2018年秋人教版七年级上册数学 第三章 一元一次方程 单元测试卷(解析版)

合集下载

人教版七年级上册数学《第三章一元一次方程》2018年秋单元测试题(含解析)

人教版七年级上册数学《第三章一元一次方程》2018年秋单元测试题(含解析)

2018年秋人教版七年级上册数学 《第三章 一元一次方程》单元测试题一.选择题(共10小题)1.知﹣a +2b +8=0,则代数式2a ﹣4b +10的值为( ) A .26B .16C .2D .﹣62.若方程(|a |﹣3)x 2+(a ﹣3)x +1=0是关于x 的一元一次方程,则a 的值为( ) A .0B .3C .﹣3D .±33.已知关于x 的一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( ) A .﹣1B .1C .﹣2D .﹣34.下列等式变形正确的是( )A .由a =b ,得=B .由﹣3x =﹣3y ,得x =﹣yC .由=1,得x =D .由x =y ,得=5.已知代数式5x ﹣10与3+2x 的值互为相反数,那么x 的值等于( ) A .﹣2 B .﹣1C .1D .26.若代数式值比的值小1,则k 的值为( )A .﹣1B .C .1D .7.下列各题正确的是( )A .由5x =﹣2x ﹣3,移项得5x ﹣2x =3B .由=1+,去分母得2(2x ﹣1)=1+3(x ﹣3)C .由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x ﹣9=1D .把﹣=1中的分母化为整数,得﹣=18.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D .=9.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( ) A .10场B .11场C .12场D .13场10.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是()A.80元B.90元C.100元D.110元二.填空题(共6小题)11.若x与9的积等于x与﹣16的和,则x=.12.方程﹣x=0.5的两边同乘以,得x=.13.已知5x+7与2﹣3x互为相反数,则x=.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2016+2017n+c2018的值为.15.已知a、b、c、d为有理数,现规定一种新运算=ad﹣bc,如=1×(﹣5)﹣3×2=﹣11那么,当=22时,则x的值为.16.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,则这件外衣的标价是元.三.解答题(共9小题)17.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣118.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.19.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.20.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.21.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.22.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?23.小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?24.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x小时,请用含x的式子分别表示用一盏白炽灯的费用和一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.某超市为了回馈广大新老客户,决定元旦期间开展优惠活动.方案一:非会员购物,所有商品价格可获9折优惠;方案二:如交纳200元会费成为该超市会员,则所有商品价格可获8折优惠.(1)若用x(元)表示商品价格,请用含x的代数式分别表示两种购物方案所付金额.(2)当商品价格是多少元时,两种方案所付金额相同?(3)小王计划在该超市购买价格为2700元的电脑一台,选择哪种方案更省钱?参考答案与试题解析一.选择题(共10小题)1.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26 B.16 C.2 D.﹣6【分析】由已知得出a﹣2b=8,代入原式=2(a﹣2b)+10计算可得.【解答】解:∵﹣a+2b+8=0,∴a﹣2b=8,则原式=2(a﹣2b)+10=2×8+10=16+10=26,故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.若方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,则a的值为()A.0 B.3 C.﹣3 D.±3【分析】根据一元一次方程的定义解答即可.【解答】解:因为方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,看到:|a|﹣3=0,a﹣3≠0,解得:a=﹣3,故选:C.【点评】此题主要考查了一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1 B.1 C.﹣2 D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=【分析】根据等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立分别进行判断.【解答】解:A、由a=b,得=,所以A选项正确;B、由﹣3x=﹣3y,得x=y,所以B选项错误;C、由=1,得x=4,所以C选项错误;D、由x=y,a≠0,得=,所以D选项错误.故选:A.【点评】本题考查了等式的性质:等式两边加上(或减去)同一个数,等式仍然成立;等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立.5.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2 B.﹣1 C.1 D.2【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣10+3+2x=0,移项合并得:7x=7,解得:x=1,故选:C.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.6.若代数式值比的值小1,则k的值为()A.﹣1 B.C.1 D.【分析】根据题意列出方程,求出方程的解即可得到k的值.【解答】解:根据题意得: +1=,去分母得:2k +2+6=9k +3, 移项合并得:7k =5,解得:k =, 故选:D .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 7.下列各题正确的是( )A .由5x =﹣2x ﹣3,移项得5x ﹣2x =3B .由=1+,去分母得2(2x ﹣1)=1+3(x ﹣3)C .由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x ﹣9=1D .把﹣=1中的分母化为整数,得﹣=1【分析】各方程整理变形后,即可作出判断.【解答】解:A 、由5x =﹣2x ﹣3,移项得5x +2x =﹣3,不符合题意;B 、由=1+,去分母得2(2x ﹣1)=6+3(x ﹣3),不符合题意;C 、由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x +9=1,不符合题意;D 、把﹣=1中的分母化为整数,得﹣=1,符合题意,故选:D .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D .=【分析】设有糖果x 颗,根据该幼儿园小朋友的人数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有糖果x 颗,根据题意得: =.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场【分析】设这个队胜了x场,则平了30﹣x﹣9=21﹣x(场),根据共得47分列出关于x的方程,解之可得.【解答】解:设这个队胜了x场,则平了30﹣x﹣9=21﹣x(场),根据题意,得:3x+21﹣x=47,解得:x=13,即这个队胜了13场,故选:D.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.10.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是()A.80元B.90元C.100元D.110元【分析】设这件衣服的进价为x元,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件衣服的进价为x元,根据题意得:0.6×200﹣x=20%x,解得:x=100.答:这件衣服的进价为100元.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.二.填空题(共6小题)11.若x与9的积等于x与﹣16的和,则x=﹣2.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:9x=x﹣16,移项合并得:8x=﹣16,解得:x=﹣2,故答案为:﹣2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.方程﹣x=0.5的两边同乘以2,得x=﹣1.【分析】方程x系数化为1,即可求出解.【解答】解:方程﹣x=0.5的两边同乘以2,得x=﹣1,故答案为:2;﹣1【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.已知5x+7与2﹣3x互为相反数,则x=﹣4.5.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+7+2﹣3x=0,移项合并得:2x=﹣9,解得:x=﹣4.5,故答案为:﹣4.5【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2016+2017n+c2018的值为2.【分析】利用负整数,绝对值,以及倒数,自然数的定义判断确定出m,n以及c的值,代入原式计算即可求出值.【解答】解:根据题意得:m=﹣1,n=0,c=1,则原式=1+0+1=2,故答案为:2【点评】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.已知a、b、c、d为有理数,现规定一种新运算=ad﹣bc,如=1×(﹣5)﹣3×2=﹣11那么,当=22时,则x的值为﹣3.【分析】根据行列式,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:根据题意知2×7﹣4(x+1)=22,解得:x=﹣3,故答案为:﹣3.【点评】本题考查了解一元一次方程,利用行列式得出一元一次方程是解题关键.16.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,则这件外衣的标价是275元.【分析】设这件外衣的标价为x元,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件外衣的标价为x元,根据题意得:0.8x﹣200=200×10%,解得:x=275.答:这件外衣的标价为275元.故答案为:275.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共9小题)17.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:3﹣3x=8x﹣2﹣6,移项合并得:﹣11x=﹣11,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m的值.【解答】解:方程3x+2=﹣4,解得:x=﹣2,把x=﹣2代入第一个方程得:﹣6=3m﹣1,解得:m=﹣.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.【分析】(1)方程移项合并,根据有唯一解确定出条件即可;(2)根据方程有无数解确定出条件即可;(3)根据方程无解确定出条件即可.【解答】解:方程整理得:(b﹣3)x=a﹣6,(1)由方程有唯一解,得到b﹣3≠0,即b≠3;(2)由方程有无数解,得到b﹣3=0,a﹣6=0,即a=6,b=3;(3)由方程无解,得到b﹣3=0,a﹣6≠0,即a≠6,b=3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.【分析】设十位上的数字为x,个位上的数字为3x,百位上的数字为x+7,根据“一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍”,列出关于x的一元一次方程,解之即可.【解答】解:设十位上的数字为x,个位上的数字为3x,百位上的数字为x+7,根据题意得:x+(x+7)+3x=17,解得:x=2,即十位上的数字为2,个位上的数字为6,百位上的数字为9,则这个三位数为926,答:这个三位数为926.【点评】本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.21.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.【分析】(1)利用相反数的定义得到3m+7﹣10=0,然后解关于m的一元一次方程即可;(2)利用绝对值的意义和有理数的分类得到a=2或a=﹣2,c=﹣1,然后分别把a=2,b=﹣3,c=﹣1和a=﹣2,b=﹣3,c=﹣1代入a+b﹣c中计算即可.【解答】解:(1)根据题意得3m+7﹣10=0,解得m=1;(2)根据题意得a=2或a=﹣2,c=﹣1,当a=2,b=﹣3,c=﹣1,a+b﹣c=2﹣3﹣(﹣1)=0;当a=﹣2,b=﹣3,c=﹣1,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4.【点评】本题考查了解一元一次方程:解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.也考查了相反数与绝对值.22.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?【分析】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据路程=速度×时间结合两个码头之间的距离不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据题意得:6(20﹣x)=4(20+x),解得:x=4.答:水流的速度是4千米/时.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?【分析】设这本名著共有x页,根据头两天读的页数是整本书的,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这本名著共有x页,根据题意得:36+(x﹣36)=x,解得:x=216.答:这本名著共有216页.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x小时,请用含x的式子分别表示用一盏白炽灯的费用和一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.【分析】(1)根据表格列出算式,计算即可得到结果;(2)根据表格中的数据列出代数式即可;(3)令两代数式相等列出方程,求出方程的解即可得到结果;(4)根据照明4000小时,求出各自的费用,比较即可得到结果.【解答】解:(1)根据题意得:1000×0.1×0.5+3=53(元),则一盏普通白炽灯照明1000小时,费用为53元;(2)用一盏白炽灯的费用为0.1x×0.5+3=0.05x+3(元);一盏节能灯的费用为0.02x×0.5=0.01x+35(元);(3)根据题意得:0.05x+3=0.01x+35,解得:x=800,则照明800小时时,使用这两种灯的费用相等;(4)用节能灯省钱,理由为:当x=4000时,用白炽灯的费用为2000×0.1×0.5×2+3×2=206(元);用节能灯的费用为4000×0.02×0.5+35=75(元),则用节能灯省钱.【点评】此题考查了一元一次方程的应用,列代数式,以及代数式求值,弄清题意是解本题的关键.25.某超市为了回馈广大新老客户,决定元旦期间开展优惠活动.方案一:非会员购物,所有商品价格可获9折优惠;方案二:如交纳200元会费成为该超市会员,则所有商品价格可获8折优惠.(1)若用x(元)表示商品价格,请用含x的代数式分别表示两种购物方案所付金额.(2)当商品价格是多少元时,两种方案所付金额相同?(3)小王计划在该超市购买价格为2700元的电脑一台,选择哪种方案更省钱?【分析】(1)根据两种优惠方案,找出选择各方案所需费用;(2)由两种方案所付金额相同,即可得出关于x的一元一次方程,解之即可得出结论;(3)代入x=2700求出选择两种方案所需费用,比较后即可得出结论.【解答】解:(1)方案一所付金额:0.9x元;方案二所付金额:(0.8x+200)元.(2)根据题意得:0.9x=0.8x+200,解得:x=2000.答:当商品价格是2000元时,两种方案所付金额相同.(3)方案一所付金额:0.9x=0.9×2700=2430(元);方案二所付金额:0.8x+200=0.8×2700+200=2360(元).∵2360<2430,∴选择方案二更省钱.【点评】本题考查了列代数式、代数式求值以及一元一次方程的应用,解题的关键是:(1)根据两种优惠方案,列出代数式;(2)找准等量关系,正确列出一元一次方程;(3)代入x=2700求值.。

