进,各自到达乙、甲两站后立即返回,第二次在距乙站20千米处相遇。

甲、乙两站相距多少千米?追及问题1、甲从A出发,每小时12千米,2小时后,乙也从A地相背而行,每小时16千米,再经过4小时他们同时停下来,这时他们相距多远?2、甲、乙相背而行,甲每小时比乙多行2千米,8小时后两人相隔112千米,求甲、乙各自的速度?3、快车和慢车同时从南北两地相对开出,已知快车每小时行60千米,经过3小时后,快车已驶过中点25千米。

这时与慢车还相距6千米。

慢车每小时行多少千米?4、小华和小亮的家相距410米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。

3分钟后两人可能相距多少米?5、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙的后面250米,乙追上需要多少分钟?6、甲、乙二人同时从A地到B地,甲每小时行10千米,乙每小时行8千米,甲行至15千米处又回去取东西,因此比乙迟1小时到B地。

四年级奥数行程问题

四年级奥数行程问题

四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。

甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。

如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。

一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。

中午放学时,小光跑不回家,只用了10分钟。

小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。

汽车每小时行80千米,客车每小时比汽车少行5千米。

6小时候,两车在途中相遇。

两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。

经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。

甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。

这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。

3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。

几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。

兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。

小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结“行程问题”主要类型归纳一、直线型(1)两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。

第n次背面追及相遇,两人的路程差是(2n-1)S。

(2)单岸型:第n次迎面碰头相遇,两人的路程和为2ns。

第n次背面追及相遇,两人的路程差为2ns。

二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。

“行程问题”解题技巧总结一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。

“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。

现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。

题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。

1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。

之后的每次相遇都多走了2个全程。

所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。

而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。

即对于甲和乙而言从a到c走过的路程是从起点到a 的2倍。

相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。

则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。

小学思维数学复杂的行程问题-带详解

小学思维数学复杂的行程问题-带详解

÷30 10 5= ( 行程综合问题教学目标1. 运用各种方法解决行程内综合问题。

2. 发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。

知识精讲行程问题是奥数中的一个难点,内容多而杂。

而在行程问题中,还有一些尤其复杂的综合问题。

它们大致可以分为两类:一、 行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。

例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。

二、 学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。

本讲内容主要就是针对这种综合性题目。

虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是 很受“偏爱”的。

所以很重要。

模块一、行程内综合【例 1】 邮递员早晨 7 时出发送一份邮件到对面山里,从邮局开始要走 12 千米上坡路,8 千米下坡路。

他上坡时每小时走 4 千米,下坡时每小时走 5 千米,到达目的地停留 1 小时以后,又从原路返 回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题 【难度】2 星 【题型】解答【解析】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l 0(小时)③ 邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午 5 时回到邮局的。

法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共 用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午 7+10-12=5(时) 回到邮局的。

