初一上册数学测试题
初一上册数学第一单元测试卷
初一上册数学第一单元测试卷一、选择题(每题2分,共10分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -22. 如果一个数的绝对值是3,那么这个数可以是:A. 3B. -3C. 3或-3D. 都不是3. 以下哪个表达式等于0?A. 5 - 5B. 3 + 2C. 7 × 0D. 6 ÷ 34. 两个负数相加,结果为:A. 正数B. 负数C. 0D. 无法确定5. 以下哪个是偶数?A. 1B. 2C. 3D. 5二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是______。
7. 绝对值是5的数有______。
8. 两个数的和是10,其中一个数是3,另一个数是______。
9. 如果一个数的平方是25,那么这个数是______。
10. 一个数的立方是-8,那么这个数是______。
三、计算题(每题5分,共20分)11. 计算下列各数的和:3,-5,7,-2。
12. 计算下列各数的差:9 - (-4)。
13. 计算下列各数的积:(-2) × 3 × 4。
14. 计算下列各数的商:18 ÷ (-6)。
四、解答题(每题10分,共30分)15. 某班有35名学生,其中男生比女生多5人。
请问这个班有多少男生和女生?16. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
17. 一个数列的前三项是2,5,8,这个数列的第四项和第五项各是多少?五、应用题(每题15分,共30分)18. 小明有120元,他花了一部分钱买了一个足球,剩下的钱买了一些糖果。
如果足球的价格是40元,每颗糖果的价格是2元,小明买了多少颗糖果?19. 一个农场有鸡和鸭共120只,鸡的数量是鸭的3倍。
请问农场有多少只鸡和鸭?六、附加题(10分)20. 一个数的平方减去这个数的立方等于-40,求这个数。
请注意,以上题目仅为示例,实际的测试卷应根据教学大纲和学生的学习进度来制定。
2023-2024年人教版七年级上册数学期末检测题(含简单答案)
二、填空题(每题 3 分,共 24 分)
C. 1 或 9
D. 9 或 1
9.如果 5m 表示向东走 5m ,那么 10m 表示 . 10.小明写作业时不慎将两滴墨水滴在数轴上(如图),请你判断墨迹盖住的整数有 个.
11.单项式 πx2 y5z 的系数是
.
5
12.单项式 x3 ya 与 6xb y 是同类项,则 a b3
24.已知 A、B 两点在数轴上分别表示数 a、b
(1)对照数轴填写表格:
a
6 6 6 3 2.5
b
4 0 3 7 2.5
A、B 两点的距离 2 6
(2)若 A、B 两点间的距离记为d ,则d 与 a、b 的数量关系为________. (3)求出数轴上到 4 和 4 的距离之和为 8 的所有整数的和. (4)动点 A 从 10 出发向数轴正方向运动,动点 A 的速度是 3 个单位长度/秒,同时,动 点 B 从 5 出发向数轴正方向运动,动点 B 的速度是 2 个单位长度/秒,当 A、B 两点相距 5 个单位长度时,求点 A 的运动时间为多少秒?
(1
0.5)
1 3
2
(3)2
.
18.解下列方程: (1) 3x 7 32 2x ;
(2) 2x 3 3x 1 1.
5
2
19.先化简,再求值: a3
3a2b 3ab2 ab
3
1 3
a3
a2b
ab2
,其中
a,b
满足
(a 2)2 b 1 0 .
20.已知有理数 a、b、c 在数轴上的位置,
BOC 的度数为 .
16.一个两位数的个位数字与十位数字的和是 8,把这个两位数加上 18,结果恰好成为
七年级数学上册期末试卷(附含答案)
七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
初一上册数学测试题及答案
初一上册数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -12. 如果a = -2,b = 3,那么a + b的值是多少?A. 1B. 5C. -1D. 43. 哪个选项是最小的负数?A. -1B. -2C. -3D. 无法确定4. 绝对值是5的数有几个?A. 1个B. 2个C. 3个D. 无数个5. 下列哪个表达式等于0?A. 3 - 3B. 2 + 2C. 5 - 2D. 4 × 06. 哪个选项是正确的乘法分配律应用?A. (a + b) × c = a × c + bB. (a + b) × c = a × c + b × dC. (a + b) × c = a × c + b × cD. (a - b) × c = a × c - b × c7. 哪个选项表示了有理数的加法?A. 2 + 3 = 5B. 2 - 3 = -1C. 2 × 3 = 6D. 2 ÷ 38. 哪个选项是正确的因式分解?A. x^2 - 1 = (x + 1)(x - 1)B. x^2 - 1 = (x - 1)(x + 1)C. x^2 - 1 = (x + 1)^2D. x^2 - 1 = x - 19. 下列哪个是完全平方数?A. 16B. 17C. 18D. 1910. 哪个选项是正确的因式分解?A. a^2 - b^2 = (a + b)(a - b)B. a^2 - b^2 = (a - b)(a + b)C. a^2 - b^2 = a^2 - b^2D. a^2 - b^2 = (a + b)^2 - b^2二、填空题(每题2分,共20分)11. 一个数的相反数是-4,这个数是________。
12. 绝对值等于4的数是________。
初一上册数学测试题及答案
初一上册数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是3. 计算下列哪个表达式的结果为正数?A. -3 + 2B. 4 - 7C. -5 × 2D. 6 ÷ (-3)4. 下列哪个是偶数?A. 3B. 4C. 5D. 75. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 0B. 1C. 2D. 36. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 47. 一个数的立方根是它本身,这个数可能是:A. 0B. 1C. -1D. 88. 计算下列哪个表达式的结果为0?A. 3 × 0B. 5 - 5C. -2 + 2D. 4 ÷ 89. 下列哪个是质数?A. 2B. 4C. 6D. 810. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2二、填空题(每题2分,共20分)11. 一个数的绝对值是它自己,这个数是______或______。
12. 如果a = -3,那么-a = ______。
13. 一个数的平方是9,这个数是______或______。
14. 一个数的立方是-8,这个数是______。
15. 两个数的和是10,且这两个数是相反数,那么这两个数分别是______和______。
16. 如果一个数的平方根是2,那么这个数是______。
17. 一个数的立方根是-2,那么这个数是______。
18. 一个数的相反数是-5,那么这个数是______。
19. 一个数的绝对值是5,那么这个数是______或______。
20. 如果一个数的平方是16,那么这个数是______或______。