人教版七年级上册数学第三章《一元一次方程》测试题含答案解析

人教版七年级上册数学第三章《一元一次方程》测试题含答案解析

《一元一次方程》单元检测题一、单选题1.某商品打七折后价格为a 元,则原价为( )A. a 元B. 107a 元C. 30%a 元D. 710a 元2.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x 个人,则可列方程是( )A. 3(x +2)=2x −9B. 3(x −2)=2x +9C. x 3+2=x−92D. x 3−2=x+923.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A. 5B. 4C. 3D. 24.下列变形中:①由方程x−125=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x=1;③由方程6x ﹣4=x+4移项,得7x=0;④由方程2−x−56=x+32两边同乘以6,得12﹣x ﹣5=3(x+3).错误变形的个数是( )个.A. 4B. 3C. 2D. 15.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人6.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( )A. 0.8x +28=(1+50%)xB. 0.8x -28=(1+50%)xC. x +28=0.8×(1+50%)xD. x -28=0.8×(1+50%)x7.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A. 不盈不亏B. 盈利20元C. 亏损10元D. 亏损30元8.方程x-3=-6的解是( ).A. x=2B. x=-2C. x=3D. x=-39.方程2x-3y=7,用含x 的代数式表示y 为( )A. y=13(7-2x)B. y=13(2x-7)C. x=12(7+3y)D. x=12(7-3y)10.方程2x −3=1的解是( )A. x =0B. x =12C. x =1D. x =211.方程3x −1=5的解是( )A. x =3B. x =4C. x =2D. x =6二、填空题12.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.13.已知A=5x+2,B=11-x,当x=________时,A比B大3.14.当x=_____时,代数式2x−3与代数式6−x的值相等.15.已知方程2x−3y+1=0,用含y的代数式表示x为________.16.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元.三、解答题17.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.18.老王的房子准备开始装修,请来师徒二人做泥水.已知师傅单独完成需10天,徒弟单独完成需15天。

2018人教版七年级数学上第3章一元一次方程单元测试含答案

2018人教版七年级数学上第3章一元一次方程单元测试含答案

一元一次方程.下列通过移项变形,错误的是( ).由,得 .由,得.由,得 .由,得.把方程变形为,其依据是( ).等式的性质 .等式的性质 .分数的基本性质 .乘法分配律.下列去括号正确的是( )()得()得()得[()]得.下列方程变形正确的是( ).由得 .由()得.由得()() .由得.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是( ).已知公式()中,,,,则..将方程的分母化为整数,方程变为..小颖按如图所示的程序输入一个正数,最后输出的结果为.则满足条件的值为..阅读题:课本上有这样一道例题:“解方程:”解:去分母得:()()①②③④请回答下列问题:()得到①式的依据是;()得到②式的依据是;()得到③式的依据是;()得到④式的依据是..解方程:()()()(); ();(); ();().等于什么数时,代数式的值比的值的倍小?.关于的方程的解是,对于同样的,求另一个关于的方程的解. .已知:关于的方程()与()有相同的解,求:以为未知数的方程的解..若已知,并且,求..对于两个有理数,,我们规定一种新运算“*”:*.()解方程:**;()若无论为何值,总有*,求的值.参考答案,,.()等式性质()乘法分配律()等式性质()等式性质.()去括号,得,移项合并同类项,得,两边同时除以,得.()去分母,得()()(),去括号,移项合并同类项得,两边同时除以,得.()去括号,得,移项合并同类项,得,两边同时除以,得.()原方程可化为()(),去括号,得,移项,合并同类项得,两边同时除以,得.()原方程可化为:()(),去括号,得,移项合并同类项,得,两边同时除以,得..依题意,得,解得..将代入第一个方程中,解得,.再将代入第二个方程中,解得..由(),得.把代入(),得().解得.把代入方程,得.解得..因为,所以()(). 解得..()由**,得,解得.()由*,得,所以(). 因为它的解为所有数,所以.所以.。

人教版七年级数学第三章《一元一次方程》单元测试带答案解析

人教版七年级数学第三章《一元一次方程》单元测试带答案解析
根据题意得: ( ) .
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()

人教版七年级数学上册第三章 一元一次方程 单元测试卷(解析版)

人教版七年级数学上册第三章 一元一次方程 单元测试卷(解析版)