【答案】5 时【例 2】 小红上山时每走 30 分钟休息 10 分钟,下山时每走 30 分钟休息 5 分钟.已知小红下山的速度是上山速度的1.5 倍,如果上山用了 3 小时 50 分,那么下山用了多少时间?【考点】变速问题与走停问题 【难度】2 星 【题型】解答【解析】上山用了 3 小时 50 分,即 60 ⨯ 3 + 50 = 230 (分),由 230 ( + ) 30,得到上山休息了 5 次,走了 230 - 10⨯ 5= 180 分 ) .因为下山的速度是上山的 1.5 倍,所以下山走了 180 ÷1.5 = 120 (分).由120 ÷30 =4 知,下山途中休息了 3 次,所以下山共用120 + 5 ⨯ 3 = 135 (分) = 2 小时 15 分.【答案】 2 小时 15 分【例 3】 已知猫跑 5 步的路程与狗跑 3 步的路程相同;猫跑 7 步的路程与兔跑 5 步的路程相同.而猫跑3 步的时间与狗跑 5 步的时间相同;猫跑 5 步的时间与兔跑 7 步的时间相同,猫、狗、兔沿着 周长为 300 米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【考点】环形跑道与猎狗追兔 【难度】5 星 【题型】解答 【解析】方法一:由题意,猫与狗的速度之比为9: 25 ,猫与兔的速度之比为 25: 49 .米,兔跑 米. 狗追上猫一圈需 300 ÷ - 1⎪ = 单位时间, 兔追上猫一圈需 300 ÷ - 1⎪ = 单位时间. 猫、狗、兔再次相遇的时间,应既是 的整数倍,又是 的整数倍.与 的最小公倍数等于两个分数中,分子的最小公倍数除以分母的最大公约数,即 ⎡ 675 625 ⎤ ⎡⎣675,625 ] (4,2 )⎢ 4 2 ⎥⎦ 此时,猫跑了 8437.5 米,狗跑了 8437.5 ⨯ 25 = 23437.5 米,兔跑了 8437.5 ⨯ = 16537.5 米.⎝ 35 21 25 ⎭ [35,21,25 ] 3 ⨯ 5 ⨯ 5 ⨯ 7 ,, , ⎪ =即设猫的速度为 15 ÷ = 225 ,那么狗的速度为 ÷ = 625 ,则兔的速度为÷ = 441 . 而 ⎢ , ⎣ 4 18 ⎥⎦ (4,18) 2 = ⨯ 225 = 8437.5 米,狗跑了⨯ 625 = 23437.5 米,兔跑了 ⨯ 441 = 16537.5 米. 路程之和等于 400 米,24V +24(V +2 )=400 易得 V = 7 米/秒【答案】 7 米/秒设单位时间内猫跑 1 米,则狗跑25 499 25⎛ 25 ⎫ 675 ⎝ 9 ⎭ 4⎛ 49 ⎫ 625 ⎝ 25 ⎭ 2675 6254 2675 6254 2⎣, = = 16875 = 8437.5 . 2上式表明,经过 8437.5 个单位时间,猫、狗、兔第一次相遇.499 25方法二:根据题意,猫跑 35 步的路程与狗跑 21 步的路程、兔跑 25 步的路程相等;而猫跑 15 步 的时间与狗跑 25 步、兔跑 21 步的时间相同.所以猫、狗、兔的速度比为 15 : 25 : 21,它们的最大公约数为35 21 25⎛ 15 25 21 ⎫ (15,25,21 )1 =1 25 135 3 ⨯ 5 ⨯ 5 ⨯ 7 21 3 ⨯ 5 ⨯ 5 ⨯ 721 125 3 ⨯ 5 ⨯ 5 ⨯ 7于是狗每跑 300 ÷ (625 - 225) = 34 单位时追上猫;兔每跑 300 ÷ (441 - 225) = 2518 单位时追上猫.⎡ 3 25 ⎤ [3,25 ] 75 75 = ,所以猫、狗、兔跑了 单位时,三者相遇. 2猫跑了75275 752 2【答案】16537.5 米【例 4】 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

奥数行程问题要点及解题技巧

奥数行程问题要点及解题技巧

奥数行程问题要点及解题技巧奥数中的行程问题是一个难度较高的模块,常出现在小学奥数考试和各大奥数比赛中。

其中包括火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等问题。

虽然每一类问题都有自己的特点和解决方法,但是它们都离不开“三个量,三个关系”,即路程(s)、速度(v)、时间(t)以及简单行程、相遇问题和追击问题。

只要掌握好这三个量和它们之间的关系,解决行程问题就不是难事。

在多人行程问题中,最常见的是“三人行程”。

例如,有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?这个三人行程问题可以分解为两个相遇和一个追击问题。

在题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

首先,在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)。

其次,在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成了逆向的追击过程。

可以求出甲、乙相遇的时间为228÷(38-36)=114(分钟)。

最后,在114分钟里,甲、乙二人一起走完了全程。

因此,花圃的周长为(40+38)×114=8892(米)。

除了多人行程问题,还有多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕路程、速度和时间这一基本关系式展开的,其中相遇问题和追及问题的本质也是这三个量之间的关系转化。