三、计算题(每题5分,共30分)21. 计算下列表达式的值:(-3) × (-2) - 4 × 322. 解下列方程:3x + 5 = 1423. 计算下列表达式的值:(-4)² - √1624. 解下列方程:2x - 3 = 7四、解答题(每题10分,共30分)25. 一个长方形的长是宽的两倍,如果宽是a厘米,那么长方形的周长是多少厘米?26. 一个数列的前三项是1, 3, 6,如果这个数列是等差数列,求第四项的值。
人教版七年级数学上册单元测试题全套含答案
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)
初一数学上册第一单元测试题
初一数学上册第一单元测试题本文为初一数学上册第一单元测试题解答。
一、选择题1. 12 ÷ 3 × 4 =A. 6B. 12C. 16D. 10解析:根据数学运算法则,先乘除后加减,计算过程为12 ÷3 = 4,4 × 4 = 16,所以答案为C。
2. 下面哪组数没有两个的差等于3?A. 12, 9B. 9, 12C. 8, 5D. 7, 5解析:计算每组数的差,A. 12 - 9 = 3,B. 9 - 12 = -3,C. 8 - 5 = 3,D. 7 - 5 = 2。
只有A和C两组数的差等于3,所以答案为B。
3. 下列哪个数是0.051的四倍?A. 204B. 51C. 0.8D. 41解析:将0.051乘以4,得到结果0.204,所以答案为A。
4. 三个角的度数和为多少?A. 45度B. 90度C. 180度D. 360度解析:三角形的内角和为180度,所以答案为C。
5. 2的6次方等于多少?A. 8B. 12C. 32D. 64解析:2的6次方表示为2 × 2 × 2 × 2 × 2 × 2,计算结果为64,所以答案为D。
二、填空题1. 23 × 12 = ____解析:计算23乘以12,得到276。
2. 17 + 24 - 8 = ____解析:计算17加24再减8,得到33。
3. (6 + 2) ÷ 4 = ____解析:计算6加2得到8,然后将8除以4,得到2。
4. 15 - 6 × (8 ÷ 4) = ____解析:先计算括号里的除法,得到2,然后将6乘以2,得到12,在用15减去12,得到3。
5. (4 + 3 × 2) ÷ (6 - 3) = ____解析:先计算括号里的乘法,得到6,然后计算分子里的加法,得到10,最后将10除以3,得到3 1/3。
人教版七年级数学上册《第一章有理数》测试题-附有答案
人教版七年级数学上册《第一章有理数》测试题-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)有理数﹣1 0 1 3四个数中最小的是()A.﹣1B.0C.1D.3【分析】利用有理数的大小比较来选择即可.【解答】解:有理数﹣1 0 1 3四个数中最小的是﹣1故选:A.2.(4分)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为()A.2.12×107B.2.12×108C.0.212×109D.2.12×109【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:2.12亿=212000000=2.12×108.故选:B.3.(4分)中老铁路是与中国铁路网直接连通的国际铁路线路北起中国西南地区的昆明市南向到达老挝首都万象市是“一带一路”上最成功的样板工程.从长期看将会使老挝每年的总收入提升21% 若+21%表示提升21% 则﹣10%表示()A.提升10%B.提升31%C.下降10%D.下降﹣10%【分析】利用正负数表示相反意义的数来选择即可.【解答】解:∵+21%表示提升21%∴﹣10%就表示下降10%.故选:C.4.(4分)下列各对数中互为相反数的是()A.﹣(﹣2)和2B.4和﹣(+4)C.和﹣3D.5和|﹣5|【分析】利用互为相反数的定义、绝对值的定义判断即可.【解答】解:﹣(﹣2)=2 A不符合题意;4与﹣(+4)互为相反数B符合题意;和﹣3不互为相反数C不符合题意;5=|﹣5| 不互为相反数D不符合题意.故选:B.5.(4分)已知有理数a b c在数轴上的对应点的位置如图所示则下列结论不正确的是()A.c<a<b B.a﹣c>0C.bc<0D.|c﹣b|=c﹣b【分析】利用a b c在数轴上的位置可以判断出c<a<b再用有理数的加减乘除法则判断即可.【解答】解:利用数轴可以判断出c<a<b则A选项正确不符合题意;由数轴可以看出c<a则a﹣c>0 则B选项正确不符合题意;由数轴可以看出c<0<b则bc<0 则C选项正确不符合题意;由数轴可以看出c<0<b|c|>|b|则|c﹣b|=﹣(c﹣b)=b﹣c故D选项错误符合题意.故选:D.6.(4分)我国幅员辽阔南北跨纬度广温差较大5月份的某天同一时刻我国最南端的海南三沙市气温是30℃而最北端的漠河镇气温是﹣2℃则三沙市的气温比漠河镇的气温高()A.﹣32℃B.﹣28℃C.28℃D.32℃【分析】利用有理数的减法运算法则计算即可.【解答】解:根据题意可知三沙市的气温比漠河镇的气温高30﹣(﹣2)=30+2=32(℃)故选:D.7.(4分)如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣5 b 4 某同学将刻度尺如图2放置使刻度尺上的数字0对齐数轴上的点A发现点B对应刻度1.8cm点C对齐刻度5.4cm.则数轴上点B所对应的数b为()A.3B.﹣1C.﹣2D.﹣3【分析】根据刻度尺上的刻度与数轴上得单位长度的比值不变求解.【解答】解:∵5.4÷(4+5)=0.6(cm )∴1.8÷0.6=3∴﹣5+3=﹣2故选:C .8.(4分)计算(241343671211-+-)×(﹣24)的结果是( ) A .1 B .﹣1 C .10 D .﹣10【分析】根据乘法分配律计算即可.【解答】解:(﹣+﹣)×(﹣24) =×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24) =﹣22+28+(﹣18)+13=1故选:A .9.(4分)下列说法正确的是( )A .近似数4.20和近似数4.2的精确度一样B .近似数4.20和近似数4.2的有效数字相同C .近似数3千万和近似数3000万的精确度一样D .近似数52.0和近似数5.2的精确度一样【分析】根据近似数和有效数字的定义 可以判断各个选项中的说法是否正确.【解答】解:近似数4.20和近似数4.2的精确度不一样 近似数4.20精确到百分位 近似数4.2精确到十分位 故选项A 错误 不符合题意;近似数4.20和近似数4.2的有效数字不相同 近似数4.20有三个有效数字 近似数4.2有两个有效数字 故选项B 错误 不符合题意;近似数3千万和近似数3000万的精确度不一样 近似数3千万精确到千万位 近似数3000万精确到万位 故选项C 错误 不符合题意;近似数52.0和近似数5.2的精确度一样 故选项D 正确 符合题意;故选:D .10.(4分)规定:把四个有理数1 2 3 ﹣5分成两组 每组两个 假设1 3分为一组 2 ﹣5分为另一组 则A =|1+3|+|2﹣5|.在数轴上原点右侧从左到右取两个有理数m 、n 再取这两个数的相反数 对于这样的四个数其所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】根据已知条件列出所有情况并求出A的值即可求得所有A的和.