人教版七年级数学上册第三章 一元一次方程 单元测试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)解方程141233=---x x ,去分母正确的是( ) A .2(3x ﹣3)﹣1﹣x=4 B .3x ﹣3﹣(1﹣x )=1C .2(3x ﹣3)﹣(1﹣x )=1D .2(3x ﹣3)﹣(1﹣x )=4 2.(4分)方程3x ﹣1=5﹣61-x 的解为( ) A .37 B .35 C .335 D .337 3.(4分)甲乙两车同时同地背向出发,速度分别是x 千米/时,y 千米/时,3小时后两车相距( )A .3(x ﹣y ) 千米B .3(x+y ) 千米C .3(y ﹣x )千米D .以上答案都不对4.(4分)下列式子变形不正确的是( )A .若a+c=b+c ,则a=bB .若x=y ,则a y a x = C .若x=y ,则3x ﹣1=3y ﹣1 D .若ay a x =,则x=y 5.(4分)某数x 的43%比它的一半少7,则列出求x 的方程应是( )A .43%x ﹣21 B .43%(x ﹣21)=7 C .43%x ﹣21 D .21x ﹣7=43%x 6.(4分)某校买了一批树苗,绿化校园,第一天种了全部树苗的31,第二天种了50棵,两天合计种了90棵,那么剩下没有种上的树苗棵数是( )A .50棵B .40棵C .30棵D .20棵7.(4分)对于式子10a+10b 的解释,错误的是( )A .甲、乙两人分别从A 、B 两地同时出发,相向而行,10h 后甲、乙相遇,甲每小时行akm ,乙每小时行bkm ,则A 、B 两地的距离为(10b+10b )kmB .甲、乙两个工程队分别从A 、B 两地修路,10个月修完,甲工程队每月修a km ,乙工程队每月修bkm ,则A 、B 两地的距离为(10a+10b )kmC .甲型计算器每个a 元,乙型计算器每个b 元,则买甲、乙两种计算器各10个的总钱数为(10a+10b )元D .两个长方形宽都是10m ,长分别为am 和bm ,则这两个长方形的面积和为(10a+10b )㎡8.(4分)某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费);超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程( )A .正好8kmB .最多8kmC .至少8kmD .正好7km9.(4分)x 取( )值时,代数式6+3x 与228x -的值相等. A .21 B .﹣21 C .23 D .﹣23 10.(4分)李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有( )A .5瓶B .6瓶C .7瓶D .8瓶二.填空题(共4小题,满分20分,每小题5分)11.(5分)一个两位数,a 、b 分别表示是十位和个位上的数字,则这个两位数可表示为 .12.(5分)已知梯形的面积公式是()h b a S +=21(a ,b 表示上、下底的长,h 表示高),当a=3,b=6,h=4时,S= .13.(5分)一根长50厘米的弹簧,一端固定,另一端挂上物体,在正常情况下,物体的质量每增加1千克,弹簧就伸长3厘米,在正常情况下(即弹性限度内),若弹簧挂x 千克的重物,则弹簧伸长到 厘米.14.(5分)若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求x b a ++x+cd 的值.三.解答题(共9小题,满分90分)15.(8分)解方程:162332=+--x x . 16.(8分)老师在黑板上写了一个等式:(a+3)x=4(a+3).王聪说x=4,刘敏说不一定,当x≠4时,这个等式也可能成立.你认为他俩的说法正确吗?用等式的性质说明理由.17.(8分)某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.(1)如果捐款总数为2750元,那么捐30元的团员有多少人?(2)捐款总数有可能是2560元吗?为什么?18.(8分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(10分)M 中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?20.(10分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.21.(12分)用◎定义一种新运算:对于任意有理数a 和b ,规定a ◎b=ab 2+2ab+a ,如:1◎2=1×22+2×1×2+l=9.(1)求(﹣4)◎3;(2)若(21a◎3)=8,求a的值.22.(12分)为了加快新农村建设,国务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到乡镇财政所按13%领取补贴).农民李伯伯家购买了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.(1)李伯伯可以到镇财政所领到的补贴是多少元?(2)求李伯伯家所买的摩托车与彩电的单价各是多少元?23.(14分)下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】由于此方程的公分母是4,所以方程两边同时乘以4就可以去掉分母,只是等式右边不要漏乘.【解答】解:141233=---x x 去分母得:2(3x ﹣3)﹣(1﹣x )=4.故选:D .【点评】此题主要考查了解一元一次方程的方法,此题主要去分母,方程两边乘以公分母就可以解决问题,只是不要漏乘.2.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:方程去分母得:2x ﹣6=30﹣x+1,移项合并得:3x=37,解得:x=337. 故选:D .【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.【分析】3小时后两车相距就是两车所走路程的和,据此即可求解.【解答】解:3小时后两车相距是3x+3y=3(x+y ).故选:B .【点评】本题考查了列代数式,理解3小时后两车相距就是两车所走路程的和是关键.4.【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A 、根据等式性质1,等式两边都减c ,即可得到a=b ;B 、根据等式性质2,该变形需要条件a≠0;C 、先根据等式性质2,两边都乘以3,再根据等式性质1,两边都减1,即可得到3x ﹣1=3y ﹣1;D 、根据等式性质2,两边都乘以a 即可;综上所述,故选B .【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.5.【分析】要列方程,首先要理解题意,根据题意找出等量关系:x 的43%+7=x 的一半,此时再列方程就不难了.【解答】解:由题意可得出:43%x+7=21x 即21x ﹣7=43%x 故选:D .【点评】本题要弄清楚“它的一半”是指x 的一半,然后根据题意,找出等量关系,列出方程.6.【分析】此题首先要求出树苗的总数,等量关系是第一天树苗数+第二天树苗数=90棵,设这批树苗总数为x 棵,则第一天种了3x 棵,剩下(x ﹣90)棵,列方程即可求解. 【解答】解:设这批树苗总数为x 棵,3x +50=90 解得:x=120所以剩下没有种上的树苗棵数是120﹣90=30(棵)故选:C .【点评】此题要找到等量关系,还要注意用间接设未知数的方法更简单,锻炼了学生的变向思维.7.【分析】根据代数式与生活实际,对各选项分析判断后利用排除法求解.【解答】解:A 、是相遇问题,解释正确,故本选项错误;B 、题目没有明确甲工程队从A 向B 修路,乙工程队从B 向A 修路,所以,(10a+10b )km 可以解释为两队一共修路的长度,不能说成是A 、B 两地的距离,错误,故本选项正确;C 、销售问题,解释正确,故本选项错误;D 、矩形的面积等于=长×宽,解释正确,故本选项错误.故选:B .【点评】本题考查了代数式的意义,对生活实际的深刻理解是解题的关键.8.【分析】根据等量关系,即(经过的路程﹣3)×2.4+起步价7元=19.列出方程求解.【解答】解:可设此人从甲地到乙地经过的路程为xkm ,根据题意可知:(x ﹣3)×2.4+7=19,解得:x=8.即此人从甲地到乙地经过的路程最多为8km .故选:B .【点评】找到关键描述语(共支付车费19元),找到等量关系是解决问题的关键.9.【分析】根据题意可建立方程6+3x =228x -,解出即可得出答案. 【解答】解:由题意得:6+3x =228x -, 解得:x=﹣23. 故选:D .【点评】本题考查解一元一次方程的知识,属于基础题,根据题意建立方程是本题的关键.10.【分析】先求得每天喝的饮料的代数式,等量关系为:第一天喝的饮料数+第二天喝的饮料数+第三天喝的饮料数=妈妈买的饮料数,把相关数值代入求解即可.【解答】解:设妈妈买的饮料一共有x 瓶,则第一天喝了(21x+0.5)瓶,那么剩下(x ﹣21x ﹣0.5)瓶, 则第二天喝了21(x ﹣21x ﹣0.5)+0.5(瓶),那么剩下(x ﹣21x ﹣0.5)﹣[21(x ﹣21x ﹣0.5)+0.5](瓶), 所以第三天喝了21{(x ﹣21x ﹣0.5)﹣[21(x ﹣21x ﹣0.5)+0.5]}+0.5(瓶), (21x+0.5)+[21(x ﹣21x ﹣0.5)+0.5]+21{(x ﹣21x ﹣0.5)﹣[21(x ﹣21x ﹣0.5)+0.5]}+0.5=x ,解得x=7.故选:C .【点评】考查一元一次方程的应用,得到每天喝的饮料的代数式是解决本题的突破点,得到总饮料数的等量关系是解决本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】a 、b 分别表示是十位和个位上的数字,根据十位上的数字是b 表示10b ,据此即可求解.【解答】解:a 、b 分别表示是十位和个位上的数字,则这个两位数可表示为10a+b . 故答案是:10a+b .【点评】本题考查了数字的表示,是需要熟记的内容.12.【分析】直接把a=3,b=6,h=4代入()h b a S +=21计算即可. 【解答】解:把a=3,b=6,h=4代入()h b a S +=21得, S=21(3+6)×4=21×9×4=18. 故答案为18.【点评】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.13.【分析】根据弹簧的总长=原长+伸长的长度即可解答.【解答】解:∵弹簧的原长为50cm ,在正常情况下,物体的质量每增加1千克,弹簧就伸长3厘米,∴若弹簧挂x 千克的重物,则弹簧伸长到(50+3x )厘米,故答案为:50+3x .【点评】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.【分析】根据题意可知a+b=0,cd=1,x=±1,然后代入求值即可.【解答】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,∴a+b=0,cd=1,x=±1.当x=1时,原式=1110++=2; 当x=﹣1时,原式=()1110+-+-=0. 【点评】本题主要考查的是求代数式的值,求得a+b=0,cd=1,x=±1是解题的关键.三.解答题(共9小题,满分90分)15.【分析】根据解一元一次方程的一般步骤,可得答案.【解答】解:去分母,得2(2x ﹣3)﹣(x+2)=6去括号,得4x ﹣6﹣x ﹣2=6移项,得4x ﹣x=6+6+2合并同类项,得3x=14系数化为1,得x=314. 【点评】本题考查了解一元一次方程,去括号是解题关键,不含分母的项也要乘分母的最小公倍数,分子要加括号.16.【分析】利用等式的基本性质分别得出答案.【解答】解:他俩的说法正确,当a+3=0时,x 为任意实数,当a+3≠0时,x=4.【点评】此题主要考查了等式的基本性质,利用分类讨论得出是解题关键.17.【分析】(1)设捐30元的团员有x 人,则捐10元的有(115﹣x )人,根据捐款总额为2750元列出求解即可;(2)设捐30元的团员有x 人,则捐10元的有(115﹣x )人,根据捐款总额为2560元列出求解即可,从而可做出判断.【解答】解:(1)设捐30元的团员有x 人,则捐10元的有(115﹣x )人. 根据题意得:30x+10(115﹣x )=2750.解得:x=80.答:捐30元的团员有80人.(2)设捐30元的团员有x 人,则捐10元的有(115﹣x )人.根据题意得:30x+10(115﹣x )=2560.解得:x=70.5.∵人数不可能为小数,∴捐款总数不可能是2560元.答:捐款总数不可能是2560元.【点评】本题主要考查的是一元一次方程的应用,根据捐款总额列出方程解题的关键.18.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.【分析】设购买了桂花树苗x棵,根据两棵树之间的间距×(树的棵数﹣1)=迎宾大道的长度结合迎宾大道的长度不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设购买了桂花树苗x棵,根据题意,得:5(x+11﹣1)=6(x﹣1),解得:x=56.答:购买了桂花树苗56棵.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解答】解:(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:4m;(2)矩形的面积为(m+n)(m﹣n),把m=7,n=4代入(m+n)(m﹣n)=11×3=33.【点评】此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答.21.【分析】(1)将a=﹣4、b=3代入公式计算可得;(2)由a◎b=ab2+2ab+a=a(b+1)2知21+a◎3=21+a×(3+1)2=8,解之可得.【解答】解:(1)(﹣4)◎3=﹣4×32+2×(﹣4)×3+(﹣4)=﹣64;(2)∵a◎b=ab2+2ab+a=a(b+1)2,∴21+a◎3=21+a×(3+1)2=8,解得:a=0.【点评】本题主要考查解一元一次方程和有理数的混合运算,解题的关键是熟练应用新定义的运算法则及其变形.22.【分析】(1)直接利用凡农民购买家电和摩托车享受政府13%的补贴即可得出答案;(2)根据题意表示出彩电和摩托车的单价进而得出答案.【解答】解:(1)根据题意可得:6000×13%=780,答:李伯伯可以从政府领到补贴780元;(2)设彩电的单价为x元/台,则摩托车的单价为:(2x+600)元,x+2x+600=6000解得:x=18002x+600=2×1800+600=4200,答:彩电与摩托车的单价分别为1800元/台、4200元/辆.【点评】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.23.【分析】(1)设每月主叫时间为x分钟,分0≤x≤200及200<x≤400两种情况考虑,当0≤x≤200时,可找出两种计费方式的收费钱数,进而可得出存在两种方式收费相同;当200<x≤400时,可分别找出两种计费方式收费费用,令其相等即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当x>400时,计费方式二收费费用,令两种计费方式所收费用相等,即可得出关于x的一元一次方程,解之结合0.25>0.2即可得出结论.【解答】解:(1)设每月主叫时间为x分钟.①当0≤x≤200时,方式一收费58元,方式二收费88元,故不存在两种方式收费相同;②当200<x≤400时,计费方式一收费58+0.2(x﹣200)=0.2x+18,计费方式二收费88元,∴0.2x+18=88,解得:x=350,∴当主叫时间为350min时,两种方式收费相同.(2)当x>400时,计费方式二收费88+0.25(x﹣400)=0.25x﹣12.根据题意得:0.2x+18=0.25x﹣12,解得:x=600,又∵0.25>0.2,∴当400<x<600时,选择计费方式二省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一省钱.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。

新人教版 七年级(上)数学 第3章 一元一次方程 单元测试卷 (解析版)

新人教版 七年级(上)数学 第3章 一元一次方程 单元测试卷 (解析版)

第3章一元一次方程单元测试卷一、选择题(共10小题).1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=12.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣24.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.65.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.57.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距千米.14.(3分)一元一次方程﹣y=﹣1的解为.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+317.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=1解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 解:去括号得:6x﹣2﹣x+4=1,故选:D.3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣2解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.4.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.6解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.5.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.5解:将x=3代入2x﹣k+1=0,∴6﹣k+1=0,∴k=7,故选:C.7.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:.故选:C.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 解:移项得:5x﹣2x=2+3,故选:A.10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为12.解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为﹣1.解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故答案为:﹣1.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距760千米.解:设乙车的平均速度是x千米/时,则4(+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)﹣560=760(千米)故答案是:760.14.(3分)一元一次方程﹣y=﹣1的解为y=2.解:方程﹣y=﹣1,解得:y=2.故答案为:y=2.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=2.解:∵x3n﹣5+5=0是关于x的一元一次方程,∴3n﹣5=1,解得:n=2,故答案为:2.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+3解:(1)移项合并得:8x=8,解得:y=1;(2)去分母得:4x﹣6=3x+18,移项合并得:x=24.17.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2;(2)写出正确的解答过程.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。