只要掌握好这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解。

在解决多次相遇追及问题时,需要注意分析题目中给出的条件,逐步推导出所求的答案。

总之,行程问题是奥数中的重点、难点,但也是锻炼思维的好工具。

只要掌握好“三个量”之间的“三个关系”,解决行程问题并非难事!行程问题的基本关系式是"",通过抓住这个公式,我们可以解决多人相遇和追及的问题。

四年级奥数行程问题习题及解法

四年级奥数行程问题习题及解法

行程问题例题:1、一列火车通过250米长的隧道用了25秒,通过210米长的桥用23秒,此列车与另一列长320米,世俗64.8千米的列车错车,需要几秒?2、有一列200米的快车和一列150米的慢车相向行驶在平行的轨道上,若在慢车上的人测得快车通过窗口的时间为4秒,那么在快车上的人测得慢车通过窗口的时间是多少秒?3、在一只野兔跑出90米后,猎狗去追。

野兔跑8步的路程,猎狗只需要跑3步。

猎狗跑3步的时间,野兔能跑4步。

问,猎狗至少跑出多远,才能追上野兔。

4、小红从甲地往乙地走,小花同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走路程中,各自速度不变,两人第一次相遇时在距甲地40米处,第二次相遇在距乙地15米处,问,甲.乙两地相距多少米。

5、森林中,猎狗发现前方20米处有一只奔跑的野兔,立即追赶上去,猎狗步子大,它跑5步的路程,兔子要跑9步;但兔子动作快,猎狗跑2步的时间,兔子却能跑3步。

猎狗跑出多远才能追上兔子?6、猎狗追赶前方30米处的野兔.猎狗步子大,它跑 4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。

狗至少跑出多远才能追上野兔?例题答案:1、:火车过桥问题公式:(车长+桥长)/火车车速=火车过桥时间速度为每小时行64.8千米的火车,每秒的速度为18米/秒, 某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,则该火车车速为:( 250-210)/(25-23)=20米/秒路程差除以时间差等于火车车速. 该火车车长为:20*25-250=250(米) 或20*23-210=250(米) 所以该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要的时间为(320+250)/(18+20)=15(秒) 错车即是两列火车的车头相遇到两列火车的车尾相离的过程.2、分析:列车车窗的宽度相对车长而言太小,我们认为车窗是一点。

那么有:慢车看快车,200米的车4秒通过,可得出速度之和200÷4=50(米/秒) 快车看慢车,150米的车以50米/秒的相对速度通过,可得通过时间为150÷50=3(秒)3、解析:本题需要根据已知条件找出兔和狗之间的速度关系。

四年级奥数:行程问题

四年级奥数:行程问题

四年级奥数:行程问题四年级奥数:行程问题奥数:行程问题145名学生要到离学校30千米的郊外劳动。

学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米。

学生步行的速度是每小时4千米。

为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?[解答]:45人分三组出发,每组15人。

为了尽快到达,三组必须同时到达。

每一组都是步行了一些路程,坐车行了一些路程。

由于同时到达,所以每一组坐车的时间相等,当然步行的时间也相等。

汽车速度是步行速度的15倍,所以如果时间相同,汽车行的路程是人步行路程的15倍。

我们设第二组第一条红色线段的长度为1份。

可得出第一条蓝色线段=8份,当然,第3条,第5条蓝色线段的长度也等于8份。

还可以得到第三组的红色线段=2份,当然,第1组的红色线段也等于2份。

所以全程是8+2=10份,8份路程坐车,2份路程步行。

每份长度为30÷10=3公里。

所以坐车时间为3×8÷60=0.4小时步行时间为3×2÷4=1.5小时一共需要0.4+1.5=1.9小时。

四年级奥数:行程问题2专题简析:在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。

船在水中漂流,不借助外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。

行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。

由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

(完整版)四年级数学行程问题

(完整版)四年级数学行程问题

行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。

7、小欣家离学校1000米,平时他步行25 分钟后准时到校。

有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。

[奥数题]小学四年级奥数:行程问题

[奥数题]小学四年级奥数:行程问题

[奥数题]小学四年级奥数:行程问题小学四年级奥数:行程问题专题简析:在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。

