L7805CV参数
l7805cv 怎样用万用表检测好坏
l7805cv 怎样用万用表检测好坏?
三脚之间正反向测均有阻值,如果是无穷大或是为0均损坏
7800系列的三端稳压IC,因厂家不同和产品的差异,用万用表测出的数值会有较大的出入,在一般情况下,输入-地之间电阻为15-45千欧,输出-地4-12千欧,地-输入4-6千欧,地-输出4-7千欧,输入-输出30-50千欧,输出-输入4.5-5.0千欧,电阻值是交换表笔测量,如果出入较大或出现0与“无穷大”均已损坏。
最好的办法是通电后在线测它们的输出电压,因IC的接线比较简单,输入、地、输出只三个脚,在输入端接入它所要求的电压(一般较输出大三伏以上),在输出端与地之间挂上一只假负载,假负载的电流不小于0.5A,测得的电压不对就是IC损坏了。
基于单片机实现的调光控制器设计
基于单片机实现的调光控制器设计一、调光控制器设计思想在日常生活中,我们常常需要对灯光的亮度进行调节。
本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。
双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。
所以需要在交流电的每个半波期间都要产生触发信号,触发信号产生时间的长短(触发角的大小)就决定了灯泡的亮度。
调光的实现方式就是在交流电源信号过零点后一段时间触发双向可控硅开关的导通,称这段时间为双向可控硅的触发角。
触发角越大,导通时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。
这就要求确定交流电源同步信号的过零点,并以此为基础,控制触发信号触发角的大小,达到白炽灯亮度调节的目的。
二、硬件电路部分本调光控制器的框图如下:控制部分:为了便于灵活设计,选择可多次写入的可编程器件,本设计方案中选用的是ATMEL公司生产的AT89C51单片机。
驱动部分:由于驱动的对象是交流负载,且为了实现连续调节的目的,本电路中采用了无触点开关元件双向可控硅。
双向可控硅能够对交流电源的导通进行无触点连续控制,以小电流控制大电流,且动作快、寿命长、可靠性高。
负载部分:本电路的负载是白炽灯(纯阻负载)。
(一)交流电源同步信号交流电源同步信号的产生如图2电路所示,图中的同步信号就是我们需要的交流电压过零点信号。
各部分波形如图3所示。
图中整流后波形中的水平虚线表示光藕P52l输入二极管的门限电压。
P521是TLP521的简称,下图是其引脚图。
图2 同步信号提取电路图3 同步信号波形图图4 P521引脚图(二)单片机控制部分:主控单元以AT89C51单片机为核心,交流电压过零点信号提取电路中产生的同步信号SYN接到AT89C5l的INT0,此信号的下降沿将使AT89-C51产生中断,以此为延时时间的起点。
三个按键只用于控制一路灯:一个为开关,另外两个分别为提高亮度和降低亮度。
康沃变频器电路图
《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。
除了模块和电容,没有其它东西了。
在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。
小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。
此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。
内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。
而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。
要高了价,用户不修了,要低的价,有一定的修理风险。
如同鸡肋,食之无味,弃之可惜。
修理风险也大。
大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。
而大功率变频器的维修收费上,相应空间也大呀。
修一台大功率机器,比修小的三台,都合算啊。
因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。
其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。
故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。
变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。
充电电阻起了一个缓冲作用,实施了一个安全充电的过程。
当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。
BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。
虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。
L7805CV稳压电路图 L7805CV引脚图封装参数大全
L7805CV 稳压电路图L7805CV 引脚图封装参数大
全
L7805CV - 三端稳压集成电路
简介:
电子产品中,常见的三端稳压集成电路有正电压输出的
78&TImes;&TImes; 系列和负电压输出的79&TImes;&TImes; 系列。
顾名思
义,三端IC 是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。
它的样子象是普通的三极管,TO- 220 的标准封装,也有9013 样子的TO-92 封装。
用78/79 系列三端稳压IC 来组成稳压电源所需的外围元件极少,电
路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。
该系列集成稳压IC 型号中的78 或79 后面的数字代表该三端集成稳压电路的输出电压,如7806 表示输出电压为正6V,7909 表示输出电压为负
9V。
康沃变频器电路图CVF
《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。
除了模块和电容,没有其它东西了。
在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。
小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。
此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。
内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。
而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。
要高了价,用户不修了,要低的价,有一定的修理风险。
如同鸡肋,食之无味,弃之可惜。
修理风险也大。
大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。
而大功率变频器的维修收费上,相应空间也大呀。
修一台大功率机器,比修小的三台,都合算啊。
因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。
其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。
故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。
变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。
充电电阻起了一个缓冲作用,实施了一个安全充电的过程。
当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。
BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。
虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。
基于单片机的智能扫地机-电路系统设计及装配与调试
基于单片机的智能扫地机-电路系统设计及装配与调试摘要如今,机器越来越智能,随着智能化时代到来,智能机器也给人民带来诸多便利。
家庭智能机器更是应用最广的地方,而智能扫地便能够给人们带来极大的方便,不仅能够给人类带来舒适干净的环境,还能推动社会智能化的发展。
本文主要设计一个简单的智能扫地机。
该扫地机的核心控制元器件是stc89c52,具有编写程序简单,成本普遍较低,功能较多,效率特别高等优点,因此在市场上得到很大的应用。
除此之外,该扫地机能够自动避开障碍物、自动利用风机进行吸尘功能。
该文介绍了扫地机系统的整体制作过程,它主要由单片机主控电路、单片机最小系统电路、红外光电避障电路、按键启动停止电路以及电机驱动电路组成。
通过利用Altium Designer集成电路设计软件,进行原理图以及电路板的设计。
其次通过KEIL编程软件为单片机输送程序,来控制整个扫地机的逻辑。
关键字:智能吸尘机;壁障;stc89c52单片机;L298NIntelligent Sweeper Based On MCU-Circuit system design, assembly and debuggingAbstractNowadays, machines are becoming more and more intelligent. With the coming of intelligent era, intelligent machines also bring many conveniences to people. Home intelligent machine is the most widely used place, and intelligent sweeping can bring great convenience to people. It can not only bring comfortable and clean environment to human, but also promote the development of social intelligence.This paper mainly designs a simple intelligent sweeper. The core control component of the sweeper is STC89C52, which has the advantages of simple programming, low cost, more functions and high efficiency, so it is widely used in the market. In addition, the sweeper can automatically avoid obstacles and use the fan for dust collection. This paper introduces the whole manufacturing process of the sweeper system, which is mainly composed of the main control circuit, the minimum system circuit, the infrared photoelectric obstacle avoidance circuit, the key start stop circuit and the motor drive circuit. By using the integrated circuit design software of Altium designer, the schematic diagram and circuit board are designed. Secondly, the logic of the whole sweeper is controlled by the program of keil.Keywords: intelligent vacuum cleaner; barrier; stc89c52 single chip microcomputer; L298N目录1、概述 ............................................................ 错误!未定义书签。
超详细的7805简介与使用说明
这里取电阻 R1=470 欧姆 六、测量与调试 根据实验要求将已做好的+5V 电源加上 25 电阻作为负载供电,并用示波器测量其输出端的 电压波形,观察其交流档的波形峰值为 0.2*0.6V 并通过换算可得纹波系数:
S
r
0.12 2 0.23 100% 4.5% 5 5
七、protel 原理图如图(4):
P
1 (p 2 1
p)
2
1.5 2.5 2VA 2
取 P=5VA. 其他电容根据经验可取 0.33μ F/ 25V,0.1μ F/ 25V 和 1000μ F/ 25V (5)发光二极管指示灯的参数 已知发光二极管的压降为 0.7V/10mA 所以要串接一个电阻 R1
5 0.7 430 0.01
换用 LT1528,电流可达 3A /2005/2005-10-25/20051025155406.html
这里不是输出电流大小的问题 你换了 3A 的如果散热条件不改的话一样会发热 用 7805 一个就够了 加大散热片吧 用 7805 并联也只是增大了散热面积而已,不过增加的不大。 还有你最前面是用交流整流供电,再稳压至 12V 再稳压至 5V 吗? 给你几种方案自己选 1。如果你的变压器是双 6V 三线的。那么二边二根线桥式整流再用二个等值滤波电容串联作滤波,变 压器中间的线接到二个电容连接的地方,其实就是组成以变压器中间线为地的正负双电压。在双 8。2V 左 右,以负 8。2V 为参考点,滤波电容中点为 8。2V,另一个滤波电容另一个脚为 16。4V,分别接 7805 和 7812 作稳压 2。如果你变压器是单 12V 的,那可以桥式整流出来给 7812,半波整流出来给 7805, 3。用电感降压,不过不推荐!不说详细 如果你就是用蓄电池供电的话那当我上面都没说 这里又有二种方案 1。给 7805 加大散热片 2。用开关稳压模块。(又分二种,1)稳压到 7。5V 左右再用 7805 稳压。2)直接稳压至 5V,选性 能好一点的) 还有后面的人补充吧。
L7805CD2T-TR中文资料
L7800CV系列三端正电源稳压电路
Rev2.0
3/6
L7800CV
8.L7812CV 电特性(除特别说明外,VI =19V,Io=500mA,TJ=0~125℃。参考测试线路)
符号
参数名称
测试条件
Min. Typ. Max.