2018年秋人教版七年级上第3章一元一次方程达标测试卷含答案

2018年秋人教版七年级上第3章一元一次方程达标测试卷含答案

第三章达标测试卷一、选择题(每题3分,共30分).下列方程中,不是一元一次方程的是( 1 )A.5x+3=3x+7 B.1+2x=32x5+=3 DC..x=-7x32-2m.=7是关于x的一元一次方程,那么2m如果4x的值是( )11 B.A.-22C.0D.1.下列方程中,解是x=2的是( ) 3A.3x=x+3 B.-x+3=0C.2x=6D.5x-2=8x.+1=0的解是( 4 方程) 9A.x=-10 B.x=-91 x=9D.C.x=9.下列说法中,正确的是( 5)ab=,则a=b B.若b acA.若=bc,则a=cc22,则a=b D.若|a|b=|b|,则a=baC.若=2.=0,则关于x的方程2m+1)x=n的解是( ) 6(已知|m-2|+n-A.x=-4 B.x=-3C.x=-2D.x=-1.若关于x的一元一次方程ax+b=0(a≠0)7的解是正数,则( )A.a,b异号B.b>0C.a,b同号D.a<02.-1的值为k( ) 316=x+23x-与x-=k的解相同,则78已知方程.20 .A18 B26.-.C26D.4,水流速度为20 km/9轮船在静水中的速度为h5,从甲码头顺流航行到乙码头,再返回甲码头,共用km/h.设甲、乙两码头间的距离为x),求甲、乙两码头间的距离h(不计停留时间km,则列出的方程正确的是( )A.(20+4)x+(20-4)x=5 B.20x+4x=5xxxx5+=+C.=5D.-+420204204.学友书店推出售书优惠方案:①一次性购书不超过10010元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200.如果小明同学一次性购书付款162折元,那么他所购书的原价元,一律打8为( )A.180元B.202.5元元200元或180.D元C.180元或202.5)二、填空题(每题3分,共24分..的一元一次方程:11____________________写出一个解是-2..的4倍,列方程是倍大比a的35的数等于12a.=________.,则-=5|k+2|13+已知关于x的方程xk=1的解为x--y2y35..________时,1-与14的值相等当y=66..x1,则b?b,规定:ab=ab-(a+)+若2?(x1)=15,对于两个非零有理数a.________的值为.,十位与个位上的数字之和161一个两位数,十位上的数字比个位上的数字小1.,则这个两位数是________是这个两位数的5.天,然天,由甲先做2一项工程,甲单独完成需要20天,乙单独完成需要2517.后甲、乙一起做,余下的部分还要做________天才能完成.稿费不18(1)国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:4800元又不高于元的不纳税;高于800(2)稿费高于4 (3)元的应缴纳超过800元的那一部分稿费的14%的税;稿费高于000.今知丁老师获得一笔稿费,并缴纳个元的应缴纳全部稿费的00011%的税.元________人所得税420元,则丁老师的这笔稿费有) 分,1620,21分,共1066分题分,题每题6228分,其余每题题三、解答题(19.19解方程:;10+y9=)y4-3(2-1)-y(2)2(3 5; +x=3+x(1)2.--57113y5y??+??1x(4)-+x; 2 (3)x+1=. 8=4??62421..的值,求xy+y=20xx已知y=-+1,y=-5,且20221163-+24xx.如果方程-821=-231.的值的解相同,求式子a--x+a1)=6+2a1(3x的方程的解与关于x4- a.如图,一块长5 cm、宽2 cm的长方形纸板,一块长224 cm、宽1的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个cm.问:大正方形的面积是多少?大正方形.某人原计划在一定时间内由甲地步行到乙地,他先以423km/h的速度步行了全程的一半,又搭上了每小时行驶20km的顺路汽车,所以比原计划需要的时间早到了2.甲、乙两地之间的距离是多少千米?h.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到24.该市自来水的收费价格见下表:节水的目的每月用水量价格2元/t 不超出6 t的部分4元/t10 超出6 t不超出t的部分的部分t/元8t超出108若某户居民某月份用水..注:水费按月结算)元20(=6)-(84×+62×,则应收水费:t(1)若该户居民2月份用水12.5 t,则应收水费________元;(2)若该户居民3,4月份共用水15 t(3月份的用水量少于5t),共交水费44元,则该户居民3,4月份各用水多少吨?.某校计划购买20张书柜和一批书架,现从A,B25两家超市了解到:同型号的.A超市的优惠政策为每买一元,书架每个70元产品价格相同,书柜每张210.设该校购买折出售超市的优惠政策为所有商品打8张书柜赠送一个书架,B.20)个书架x(x>(1)若该校到同一家超市选购所有书柜和书架,则到A超市和B超市需分别准备多少元货款?(用含x的式子表示)(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20张书柜和100个书架,且可到两家超市自由选购,你认为至.少需准备多少元货款?并说明理由.答案一、1.C 2.B 3.D 4.B 5.B 6.B7.A 8.C 9.D 10.C二、11.2x-1=-5(答案不唯一).3a+5=4a 13.12-2 14.8.2 16.45 17.10 18.3 800 15三、19.解:(1)移项,得2x-x=5-3.合并同类项,得x=2.(2)去括号,得6y-2-6+12y=9y+10.移项,得6y+12y-9y=10+2+6.合并同类项,得9y=18.系数化为1,得y=2.15(3)去括号,得x+x+2=8+x. 22去分母,得x+5x+4=16+2x.移项,得x+5x-2x=16-4.合并同类项,得4x=12.系数化为1,得x=3..7)2(5y-y-1)-12=(4)去分母,得3(3去括号,得9y-3-12=10y-14.移项,得9y-10y=3+12-14.合并同类项,得-y=1.系数化为1,得y=-1.21??.-x+1??+(x-5)=20,解得x20=-解:由题意,得48. 36??x-4x+2.解:解-8=-,得21x=10. 23x-4x+2因为方程-8=-23的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,所以把x=10代入方程4x-(3a+1)=6x+2a-1,得4×10-(3a+1)=6×10+2 .4=-a,解得1-a113所以a-=-4+=-3. 44a.解:设大正方形的边长为x cm.22根据题意,得x-2-1=4+5-x,解得x=6.2.)6×6=36(cm2.36 cm 答:大正方形的面积是.解:设甲、乙两地之间距离的一半为s km,则全程为2s km23.ss2s??+??=2. 根据题意,得-2044??解得s=10.所以2s=20.答:甲、乙两地之间的距离是20 km..解:(1)4824(2)设该户居民3月份用水x t,则4月份用水(15-x)t,其中x<5,15-x>10. 根据题意,得2x+2×6+4×4+(15-x-10)×8=44.解得x=4,则15-x=11.答:该户居民3月份用水4 t,4月份用水11 t..解:(1)根据题意,到A超市购买需准备货款20×210+70(x-20)=7025x+2 800(元),.)3 360(元)x=56x+超市购买需准备货款到B0.8(20×210+70(2)由题意,得70x+2 800=56x+3 360,解得x=40..40个书架时,无论到哪家超市购买所付货款都一样答:当购买(3)因为A超市的优惠政策为买一张书柜赠送一个书架,相当于打7.5折;B超市的优惠政策为所有商品打8折,.80个书架20个书架,再到B超市购买超市购买所以应该到A20张书柜,赠.)=88 680(元.80×+20×所需货款为21070×0.元货款答:至少需准备8 680。

人教版七年级数学上册第三章一元一次方程单元测试(解析版)

人教版七年级数学上册第三章一元一次方程单元测试(解析版)