【解答】解:根据题意得m<n m n的相反数为﹣m﹣n则有如下三种情况:①m n为一组﹣m﹣n为另一组此时有A=|m+n|+|(﹣m)+(﹣n)|=2m+2n;②m﹣m为一组n﹣n为另一组此时有A=|m+(﹣m)|+|n+(﹣n)|=0;③m﹣n为一组n﹣m为另一组此时有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m.∴所有A的和为2m+2n+0+2n﹣2m=4n.故选:C.11.(4分)如图在一个由6个圆圈组成的三角形里把﹣25到﹣30这6个连续整数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣87【分析】三个顶点处分别是﹣30 ﹣29 ﹣28 ﹣30与﹣29之间是﹣25 ﹣30和﹣28之间是﹣26 ﹣29和﹣28之间是﹣27 这样每边的和才能相等并且S有最小值.【解答】解:如图∴S=﹣29﹣27﹣28=﹣84故选:A.12.(4分)设a b是有理数定义一种新运算:a⊗b=a2﹣b2.下面有四个推断:①a⊗b=b⊗a;②a⊗(﹣b)=(﹣a)⊗b;③a⊗(b⊗c)=(a⊗b)⊗c;④(a+b)⊗(a﹣b)=(b+a)⊗(b﹣a).所有合理推断的序号是()A.①③B.②④C.②③④D.①②③④【分析】各式利用新定义判断即可.【解答】解:根据题中的新定义得:①a⊗b=a2﹣b2b⊗a=b2﹣a2不成立;②a⊗(﹣b)=a2﹣b2(﹣a)⊗b=a2﹣b2成立;③a⊗(b⊗c)=a2﹣(b2﹣c2)2=a2﹣b4+2b2c2﹣c4;(a⊗b)⊗c=(a2﹣b2)2﹣c2=a4﹣2a2b2+b4﹣c2不成立;④(a+b)⊗(a﹣b)=(a+b)2﹣(a﹣b)2(b+a)⊗(b﹣a)=(b+a)2﹣(b﹣a)2=(a+b)2﹣(a﹣b)2成立故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)定义:如果2m=n(m n为正数)那么我们把m叫做n的D数记作m=D(n).根据所学知识试计算:D(16)=.【分析】根据题意得:2m=16 求出m的值即可.【解答】解:根据题意得:2m=16∴m=4.故答案为:4.14.(4分)已知|a+2|=4 (b﹣1)2=4 且ab<0 则a+b=.【分析】先求出a b的值根据ab<0 知道a b异号分两种情况分别计算即可.【解答】解:∵|a+2|=4 (b﹣1)2=4∴a=2或﹣6 b=3或﹣1∵ab<0∴a b异号当a=2 b=﹣1时a+b=2﹣1=1;当a=﹣6 b=3时a+b=﹣6+3=﹣3;故答案为:1或﹣3.15.(4分)如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8 那么a+b+c+d的最大值为.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内是各不相同的整数结合乘积为8 进行分类讨论.【解答】解:∵a、b、c、d是四个不同的正整数∴四个括号内是各不相同的整数不妨设(2019﹣a)<(2019﹣b)<(2019﹣c)<(2019﹣d)又∵(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8∴这四个数从小到大可以取以下几种情况:①﹣4 ﹣1 1 2;②﹣2 ﹣1 1 4.∵(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=8076﹣(a+b+c+d)∴a+b+c+d=8076﹣[(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)]∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)越小a+b+c+d越大∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=﹣4﹣1+1+2=﹣2时a+b+c+d取最大值=8076﹣(﹣2)=8078.故答案为:8078.16.(4分)如图圆的直径为1个单位长度该圆上的点A与数轴上表示﹣1的点重合将该圆沿数轴负方向滚动1周点A到达点B的位置点B表示的数为x则|4+x|=.【分析】B点到A点的距离即圆周长从而得到点B表示的数进一步代入计算即可.【解答】解:∵r=∴c=2πr=π∴AB=c=π∴B表示的数x=﹣(π+1).∴|4+x |=|4﹣(π+1)|=|4﹣π﹣1|=|3﹣π|=π﹣3故答案为:π﹣3.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(6分)把下列各数按要求分类:5.2 02722 +(﹣4) ﹣243 ﹣(﹣3) 0.25555… ﹣0.030030003….(1)写出所有的分数;(2)写出所有的非负整数;(3)写出所有的有理数.【分析】(1)根据分数的定义 可得答案;(2)根据不小于零的整数是非负整数 可得答案;(3)根据有理数包括整数和分数 可得答案.【解答】解:(1)分数集合:{5.2 ﹣2 0.25555} (2)非负整数集合:{ 5 ﹣(﹣3)}(3)有理数集合:{ 5.2 0 +(﹣4) ﹣2 ﹣(﹣3) 0.25555}.18.(8分)已知a b 互为相反数 c d 互为倒数 |m |=2 求3(a +b ﹣1)+(﹣c d )2022﹣2m 的值.【分析】利用相反数 倒数 绝对值定义求出a +b cd 及m 的值 将各自的值代入计算即可求出值.【解答】解:根据题意得:a +b =0 cd =1 m =2或﹣2当m =2时原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m =﹣2时原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.19.(12分)计算题:(1)1+(﹣2)+|﹣3|﹣5; (2)(4332125-+)×(﹣12); (3)(﹣43)×(﹣121)÷(﹣241); (4)(﹣85)×42﹣0.25×(﹣8)×(﹣1)2017. 【分析】(1)先算绝对值 再算加减法;(2)根据乘法分配律计算;(3)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(4)先算乘方 再算乘 最后算减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)1+(﹣2)+|﹣3|﹣5=1﹣2+3﹣5=﹣3;(2)(+﹣)×(﹣12) =×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4;(3)(﹣)×(﹣1)÷(﹣2)=﹣××=﹣;(4)(﹣)×42﹣0.25×(﹣8)×(﹣1)2017=(﹣)×16﹣0.25×(﹣8)×(﹣1)=﹣10﹣2=﹣12.20.(10分)一个四位正整数的千位、百位、十位、个位上的数字分别为a b c d 如果a ≤b ≤c ≤d 那么我们把这个四位正整数叫做顺次数 例如四位正整数1369:因为1<3<6<9 所以1369叫做顺次数.(1)四位正整数中 最大的“顺次数”是 最小的“顺次数”是 ;(2)已知一个四位正整数的百位、个位上的数字分别是2、7 且这个四位正整数是“顺次数” 同时 这个四位正整数能被7整除 求这个四位正整数.【分析】(1)根据“顺次数”的概念分析最大数和最小数;(2)根据“顺次数”的概念千位上的数字是1或2 然后分情况分析求解.