船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。

行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。

由于货车比客车速度快,当货车过中点 18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间。

所以,两地相距90×6=540千米。

练习一1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。

两人相遇时距全程中点3千米,求全程长多少千米。

2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。

东西两城相距多少千米?3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。

慢车每小时行多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。

A、B两地间的路长多少米?分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数详解答案第16讲
第十六讲行程问题
一、知识概要
关于物体运动的速度、时间和路程(距离三者之间的关系问题就是行程问题。

行程问题是小学阶段一个重点知识,本讲只汲及到火车过桥、钻越隧道等常见的行程问题,讲述的重点应放在五年级或者六年级。

行程问题最基本的数量关系式是:速度×时间=路程
二、典型题目精讲
1、客车以每秒21m的速度行驶,另一列货车以每秒15m的速度从对面开过来,司机观察
此车从身边经过共用10秒钟,试问:货车的车长是多少米?
解:分析,如图,两车相遇时为路程的起,客车头和货车尾离开为路程的终点,很明显,货车的车长是所求的路程,且这段路程是两列车同时行驶的,
所以,用“速度和×时间即得路程”。

(21+15)×10=360(m)
答:货车的车长是360(m)
2、火车通过一条长1460m的桥用了70秒,穿越1940m隧道用了90秒,求火车的车长和
车速。

解:分析,如图,这类问题首先要明白,这里的“路程”二桥长(或隧道长)+车长”。

因为为桥的一头为起点,另一头与火车头相接,火车尾就是终点。

①车速:(1940-1460)÷(90-7)=24(m/秒)
②车长:24×70-1460=220(m)
答:火车的车长是220,车速为24m/秒.
3、一列火车有18节车厢,每节车厢长45m,车厢与车厢之间相隔1m。

这列火车以30m/
秒的速度通过一座长103m的大桥,需要多少分钟?
解:分析:①18节车厢共长18×45=810(m)②每个间隔1m,共(18-1)×1=17(m)
③车长+桥长=810+17+103=930(m)
故:需要时间为[45×18+(18-1)×1+103]÷30=31(分)
答:需要31分钟。

4、在铁路复线上两列火车同向而行,甲车车长172m,车速为每秒24m,乙车车长128m,
车速为每秒16m。

现乙车在前,甲车在后,两车相距180m,甲车完全超过乙车要行多
少路程?
解:分析,这是个追及问题,追及的路程=甲车长+乙车长+两车距离。

故:①追及及时间:(180+172+128)÷(24-16)=60(秒);
②超过总行驶路程:24×60=1440(m)
答:甲车完全超过乙车要行1440m。

5、一辆货车以每小时65km的速度前进,一辆客车在它后面1500m,以每小时80km速度
同向行驶,客车超过货车前一分钟,两车相距多少米?
解:分析,客车每小时比货车多行80-65=15(km),超过前一分钟的距离就是客车在一分钟比货车多行的距离。

1500×(80-65)÷60=375(m)
答:客车超过货车前1分钟,两车相距375m。

6、在铁路复线上两列火车相向而行,甲车车长172m,车速为每秒16m;乙车车长128m,
车速每秒24m,现两车车头相距180m,几秒钟后两车的车尾相离?
解:分析,这是个相遇问题,路程=甲车长+乙车长+两车距离。

故:时间为(180+172+128)÷(16+24)=12(秒)
答:12秒钟后两车的车尾相离。

三、练习巩固与拓展
1、一座大桥长1200m,火车长300m,火车以每秒25m的速度在桥上行驶,火车从上桥到
离桥需要多长时间?
2、一列火车长380m,它经过路边的板道工人用19秒钟,它以同样的速度通过一个山洞,
以从车头进山洞到车尾离开共用50秒钟。