人教版七年级数学上册第三章一元一次方程单元测试(解析版)一、选择题1.下列等式中,正确的是()A. B. C. D.2.下列利用等式的性质,错误的是()A. 由a=b,得到1-2a=1-2bB. 由ac=bc,得到a=bC. 由,得到a=bD. 由a=b,得到3.下列变形正确的是()A. 从5x=4x+8,得到5x﹣4x=8B. 从7+x=13,得到x=13+7C. 从9x=﹣3,得到x=-3D. 从-2x=0,得x=-24.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. -2C. -D. 25.下列方程是一元一次方程的是………………………………()A. B. C. D.6.方程-3(•-9)=5x-1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A. 2B. 3C. 4D. 67.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=)不低于5%,则至多能打( )A. 六折B. 七折C. 八折D. 九折8.下列方程中的解是的方程是()A. 6x+1=1B. 7x-1=x-1C. 2x=D. 5x=x+29.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是()A. x=0B. x=3C. x=-3D. x=210.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A. 8x-3=7x+4B. 8(x-3)=7(x+4)C. 8x+4=7x-3D. x+4二、填空题11.关于x方程(m+1)x|m+2|+3=0是一元一次方程,那么m=______..12.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是______.13.已知方程的解是,那么______.14.已知a=b,根据等式的基本性质填空.(1)a+c=b+________;(2)a-c=________;(3)c-a=________;(4).15.对于方程,用含x的代数式表示y为_____________.16.若关于x的方程x+2=a和2x-4=4有相同的解,则a=______.17.请自编一个解为x=2的方程______.18.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了______小时.19.A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度为14千米/小时,乙的速度为22千米/小时,经过______小时后两人相距36千米.三、解答题20.解方程:(1)4x-3(20-x)=-4(2)-1=.21.解下列方程(1)x-4=2-5x(2)4x-3(20-x)=5x-7(20-x)(3)6+=(4)=+.22.某商场推出新年大促销活动,其中标价为1800元的某种商品打9折销售,该种商品的利润率为8%.(1)求该商品的成本价是多少;(2)该商品在降价前一周的销售额达到了97200元,要使该商品降价后一周内的销售额也达到97200元,降价后一周内的销售数量应该比降价前一周内的销售数量增加多少?23.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为______元,每件乙种商品利润率为______.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?24.甲班有35人,乙班有26人.现在需要从甲、乙两班各抽调一些同学去养老院参加敬老活动.如果从甲班抽调的人数比乙班多3人,那么甲班剩余的人数恰好是乙班剩余人数的2倍.问从乙班抽调了多少人参加了这次敬老活动?答案和解析1.【答案】B【解析】【分析】本题考查了等式和绝对值的相关知识,根据绝对值的法则逐项分析即可解答. 【解答】解:A.当x≥0时,|x|-x=0;当x<0时,|x|-x=-2x,故A错误;B.无论x取何值,|-x|-|x|=0,故B正确;C.无论x取何值,-x-x=-2x,故C错误;D.当x≥0时,|-x|+|x|=2x;当x<0时,|-x|+|x|=-2x,故D错误.故选B.2.【答案】B【解析】【分析】本题考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A. 根据等式性质1和2,a=b两边都乘-2再加1,即可得到1-2a=1-2b,变形正确,故选项不符合题意;B.根据等式性质2,ac=bc两边都除以c不能得到a=b,只有当(c≠0),等式才成立,变形错误,故符合题意;C. 根据等式性质2,两边都乘以c,即可得到a=b,变形正确,故选项不符合题意;D. 因为c2+1≠0,所以根据等式性质2,a=b两边都除以c2+1能得到,变形正确,故选项不符合题意.故选B.3.【答案】A【解析】【分析】本题主要考查等式的基本性质,解题的关键是熟练掌握等式的性质:等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.根据等式的基本性质逐一计算可得.【解答】解:A.从5x=4x+8,得到5x-4x=8,此选项正确;B.从7+x=13,得到x=13-7,此选项错误;C.从9x=-3,得到x=-,此选项错误;D.从-2x=0,得x=0,此选项错误;故选A.4.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.5.【答案】D【解析】【分析】本题主要考查一元一次方程,根据一元一次方程的概念可求解.【解答】解:A.,不是整式方程,故该选项错误;B.,由两个未知数,故该选项错误;C.,未知数的最高次数为2,故该选项错误;D.,是一元一次方程,故该选项错误.故选D.6.【答案】D【解析】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【答案】B【解析】【解析】主要考查一元一次方程的应用,根据题意列方程,解出结果即可.【解答】解:设至多能打x折,根据题意:,解得:.所以至多可以打7折.故答案为B.8.【答案】C【解析】【分析】本题主要考查一元一次方程的解法.依次求出各个方程的解,即可得出答案. 【解答】解:.A.6x+1=1x=0;B.7x-1=x-1x=0 ;C.;D.5x=x+2.故选C.9.【答案】A【解析】【分析】此题主要考查了一元一次方程定义,一元一次方程的解法,关键是掌握只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.根据一元一次方程定义可得m-2=1,解出m的值,进而可得方程,然后再解一元一次方程即可.【解答】解:由题意得:m-2=1,解得:m=3,则方程为3x-3+3=0,解得:x=0.故选A.10.【答案】A【解析】解:设人数为x,则可列方程为:8x-3=7x+4,故选:A.根据“总钱数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并依据此列出方程.11.【答案】-3【解析】【分析】根据一元一次方程的定义求解即可.本题考查了一元一次方程的定义,利用一元一次方程的定义求解是解题关键.【解答】由题意,得|m+2|=1且m+1≠0,解得m=-3,故答案为:-3.12.【答案】1350元【解析】解:设每台彩电成本价是x元,依题意得:(50%•x+x)×0.8-x=270,解得:x=1350.故答案是:1350元.根据利润=售价-成本价,设每台彩电成本价是x元,列方程求解即可.本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.【答案】-1【解析】【分析】本题考查了一元一次方程的解,解决本题的关键是解一元一次方程;把x=-6代入方程2a-5=x+a,即可解答.【解答】解:x=-6代入方程2a-5=x+a得:2a-5=-6+a,解得:a=-1,故答案为-1.14.【答案】(1)c(2)b-c(3)c-b(4)【解析】【分析】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.根据等式的基本性质填空即可.【解答】解:∵a=b,∴(1)a+c=b+c;(2)a-c=b-c;(3)c-a=c-b;(4).故答案为(1)c;(2)b-c;(3)c-b;(4).15.【答案】【解析】【分析】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数,求出另一个未知数,把x看做已知数求出y即可.【解答】解:由x-3y=4,得到3y=x-4,∴,故答案为.16.【答案】6【解析】解:方程2x-4=4,移项合并得:2x=8,解得:x=4,把x=4代入x+2=a中,得:a=6.故答案为:6.求出第二个方程的解,代入第一个方程求出a的值即可.此题考查了同解方程,同解方程即为两个方程的解相同的方程.17.【答案】2x=4【解析】解:自编一个解为x=2的方程为2x=4,故答案为:2x=4.根据使方程左右两边的值相等的未知数的值是该方程的解,可得答案.本题考查了方程的解,解题的关键是根据方程的解的定义,使方程左右两边的值相等的未知数的值是该方程的解.18.【答案】10【解析】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度-水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.【答案】2或4【解析】解:设经过x小时后两人相距36千米,根据题意得:(14+22)x=108-36或(14+22)x=108+36,解得:x=2或x=4.答:经过2或4小时后两人相距36千米.故答案为:2或4.设经过x小时后两人相距36千米,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【答案】解:(1)去括号得:4x-60+3x=-4,整理得:7x=56,解得:x=8;(2)去分母得:3(3x-1)-12=2(5x-7),去括号得:9x-3-12=10x-14,移项得:9x-10x=-14+3+12,合并同类项得:-x=1,方程两边除以-1得:x=-1.【解析】(1)方程去括号后,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.【答案】解:(1)移项得:x+5x=2+4,合并得:6x=6,解得:x=1;(2)去括号得:4x-60+3x=5x-140+7x,移项得:4x+3x-5x-7x=-140+60,合并得:-5x=-80,解得:x=16;(3)去分母得:36+2x=24-6x,移项得:2x+6x=24-36,合并得:8x=-12,解得:x=-1.5;(4)方程整理得:=+,去分母得:48x+54=15x+75+30x-20,移项得:48x-15x-30x=75-20-54,合并得:3x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.【答案】解:(1)设该商品的成本价为x元,根据题意,得8%x=1800×90%-x解得x=1500,答:该商品的成本价为1500元.(2)1500×8%=120(元),97200÷(1500+120)-97200÷1800=60-54=6.答:要使该商品销售额达到97200,降价后的销售数量应该比降价前多6.【解析】本题主要考查一元一次方程的应用.根据题意找到合适的等量关系,列出方程即可求解.(1)该商品的成本价为x元,根据售价-成本价=利润列出方程,解方程即可;(2)先根据成本价×利润率=利润,即可求出降价后的价格,根据总价÷单价=数量进行计算即可.23.【答案】50;50%【解析】解:(1)(80-30)=50(元)(60-40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50-x)=2100,解得:x=10;乙种商品:50-10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小聪这两天在该商场购买甲、乙两种商品一共13或14件.(1)根据商品利润率=,可求每件甲种商品利润率,乙种商品每件进价;(2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去2100元”列方程求出未知数的值,即可得解;(3)第一天的总价为360元,享受了9折,先算出原价,然后除以单价,得出甲种商品的数量;第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出乙种商品的数量.考查了一元一次方程的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.24.【答案】解:设从乙班抽调了x人参加了敬老活动.根据题意列方程,得35-(x-3)=2(26-x).解方程得:x=20.答:从乙班抽调了20人参加了这次敬老活动.【解析】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.设从乙班抽调了x人,那么从甲班抽调了(x-3)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)一、选择题1.下列四个式子中,是一元一次方程的是( )A .1+2+3+4=10B .2x -3 C.x -13=x 2+1 D .x +3=y 2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( )A.-5B.-3C.-1D.53. 下列方程属于一元一次方程的是( )A. 1x-1=0 B. 6x +1=3y C. 3m =2 D. 2y 2-4y +1=0 4.关于x 的方程2(x -2)-3(4x -1)=9,下面解答正确的是( )A . 2x -4-12x +3=9,-10x =9+4-3=10,x =1B . 2x -4-12x +3=9,-10x =10,x =-1C . 2x -4-12x -3=9,-10x =2,x =−D . 2x -2-12x +1=9,-10x =10,x =15.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A .-2=+6B .+2=-6C .D .6.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7. 已知||3x -y =0,||x =1,则y 的值等于( )A. 3或-3B. 1或-1C. -3D. 38.关于x 的方程5x 3m =2的解是x =m ,则m 的值是( )A .1B . 1C .2D . 29.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A . 1600元B . 1800元C . 2000元D . 2100元11.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.4412. 某同学在解关于x 的方程3a -x =13时,误将“-x ”看成“x ”,从而得到方程的解为x =-2,则原方程正确的解为( )A.x =-2B.x =-12C.x =12D.x =2 二、填空题13.若-x n +1与2x 2n -1是同类项,则n = .14.. 三个连续偶数的和是60,那么这三个数分别是 - .15.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,则原来的两位数是 .16.对于两个非零的有理数a ,b ,规定a ☆b =12b -13a ,若x ☆3=1,则x 的值为________. 17.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y 米,根据题意,可列方程为______________.19.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.20.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,解是x=7的方程是三、解答题21.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)7x -13-5x +12=2-3x +24; (4)2x 0.3-1.6-3x 0.6=31x +83.22. (1)如果方程2x +a =x -1的解是x =4,求2a +3的值;(2)已知等式(a -2)x 2+(a +1)x -5=0是关于x 的一元一次方程,求这个方程的解.23.在校运动会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?26.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50 m,求这项工程共需筑路多少米?27.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案)参考答案一、1. C 2. A. 3. C 4. B 5 C. 6. C 7. D 8. B 9. A 10. A 11. C 12. D二、13.214. 18,20,22 .15.4816. 3 217.100018.2y-100=1 700 19.3020.=1三、21.解:(1)x=-20. (2)x=7 2.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x -4-30x -6=24-9x -6,移项,得28x -30x +9x =24+6+4-6,合并同类项,得7x =28,系数化为1,得x =4.(4)原方程可化为20x 3-16-30x 6=31x +83.去分母,得40x -(16-30x )=2(31x +8).去括号,得40x -16+30x =62x +16.移项,得40x +30x -62x =16+16.合并同类项,得8x =32. 系数化为1,得x =4.22.解:(1)把x =4代入方程,得8+a =4-1.解得a =-5.所以2a +3=2×(-5)+3=-7.(2)由题意,得a -2=0且a +1≠0.解得a =2,即方程为3x -5=0.解得x =53. 23. 解:设应分配x 名工人生产脖子上的丝巾,则(70-x )名工人生产手上的丝巾.根据题意,得1800(70-x )=2×1200x , 解得x=30,70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.24.解:设大正方形的边长为x 厘米,由题图可得x -2-1=4+5-x ,解得x =6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,解得x =20.则35-x =15.(8分) 甲种票买了20张,乙种票买了15张.26.解:(1)甲,乙两队的筑路时间之比为80∶120=2∶3,所以甲,乙两队每天筑路工作量之比为3∶2.(2)设乙队每天筑路x m ,则甲每天筑路(x +50)m.依题意,得80(x +50)=120x .解得x =100.故120x =12 000(m).这项工程共需筑路12 000 m.27.解:(1)120×0.95=114(元).故实际应支付114元.(2)设小红所购买商品的总价格为x 元,依据题意,得0.8x +168=0.95x ,解得x =1 120.故当购买商品的总价格是1 120元时,两种方案的优惠情况相同.(3)当购买商品的总价格低于1 120元时,方案2更合算;当购买商品的总价格等于1 120元时,两种方案的花费相同;当购买商品的总价格大于1 120元时,方案1更合算.人教版七年级上册第三章一元一次方程单元测试卷(3)一、选择题(每小题3分,共30分)1把方程3x +2x -13=3-x +12去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1) B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A.-5 B.-3 C.-1 D.53.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )4.下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1D.x -3y =05.方程2x +3=7的解是( )A.x =5B.x =4C.x =3.5D.x =26.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x -3=0的解是 .12.若-x n +1与2x 2n -1是同类项,则n = .13.已知多项式9a +20与4a -10的差等于5,则a 的值为 .14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为 .16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是 元.18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(共66分)19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.A 3.C 4.A 5.D 6.C 7.B 8.B 9.A10.C 解析:设图②中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x =1 12.2 13.-5 14.7215.x =6 16.30 17.1500 18.100019.解:(1)x =-20.(5分)(2)x =72.(10分) (3)x =3.(15分)20.解:由题意,得3+a 2+⎣⎡⎦⎤-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分)24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分)(3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)。