【解答】解:(1)根据题意a ≤b ≤c ≤d∴四位正整数中 最大的“顺次数”是9999 最小的“顺次数”是1111故答案为:9999;1111;(2)根据题意a ≤b ≤c ≤d 且一个四位顺次数的百位、个位上的数字分别是2、7∴这个“顺次数”的千位是1或2①当a =1时 这个顺次数可能是1227 1237 1247 1257 1267 1277;其中 只有1267是7的倍数;②当a =2时 这个顺次数可能是2227 2237 2247 2257 2267 2277;其中 只有2247是7的倍数;∴这个四位正整数是1267或2247.21.(12分)如图是某一条东西方向直线上的公交线路的部分路段 西起A 站 东至L 站 途中共设12个上下车站点 某天 小明参加该线路上的志愿者服务活动 从C 站出发 最后在某站结束服务活动.如果规定向东为正 向西为负 当天的乘车站数按先后顺序依次记录如下(单位:站):+5 ﹣3 +4 ﹣5 +8 ﹣2 +1 ﹣3 ﹣4 +1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米 求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶 若小明开始志愿服务活动时该汽车油量占油箱总量的7011 每行驶1千米耗油0.2升 活动结束时油量恰好能保证汽车安全行驶 则该汽车油箱能存储油多少升?【分析】(1)用原点表示起点位置 再利用有理数的和求解;(2)先用绝对值求共几个站 再求里程数;(3)列方程求解.【解答】解:(1)设C 站为原点 则):+5﹣3+4﹣5+8﹣2+1﹣3﹣4+1=+2 表示原点右侧第二个站 即E 站.(2))|+5|+|﹣3|+|+4|+|﹣5|+|+8|+|﹣2|+|+1|+|﹣3|+|﹣4|+|+1|=5+3+4+5+8+2+1+3+4+1=3636×2.5=90(千米).(3)设该汽车油箱能存储油x升依题意得:x﹣0.2×90=0.1x解得:x=315答:该汽车油箱能存储油315升22.(12分)如图所示某数学活动小组编制了一道有理数混合运算题即输入一个有理数按照自左向右的顺序运算可得计算结果其中“●”表示一个有理数.(1)若●表示2 输入数为﹣3 求计算结果;(2)若计算结果为8 且输入的数字是4 则●表示的数是几?(3)若输入数为a●表示的数为b当计算结果为0时请求出a与b之间的数量关系.【分析】(1)把﹣3和●表示的数输入计算程序中计算即可求出值;(2)设●表示的数为x根据计算程序列出方程求出方程的解即可得到x的值;(3)把a与b代入计算程序中计算使其结果为0 得到a与b的数量关系即可.【解答】解:(1)根据题意得:(﹣3)×(﹣4)÷2+(﹣1)﹣2=12÷2﹣1﹣2=6﹣1﹣2=3;(2)设●表示的数为x根据题意得:4×(﹣4)÷2+(﹣1)﹣x=8解得:x=﹣17;(3)由题意得:+(﹣1)﹣b=0整理得:b=﹣2a﹣1.23.(12分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃若以每箱净重10千克为标准超过的千克数记为正数不足的千克数记为负数称重的记录如下表:与标准重量的差值(单位:千克)﹣﹣0.2500.250.30.50.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60% 第二天因为害怕剩余樱桃腐烂决定降价把剩余的樱桃以原零售价的70%全部售出水果店在销售这批樱桃过程中是盈利还是亏损盈利或亏损多少元.【分析】(1)根据总箱数和已知箱数求出n求出新数的和再加200千克即可;(2)根据销售额=销售单价×总数量计算即可;(3)根据销售额=销售单价×总数量×销售比例计算即可.【解答】解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱)10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5 这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的盈利466元.24.(14分)数轴上有A B C三点给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系则称该点是其它两个点的“关联点”.例如数轴上点A B C所表示的数分别为1 3 4 此时点B是点A C的“关联点”.(1)若点A表示数﹣2 点B表示数1 下列各数﹣1 2 4 6所对应的点分别是C1C2C3C4其中是点A B的“关联点”的是;(2)点A表示数﹣10 点B表示数15 P为数轴上一个动点:①若点P在点B的左侧且点P是点A B的“关联点”求此时点P表示的数;②若点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”请直接写出此时点P表示的数.【分析】(1)根据新定义内容结合数轴上两点间距离公式求解;(2)①根据新定义内容结合方程思想及分类讨论思想求解;②根据新定义内容结合方程思想及分类讨论思想求解.【解答】解:(1)∵AC1=﹣1﹣(﹣2)=1 BC1=1﹣(﹣1)=2 ∴2AC1=BC1∴C1是点A B的“关联点”;∵AC2=2﹣(﹣2)=4 BC2=2﹣1=1 AB=1﹣(﹣2)=3∴C2不是点A B的“关联点”;AC3=4﹣(﹣2)=6 BC3=4﹣1=3∴AC3=2BC3∴C3是点A B的“关联点”;AC4=6﹣(﹣2)=8 BC4=6﹣1=5 AB=1﹣(﹣2)=3∴C4不是点A B的“关联点”;故答案为:C1C3;(2)设P点在数轴上表示的数为p.①∵P在点B左侧则:(Ⅰ)当P点在AB之间时15﹣p=2[p﹣(﹣10)]解得:p=−;或2(15﹣p)=p﹣(﹣10)解得:p=;(Ⅱ)当P点在A点左侧时15﹣p=2(﹣10﹣p)p=﹣35∴当P点在B点左侧时点P表示的数为﹣35或−或;②∵点P在B点右侧则:(Ⅰ)当点P为点A B的“关联点”时2(p﹣15)=p+10解得:p=40;(Ⅱ)当点B为点P A的“关联点”时2(p﹣15)=15+10解得:p=27.5;或p﹣15=2×25解得:p=65;(Ⅲ)当点A为点B P的“关联点”时p+10=(15+10)×2解得:p=40∴点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”此时点P表示的数为40或65或27.5.。
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文
精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
初一上册数学第一章和第二章测试题
初一上册数学第一章和第二章测试题以下是初一上册数学第一章和第二章的测试题:第一章《有理数》测试题一、填空题(每题3分,共30分)1.如果盈利20元记作+20元,那么亏损15元记作______元。
2.数轴上表示-3的点在原点的______侧,距离原点______个单位长度。
3.绝对值等于5的数是______。
4.比较大小:-2______-3(填“>”或“<”)。
5.某天的最高气温为6℃,最低气温为-2℃,则这天的温差是______℃。
6.一个数的倒数是它本身,这个数是______。
7.化简:-(-3)=______。
8.在有理数中,最小的正整数是______,最大的负整数是______。
9.若|a| = 3,|b| = 5,且a、b异号,则a - b =______。
10.观察下列数:-2,4,-8,16,-32,…,按照规律,第6个数是______。