VO
输出电压
TJ=25℃ 11.5 12 12.5
IO =5mA~1A,PD≤15W,VI =14.5~27V 11.4 12 12.6
Regline 电压调整率
VI =14.5~30V
TJ=25℃
240
VI =16~22V
TJ=25℃
120
Regload 负载调整率
IO =5mA~1.5A
TJ=25℃
240
IO =250~750mA
TJ=25℃
120
IQ
静态电流
TJ=25℃
3.2
8
△IQ
静态电流变化 IO =5mA~1A
0.5
VI =14.5~30V
5
5.25
Regline 电压调整率
VI =7~25V
TJ=25℃
100
VI =8~12V
TJ=25℃
50
Regload 负载调整率
IO =5mA~1.5A
TJ=25℃
100
IO =250~750mA
TJ=25℃
50
IQ
静态电流
TJ=25℃
3.2
8
△IQ
静态电流变化 IO =5mA~1A
0.5
VI =7~25V
符号
参数名称
测试条件
Min. Typ. Max.
VO
输出电压
TJ=25℃ 8.65
L7805CV中文资料
August 2006Rev. 131/47L7800 seriesPositive voltage regulatorsFeature summary■Output current to 1.5A■Output voltages of 5; 5.2; 6; 8; 8.5; 9; 10; 12; 15; 18; 24V■Thermal overload protection ■Short circuit protection■Output transition SOA protectionDescriptionThe L7800 series of three-terminal positiveregulators is available in TO-220, TO-220FP , TO-3 and D 2PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designedprimarily as fixed voltage regulators, thesedevices can be used with external components to obtain adjustable voltage and currents.Schematic diagramL7800 series2/47Contents1Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5Typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47L7800 series Pin configuration 1 Pin configurationMaximum ratings L7800 series4/472 Maximum ratingsNote:Absolute Maximum Ratings are those values beyond which damage to the device mayoccur. Functional operation under these condition is not impliedTable 1.Absolute maximum ratingsSymbol ParameterValue Unit V I DC Input voltage for V O = 5 to 18V 35Vfor V O = 20, 24V40I O Output current Internally Limited P D Power dissipationInternally LimitedT STG Storage temperature range-65 to 150°C T OPOperating junction temperature rangefor L7800-55 to 150°C for L7800C0 to 150Table 2.Thermal DataSymbol ParameterD 2PAK TO-220TO-220FPTO-3Unit R thJC Thermal resistance junction-case 3554°C/W R thJAThermal resistance junction-ambient62.5506035°C/WL7800 series Test circuits 3 Test circuits5/47Electrical characteristics L7800 series6/474Electrical characteristicsTable 3.Electrical characteristics of L7805 (refer to the test circuits, T J = -55 to 150°C, V I = 10V, I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C4.855.2V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 8 to 20V4.655 5.35V ∆V O (1)1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Line regulationV I = 7 to 25V , T J = 25°C 350mVV I = 8 to 12V , T J = 25°C 125∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 100mV I O = 250 to 750mA, T J = 25°C 25I d Quiescent current T J = 25°C 6mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 8 to 25 V 0.8∆V O /∆T Output voltage drift I O = 5mA0.6mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 40µV/V O SVR Supply voltage rejection V I = 8 to 18V , f = 120Hz 68dB V d Dropout voltage I O = 1A, T J = 25°C 2 2.5V R O Output resistance f = 1 KHz17m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.75 1.2A I scpShort circuit peak currentT J = 25°C1.32.23.3AL7800 series Electrical characteristics7/47Table 4.Electrical characteristics of L7806 (refer to the test circuits, T J = -55 to 150°C, V I = 11V, I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C5.7566.25V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 9 to 21V5.6566.35V ∆V O (1)Line regulationV I = 8 to 25V , T J = 25°C 60mVV I = 9 to 13V , T J = 25°C 30∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 100mV I O = 250 to 750mA, T J = 25°C 30I d Quiescent current T J = 25°C 6mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 9 to 25V 0.8∆V O /∆T Output voltage drift I O = 5mA0.7mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 40µV/V O SVR Supply voltage rejection V I = 9 to 19V , f = 120Hz 65dB V d Dropout voltage I O = 1A, T J = 25°C 2 2.5V R O Output resistance f = 1 KHz19m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.75 1.2A I scpShort circuit peak currentT J = 25°C1.32.23.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Electrical characteristics L7800 series8/47Table 5.Electrical characteristics of L7808 (refer to the test circuits, T J = -55 to 150°C, V I = 14V, I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C7.788.3V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 11.5 to 23V7.688.4V ∆V O (1)Line regulationV I = 10.5 to 25V , T J = 25°C 80mVV I = 11 to 17V , T J = 25°C 40∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 100mV I O = 250 to 750mA, T J = 25°C 40I d Quiescent current T J = 25°C 6mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 11.5 to 25V 0.8∆V O /∆T Output voltage drift I O = 5mA1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 40µV/V O SVR Supply voltage rejection V I = 11.5 to 21.5V , f = 120Hz 62dB V d Dropout voltage I O = 1A, T J = 25°C 2 2.5V R O Output resistance f = 1 KHz16m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.75 1.2A I scpShort circuit peak currentT J = 25°C1.32.23.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.L7800 series Electrical characteristics9/47Table 6.Electrical characteristics of L7812 (refer to the test circuits, T J = -55 to 150°C, V I = 19V, I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C11.51212.5V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 15.5 to 27V11.41212.6V ∆V O (1)Line regulationV I = 14.5 to 30V , T J = 25°C 120mVV I = 16 to 22V , T J = 25°C 60∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 100mV I O = 250 to 750mA, T J = 25°C 60I d Quiescent current T J = 25°C 6mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 15 to 30V 0.8∆V O /∆T Output voltage drift I O = 5mA1.5mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 40µV/V O SVR Supply voltage rejection V I = 15 to 25V , f = 120Hz 61dB V d Dropout voltage I O = 1A, T J = 25°C 2 2.5V R O Output resistance f = 1 KHz18m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.75 1.2A I scpShort circuit peak currentT J = 25°C1.32.23.