【名校习题】人教版七年级上册数学单元知识检测题:第三章一元一次方程(含答案).doc

【名校习题】人教版七年级上册数学单元知识检测题:第三章一元一次方程(含答案).doc

人教版七年级上册第三章一元一次方程单元测试卷(1)一、选择题1.下列方程是一元一次方程的是( )A.x2+x=2B.5x+2=5x+3C.x-9=3D.=2答案 C2.方程x-2=2-x的解是( )A.x=1B.x=-1C.x=2D.x=0答案 C3.如果5(x-2)与x-3互为相反数,那么x的值是( )A.7B.C.D.答案 B4.下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=bD.若x=y,则=答案 D5.如图所示,两个天平都平衡,则3个“球体”的重量等于个正方体的重量.( )A.3B.4C.5D.6答案 C6.下列变形正确的是( )A.由7x=4x-3移项,得7x-4x=3B.由-=1+-去分母,得2(2x-1)=1+3(x-3)C.由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1D.由2(x+1)=x+7去括号、移项、合并同类项,得x=5答案 D7.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( )A.880元B.800元C.720元D.1080元答案 A8.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1.②移项,得4x+x-2x=1+4.③合并同类项,得3x=5.④系数化为1,得x=.经检验知,x=不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( ) A.① B.② C.③ D.④答案 B9.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元答案 C10.陈老师打算购买气球装扮学校“六一儿童节”活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置的需要,购买时应以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19元B.18元C.16元D.15元答案 C11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是A.(1+50%)x×80%=x–28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x–28 D.(1+50%x)×80%=x+28答案B12.七年级一班的马虎同学在解关于x的方程3a–x=13时,误将–x看成+x,得方程的解x=–2,则原方程正确的解为 A .–2B .2C .–D .答案B二、填空题13.一个数x 的2倍减去7,得36,列方程为 . 答案 2x-7=36 14.如果方程x 2m-1-3=0是关于x 的一元一次方程,那么方程的解为 .答案 x=315.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= . 答案16.写出一个解为x=2的一元一次方程(只写一个即可) . 答案 x-2=0(答案不唯一)17.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m 3,每立方米收费2元;若用水超过20 m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水 m 3. 答案 2818.相邻的5个自然数的和为45,则这5个自然数分别为 . 答案 7、8、9、10、1119.用一根长18米的铁丝围成一个长是宽的2倍的长方形框架,其面积为 平方米. 答案 18 20.小明解方程-=-3,在去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,则原方程正确的解为 . 答案 x=-13三、解答题21.解方程. (1)3x+1=9-x;1212(2)-=1-.答案(1)x=2.(2)x=.22.某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折出售将赚20元,问这种商品的标价是多少元?答案设该商品的标价为x元.根据题意得75%x+25=90%x-20,解得x=300.答:这种商品的标价为300元.23.小亮和他哥哥在离家2千米的同一所学校上学,小亮的哥哥以4千米/小时的速度步行去学校,小亮因找不到数学课本耽误了15分钟,然后骑自行车以12千米/小时的速度去追他哥哥.请问到校前小亮能追上他哥哥吗?若能,则小亮追上他哥哥时,他们距学校多远?若不能,请说明理由.答案 能追上.理由如下:设小亮走了x 个小时才追上他哥哥, 根据题意得4×+4x=12x,解得x=,即小亮走了个小时才追上他哥哥. 小亮追上他哥哥时走了12×=1.5(千米), 又因为1.5<2,所以到校前小亮能追上他哥哥. 此时他们距学校2-1.5=0.5(千米).24.贡江新区位于贡江南岸,由长征出发地体验区、文教体育综合区、贡江新城三大板块组成,与贡江北岸老城区相呼应,构建成“一江两岸”的城市新格局.为建设市民河堤漫步休闲通道,贡江新区现有一段长为180米的河堤整治任务由A 、B 两个工程队先后接力完成,A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程如下: 甲:12x+8(20-x)=180;乙: + -=20. 根据甲、乙人教版七年级数学上册第三章一元一次方程单元测试(含答案)一、单选题1.下列方程是一元一次方程的是( ) A.4x+2y=3 B.y+5=0 C.x 2=2x ﹣l D.1y+y=2 2.在下列方程中①221x x +=,②139x x -=,③102x =,④123233-=,⑤2133y y -=+是一元一次方程的有( )个.A .1B .2C .3D .43.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1 B.由,得C.由,得D.由,得2x ﹣3x=14.下列选项中,移项正确的是( ) A .方程8x 6-=变形为x 68-=+ B .方程5x 4x 8=+变形为5x 4x 8-= C .方程3x 2x 5=+变形为3x 2x 5-=- D .方程32x x 7-=+变形为x 2x 73-=+ 5.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.如果关于 的方程 - 无解,那么 满足( ). A. B.C. D.任意实数8.方程去分母后正确的结果是( )A. B. C.D.9.若 是方程 的解,则代数式 的值为( ) A.-5B.-1C.1D.510.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.511.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x 千米,则列方程正确的是( ) A.()()254254x x +=- B.2556x x += C.6255x x += D.6255255x x+=+- 12.甲、乙两人去买东西,他们所带钱数的和为120元,甲花去30元,乙花去20元,两人余下的钱数之比为3:2,则甲、乙两人所带的钱数分别是 ( ) A .70,49 B .65,48C .72,48D .73,47二、填空题13.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 14.方程320x -+=的解为________.15.已知a 、b 、c 、d 为有理数,现规定一种新运算a b ad bc c d=-,如131(5)321125=⨯--⨯=--,那么当2422(1)7x =+时,则x 的值为_____.16.今有浓度分别为 3%、8%、11%的甲、乙、丙三种盐水 50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为 7%的盐水 100 千克,则丙种盐水最多可用_________千克 三、解答题17.解方程:(1)8x-2=0;(2)2x-5=4x+3 18.解方程:(1)51312423-+--=x x x ;(2)30.4110.50.3---=x x 19.已知A =2x 2+mx ﹣m ,B =3x 2﹣mx +m . (1)求A ﹣B ;(2)如果3A ﹣2B +C =0,那么C 的表达式是什么?(3)在(2)的条件下,若x =4是方程C =20x +5m 的解,求m 的值.20.如图,在数轴上点O 为原点,A 点表示数a ,B 点表示数b ,且a 、b 满足|a+2|+|b-4|=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)如果M 、N 为数轴上两个动点.点M 从点A 出发,速度为每秒1个单位长度;点N 从点B出发,速度为点A的3倍,它们同时向左运动.①当运动2秒时,点M、N对应的数分别是、.②当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)21.某公司要生产若干件新产品,需要加工后才能投放市场.现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工多用20天,红星厂每天可以加工16个,巨星厂每天可以加工24个.公司需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这家公司要生产多少件新产品?(2)公司制定产品加工方案如下:可由每个厂家单独完成,也可由两个厂共同合作完成.在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并负担每天的补助费5元.请你帮公司选择一种既省钱又省时的加工方案人教版七年级上册数学第三章一元一次方程单元测试题(含答案)一、选择题1.在方程,,中一元一次方程的个数为()A. 1个B. 2个C. 3个D. 4个2.方程3x﹣7=5的解是()A. x=2B. x=3C. x=4D. x=53.如果a+1与互为相反数,那么a=( )A. B. 10 C. - D. -104.若x=1是关于x的方程ax+1=2的解,则a是()A. 1B. 2C. -1D. -25.设P=2y-2,Q=2y+3,有2P-Q=1,则y的值是()A. 0.4B. 4C. -0.4D. -2.56.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?设安排x名工人加工甲部件,可列出方程为()A. 3×16x=2×10(85-x)B. 2×16x=3×10(85-x)C. 8×16x=5×10(85-x)D. 5×16x=8×10(85-x)7.下列方程中,解为x=2的方程是()A. 3x-2=3B. -x+6=2xC. 4-2(x-1)=1D.8.解方程时,去分母、去括号后,正确结果是()A. 4x+1﹣10x+1=1B. 4x+2﹣10x﹣1=1C. 4x+2﹣10x﹣1=6D. 4x+2﹣10x+1=69.下列说法正确的有()(1)若ac=bc,则a=b;(2)若,则a=﹣b;(3)若x2=y2,则﹣4ax2=﹣4by2;(4)若方程2x+5a=11﹣x与6x+3a=22的解相同,则a的值为0.A. 4B. 3C. 2D. 110.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( )A. 26元B. 27元C. 28元D. 29元二、填空题11.若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a=________.12.写出一个以为解的一元一次方程________.13.已知x=3是方程ax﹣6=a+10的解,则a=________.14.在数轴上与表示-2的点相距5个单位长度的点所表示的数是________.15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=________.16.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为 ________17.代数式的值是1,则k = ________.18.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为,于是,他很快知道了这个常数,他补出的这个常数是________.19.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。

2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题(含答案解析)

2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题(含答案解析)