二、选择题(每题3分,共30分)1.下列各数中,是负数的是()A. 0B. 2023C. -(-3)D. -22.下列说法正确的是()A.有理数分为正数和负数B.一个数的绝对值一定是正数C.0是最小的有理数D.最大的负整数是-13.在数轴上,与表示-1的点距离为3的点表示的数是()A. 2B. -4C. 2或-4D. 4或-24.若|x| = -x,则x一定是()A. 正数B. 负数C. 非正数D. 非负数5.下列运算结果为正数的是()A. -2 + 3B. -2 - 3C. -2×3D. (-2)÷36.一个数加上-12等于-5,则这个数是()A. 17B. 7C. -17D. -77.计算(-2)×3的结果是()A. 6B. -6C. 5D. -58.下列各对数中,互为相反数的是()A.-(+3)与+(-3)B. -(-4)与| -4|B.-2.5与-(+2.5) D. -(-2)与+(+2)9.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,则(a + b)/m + cd + m的值为()A. 3B. -1C. 3或-1D. ±3或±110.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25 ±0.1)kg、(25 ±0.2)kg、(25 ±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg三、解答题(共40分)1.(8分)把下列各数填入相应的集合中:-2.5,3,0,-1/2,-0.6,+5,1/3,-3.14,π正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}2.(8分)计算:(1)12 -(-18)+(-7)- 15(2)(-2)×(-3)÷(-4)3.(8分)在数轴上表示下列各数,并比较它们的大小,用“<”连接起来。
(必考题)初中七年级数学上册第一章《有理数》经典测试题(含答案解析)
一、选择题1.(0分)下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.(0分)下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.(0分)已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.(0分)若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误;D、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确;故选:D.【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.9.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.(0分)已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 二、填空题11.(0分)若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.12.(0分)若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 13.(0分)计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12)=1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 14.(0分)填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.15.(0分)下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.16.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.17.(0分)把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.(0分)若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(0分)高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(0分)点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.23.(0分)计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.(0分)设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.26.(0分)计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.28.(0分)计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷=9 12 -+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.。
初一数学上册第三章-测试题
初一数学上册第三章-测试题第三章:评估测试卷测试时间:45分钟,测试总分:100分)一、选择题(每小题3分,共30分)1.用语言叙述-2表示的数量关系中,表达不正确的是()A。
比a的倒数小2的数B。
比a的倒数大2的数C。
a的倒数与2的差D。
1除以a的商与2的差2.下列各式中:m,-,x-2,2x2,3x5,单项式的个数为()A。
5B。
4C。
3D。
23.一个两位数是a,在它左边加上一个数字b变成三位数,则这个三位数用代数式表示为()A。
10a+100bB。
baC。
100baD。
100b+a4.下列去括号错误的是()A。
3a2-(2a-b+5c)=3a2-2a+b-5cB。
5x2+(-2x+y)-(3z-u)=5x2-2x+y-3z+uC。
2m2-3(m-1)=2m2-3m-1D。
-(2x-y)-(-x2+y2)=-2x+y+x2-y25.合并同类项2mx1-3mx-2(-mx-2mx1)的结果是()A。
4mxx1-5mxB。
6mx1+mxC。
4mx1+5mxD。
6mx1-mx6.已知-x+2y=6,则3(x-2y)2-5(x-2y)+6的值是()A。
84B。
144C。
72D。
3607.已知A=5a-3b,B=-6a+4b,即A-B等于()A。
-a+bB。
11a+bC。
11a-7bD。
-XXX8.x表示一个两位数,y表示一个三位数,如果把x放在y 的左边组成一个五位数,那么这个五位数就可以表示为()A。
xyB。
x+yC。
1,000x+yD。
10x+y9.当代数式x2+4取最小值时,x的值应是()A。
B。
-1C。
1D。
410.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则完成工作提前的天数为()A。
-(b/a)c天B。
-(b/a+c)天C。
(b/a-c)天D。
(b/a-c)天二、填空题(每小题3分,共30分)11.用代数式表示:1) 钢笔每支a元,m支钢笔共________元;2) 一本书有a页,XXX已阅读b页,还剩________页。
初一上册数学综合测试卷及答案【三篇】