求这个山洞的长。

3、某列货车通过528m的隧道用了29秒,接着通过396m的隧道用了23秒,这列货车与
另一列长226m,速度为每秒20m的列车错车而过,需要多少秒钟?
4、一列长150m的火车,通过200m长的山洞用了了25秒钟,这列火车每秒行多少米?
5、一列火车长230m,每秒行15m,全车通过一座大桥用了38秒钟上,这座大桥长多少米?
6、在上、下行轨道上,两列火车相对开来。

一列火车长190m,每秒行18m,另一列火车
每秒行17m,两列火车错车而过,用10秒钟。

求另一列火车长多少米?
7、一列长780m的火车以每秒23m的速度,连续通过一座桥和一个山洞,共用2分钟。

已知桥长960m,山洞长多少米?
8、小强站在铁路边,一列火车从他身边开过,用了2分钟,已知这列火车长720m,以同
样的速度通过一座桥,用了5分钟。

这座大桥长多少米?
9、火车通过长368m的桥用了26秒,如果火车的速度加快1倍,它通过长为440m的隧
道只用了15秒。

求火车原来的车速和它的速度。

10、慢车车身长164m,车速为18m/秒;快车车身长121m,车速为23m/秒。

慢车在前面行
驶,快车在后面从追上到完全超过需多少时间?
11、少先队员366人排成两路纵队去参观博物馆。

队伍行进的速度是24m/分,前后两人都
相距1m。

现在队伍要通过一座长658m的桥,整个队伍从上桥到离桥共需多少分钟?
12、小明坐在行驶的列车上,从窗口往外看,看到一列已知长168m的货车通过一座已知长
209米的桥用了29秒,而迎面开来从他眼前经过用6秒钟上。

列车每秒钟行多少米?
13、快慢两列火车相对开来,慢车长180m,快车长135m,两列火车交错而过用9秒钟,
当快车到达目的地返回时追上了慢车,从追上到离开慢车用了105秒钟,快、慢两列火车的速度分别是多少?
14、慢车长152m,速度是18m/秒,快车长160m,速度是24m/秒,慢车在前面,快车在后
面,快车在后面从追上到超过慢车要多少时间?
15、铁路边电线杆的间隔是30m,乘客在运行的列车中,他从看见第一根电线杆到第26根
电线杆正好是3分钟,求列车的速度。

1、解:(1200+300)÷25=60(秒)
2、解:380÷19×50-380=620(m)
3、解:①货车速度:(528-396)÷(29-23)=22(m/秒)
②货车长度:22×23-396=110(m) ③错车时间:(110+226)÷(22+20)=8(秒)
4、解:(150+200)÷25=14(m)
5、解:15×38-230=340(m)
6、解:(18+17)×10-190=160(m)
7、解:火车连续通过一座桥和山洞,行驶的全程是车长+桥长+山洞长,所以以全程中减
去车长与桥长,便可得山洞长。

2分=120秒,23×120-780-960=1020(m)
8、解:720÷2×5-720=1080(m)
9、解:根据条件“火车的速度加快1倍,它通过长为440m的隧道只用14秒”,可推出如
果火车按照原速通过长为440m的隧道用15×2=30(秒)。

于是,题目转化成“火
车通过长368m的桥用26秒,通过440m的隧道用30秒。


①火车原速为:(440-368)÷(15×2-26)=18(m/秒);②车长为:18×26-368=100(m)
10、解:快车从后面追上到完全超过的追及路程是快慢两车的车长之和。

(164+121)÷(23-18)=57(秒)
11、解:①366÷2=180(人);②(183-1)×1=182(m);③(182+658)÷24=35(分)
12、解:①货车速度:(168+209)÷29=13(m/秒);②列车速度:168÷6-13=15(m/秒)
13、解:①速度和:(180+135)÷9=35(m/秒);②速度差:(180+135)÷105=3(m/秒)
③慢车速度:(35-3)÷2=16(m/秒);④快车车速:16+3=19(m/秒)
14、解:(152+160)÷(24-18)=52(秒)
15、解:30×(26-1)÷3=250(m/分)。

相关文档
最新文档