2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题一.选择题(共10小题)1.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣62.若方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,则a的值为()A.0B.3C.﹣3D.±33.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=5.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.26.若代数式值比的值小1,则k的值为()A.﹣1B.C.1D.7.下列各题正确的是()A.由5x=﹣2x﹣3,移项得5x﹣2x=3B.由=1+,去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1,去括号得4x﹣2﹣3x﹣9=1D.把﹣=1中的分母化为整数,得﹣=18.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=9.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场10.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是()A.80元B.90元C.100元D.110元二.填空题(共6小题)11.若x与9的积等于x与﹣16的和,则x=.12.方程﹣x=0.5的两边同乘以,得x=.13.已知5x+7与2﹣3x互为相反数,则x=.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2016+2017n+c2018的值为.15.已知a、b、c、d为有理数,现规定一种新运算=ad﹣bc,如=1×(﹣5)﹣3×2=﹣11那么,当=22时,则x的值为.16.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,则这件外衣的标价是元.三.解答题(共9小题)17.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣118.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.19.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.20.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.21.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.22.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?23.小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?24.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x小时,请用含x的式子分别表示用一盏白炽灯的费用和一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.某超市为了回馈广大新老客户,决定元旦期间开展优惠活动.方案一:非会员购物,所有商品价格可获9折优惠;方案二:如交纳200元会费成为该超市会员,则所有商品价格可获8折优惠.(1)若用x(元)表示商品价格,请用含x的代数式分别表示两种购物方案所付金额.(2)当商品价格是多少元时,两种方案所付金额相同?(3)小王计划在该超市购买价格为2700元的电脑一台,选择哪种方案更省钱?2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题参考答案与试题解析一.选择题(共10小题)1.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣6【分析】由已知得出a﹣2b=8,代入原式=2(a﹣2b)+10计算可得.【解答】解:∵﹣a+2b+8=0,∴a﹣2b=8,则原式=2(a﹣2b)+10=2×8+10=16+10=26,故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.若方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,则a的值为()A.0B.3C.﹣3D.±3【分析】根据一元一次方程的定义解答即可.【解答】解:因为方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,看到:|a|﹣3=0,a﹣3≠0,解得:a=﹣3,故选:C.【点评】此题主要考查了一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=【分析】根据等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立分别进行判断.【解答】解:A、由a=b,得=,所以A选项正确;B、由﹣3x=﹣3y,得x=y,所以B选项错误;C、由=1,得x=4,所以C选项错误;D、由x=y,a≠0,得=,所以D选项错误.故选:A.【点评】本题考查了等式的性质:等式两边加上(或减去)同一个数,等式仍然成立;等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立.5.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.2【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣10+3+2x=0,移项合并得:7x=7,解得:x=1,故选:C.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.6.若代数式值比的值小1,则k的值为()A.﹣1B.C.1D.【分析】根据题意列出方程,求出方程的解即可得到k的值.【解答】解:根据题意得: +1=,去分母得:2k +2+6=9k +3, 移项合并得:7k=5,解得:k=, 故选:D .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 7.下列各题正确的是( )A .由5x=﹣2x ﹣3,移项得5x ﹣2x=3B .由=1+,去分母得2(2x ﹣1)=1+3(x ﹣3)C .由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x ﹣9=1D .把﹣=1中的分母化为整数,得﹣=1【分析】各方程整理变形后,即可作出判断.【解答】解:A 、由5x=﹣2x ﹣3,移项得5x +2x=﹣3,不符合题意;B 、由=1+,去分母得2(2x ﹣1)=6+3(x ﹣3),不符合题意;C 、由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x +9=1,不符合题意;D 、把﹣=1中的分母化为整数,得﹣=1,符合题意,故选:D .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =【分析】设有糖果x 颗,根据该幼儿园小朋友的人数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有糖果x 颗,根据题意得: =.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场【分析】设这个队胜了x场,则平了30﹣x﹣9=21﹣x(场),根据共得47分列出关于x的方程,解之可得.【解答】解:设这个队胜了x场,则平了30﹣x﹣9=21﹣x(场),根据题意,得:3x+21﹣x=47,解得:x=13,即这个队胜了13场,故选:D.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.10.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是()A.80元B.90元C.100元D.110元【分析】设这件衣服的进价为x元,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件衣服的进价为x元,根据题意得:0.6×200﹣x=20%x,解得:x=100.答:这件衣服的进价为100元.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.二.填空题(共6小题)11.若x与9的积等于x与﹣16的和,则x=﹣2.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:9x=x﹣16,移项合并得:8x=﹣16,解得:x=﹣2,故答案为:﹣2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.方程﹣x=0.5的两边同乘以2,得x=﹣1.【分析】方程x系数化为1,即可求出解.【解答】解:方程﹣x=0.5的两边同乘以2,得x=﹣1,故答案为:2;﹣1【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.已知5x+7与2﹣3x互为相反数,则x=﹣4.5.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+7+2﹣3x=0,移项合并得:2x=﹣9,解得:x=﹣4.5,故答案为:﹣4.5【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2016+2017n+c2018的值为2.【分析】利用负整数,绝对值,以及倒数,自然数的定义判断确定出m,n以及c的值,代入原式计算即可求出值.【解答】解:根据题意得:m=﹣1,n=0,c=1,则原式=1+0+1=2,故答案为:2【点评】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.已知a、b、c、d为有理数,现规定一种新运算=ad﹣bc,如=1×(﹣5)﹣3×2=﹣11那么,当=22时,则x的值为﹣3.【分析】根据行列式,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:根据题意知2×7﹣4(x+1)=22,解得:x=﹣3,故答案为:﹣3.【点评】本题考查了解一元一次方程,利用行列式得出一元一次方程是解题关键.16.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,则这件外衣的标价是275元.【分析】设这件外衣的标价为x元,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件外衣的标价为x元,根据题意得:0.8x﹣200=200×10%,解得:x=275.答:这件外衣的标价为275元.故答案为:275.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共9小题)17.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:3﹣3x=8x﹣2﹣6,移项合并得:﹣11x=﹣11,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m的值.【解答】解:方程3x+2=﹣4,解得:x=﹣2,把x=﹣2代入第一个方程得:﹣6=3m﹣1,解得:m=﹣.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.【分析】(1)方程移项合并,根据有唯一解确定出条件即可;(2)根据方程有无数解确定出条件即可;(3)根据方程无解确定出条件即可.【解答】解:方程整理得:(b﹣3)x=a﹣6,(1)由方程有唯一解,得到b﹣3≠0,即b≠3;(2)由方程有无数解,得到b﹣3=0,a﹣6=0,即a=6,b=3;(3)由方程无解,得到b﹣3=0,a﹣6≠0,即a≠6,b=3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.【分析】设十位上的数字为x,个位上的数字为3x,百位上的数字为x+7,根据“一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍”,列出关于x的一元一次方程,解之即可.【解答】解:设十位上的数字为x,个位上的数字为3x,百位上的数字为x+7,根据题意得:x+(x+7)+3x=17,解得:x=2,即十位上的数字为2,个位上的数字为6,百位上的数字为9,则这个三位数为926,答:这个三位数为926.【点评】本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.21.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.【分析】(1)利用相反数的定义得到3m+7﹣10=0,然后解关于m的一元一次方程即可;(2)利用绝对值的意义和有理数的分类得到a=2或a=﹣2,c=﹣1,然后分别把a=2,b=﹣3,c=﹣1和a=﹣2,b=﹣3,c=﹣1代入a+b﹣c中计算即可.【解答】解:(1)根据题意得3m+7﹣10=0,解得 m=1; (2)根据题意得 a=2 或 a=﹣2,c=﹣1, 当 a=2,b=﹣3,c=﹣1,a+b﹣c=2﹣3﹣(﹣1)=0; 当 a=﹣2,b=﹣3,c=﹣1,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4. 【点评】本题考查了解一元一次方程:解一元一次方程的一般步骤,针对方程的特点,灵活应 用,各种步骤都是为使方程逐渐向 x=a 形式转化.也考查了相反数与绝对值. 22.一艘货轮往返于上下游两个码头之间,逆流而上需要 6 小时,顺流而下需要 4 小时,若船 在静水中的速度为 20 千米/时,则水流的速度是多少千米/时? 【分析】设水流的速度是 x 千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x) 千米/时,根据路程=速度×时间结合两个码头之间的距离不变,即可得出关于 x 的一元一次 方程,解之即可得出结论. 【解答】解:设水流的速度是 x 千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20 ﹣x)千米/时, 根据题意得:6(20﹣x)=4(20+x), 解得:x=4. 答:水流的速度是 4 千米/时. 【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关 键. 23.小李读一本名著,星期六读了 36 页,第二天读了剩余部分的 ,这两天共读了整本书的 , 这本名著共有多少页? 【分析】设这本名著共有 x 页,根据头两天读的页数是整本书的 ,即可得出关于 x 的一元一次 方程,解之即可得出结论. 【解答】解:设这本名著共有 x 页, 根据题意得:36+ (x﹣36)= x, 解得:x=216. 答:这本名著共有 216 页. 【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关 键. 24.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表 所示的数据:功率 普通白帜灯 100 瓦(即 0.1 千 瓦) 优质节能灯 20 瓦(即 0.02 千 瓦)使用寿命 2000 小时价格 3 元/盏4000 小时35 元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度 0.5 元.(注:用电度数=功率(千 瓦)×时间(小时),费用=灯的售价+电费) 请你解决以下问题: (1)如果选用一盏普通白炽灯照明 1000 小时,那么它的费用是多少? (2)在白炽灯的使用寿命内,设照明时间为 x 小时,请用含 x 的式子分别表示用一盏白炽灯的 费用和一盏节能灯的费用; (3)照明多少小时时,使用这两种灯的费用相等? (4)如果计划照明 4000 小时,购买哪一种灯更省钱?请你通过计算说明理由. 【分析】(1)根据表格列出算式,计算即可得到结果; (2)根据表格中的数据列出代数式即可; (3)令两代数式相等列出方程,求出方程的解即可得到结果; (4)根据照明 4000 小时,求出各自的费用,比较即可得到结果. 【解答】解:(1)根据题意得:1000×0.1×0.5+3=53(元), 则一盏普通白炽灯照明 1000 小时,费用为 53 元; (2) 用一盏白炽灯的费用为 0.1x×0.5+3=0.05x+3 (元) ; 一盏节能灯的费用为 0.02x×0.5=0.01x+35 (元); (3)根据题意得:0.05x+3=0.01x+35, 解得:x=800, 则照明 800 小时时,使用这两种灯的费用相等; (4)用节能灯省钱,理由为: 当 x=4000 时,用白炽灯的费用为 2000×0.1×0.5×2+3×2=206(元); 用节能灯的费用为 4000×0.02×0.5+35=75(元), 则用节能灯省钱. 【点评】此题考查了一元一次方程的应用,列代数式,以及代数式求值,弄清题意是解本题的 关键.25.某超市为了回馈广大新老客户,决定元旦期间开展优惠活动.方案一:非会员购物,所有 商品价格可获 9 折优惠;方案二:如交纳 200 元会费成为该超市会员,则所有商品价格可获 8 折优惠. (1)若用 x(元)表示商品价格,请用含 x 的代数式分别表示两种购物方案所付金额. (2)当商品价格是多少元时,两种方案所付金额相同? (3)小王计划在该超市购买价格为 2700 元的电脑一台,选择哪种方案更省钱? 【分析】(1)根据两种优惠方案,找出选择各方案所需费用; (2)由两种方案所付金额相同,即可得出关于 x 的一元一次方程,解之即可得出结论; (3)代入 x=2700 求出选择两种方案所需费用,比较后即可得出结论. 【解答】解:(1)方案一所付金额:0.9x 元; 方案二所付金额:(0.8x+200)元. (2)根据题意得:0.9x=0.8x+200, 解得:x=2000. 答:当商品价格是 2000 元时,两种方案所付金额相同. (3)方案一所付金额:0.9x=0.9×2700=2430(元); 方案二所付金额:0.8x+200=0.8×2700+200=2360(元). ∵2360<2430, ∴选择方案二更省钱. 【点评】本题考查了列代数式、代数式求值以及一元一次方程的应用,解题的关键是:(1)根 据两种优惠方案, 列出代数式; (2 ) 找准等量关系, 正确列出一元一次方程; ( 3) 代入 x=2700 求值.。

人教新版 七年级上册 数学 第3章 一元一次方程 单元测试卷 (含解析)

人教新版 七年级上册 数学 第3章 一元一次方程 单元测试卷 (含解析)

七年级(上)数学第3章一元一次方程单元测试卷一.选择题(共10小题)1.在方程,,,中一元一次方程的个数为A.1个B.2个C.3个D.4个2.对等式进行的变形,正确的是A.B.C.D.3.下列四组变形中,正确的是A.由,得B.由,得C.由,得D.由,得4.下列方程中,解是的方程是A.B.C.D.5.解一元一次方程时,去分母正确的是A.B.C.D.6.关于的方程的解为A.B.C.D.7.已知是关于的一元一次方程的解,则的值为A.B.C.1D.28.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.9.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程A.B.C.D.10.如图,跑道由两个半圆部分,和两条直跑道,组成,两个半圆跑道的长都是,两条直跑道的长都是.小彬站在处,小强站在处,两人同时逆时针方向跑步,小彬每秒跑,小强每秒跑.当小强第一次追上小彬时,他们的位置在A.半圆跑道上B.直跑道上C.半圆跑道上D.直跑道上二.填空题(共6小题)11.关于的方程的解为.12.如果是关于的一元一次方程,则的值是.13.列方程:“的2倍与5的差等于的3倍”为:.14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为,则商店应打折.15.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为千米小时.16.对、,定义新运算“”如下:,已知.则实数等于.三.解答题(共9小题)17.解方程:.18.解方程:19.解方程:20.某船从地顺流而下到达地,然后逆流返回到达地,一共用了8小时.已知此船在静水中的速度为8千米小时,水流的速度为2千米小时.求、两地之间的路程.21.某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?22.某车间有60名工人,平均每人每天可以加工大齿轮3个或小齿轮4个,已知1个大齿轮和4个小齿轮配为一套,问如何安排工人使生产的产品刚好配套?23.已知,一张课桌包括1块桌面和4条桌腿,且的木料可制作25块桌面或120条桌腿,现有的木料,若使制作的桌面和桌腿刚好配套,则需要用多少木料制作桌面,多少木料制作桌腿.24.以下是圆圆解方程的解答过程.解:去分母,得.去括号,得.移项,合并同类项,得.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.25.清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?意思是:山林中有一座古寺,不知道寺内有多少僧人.已知一共有364只碗,刚好能够用完.每三个僧人一起吃一碗饭,每四个僧人一起吃一碗羹.请问寺内一共有多少僧人?请解答上述问题.参考答案一.选择题(共10小题)1.在方程,,,中一元一次方程的个数为A.1个B.2个C.3个D.4个解:一元一次方程有,,共2个,故选:.2.对等式进行的变形,正确的是A.B.C.D.解:对等式进行的变形后应该是,故选:.3.下列四组变形中,正确的是A.由,得B.由,得C.由,得D.由,得解:、根据等式性质1,两边都减7得,原变形正确,故此选项符合题意;、根据等式性质1,两边都加3得,原变形错误,故此选项不符合题意;、根据等式性质2,两边都乘6得,原变形错误,故此选项不符合题意;、根据等式性质2,两边都除以5得,原变形错误,故此选项不符合题意.故选:.4.下列方程中,解是的方程是A.B.C.D.解:、把代入方程得:左边,右边,左边右边,故本选项错误;、把代入方程得:左边,右边,左边右边,故本选项正确;、把代入方程得:左边,右边,左边右边,故本选项错误;、把代入方程得:左边,右边,左边右边,故本选项错误.故选:.5.解一元一次方程时,去分母正确的是A.B.C.D.解:方程两边都乘以6,得:,故选:.6.关于的方程的解为A.B.C.D.解:方程,移项合并得:,解得:.故选:.7.已知是关于的一元一次方程的解,则的值为A.B.C.1D.2解:把代入方程得:,解得:,故选:.8.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.解:依题意,得:,即.故选:.9.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程A.B.C.D.解:设有辆车,依题意,得:.故选:.10.如图,跑道由两个半圆部分,和两条直跑道,组成,两个半圆跑道的长都是,两条直跑道的长都是.小彬站在处,小强站在处,两人同时逆时针方向跑步,小彬每秒跑,小强每秒跑.当小强第一次追上小彬时,他们的位置在A.半圆跑道上B.直跑道上C.半圆跑道上D.直跑道上解:设小强第一次追上小彬的时间为秒,根据题意,得:,解得,则,,他们的位置在直跑道上,故选:.二.填空题(共6小题)11.关于的方程的解为4.解:方程,移项,得,合并同类项,得.解得.故答案为:4.12.如果是关于的一元一次方程,则的值是1.解:是关于的一元一次方程,,解得:,故答案为:1.13.列方程:“的2倍与5的差等于的3倍”为:.解:由题意可得:.故答案为:.14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为,则商店应打8折.解:设商店打折,依题意,得:,解得:.故答案为:8.15.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为18千米小时.解:设轮船在静水中的速度为千米小时,则水流速度为千米小时,由题意可得:,解得:,轮船在静水中的速度为18千米小时,故答案为:18.16.对、,定义新运算“”如下:,已知.则实数等于 1 .解:当时,根据题意得:,解得:,不合题意;当时,根据题意得:,解得:,则实数等于1 .故答案为:1三.解答题(共9小题)17.解方程:.解:去分母,得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:.18.解方程:解:去分母得:,去括号得:,移项合并得:,解得:.19.解方程:解:去分母得:,移项合并得:,解得:.20.某船从地顺流而下到达地,然后逆流返回到达地,一共用了8小时.已知此船在静水中的速度为8千米小时,水流的速度为2千米小时.求、两地之间的路程.解:设、两地之间的路程为千米,依题意,得:,解得:.答:、两地之间的路程为30千米.21.某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?解:设这个水果店一共买进水果筐,根据题意,得:,解得,答:这个水果店这次一共批发买进苹果20筐.22.某车间有60名工人,平均每人每天可以加工大齿轮3个或小齿轮4个,已知1个大齿轮和4个小齿轮配为一套,问如何安排工人使生产的产品刚好配套?解:设需安排名工人加工大齿轮,安排名工人加工小齿轮,依题意得:解得,则.答:安排15名工人加工大齿轮,安排45名工人加工小齿轮,才能使每天加工的大小齿轮刚好配套.23.已知,一张课桌包括1块桌面和4条桌腿,且的木料可制作25块桌面或120条桌腿,现有的木料,若使制作的桌面和桌腿刚好配套,则需要用多少木料制作桌面,多少木料制作桌腿.解:设用木料制作桌面,由题意得,解得,,答:用木料制作桌面,木料制作桌腿,能使制作得的桌面和桌腿刚好配套.24.以下是圆圆解方程的解答过程.解:去分母,得.去括号,得.移项,合并同类项,得.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.解:圆圆的解答过程有错误,正确的解答过程如下:去分母,得:.去括号,得.移项,合并同类项,得.25.清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?意思是:山林中有一座古寺,不知道寺内有多少僧人.已知一共有364只碗,刚好能够用完.每三个僧人一起吃一碗饭,每四个僧人一起吃一碗羹.请问寺内一共有多少僧人?请解答上述问题.解:设寺内有名僧人,由题意得,解得:.答:寺内一共有624名僧人.。