【导语】本⽂由⽆忧考为您整理的初⼀上册数学综合测试卷及答案【三篇】,希望对⼤家有帮助。
初⼀上册数学有理数综合测试卷及答案 ⼀.选择题(每⼩题3分,共24分) 1.-2的相反数是() A.2B.-2C.D. 2.│3.14-|的值是(). A.0B.3.14-C.-3.14D.3.14+ 3.⼀个数和它的倒数相等,则这个数是() A.1B.C.±1D.±1和0 4.如果,下列成⽴的是() A.B. C.D. 5.⽤四舍五⼊法按要求对0.05019分别取近似值,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位) C.0.05(保留两个有效数字)D.0.0502(精确到0.0001) 6.计算的值是() A.B.C.0D. 7.有理数a、b在数轴上的对应的位置如图所⽰: 则() A.a+b<0B.a+b>0 C.a-b=0D.a-b>0 8.下列各式中正确的是() A.B. C.D. ⼆.填空(每题3分,共24分) 9.在数+8.3、-4、-0.8、、0、90、、中,________是正数,_________不是整数。
10.+2与-2是⼀对相反数,请赋予它实际的意义:_________. 11.的倒数的绝对值是___________. 12.+4=; 13.⽤科学记数法表⽰13040000,应记作_______________. 14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________. 15.⼤肠杆菌每过20分便由1个分裂成2个,经过3⼩时后这种⼤肠杆菌由1个分裂成__________个. 16.在数轴上与-3距离四个单位的点表⽰的数是__________. 三.解答题(每题6分,共12分) 17.(-0.9)+(+4.4)+(-8.1)+(+5.6) 18. 四.解答题(每题8分,共40分) 19.把下列各数⽤“”号连接起来: ,-0.5,,,-(-0.55), 20.如图,先在数轴上画出表⽰2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表⽰的数,以及B,C两点间的距离. 21.求+的最⼩值 22.某公司去年1~3⽉平均每⽉亏损1.5万元,4~6⽉平均每⽉赢利2万元,7~10⽉平均每⽉赢利1.7万元,11~12⽉平均每⽉亏损2.3万元,问:这个公司去年总的盈、亏情况如何? 23.某⾷品⼚从⽣产的袋装⾷品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不⾜的部分分别⽤正、负数来表⽰,记录如下表: 与标准质量的差值 (单位:g)520136 袋数143453 这批样品的平均质量⽐标准质量多还是少?多或少⼏克?若每袋标准质量为450克,则抽样检测的总质量是多少? 参考答案 ⼀.选择题 1.A 2.C 3.C 4.D 5.C 6.D 7.A 8.A ⼆.填空题 9.+8.3、90;+8.3、、、. 10.向前⾛2⽶记为+2⽶,向后⾛2⽶记为⽶。
初一上册数学单元测试题(共六套)
(时间:90分钟总分120分)一、填空题:(每题4分,共40分)1.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;2.将下列几何体分类,柱体有:,锥体有(填序号);3.圆柱的底面是,侧面是,展开后的侧面是;4.圆锥的底面是,侧面是,展开后的侧面是;5.棱柱的侧面是,分为棱柱和棱柱;6.如图1-1中的几何体有个面,面面相交成线;7.把一块学生使用的三角板以一条直角边为轴旋转成的形状是体形状。
8.薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________. 9.六棱柱有个顶点,个面;10.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=_ ___,y=______.二、选择题(每题4分,共28分)1、如图,该物体的俯视图是()A B C D2.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A.①②④B.①②③C.②③④D.①③④3.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边形的边数为()A、2001 B、2005 C、2004 D、20064 列平面图形中不能围成正方体的是()1-1123x yA、B、C、D、5.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方平展开图可能是()(A)(B)(C)(D)6如图所示的图形绕虚线旋转一周,所形成的几何体是()7.如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的体有多少个小立方块()(A)4个(B)5个(C)6个(D)7个三、画图题:(1题6分,2题8分)1.下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图。
俯视图左视图主视图2. 如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和俯视图.四、 解答题( 10分)用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图;答:最多________________ 块 ; 最少__________________块。
数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课时练01测试卷含答案
第五章 一元一次方程5.3 实际问题与一元一次方程一、单选题1.某学校为了表彰暑假自主学习标兵,决定购买一批奖品,分别是40支钢笔,40个笔记本,一共支付800元,若钢笔的单价是笔记本的4倍,则购买6支钢笔的费用是 ( )A .4元B .16元C .24元D .96元2.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.设这个班有学生x 人,则可以列方程为( )A .320425x x -=+B .320425x x +=-C .202534x x +-=D .202534x x +=-3.如图,线段AB 表示一条对折的绳子,现从P 点将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若23AP BP =,则原来绳长为( )A .120cmB .100cmC .50cm 或75cmD .100cm 或150cm 4.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店盈利了?还是亏损了?( )A .盈利了B .亏损了C .不盈不亏D .不能确定5.2023年12月22日,第78届联合国大会协商一致通过决议,将春节(农历新年)确定联合国假日,“中国年”升格为“世界年”.某商场购进一批“国潮”年货礼盒,每盒进价为200元,为庆祝这一好消息,商场决定在12月22日,将这批“国潮”年货礼盒按标价的8折销售.若打8折后仍能获利20%,则这批“国潮”年货礼盒每盒的标价应为( )A .220元B .260元C .300元D .320元6.安徽某中学开展校运动会,参加跳高的学生是参加立定跳远的学生的2倍少3人,已知参与这两项运动的人数共86人.设参加立定跳远的学生有x 人,则下列方程中正确的是( )A .13862x x ++=B .13862x x -+=C .2386x x ++=D .2386x x +-=7.