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Table 7.Electrical characteristics of L7815 (refer to the test circuits, T J = -55 to 150°C, V I = 23V, I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C14.41515.6VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 18.5 to 30V14.251515.75V∆V O(1)Line regulation V I = 17.5 to 30V, T J = 25°C150mV V I = 20 to 26V, T J = 25°C75∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C150mV I O = 250 to 750mA, T J = 25°C75I d Quiescent current T J = 25°C6mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 18.5 to 30V0.8∆V O/∆T Output voltage drift I O = 5mA 1.8mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C40µV/V O SVR Supply voltage rejection V I = 18.5 to 28.5V, f = 120Hz60dB V d Dropout voltage I O = 1A, T J = 25°C2 2.5V R O Output resistance f = 1 KHz19mΩI sc Short circuit current V I = 35V, T J = 25°C0.75 1.2AI scp Short circuit peak current T J = 25°C 1.3 2.2 3.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.10/47Table 8.Electrical characteristics of L7818 (refer to the test circuits, T J = -55 to 150°C, V I = 26V, I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C17.31818.7VV O Output voltage I O = 5mA to 1A, P O≤ 15WV I = 22 to 33V17.11818.9V∆V O(1)Line regulation V I = 21 to 33V, T J = 25°C180mV V I = 24 to 30V, T J = 25°C90∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C180mV I O = 250 to 750mA, T J = 25°C90I d Quiescent current T J = 25°C6mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 22 to 33V0.8∆V O/∆T Output voltage drift I O = 5mA 2.3mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C40µV/V O SVR Supply voltage rejection V I = 22 to 32V, f = 120Hz59dB V d Dropout voltage I O = 1A, T J = 25°C2 2.5V R O Output resistance f = 1 KHz22mΩI sc Short circuit current V I = 35V, T J = 25°C0.75 1.2AI scp Short circuit peak current T J = 25°C 1.3 2.2 3.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.11/47Table 9.Electrical characteristics of L7820 (refer to the test circuits, T J = -55 to 150°C, V I = 28V, I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C19.22020.8VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 24 to 35V192021V∆V O(1)Line regulation V I = 22.5 to 35V, T J = 25°C200mV V I = 26 to 32V, T J = 25°C100∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C200mV I O = 250 to 750mA, T J = 25°C100I d Quiescent current T J = 25°C6mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 24 to 35V0.8∆V O/∆T Output voltage drift I O = 5mA 2.5mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C40µV/V O SVR Supply voltage rejection V I = 24 to 35V, f = 120Hz58dB V d Dropout voltage I O = 1A, T J = 25°C2 2.5V R O Output resistance f = 1 KHz24mΩI sc Short circuit current V I = 35V, T J = 25°C0.75 1.2AI scp Short circuit peak current T J = 25°C 1.3 2.2 3.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.12/47Table 10.Electrical characteristics of L7824 (refer to the test circuits, T J = -55 to 150°C, V I = 33V, I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C232425VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 28 to 38V22.82425.2V∆V O(1)Line regulation V I = 27 to 38V, T J = 25°C240mV V I = 30 to 36V, T J = 25°C120∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C240mV I O = 250 to 750mA, T J = 25°C120I d Quiescent current T J = 25°C6mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 28 to 38V0.8∆V O/∆T Output voltage drift I O = 5mA3mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C40µV/V O SVR Supply voltage rejection V I = 28 to 38V, f = 120Hz56dB V d Dropout voltage I O = 1A, T J = 25°C2 2.5V R O Output resistance f = 1 KHz28mΩI sc Short circuit current V I = 35V, T J = 25°C0.75 1.2AI scp Short circuit peak current T J = 25°C 1.3 2.2 3.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.13/47Table 11.Electrical characteristics of L7805C (refer to the test circuits, T J = -55 to 150°C, V I = 10V,I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C 4.85 5.2VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 7 to 20V4.7555.25V∆V O(1)Line regulation V I = 7 to 25V, T J = 25°C3100mV V I = 8 to 12V, T J = 25°C150∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C100mV I O = 250 to 750mA, T J = 25°C50I d Quiescent current T J = 25°C8mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 7 to 25 V0.8∆V O/∆T Output voltage drift I O = 5mA-1.1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C40µV/V O SVR Supply voltage rejection V I = 8 to 18V, f = 120Hz62dB V d Dropout voltage I O = 1A, T J = 25°C2V R O Output resistance f = 1 KHz17mΩI sc Short circuit current V I = 35V, T J = 25°C0.75AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.14/47Table 12.Electrical characteristics of L7852C (refer to the test circuits, T J = -55 to 150°C, V I = 10V,I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C 5.0 5.2 5.4VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 8 to 20V4.955.2 5.45V∆V O(1)Line regulation V I = 7 to 25V, T J = 25°C3105mV V I = 8 to 12V, T J = 25°C152∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C105mV I O = 250 to 750mA, T J = 25°C52I d Quiescent current T J = 25°C8mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 7 to 25 V 1.3∆V O/∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C42µV/V O SVR Supply voltage rejection V I = 8 to 18V, f = 120Hz61dB V d Dropout voltage I O = 1A, T J = 25°C2V R O Output resistance f = 1 KHz17mΩI sc Short circuit current V I = 35V, T J = 25°C0.75AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.15/47Table 13.Electrical characteristics of L7806C (refer to the test circuits, T J = -55 to 150°C, V I = 11V,I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C 5.756 6.25VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 8 to 21V5.766.3V∆V O(1)Line regulation V I = 8 to 25V, T J = 25°C120mV V I = 9 to 13V, T J = 25°C60∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C120mV I O = 250 to 750mA, T J = 25°C60I d Quiescent current T J = 25°C8mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 8 to 25V 1.3∆V O/∆T Output voltage drift I O = 5mA-0.8mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C45µV/V O SVR Supply voltage rejection V I = 9 to 19V, f = 120Hz59dB V d Dropout voltage I O = 1A, T J = 25°C2V R O Output resistance f = 1 KHz19mΩI sc Short circuit current V I = 35V, T J = 25°C0.55AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.16/47Table 14.Electrical characteristics of L7808C (refer to the test circuits, T J = -55 to 150°C, V I = 14V,I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C7.788.3VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 10.5 to 25V7.688.4V∆V O(1)Line regulation V I = 10.5 to 25V, T J = 25°C160mV V I = 11 to 17V, T J = 25°C80∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C160mV I O = 250 to 750mA, T J = 25°C80I d Quiescent current T J = 25°C8mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 10.5 to 25V1∆V O/∆T Output voltage drift I O = 5mA-0.8mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C52µV/V O SVR Supply voltage rejection V I = 11.5 to 21.5V, f = 120Hz56dB V d Dropout voltage I O = 1A, T J = 25°C2V R O Output resistance f = 1 KHz16mΩI sc Short circuit current V I = 35V, T J = 25°C0.45AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.17/47Table 15.Electrical characteristics of L7885C (refer to the test circuits, T J = -55 to 150°C, V I =14.5V, I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C8.28.58.8VV O Output voltage I O = 5mA to 1A, P O≤15WV I = 11 to 26V8.18.58.9V∆V O(1)Line regulation V I = 11 to 27V, T J = 25°C160mV V I = 11.5 to 17.5V, T J = 25°C80∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C160mV I O = 250 to 750mA, T J = 25°C80I d Quiescent current T J = 25°C8mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 11 to 27V1∆V O/∆T Output voltage drift I O = 5mA-0.8mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C55µV/V O SVR Supply voltage rejection V I = 12 to 22V, f = 120Hz56dB V d Dropout voltage I O = 1A, T J = 25°C2V R O Output resistance f = 1 KHz16mΩI sc Short circuit current V I = 35V, T J = 25°C0.45AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.18/47Table 16.Electrical characteristics of L7809C (refer to the test circuits, T J = -55 to 150°C, V I = 15V,I O = 500 mA, C I = 0.33 µF, C O = 0.1 µF unless otherwise specified)Symbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C8.6499.36VV O Output voltage I O = 5mA to 1A, P O≤ 15WV I = 11.5 to 26V8.5599.45V∆V O(1)Line regulation V I = 11.5 to 26V, T J = 25°C180mV V I = 12 to 18V, T J = 25°C90∆V O(1)Load regulation I O = 5 mA to 1.5A, T J = 25°C180mV I O = 250 to 750mA, T J = 25°C90I d Quiescent current T J = 25°C8mA∆I d Quiescent current change I O = 5mA to 1A0.5mA V I = 11.5 to 26V1∆V O/∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C70µV/V O SVR Supply voltage rejection V I = 12 to 23V, f = 120Hz55dB V d Dropout voltage I O = 1A, T J = 25°C2V R O Output resistance f = 1 KHz17mΩI sc Short circuit current V I = 35V, T J = 25°C0.40AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.19/47Electrical characteristics L7800 series20/47Table 17.Electrical characteristics of L7810C (refer to the test circuits, T J = -55 to 150°C, V I = 15V , I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C9.61010.4V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 12.5 to 26V9.51010.5V ∆V O (1)Line regulationV I = 12.5 to 26V , T J = 25°C 200mVV I = 13.5 to 19V , T J = 25°C 100∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 200mV I O = 250 to 750mA, T J = 25°C 100I d Quiescent current T J = 25°C 8mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 12.5 to 26V 1∆V O /∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 70µV/V O SVR Supply voltage rejection V I = 13 to 23V , f = 120Hz 55dB V d Dropout voltage I O = 1A, T J = 25°C 2V R O Output resistance f = 1 KHz17m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.40A I scpShort circuit peak currentT J = 25°C2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.L7800 series Electrical characteristics21/47Table 18.Electrical characteristics of L7812C (refer to the test circuits, T J = -55 to 150°C, V I = 19V , I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C11.51212.5V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 14.5 to 27V11.41212.6V ∆V O (1)Line regulationV I = 14.5 to 30V , T J = 25°C 240mVV I = 16 to 22V , T J = 25°C 120∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 240mV I O = 250 to 750mA, T J = 25°C 120I d Quiescent current T J = 25°C 8mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 14.5 to 30V 1∆V O /∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 75µV/V O SVR Supply voltage rejection V I = 15 to 25V , f = 120Hz 55dB V d Dropout voltage I O = 1A, T J = 25°C 2V R O Output resistance f = 1 KHz18m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.35A I scpShort circuit peak currentT J = 25°C2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Electrical characteristics L7800 