我国古代《孙子算经》中记载“多人共车”问题,其原文如下:“今有三人共车,二车空,二人共车,九人步,问人与车各几何.”其大意为:若3人乘一辆车,则空2辆车;若2人乘一辆车,则有9人要步行,问人与车数各是多少.若设有x 人,则可列方程为 ( )A .()3229x x -=-B .()3229x x -=+C .9232xx -+=D .9232xx ++=8.元旦假期小李去歌乐山爬山,上山每小时走4km ,下山时按原路返回,下山每小时走5km ,结果上山比下山多花16小时,设下山所用时间为x 小时,可列方程为( )A .1456x x æö-=ç÷èøB .1456x x æö+=ç÷èøC .1546x x æö-=ç÷èøD .1546x x æö+=ç÷èø二、填空题9.有一些人共同买一个物品,若每人出8元,还盈余3元; 若每人出7元,则还差4元.问共有多少人?设有x 人,则根据题意可列方程为 .10.学生甲在一列队伍的排尾以每小时6千米的速度赶到队伍排头后,又以同样的速度返回队尾,一共用了3小时,若队伍进行的速度为每小时4千米,则队伍长为 千米.11.一桶油,第一天用去全部油的25%,第二天用去20千克,这时用去的油与剩下的油之比为3:5,则此时还剩下 千克油.12.(方程应用)有一个首位数为1的六位数,如果把首位数字从最左移到最右,其余5个数字顺序不变则新数是原数的3倍.则原数是 .13.据我国古代《易经》记载,远古时期人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到的野果的个数.她一共采集到了38个野果,则在第2根绳子上的打结数是 个.14.一刀书法毛边练习纸,按成本价提高40%后标价,促销活动中按标价的九折出售,每刀售12.6元,则每刀书法毛边练习纸的成本价为 元.15.甲、乙两列火车同时从A 地出发向反方向行驶,分别开往B 地和C 地,已知A ,B 之间路程是A ,C 之间路程的910,当甲车行驶60千米时,乙车行驶的路程与剩下路程之比是1:3,这时两列火车离目的地的路程相等.A ,C 之间的路程是 千米.16.甲、乙两人分别从A 、B 两地出发,相向而行,当乙离B 地72千米时甲才出发,两人相遇点离A 、B 两地的距离之比是3:4,已知甲、乙两人的速度比是5:4,A 、B 两地的距离是 千米.三、解答题17.光明中学共有550名学生,其中八年级学生人数是七年级的1.5倍,九年级学生人数是八年级的2倍,求光明中学九年级学生有多少人?18.一艘船在水上航行,水流速度是3km/h ,船在静水中的速度是km/h x .若从A 码头到B 码头花了2h ,回来时用了2.5h ,则船在静水中的速度为多少?两地间的距离呢?19.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒.问:用多少张铁皮制盒身,多少张铁皮制盒底,使得制成的盒身和盒底恰好配套?20.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?参考答案1.D2.B3.D4.B5.C6.D7.C8.B9.8374x x -=+10.511.10012.14285713.214.1015.40016.31517.解:设七年级有x 人,则八年级有1.5x 人,九年级有2 1.5x ´人. ∴ 1.52 1.5550x x x ++´=,解得:100x =,∴33100300x =´=,答:九年级学生有300人.18.解:船在静水中的速度是km/h x .则船顺水的速度为()/h 3km x +,逆水时的速度为()/h 3km x -,根据题意,得()()23 2.53x x +=-解得:27x =,两地间的距离为:()()()23227360km x +=+=,答:船在静水中的速度为27km/h ,两地间的距离为60km .19.解:设用x 张铁皮制盒身,则制盒底的铁皮数是()150x -张,由题意可得:()21545150x x ´=-,解得:90x =,∴15060x -=.答:用90张铁皮制盒身,60张铁皮制盒底,使得制成的盒身和盒底恰好配套.20.(1)解:设这个班有x 名学生,由题意得:320425x x +=-,解得:45x =,∴这个班有45名学生;(2)解:当45x =时,32034520155x +=´+=(本),∴这批图书共有155本.。
七年级数学上全册练习题(含答案)
第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
人教版七年级上册数学第一单元测试题
人教版七年级上册数学第一单元测试题一、选择题(共10小题,每小题2分,共20分)1. 下列数中,是整数的是()。
A.0.3B.-2C.1/2D.3/42. 若a = 1/3 ,b = -2/5 ,则a + b 的值是()。
A.6/15B.2/15C.8/15D.-1/83. 运算:(1/2) x (-3/4)的值是()。
A.1/8B.-1/8C.1/4D.-1/44. 下列各数中,是有理数的是()。
A.√2B.πC.-7D.0.55. 若a = 7/8 ,b = -3/4 ,则a - b 的值是()。
A.5/8B.7/8C.-5/8D.11/86. 下列运算中,得到的结果是无理数的是()。
A.√9B.(-√4) × 2C.√16 - 5D.∛87. 若a = 1/6 ,b = 5/3,则a ÷ b 的值是()。
A.3/10B.1/10C.10/3D.-3/108. 下列各数中,是自然数的是()。
A.√3B.-6C.1D.0.759. 若a = 1/5 ,b = 1/3 ,则a x b 的值是()。
A.1/8B.1/15C.5/15D.15/810. 下列运算中,得到的结果是有理数的是()。
A.√4 + (-√4)B.√9 - 5C.∛27D.∛-8二、填空题(共8小题,每小题2分,共16分)1. 根据乘法结合律,(8/9) × (9/10) × ________ = (8/9) × ________ 。
2. 若a = -1/7 ,b = 1/3 ,则a ÷ ________ 的值是( ) 。
3. 计算(2/3 ÷ 7/9) × ________的结果是1 。
4. 若a = -6 ,b = 1/3 ,则a + b 的值是( ) 。
5. 符号√ 表示“根号”,则√16 × ________的值是4 。
6. 若a = 3 ,b = √4 ,则b + b + b 的值是 ( )。
初一上册数学测试题及答案
初一上册数学测试题及答案一、选择题(每小题 1 分,共 20 分)1. 某数的 1/3 是6.这个数是多少?A) 18 B) 21 C) 24 D) 272. 下面哪个数是 12 的约数?A) 2 B) 3 C) 4 D) 53. 下图是一条数轴。
哪个数对应点 X 的位置?(请参考文章插入一个有标注的数轴图)A) -3 B) -2 C) 0 D) 24. 一辆汽车从 A 地出发,以每小时 60 公里的速度行驶,求 2 小时后汽车行驶的距离。
A) 100 公里 B) 120 公里 C) 150 公里 D) 180 公里5. 在 |m-3| = 5 中,m 的值是多少?A) -8 B) -2 C) 2 D) 86. 假设一张电影票的原价为 80 元,打折后的价格是原价的 0.8 倍,打折后的价格是多少?A) 40 元 B) 60 元 C) 64 元 D) 80 元7. 如图所示,一个正方形 ABCD,若相邻顶点间的距离为 1,求线段 EF 的长度。