series22/47Table 19.Electrical characteristics of L7815C (refer to the test circuits, T J = -55 to 150°C, V I = 23V , I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C14.51515.6V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 17.5 to 30V14.251515.75V ∆V O (1)Line regulationV I = 17.5 to 30V , T J = 25°C 300mVV I = 20 to 26V , T J = 25°C 150∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 300mV I O = 250 to 750mA, T J = 25°C 150I d Quiescent current T J = 25°C 8mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 17.5 to 30V 1∆V O /∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 90µV/V O SVR Supply voltage rejection V I = 18.5 to 28.5V , f = 120Hz 54dB V d Dropout voltage I O = 1A, T J = 25°C 2V R O Output resistance f = 1 KHz19m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.23A I scpShort circuit peak currentT J = 25°C2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.L7800 series Electrical characteristics23/47Table 20.Electrical characteristics of L7818C (refer to the test circuits, T J = -55 to 150°C, V I = 26V , I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C17.31818.7V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 21 to 33V17.11818.9V ∆V O (1)Line regulationV I = 21 to 33V , T J = 25°C 360mVV I = 24 to 30V , T J = 25°C 180∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 360mV I O = 250 to 750mA, T J = 25°C 180I d Quiescent current T J = 25°C 8mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 21 to 33V 1∆V O /∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 110µV/V O SVR Supply voltage rejection V I = 22 to 32V , f = 120Hz 53dB V d Dropout voltage I O = 1A, T J = 25°C 2V R O Output resistance f = 1 KHz22m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.20A I scpShort circuit peak currentT J = 25°C2.1A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Electrical characteristics L7800 series24/47Table 21.Electrical characteristics of L7820C (refer to the test circuits, T J = -55 to 150°C, V I = 28V , I O = 500 mA, C I = 0.33 µF , C O = 0.1 µF unless otherwise specified)Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C19.22020.8V V O Output voltage I O = 5mA to 1A, P O ≤ 15W V I = 23 to 35V192021V ∆V O (1)Line regulationV I = 22.5 to 35V , T J = 25°C 400mVV I = 26 to 32V , T J = 25°C 200∆V O (1)Load regulation I O = 5 mA to 1.5A, T J = 25°C 400mV I O = 250 to 750mA, T J = 25°C 200I d Quiescent current T J = 25°C 8mA ∆I d Quiescent current change I O = 5mA to 1A 0.5mA V I = 23 to 35V 1∆V O /∆T Output voltage drift I O = 5mA-1mV/°C eN Output noise voltage B =10Hz to 100KHz, T J = 25°C 150µV/V O SVR Supply voltage rejection V I = 24 to 35V , f = 120Hz 52dB V d Dropout voltage I O = 1A, T J = 25°C 2V R O Output resistance f = 1 KHz24m ΩI sc Short circuit current V I = 35V , T J = 25°C 0.18A I scpShort circuit peak currentT J = 25°C2.1A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.。
L7805中文资料_数据手册_参数
万联芯城-电子元器件采购网,提供一站式配套 ,解决物料烦恼,万联芯城销售电子元器件范围包括IC集成电路 ,电阻电容,二三极管,可进行一站式BOM表配单,客户只需访 问官网,联系在线客服提交BOM表,即可获得报价,万联芯城拥 有完善的产品供应链体系及现代化仓储系统,可满足多种BOMriptionThe L7805一系列三端positiveregulators可在- 220,- 220《外交政策》,3,D²PAK DPAK包和几个fixedoutput电压,大rangeof应用程序 使它有用。这些监管机构可以提供本地的cardregulation,L7805消除了与单点监管相关的分布问题。每一种类型都采用内部限流、热关 闭和安全区保护,使其基本上坚不可摧。如果提供足够的热量下沉,L7805可以提供超过1输出电流。虽然这些装置主要是作为固定电压 调节器设计的,但它们可以与外部元件一起使用,以获得可调电压和电流当前 1.5 A Output Output 电压 5 ;6;8;8.5;9;12;15;18 ;24 V Thermal 过载 protection Short 电路 protection Output 过渡 SOA protection 2% 输出 电压 公差 (A version) Guaranteed 扩展 温度 range(A version)设计considerationThe L78xx一系列固定L7805电压调节器的设计与热过载protectionthat关闭电路,当受到过度功率过载条件 下,内部短路保护,限制了最大电流电路将通过,输出晶体管安全区补偿,降低了输出短路电流thevoltage在通过增加晶体管。在许多低电流 应用中,不需要补偿电容器。但是,如果调节器与电源滤波器的连接长度较长,或者输出负载电容较大,则建议用电容绕过调节器输 入。应选择输入旁路电容器,以提供良好的高频特性,以确保在全负荷条件下稳定运行。0.33µF或更大钽、聚酯薄膜或其他电容器在高 频低internalimpedance应该选择。旁路电容器应该安装在尽可能短的引线直接越过稳压器输入端子。正常情况下,L7805由于调节阀没有 外部感应引线,应该使用良好的施工技术来尽量减少接地回路和引线阻力下降。运算放大器的添加允许调整到更高或中间值,同时保 持调节特性。通过这种布置获得的最小电压为2v,大于稳压器电压。图13中的电路可以通过添加一个短路感知电阻、RSC和一个附加的 PNP晶体管来修改,以提供对短路的电源保护。电流感知PNP必须能够处理三个终端调节器的短路电流,因此指定了一个四安培塑料功 率晶体管。
元件选型型号
型号:2N4401参数:Small Signal General Purpose NPN原装正品,进口全新,无铅环保,可长期供货。
我们的理念:做最诚信的供应商。
信宝电子是专业从事电子元器件贸易配套服务的专业供应商。
主要分销及代理:美国IR(国际整流器)、TRR、Cirrus Logic、PERICOM、德爱D&I(韩国)、德国威马(WIMA)等品牌,其它经销的品牌有:ST、ON、UTC、仙童、东芝、夏普、富士、AOS、飞利浦、EIC、SANKEN、TI、COSMO等;主要经营的产品有:场效应管(MOSFET)、电源管理IC、驱动IC、锂电保护IC、时针IC、整流桥、肖特基管、快恢复管、可控硅、三端稳压管、IGBT、光耦、威马电容等等。
产品广泛用于开关电源、逆变电源、UPS电源、HID氙气灯/安定器、整流器、节能灯、转向灯、激光打标、电脑电源/主板、充电器、镇流器、音响、数码产品、仪器仪表电源、通信网络设备、航空、卫星等各行各业。
我们视“客户+企业=共赢”作为企业发展的基础,做最诚信的供应商,希望真诚与您携手共进、共同成长,为国家的和谐发展和电子行业的繁荣作出应有的贡献!++++系列场效应管(MOSFET):IRF1010E,IRF1404,IRF1405,IRF5305,IRF2807,IRF3205,IRF3710,I RF4905,IRF5210,IRF530,IRF530N,IRF540N,IRF630N,IRF640N,IR F730,IRF740,IRF830,IRF840,IRF9510,IRF9520,IRF9530N,IRF954 0,IRF9540N,IRF9630,IRF9640,IRFZ24N,IRFZ34N,IRFZ44N,IRFZ4 4R,IRFZ44V,IRLZ44N,IRFZ46N,IRFZ46Z,IRFZ48V,IRFZ48N,IRF9 Z24N,IRF9Z34N,IRFP150,IRFP150N,IRFP250N,IRFP260N,IRFP25 4N,IRFP264,IRFP264N,IRFP350,IRFP360,IRFP450,IRFP450LC,I RFP460,IRFP460A,IRFP460LC,IRFP054N,IRFP064N,IRFBE30,IRF 520N,IRF634,IRF710,IRF720,IRF820,IRF4905L,IRF5303,IR2520D,IRFP240,IRFP9240,IRF610,IRF9610,IRF5210,IRFR024N,IRFR120N,IRFR220N,IRFR9024,IRFR420,IRFR5305,IRF7313,IRF7314,IRF741 3,IRFL9110,IRL3705,IRL3803,IRL3803S,IRFD110,IRFD9110,IRFD9220,IRFD220,IRFD120,IRFD9120,IRFU9120,IRF6216,IRF640NS,IRF3415,IRFB4310,IRF7210,IRF9530S,IRF7832,IRFP140N,IRFP44 8,IRFP2907,IRFP9140N,IRFPC50,IRFPC60,IRFBE30,IRFPE40,IR FPE50,IRFPF50,IRFPG50,IRFBC20,IRFBC30,IRFBC40,IRFBG20,IRFBG30,IRLML6302TR,IRLML2402TR,IRLML2502TR,IRLML2803TR,IRLML5103TR,IRLML5203TR,IRLML6401TR,IRLML6402TR,IRFB4710,IRFB4212,IRFB11N50A,IRFB38N20D,IRFB31N20D,STP60NF06,STP 75NF75,STP55NF06,2SK2645,IRF630B,IRF640B,IRF840B,FQPF2 N60C,FQP5N60C,FQF5N60C,SSS7N60B,FQPF8N60C,FQPF10N60 C,FQPF12N60C,FYP2010DNTU,FQP50N06,FGA15N120ANTDTU,FGA25N120ANTDTU。
康沃CVF-G-5.5kW变频器图纸带解说
X1-X5:多功能信号输入端子,端子与
闭合有效,端子的具体功能可由参数设定。可通过参数
FWD、REV、RST也为数字信号输入端子,但其功能已
供电,当输入端子与CM闭合时,形成了光耦器件的输
+5V高电平信号加到CPU
CPU引脚都接有与地相连的下拉电阻,在无信号输入
+8V电压经
(L7805CV)稳压输出+5V电源,供CPU。开关电源
CNN1/CON2
CNN1为电源/驱动板上排线端子序号;CON2为CPU主板
25脚引入到CPU主
R81引入到W1半
W1调整、R82分压后,输入到IC9
LF353高输入阻抗双运放电路)的3脚,由1脚输出后,
D7嵌位直接送入CPU引脚;一路输入到IC9的6脚,
的5脚为R85、R86对+5V的分压值,此电压作为基准
有可能正偏导通,抬高了IC10的1、7脚输出电压;当
的4脚输出低电平时,D14、D16反偏截止,IC10的1、
脚输出电压不受IC6的控制。至于IC10受控或不受控于
,在什么时间,什么条件下受控于IC6,是由CPU的17、
、37脚输出电压信号决定的。到底这是个怎样的控制过程,
——通过一些变频器的现场运行,也似乎理清了一些头
IGBT模块的过流保护,一般由驱动电路的模块故障检测
IC6的电路,也是起到了这样一个控
CPU再输出一个MC闭合指令(由CON1端子的29脚
,MC闭合,将充电电阻短接。24V电源还作为两只散
T2、T3驱动,
CPU以端子CON1的27脚输入,控制T2、
的导通与截止。另有两组D10、C27和D8、C23等整流
分别输出+18V和-18V两路供电,送入CPU主板,
三端稳压器扩流电路
三端稳压器扩流电路经典的电源电路(7805扩流)上图为在非常流行的经典电路上做小许改动的电路图.电路目的:1)+24V 转换为+5V +/-5%2)可提供+2A以上的电流.主要元件: TIP32C (ST)L7805CV (ST)图中的R62,在实际应用中已经更改为22 OHM.功率元件TIP32C已经加散热片---------------------------------------------此电路是极为常见的一个线性三端稳压器扩流电路,我们在实际使用的时候,遇到一些由于没有考虑周全或者说是低级错误的故障,故而开贴让坛子里面的朋友讨论,让以后用到此电路的朋友不至于重蹈覆辙. 1. 首先说此电源的缺点吧:1.1 此电源是线性稳压电路,所有有其特有的内部功率损耗大,全部压降均转换为热量损失了,效率低.所以散热问题要特别注意.1.2 由于核心的元件7805的工作速度不太高,所以对于输入电压或者负载电流的急剧变化的响应慢.1.3 此电路没有加电源保护电路,7805本身有过流和温度保护但是扩流三极管TIP32C没有加保护,所以存在一个很大的缺点,如果7805在保护状态以后,电路的输出会是Vin-Vce, 电路输出超过预期值,这点要特别注意.2. 电源的优点.2.1 电路简单,稳定.调试方便(几乎不用调试).2.2 价格便宜,适合于对成本要求苛刻的产品.2.3 电路中几乎没有产生高频或者低频辐射信号的元件,工作频率低,EMI等方面易于控制.3. 说说电路工作原理吧.Io = Ioxx + Ic.Ioxx = IREG – IQ ( IQ 为7805的静态工作电流,通常为4-8mA)IREG = IR + Ib = IR + Ic/β (β 为TIP32C的电流放大倍数)IR = VBE/R1 ( VBE 为TIP32的基极导通电压)所以Ioxx = IREG – IQ = IR + Ib – IQ= VBE/R1 + IC/β- IQ由于IQ很小,可略去,则: Ioxx = VBE/R1 + IC/β查TIP32C手册,VBE = 1.2V, 其β 可取10Ioxx= 1.2/R + Ic/β = 1.2/22 + Ic/10 = 0.0545 + Ic/10 (此处取主贴图中的22 OHM )Ic= 10 * (Ioxx – 0.0545 )假设Ioxx = 100mA, Ic = 10 * ( 100 - 0.0545 * 1000 ) = 455(mA)则Io = Ioxx + Ic = 100 + 455 = 555 mA.再假设Ioxx = 200A, Ic = 10 * ( 200 – 0.0545 * 1000 ) = 1955mAIo = Ioxx + Ic = 200 + 1955 = 2155mA由上面的两个举例可见,输出电流大大的提高了.上面的计算很多跟贴都讲述了,仔细推导一番即可.3.2 电阻R的大小R的大小对调整通过7805的电流有很大的关系,取不同的值带入上式即可看出.R越大,则输出同样的电流的情况下流过7805的电流要小些,反之亦然. 通常这样的电路中,对于扩流三极管TIP32加散热片,而对于7805则无需要,但是R的值不能过大,其条件是: R < VBE /( IREG – IB).3.3 电路中7805输入端的电容的取值是一个错误,前面已经有朋友分析过了,主要是会造成浪涌,在上电的瞬间输出远大于5V,对后续电路造成损坏. 实际使用的时候,为了抑制7805的自激振荡,此电容通常取0.33uF(多数常见的spec.均推荐此参数)最后有很多朋友都提到散热的问题,这是线性电源本身要考虑的问题,也是缺点,自己想办法解决吧,不是此贴要讨论的主题.此电路本人用在某商用设备上,真正的电路除了电容参数不是100uF以为,和主贴中的参数一样,产品投入市场有几千台,证明是可以使用的.此次之所以开贴讨论是因为同事用在某新型号产品的时候,改变了此电容参数,造成浪涌问题,烧毁了不少外设,故而再次分析.。
电子元件L7805CV电源芯片相关参数知识
电子元件L7805CV电源芯片相关参数知识
这款型号为L7805CV的电子元件,是一种线性稳压芯片,属于电源芯片。
它的输出电压是4.75-5.25V,静态电流是4.2-8mA。
它的输出电流可达到1.5A,不需外接补偿元件,内含限流保护电流,可以有效防止负载短路烧毁元件。
关于电子元件L7805CV的相关参数数据,下面为你详细介绍。
电子元件L7805CV的基本参数:
输出电压:4.75-5.25V;
最大输入电压:35V;
静态电流:4.2-8mA;
输出噪音电压:40uV;
纹波抑制比:78dB;
输出电阻:17mΩ;
输出电压温度系数-1.1mV/°C;(注:L7805CV与7805相通)
电子元件L7805CV的特征:
输出电流可达1.5A
不需外接补偿元件
内含限流保护电流,防止负载短路烧毁元件
内含高温过热保护电路,防止结温过热烧毁器件内含功耗限制电路,防止烧毁输出驱动器晶体管。
模电课程设计直流稳压电源
模电课程设计直流稳压电源绪论在各种电子电路中,总离不开电源电路,而曲于电路结构和元件特性,就需要用到直流电源供电,就像我们下个学期即将学到的单片机,其需要5V的直流电源。
如若釆用干电池为其供电,则有供电功率低,持续供电能力差,成本高等缺点。
而交流电在产生、电能输送等方面具有独特的优点,发电站、各市电网中的电能传输都是以交流电的形式进行输送,如果我们对市电提供的电压进行降压整流等,把交流电转换成直流电,以获得我们所需要的电压。
电力系统供电电压的波动,或者负载阻抗和功率的变化,都会引起整流器输出电压随之改变。
在电子电路和自动控制装置中,通常都需要电压稳定的直流电源供电,使整流器输出电压尽可能少受流电进行滤波,稳压,以获得我们所需要的供电电源。
电源波动或负载变化影响而保持稳定,这就需要我们对整流后的电源进行稳压设讣。
1第一章设计要求与指标1.1设计要求:(1)设计一个能输出正负12V的直流稳压电源;(2)拟定测试方案和设计步骤;(3)根据设讣要求和技术指标设计好电路,选好元件及参数;(4)绘出原理图和印制板图;(5)在万能板上连接电路。
(6)测量直流稳压电源的内阻;(7)测量直流稳压电源的稳压系数、纹波电压;交流电源(8) 撰写设计性报告。
1. 2技木指标:(1) 电源输出电压为正负12V;(2) 输入电压220V⑶最大输出电流为Iom=500mA;(4) 纹波电压小于等于5mA;(5) 稳压系数Sr 小于等于5,.2第二章理论分析2. 1整体理论分析设讣电路框图如图1所示:图2-1电路框图在电子电路中,通常都需要电压稳定的直流电源供电。
图2-1是直流稳压电源 设讣的基本思路和整体流程。
因为我们要得到的直流电源的是12V 等的稳定直流电 压,而我们平常的生活用电220V 的交流电,所以我们必须变压,变压后交流变成 直流。
但此时的直流电压波动很大,脉动的直流电压还含有较大的波纹,所以我们 要对其进行滤波,得到波动较小的直流电。
自动循环计数器(精)
目录一、设计目的…………………………………………………………… ..二、内容及要求………………………………………………………… .三、设计思想…………………………………………………………… .四、单元电路的设计、参数计算、器件选择及介绍………………… .(一、电源部分………………………………………………………………… .(二、单脉冲产生部分………………………………………………………… .(三、译码驱动显示部分…………………………………………………………(四、控制部分及循环加减计数部分……………………………………………五、总体电路设计图、工作原理及元器件清单………………………六、硬件电路安装、调试测试结果,出现的问题、原因及解决方法七、总结设计电路的特点和方案的优缺点……………………………八、收获、体会…………………………………………………………九、参考文献…………………………………………………………… ..设计题目:自动循环计数器一、设计目的:1. 熟练掌握计数器的应用。
2. 加深对加减循环计数和显示电路的理解。
二、内容及要求:1. 用集成计数器实行 3~9自动循环计数。
2. 电路能实现 3~9加法和 3~9减法循环计数。
3. 输出用数码显示。
根据功能要求构建总体设计思想,比较和选定设计的系统方案,确定整个电路的组成以及各单元电路完成的功能,画出系统框图。
三、设计思想 :根据功能要求构建总体设计思想,按照题目要求,系统可以划分为以下各单元部分;基本思想如下:1、电源部分,由它向整个系统提供 +5V电源。
2、单脉冲产生部分:功能是由它产生单个脉冲,为循环计数部分提供计数脉冲。
3、译码驱动显示部分:计数输出结果送至译码驱动显示部分。
4、控制部分:实现加或减循环计数功能由控制部分完成。
5、计数部分:完成 BCD 码 3~9的可逆加或减循环计数。
系统方框图如图 1所示。
图 1 3~9加 /减可逆自动循环计数器系统方框图四、单元电路的设计、参数计算、器件选择及介绍:(一、电源部分直流稳压电源主要由变压器、整流电路、滤波电路、稳压电路组成。
L7805CV稳压电路图L7805CV引脚图封装参数大全
L7805CV稳压电路图L7805CV引脚图封装参数大全
L7805CV 稳压电路图L7805CV 引脚图封装参数大
全
L7805CV - 三端稳压集成电路
简介:
电子产品中,常见的三端稳压集成电路有正电压输出的
78&TImes&TImes 系列和负电压输出的79&TImes&TImes 系列。
顾名思义,三端IC 是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。
它的样子象是普通的三极管,TO- 220 的标准封装,也有9013 样子的TO-92 封装。
用78/79 系列三端稳压IC 来组成稳压电源所需的外围元件极少,电
路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价
格便宜。
该系列集成稳压IC 型号中的78 或79 后面的数字代表该三端集成稳压电路的输出电压,如7806 表示输出电压为正6V,7909 表示输出电压为负9V。
L7805CV中文资料_数据手册_参数
2/54
DocID2143 Rev 34
L78
1
Diagram
Figure 1: Block diagram
Diagram
DocID2143 Rev 34
3/54
Pin configuration
L78
2
Pin configuration
Figure 2: Pin connections (top viption
The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D²PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications.
November 2016
DocID2143 Rev 34
This is information on a product in full production.