(请参考文章插入一个有标注的正方形图)A) 1 B) 2 C) 3 D) 48. 线段 AB 的长度是 3,线段 BC 的长度是 4,求线段 AC 的长度。
A) 1 B) 2 C) 3 D) 49. 把一个分数 4/5 化成百分数是多少?A) 40% B) 45% C) 50% D) 80%10. 某数的 3/5 是 45,这个数是多少?A) 25 B) 45 C) 50 D) 7511. 已知∠A + ∠B + ∠C = 180°,且∠A = 60°,求∠B 的度数。
A) 30° B) 60° C) 90° D) 120°12. 根据如图所示的长方形 ABCD 和线段 EF,求线段 EF 的长度。
(请参考文章插入一个有标注的长方形图)A) 6 B) 7 C) 8 D) 913. 5.5 ÷ 0.5 = ?A) 10 B) 11 C) 12 D) 1314. 若 x = 3 ,y = 4 ,z = 5 ,求 x * y + z 的值。
初一上册数学第二单元测试卷
初一上册数学第二单元测试卷一、选择题(每题3分,共30分)1. 有理数 -3的相反数是()A. 3B. -3C. (1)/(3)D. -(1)/(3)2. 在数轴上表示 -2的点与原点的距离是()A. -2B. 0C. 2D. 4.3. 下列各数中,绝对值最大的数是()A. 5B. -3C. 0D. -2.4. 计算:(-2)+3的结果是()A. -1B. 1C. -5D. 5.5. 一个数与 -4的乘积等于16,这个数是()A. -4B. 4C. -(1)/(4)D. (1)/(4)6. 计算:(-3)×(-4)÷(-2)的结果是()A. -6B. 6C. -12D. 12.7. 若a = -2,b = 3,则a - b的值为()A. -5B. 1C. -1D. 5.8. 下列运算正确的是()A. 2 + 3×4 = 20B. (-3)^2 = -9C. -2×(-3)=6D. 5 - (-2)=39. 把(-2)+(+3)-(-5)+(-4)写成省略括号的和的形式是()A. -2 + 3 - 5 - 4B. -2 + 3 + 5 - 4.C. -2 + 3 + 5 + 4D. 2 + 3 - 5 - 4.10. 某冷库的温度是零下10℃,下降 -3℃后又下降5℃,则两次变化后的温度是()A. -12℃B. -13℃C. -15℃D. -18℃.二、填空题(每题3分,共15分)1. 比较大小:-5___-4(填“>”或“<”)。
2. 绝对值等于5的数是___。
3. 某天的最高气温为6℃,最低气温为 -2℃,则这天的温差是___℃。
4. 计算:(-1)^2023=___。
5. 若x = 3,y = 2,且x<0,则x + y=___。
三、解答题(共55分)1. (8分)计算:(-12)+(+30)-(+65)-(-47);(-3)×(-5)+4÷(-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学测试有理数综合
一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题3分,共30分)
1、下列说法正确的是( )
A 整数就是正整数和负整数
B 负整数的相反数就是非负整数
C 有理数中不是负数就是正数
D 零是自然数,但不是正整数
2、下列各对数中,数值相等的是( )
A -277
B -32与(-3)2
C -3×23与-32×2
D ―(―3)2与―(―2)3
各数中,最大的数是( )
个有理数的积是负数,那么这五个因数中,正数的个数是()
A 1
B 2或4
C 5
D 1和3
5、绝对值大于或等于1,而小于4的所有的正整数的和是( )
A 8
B 7
C 6
D 5
6、计算:(-2)100+(-2)101的是( )
A 2100
B -1
C -2
D -2100
7、比-7.1大,而比1小的整数的个数是( )
A 6
B 7
C 8
D 9
8、如果一个数的平方与这个数的差等于0,那么这个数只能是( )
A 0
B -1
C 1
D 0或1
9、我国最长的河流长江全长约为6300千米,用科学记数法表示为( )
A 63×102千米
B 6.3×102千米
C 6.3×104千米
D 6.3×103千米
10、已知8.62=73.96,若x2=0.7396,则x的值等于( )
A 6.8
B ±0.68
C ±0.86
D ±86
二、填空题(本题共有8个小题,每小题3分,共27分)
11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,
规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。
12、互为相反数的两数(非零)的和是 ,商是 ;互为倒数的两数的积是。
13、某数的绝对值是5,那么这个数是 。
134756≈ (保留四个有效数字)
14、( )2= 。
的点表示的有理数是 。
×0.85)= 。
- 8 × 5 ÷ 4 = ,则结果为。
18、+5.7的相反数与-7.1的绝对值的和是 。
19、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车。
三、解答题(本题共有7个小题,满分63分)
7个小题,每小题4分,共28分)
43
94÷(-16) (6)(-1)3
2]
21、一天小明和冬冬利用温差来测量山峰的高度。
冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?5%
22、有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。
例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)
现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。
运算式如下:(1) ,(2),(3) 。
另有四个有理数3,-5,7,-13,可通过运算式(4)使其结果等于24。
(8%)
23、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。
现在的北京时间是上午8∶00
(1)求现在纽约时间是多少?
(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?5%
城 市
时差/ 时纽 约
-13巴 黎
-7东 京
+1芝 加 哥-14
24、画一条数轴,并在数轴上表示:3.5和它它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“连接起来。
6%乙、丙三位同学合乘一辆出租车同往一个方向,事先约定三人分摊车资。
甲在全程的
下车,乙在全程的3
2处下车,丙坐完全程下车,车费共54元。
问甲、乙、丙三位同付多少车费比较合理?请你设计一个方案。
6%
26、某数学俱乐部有一种“秘密”的记帐方式。
当他们收入300元时,记为-240;当他们用去300元时,记为+360。
猜一猜,当他们用去100元时,可能记为多少?当他们收入100元时,可能记为多少?说说你的理由。
5%
四、提高题(本题有2个小题,每小题10分,共20分)
1、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
2、若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值。