1/54
Contents
L78
Contents
1 Diagram ............................................................................................ 3
7
50
mV
VI = 8 to 12 V
10 50
mV
VI = 8 to 12 V, TJ = 25 °C
2
25
mV
VI = 7.3 to 20 V, TJ = 25 °C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
March 2010Doc ID 2143 Rev 211/58L78xx - L78xxC L78xxAB - L78xxACPositive voltage regulatorsFeatures■Output current up to 1.5 A■Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V■Thermal overload protection ■Short circuit protection■Output transition SOA protection ■ 2 % output voltage tolerance (A version)■Guaranteed in extended temperature range (A version)DescriptionThe L78xx series of three-terminal positiveregulators is available in TO-220, TO-220FP , TO-3, D²PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating thedistribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe areaprotection, making it essentially indestructible. If adequate heat sinking is provided, they candeliver over 1 A output current. Although designed primarily as fixed voltage regulators, thesedevices can be used with external components to obtain adjustable voltage and currents.Table 1.Device summaryPart numbersL7805L7806AC L7809AB L7815AB L7805C L7808C L7809AC L7815AC L7805AB L7808AB L7812C L7818C L7805AC L7808AC L7812AB L7824C L7806C L7885C L7812AC L7824AB L7806ABL7809CL7815CL7824ACContents L78xx, L78xxC, L78xxAB, L78xxACContents1Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296.1Design consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7Typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572/58Doc ID 2143 Rev 21L78xx, L78xxC, L78xxAB, L78xxAC List of tables List of tablesTable 1.Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2.Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 3.Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4.Electrical characteristics of L7805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5.Electrical characteristics of L7805A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 6.Electrical characteristics of L7806A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 7.Electrical characteristics of L7808A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 8.Electrical characteristics of L7809A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 9.Electrical characteristics of L7812A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 10.Electrical characteristics of L7815A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 11.Electrical characteristics of L7824A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 12.Electrical characteristics of L7805C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 13.Electrical characteristics of L7806C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 14.Electrical characteristics of L7808C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 15.Electrical characteristics of L7885C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 16.Electrical characteristics of L7809C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 17.Electrical characteristics of L7810C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 18.Electrical characteristics of L7812C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 19.Electrical characteristics of L7815C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 20.Electrical characteristics of L7818C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 21.Electrical characteristics of L7820C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 22.Electrical characteristics of L7824C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 23.TO-220 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 24.TO-220FP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 25.TO-3 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 26.DPAK mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 27.Tape and reel DPAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 28.D²PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 29.D²PAK footprint data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 30.Tape and reel D²PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 31.Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 32.Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Doc ID 2143 Rev 213/58List of figures L78xx, L78xxC, L78xxAB, L78xxAC List of figuresFigure 1.Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 2.Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3.Schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4.Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5.DC parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 6.Load regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 7.Ripple rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 8.DC parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 9.DC parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 10.DC parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 11.DC parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 12.Fixed output regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 13.Current regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 14.Circuit for increasing output voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 15.Adjustable output regulator (7 to 30 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 16.0.5 to 10 V regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 17.High current voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 18.High output current with short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 19.Tracking voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 20.Split power supply (± 15 V - 1 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 21.Negative output voltage circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 22.Switching regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 23.High input voltage circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 24.High input voltage circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 25.High output voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 26.High input and output voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 27.Reducing power dissipation with dropping resistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 28.Remote shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 29.Power AM modulator (unity voltage gain, IO £ 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 30.Adjustable output voltage with temperature compensation . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 31.Light controllers (VO(min) = VXX + VBE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 32.Protection against input short-circuit with high capacitance loads . . . . . . . . . . . . . . . . . . . 38 Figure 33.Dropout voltage vs. junction temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 34.Peak output current vs. input/output differential voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 35.Supply voltage rejection vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 36.Output voltage vs. junction temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 37.Output impedance vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 38.Quiescent current vs. junction temp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 39.Load transient response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 40.Line transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 41.Quiescent current vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 42.Drawing dimension TO-220 (type STD-ST Dual Gauge) . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 43.Drawing dimension TO-220 (type STD-ST Single Gauge). . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 44.Drawing dimension tube for TO-220 Dual Gauge (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 45.Drawing dimension tube for TO-220 Single Gauge (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 46.Drawing dimension TO-220FP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 47.Drawing dimension TO-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 48.Drawing dimension DPAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 49.Drawing dimension tape and reel for DPAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 50.Drawing dimension D²PAK (type STD-ST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4/58Doc ID 2143 Rev 21L78xx, L78xxC, L78xxAB, L78xxAC List of figures Figure 51.Drawing dimension D²PAK (type WOOSEOK-Subcon.). . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 52.D²PAK footprint recommended data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 53.Drawing dimension tape and reel for D²PAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Doc ID 2143 Rev 215/58Diagram L78xx, L78xxC, L78xxAB, L78xxAC 1 Diagram6/58Doc ID 2143 Rev 21L78xx, L78xxC, L78xxAB, L78xxAC Pin configuration 2 Pin configurationDoc ID 2143 Rev 217/58Maximum ratings L78xx, L78xxC, L78xxAB, L78xxAC8/58Doc ID 2143 Rev 213 Maximum ratingsNote:Absolute maximum ratings are those values beyond which damage to the device may occur.Functional operation under these condition is not implied.Table 2.Absolute maximum ratingsSymbol ParameterValue Unit V I DC input voltage for V O = 5 to 18 V 35Vfor V O = 20, 24 V40I O Output current Internally limited P D Power dissipationInternally limited T STGStorage temperature range-65 to 150°C T OPOperating junction temperature range for L78xx-55 to 150°C for L78xxC, L78xxAC0 to 125for L78xxAB-40 to 125Table 3.Thermal dataSymbol ParameterD²PAKDPAK TO-220TO-220FPTO-3Unit R thJC Thermal resistance junction-case 38554°C/W R thJAThermal resistance junction-ambient62.5100506035°C/WL78xx, L78xxC, L78xxAB, L78xxAC Test circuitsDoc ID 2143 Rev 219/584 Test circuitsElectrical characteristics L78xx, L78xxC, L78xxAB, L78xxAC10/58Doc ID 2143 Rev 215 Electrical characteristicsRefer to the test circuits, T J = -55 to 150 °C, V I = 10 V, I O = 500 mA, C I = 0.33 µF ,C O = 0.1 µF unless otherwise specified.Table 4.Electrical characteristics of L7805Symbol ParameterTest conditionsMin.Typ.Max.Unit V O Output voltage T J = 25°C4.855.2V V O Output voltage I O = 5 mA to 1 A, V I = 8 to 20 V 4.655 5.35V ΔV O (1)Line regulationV I = 7 to 25 V , T J = 25°C 350mVV I = 8 to 12 V , T J = 25°C 125ΔV O (1)Load regulation I O = 5 mA to 1.5 A, T J = 25°C 100mV I O = 250 to 750 mA, T J = 25°C 25I d Quiescent current T J = 25°C 6mA ΔI d Quiescent current change I O = 5 mA to 1 A 0.5mA V I = 8 to 25 V 0.8ΔV O /ΔT Output voltage drift I O = 5 mA0.6mV/°C eN Output noise voltage B =10 Hz to 100 kHz, T J = 25°C 40µV/V O SVR Supply voltage rejection V I = 8 to 18 V , f = 120 Hz 68dB V d Dropout voltage I O = 1 A, T J = 25°C 2 2.5V R O Output resistance f = 1 kHz17m ΩI sc Short circuit current V I = 35 V , T J = 25°C 0.75 1.2A I scpShort circuit peak currentT J = 25°C1.32.23.3A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.V I = 10 V, I O = 1 A, T J = 0 to 125 °C (L7805AC), T J = -40 to 125 °C (L7805AB), unlessotherwise specified.Table 5.Electrical characteristics of L7805ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C 4.95 5.1V V O Output voltage I O = 5 mA to 1 A, V I = 7.5 to 18 V 4.85 5.2V V O Output voltage I O = 1 A, V I = 18 to 20 V, T J = 25°C 4.85 5.2VΔV O (1)Line regulation V I = 7.5 to 25 V, I O = 500 mA750mV V I = 8 to 12 V1050mV V I = 8 to 12 V, T J = 25°C225mV V I = 7.3 to 20 V, T J = 25°C750mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA850VI q Quiescent current T J = 25°C 4.36mA6mAΔI q Quiescent current change V I = 8 to 23 V, I O = 500 mA0.8mA V I = 7.5 to 20 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 8 to 18 V, f = 120 Hz, I O = 500 mA68dB V d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B =10 Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz17mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2AΔV O/ΔT Output voltage drift-1.1mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Doc ID 2143 Rev 2111/58V I = 11 V, I O = 1 A, TJ = 0 to 125 °C (L7806AC), T J = -40 to 125 °C (L7806AB), unlessotherwise specified.Table 6.Electrical characteristics of L7806ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C 5.886 6.12V V O Output voltage I O = 5 mA to 1 A, V I = 8.6 to 19 V 5.766 6.24V V O Output voltage I O = 1 A, V I = 19 to 21 V, T J = 25°C 5.766 6.24VΔV O (1)Line regulation V I = 8.6 to 25 V, I O = 500 mA960mV V I = 9 to 13 V1160mV V I = 9 to 13 V, T J = 25°C330mV V I = 8.3 to 21 V, T J = 25°C960mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA1050VI q Quiescent current T J = 25°C 4.36mA6mAΔI q Quiescent current change V I = 9 to 24 V, I O = 500 mA0.8mA V I = 8.6 to 21 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 9 to 19 V, f = 120 Hz, I O = 500 mA65dB V d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B =10 Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz17mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2A ΔV O/ΔT Output voltage drift-0.8mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.12/58Doc ID 2143 Rev 21V I = 14 V, I O = 1 A, TJ = 0 to 125 °C (L7808AC), T J = -40 to 125 °C (L7808AB), unlessotherwise specified.Table 7.Electrical characteristics of L7808ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C7.8488.16V V O Output voltage I O = 5 mA to 1 A, V I = 10.6 to 21 V7.788.3V V O Output voltage I O = 1 A, V I = 21 to 23 V, T J = 25°C7.788.3VΔV O (1)Line regulation V I = 10.6 to 25 V, I O = 500 mA1280mV V I = 11 to 17 V1580mV V I = 11 to 17 V, T J = 25°C540mV V I = 10.4 to 23 V, T J = 25°C1280mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA1050VI q Quiescent current T J = 25°C 4.36mA6mAΔI q Quiescent current change V I = 11 to 23 V, I O = 500 mA0.8mA V I = 10.6 to 23 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 11.5 to 21.5 V, f = 120 Hz,I O = 500 mA62dBV d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B =10 Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz18mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2AΔV O/ΔT Output voltage drift-0.8mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Doc ID 2143 Rev 2113/58V I = 15 V, I O = 1 A, TJ = 0 to 125 °C (L7809AC), T J = -40 to 125 °C (L7809AB), unlessotherwise specified.Table 8.Electrical characteristics of L7809ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C8.8299.18V V O Output voltage I O = 5 mA to 1 A, V I = 10.6 to 22 V8.6599.35V V O Output voltage I O = 1 A, V I = 22 to 24 V, T J = 25°C8.6599.35VΔV O (1)Line regulation V I = 10.6 to 25 V, I O = 500 mA1290mV V I = 11 to 17 V1590mV V I = 11 to 17 V, T J = 25°C545mV V I = 10.4 to 23 V, T J = 25°C1290mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA1050VI q Quiescent current T J = 25°C 4.36mA6mAΔI q Quiescent current change V I = 11 to 25 V, I O = 500 mA0.8mA V I = 10.6 to 23 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 11.5 to 21.5 V, f = 120 Hz,I O = 500 mA61dBV d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B =10 Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz18mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2A ΔV O/ΔT Output voltage drift-0.8mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.14/58Doc ID 2143 Rev 21V I = 19 V, I O = 1 A, TJ = 0 to 125 °C (L7812AC), T J = -40 to 125 °C (L7812AB), unlessotherwise specified.Table 9.Electrical characteristics of L7812ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C11.751212.25V V O Output voltage I O = 5 mA to 1 A, V I = 14.8 to 25 V11.51212.5V V O Output voltage I O = 1 A, V I = 25 to 27 V, T J = 25°C11.51212.5VΔV O (1)Line regulation V I = 14.8 to 30 V, I O = 500 mA13120mV V I = 16 to 12 V16120mV V I = 16 to 12 V, T J = 25°C660mV V I = 14.5 to 27 V, T J = 25°C13120mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA1050VI q Quiescent current T J = 25°C 4.46mA6mAΔI q Quiescent current change V I = 15 to 30 V, I O = 500 mA0.8mA V I = 14.8 to 27 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 15 to 25 V, f = 120 Hz, I O = 500 mA60dB V d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B = 10 Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz18mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2AΔV O/ΔT Output voltage drift-1mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Doc ID 2143 Rev 2115/58V I = 23 V, I O = 1 A, TJ = 0 to 125 °C (L7815AC), T J = -40 to 125 °C (L7815AB), unlessotherwise specified.Table 10.Electrical characteristics of L7815ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C14.71515.3V V O Output voltage I O = 5 mA to 1 A, V I = 17.9 to 28 V14.41515.6V V O Output voltage I O = 1 A, V I = 28 to 30 V, T J = 25°C14.41515.6VΔV O (1)Line regulation V I = 17.9 to 30 V, I O = 500 mA13150mV V I = 20 to 26 V16150mV V I = 20 to 26 V, T J = 25°C675mV V I = 17.5 to 30 V, T J = 25°C13150mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA1050VI q Quiescent current T J = 25°C 4.46mA6mAΔI q Quiescent current change V I = 17.5 to 30 V, I O = 500 mA0.8mA V I = 17.5 to 30 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 18.5 to 28.5 V, f = 120 Hz,I O = 500 mA58dBV d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B = 10Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz19mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2A ΔV O/ΔT Output voltage drift-1mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.16/58Doc ID 2143 Rev 21V I = 33 V, I O = 1 A, TJ = 0 to 125 °C (L7824AC), T J = -40 to 125 °C (L7824AB), unlessotherwise specified.Table 11.Electrical characteristics of L7824ASymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C23.52424.5V V O Output voltage I O = 5 mA to 1 A, V I = 27.3 to 37 V232425V V O Output voltage I O = 1 A, V I = 37 to 38 V, T J = 25°C232425VΔV O (1)Line regulation V I = 27 to 38 V, I O = 500 mA31240mV V I = 30 to 36 V35200mV V I = 30 to 36 V, T J = 25°C14120mV V I = 26.7 to 38 V, T J = 25°C31240mVΔV O (1)Load regulation I O = 5 mA to 1 A25100mV I O = 5 mA to 1.5 A, T J = 25°C30100V I O = 250 to 750 mA1050VI q Quiescent current T J = 25°C 4.66mA6mAΔI q Quiescent current change V I = 27.3 to 38 V, I O = 500 mA0.8mA V I = 27.3 to 38 V, T J = 25°C0.8mA I O = 5 mA to 1 A0.5mASVR Supply voltage rejection V I = 28 to 38 V, f = 120 Hz, I O = 500 mA54dB V d Dropout voltage I O = 1 A, T J = 25°C2V eN Output noise voltage T A = 25°C, B = 10 Hz to 100 kHz10µV/V O R O Output resistance f = 1 kHz20mΩI sc Short circuit current V I = 35 V, T A = 25°C0.2AI scp Short circuit peak current T J = 25°C 2.2AΔV O/ΔT Output voltage drift-1.5mV/°C 1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.Doc ID 2143 Rev 2117/58Refer to the test circuits, T J = 0 to 125 °C, V I = 10 V, I O = 500 mA, C I = 0.33 µF, C O = 0.1 µFunless otherwise specified.Table 12.Electrical characteristics of L7805CSymbol Parameter Test conditions Min.Typ.Max.Unit V O Output voltage T J = 25°C 4.85 5.2V V O Output voltage I O = 5 mA to 1 A, V I = 7 to 18 V 4.755 5.25V V O Output voltage I O = 1 A, V I = 18 to 20V, T J = 25°C 4.755 5.25VΔV O(1)Line regulation V I = 7 to 25 V, T J = 25°C3100mV V I = 8 to 12 V, T J = 25°C150ΔV O(1)Load regulation I O = 5 mA to 1.5 A, T J = 25°C100mV I O = 250 to 750 mA, T J = 25°C50I d Quiescent current T J = 25°C8mAΔI d Quiescent current change I O = 5 mA to 1 A0.5mA V I = 7 to 23 V0.8ΔV O/ΔT Output voltage drift I O = 5 mA-1.1mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, T J = 25°C40µV/V O SVR Supply voltage rejection V I = 8 to 18 V, f = 120 Hz62dB V d Dropout voltage I O = 1 A, T J = 25°C2V R O Output resistance f = 1 kHz17mΩI sc Short circuit current V I = 35 V, T J = 25°C0.75AI scp Short circuit peak current T J = 25°C 2.2A1.Load and line regulation are specified at constant junction temperature. Changes in V O due to heating effects must betaken into account separately. Pulse testing with low duty cycle is used.18/58Doc ID 2143 Rev 21。