人教版七年级上第三章《一元一次方程》单元测试题(含答案解析)

人教版七年级上第三章《一元一次方程》单元测试题(含答案解析)

《一元一次方程》单元检测题一、选择题1.已知3是关于x的方程x3a=0的一个解,则3a1的值是()A. 3B. 2C. 1D.2 某次活动的烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A. 30x+8=31x-26B. 30x+8=31x+26C. 30x-8=31x-26D. 30x-8=31x+263.若(m2)x|2m-3|=8是一元一次方程,则m等于()A. 1B. 2C. 1或2D.任何数4.一个数的3倍比它的2倍多10,若设这个数为x,可得到方程()A. 3x-2x=10B. 3x+2x=10C. 3x=2×10D. 3x=2x-105.A,B两地相距240千米,火车按原来的速度行驶需要4小时,火车提速后,速度比原来加快30%,那么提速后只需要()A. 3小时B. 3小时C. 4小时D. 4小时6.甲、乙两人练习赛跑,甲每秒跑7米,乙先起跑1秒,结果甲用10秒追上乙,这个过程中说法正确的是()A.乙跑了1秒B.乙跑了11秒C.甲跑了11秒D.甲比乙跑的路少7.某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个小朋友?设有x个小朋友,则可列方程为()A. 3x+1=4x-2B.C. 3x-1=4x+2D.8.一艘轮船航行在A、B两地之间,已知该船在静水中每小时航行12千米,轮船顺水航行需用6小时,逆水航行需用10小时,则水流速度和A、B两地间的距离分别为()A. 2千米/小时,50千米B. 3千米/小时,30千米C. 3千米/小时,90千米D. 5千米/小时,100千米9.若x+5=8,则3x+15等于()A. 15B. 16C. 23D. 2410.下列说法错误的是()A.若a=b,则a3=b3B.若3x=3y,则x=yC.若a=b,则D.若x2=5x,则x=511.在解方程4x+1=3x-2时,下列移项正确的是()A. 4x+3x=1-2B. 4x-3x=-2-1C. 4x-3x=2-1D. 4x+3x=-2-112.方程=1.2的解为()A.x=3.6B.x=0.36C.x=36D.x=0.036二、填空题13.已知点A在数轴上表示,点B在数轴上表示4x-5,若点A、点B到原点的距离相等,则x 的值是 .14.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x公顷旱地改为林地,则为可列方程为.15.“比a的2倍小3的数等于a的3倍”可列方程表示为: .16.某市用水的收费标准是:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则按超过部分每立方米2元收费.某居民5月份交水费17元,则该居民5月份的用水量为.三、解答题17.某公司要把一批物品运往外地,现有两种运输方式可供选择:方式一:使用快递公司运输,装卸费400元,另外每千米再加收4元;方式二:使用火车运输,装卸费820元,另外每千米再加收2元.(1)若两种运输的总费用相等,则运输路程是多少?(2)若运输路程是800千米,这家公司应选用哪一种运输方式?18.据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100米,宽50米的长方形土地,分为两块小长方形土地,分别种植这两种作物,是否存在一种划分这块土地的方法,使甲乙两种作物的总产量的比是3:4?请说明理由.19.规定:*为一种新运算,对任意的有理数a,b,有a*b=,若6*x=,试用等式的性质求x的值.20.若关于的方程+5=是一元一次方程,求的值.21.油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人35人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片,如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?答案解析1.【答案】C【解析】依题意,得×33a=0,即23a=0,所以,3a=2,解得,3a1=1.故选C.2.【答案】A【解析】设座位有x排,由题意得30x+8=31x-26.故选A.3.【答案】A【解析】根据一元一次方程的特点可得,解得m=1.故选A.4.【答案】A【解析】设这个数为x,则它的3倍为3x,2倍为2x,由题意数的3倍比它的2倍多10,即可知两者之差为10,则可以得出方程为:3x-2x=10.故选A.5.【答案】B【解析】A,B两地相距240千米,火车按原来的速度行驶需要4小时,则原速度为240÷4=60千米/小时.速度比原来加快30%,则提速后速度为60×(1+30%)=78千米/小时.则提速后只需240÷78=3小时.故选B.6.【答案】B【解析】∵乙先起跑1秒,结果甲用10秒追上乙,∴乙跑了11秒,故B正确.7.【答案】A【解析】设有x个小朋友,根据苹果数的不同角度表示得到3x+1和4x-2,然后利用苹果数不变得到3x+1=4x-2.解:设有x个小朋友,根据题意得3x+1=4x-2.故选A.8.【答案】C【解析】设水流的速度为x千米/小时,则顺水时的速度为(12+x)千米/小时,逆水时的速度为(12-x)千米/小时,根据题意得:(12+x)×6=(12-x)×10,解得:x=3.即水流的速度为3千米/小时,从而可得A、B之间的距离为:(12+3)×6=90千米.综上可得:水流速度为3千米/小时,A、B两地间的距离为90千米.故选C.9.【答案】D【解析】x+5=8,根据等式的基本性质2,两边都乘以3,得3x+15=24,故选D.10.【答案】D【解析】A.若a=b,则a3=b3.根据等式的性质1,式子成立,故此选项正确;B.若3x=3y,则x=y.根据等式的性质2,式子成立,故此选项正确;C.若a=b,则.根据等式的性质2,式子成立,故此选项正确;D.若x2=5x,则x=5.若x=0,根据等式的性质2,式子不成立,故此选项错误.故选D.11.【答案】B【解析】移项是解方程的一个重要步骤,主要记住移项要变号.解:由原方程,移项得4x-3x=-2-1,故选B.12.【答案】B【解析】方程两边同时乘以0.3,去分母得:x=0.36.故选B.13.【答案】或【解析】根据题意得:=4x-5或=-(4x-5),解得:x=或x=.故答案为:或14.【答案】20%(108+x)=54-x【解析】设把x公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x).15.【答案】2a-3=3a【解析】根据题意得:2a-3=3a.故答案为:2a-3=3a.16.【答案】14立方米【解析】由7,所以5月份的用水量超过7立方米.设该居民5月份的用水量为x立方米,由题意得7,解得x=14.即该居民5月份的用水量为14立方米.17.【答案】解:(1)设运输路程为x千米,由题意得400+4x=820+2x,解得x=210.答:若两种运输的总费用相等,则运输路程是210千米.(2)若运输路程是800千米时,方式一的运输费用为:400+4800=3600(元)方式二的运输费用为:820+2800=2420(元)由24203600,所以运输路程是800千米时,这家公司应选方式二的运输方式.【解析】(1)设运输路程为x千米,根据两种运输的总费用相等列出方程进行求解即可;(2)当运输路程为800千米时,分别计算出两种方式的运输费用进行比较.18.【答案】解:设种植作物甲的面积是x平方米,则种植农作物乙的面积是(100×50-x)平方米,依题意有x:[2(100×50-x)]=3:4,解得x=3000,100×50-x=5000-3000=2000.答:种植作物甲的面积是3000平方米,种植作物乙的面积是2000平方米,使甲、乙两种作物的总产量的比为3:4.【解析】可设种植作物甲的面积是x平方米,则种植农作物乙的面积是(100×50-x)平方米,根据甲、乙两种作物的总产量的比为3:4,列出方程求解即可.19.【答案】解:由定义可知:,等式两边同时乘3得;6+2x=2.等式两边同时减6得;2x=-4,等式两边同时除2得:x=-2.【解析】20.【答案】解:因为+5=是一元一次方程所以,5n4=1,解得n=1所以n的值为1.【解析】21.【答案】解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(35-x)人,根据题意可列方程:120x=2×80(35-x),解得:x=20,则35-x=15.答:生产圆形铁片的有20人,生产长方形铁片的有15人.【解析】可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(35-x)人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.。

人教版七年级上册数学 第三章 一元一次方程 单元综合测试(含解析)

人教版七年级上册数学 第三章 一元一次方程 单元综合测试(含解析)

第三章一元一次方程单元综合测试一.选择题1.已知下列方程:①=+1;②x+y=3;③x=0;④x2+4x=3;⑤x﹣3=;⑥x (1﹣2x)=3x﹣1,其中是一元一次方程的有()A.①③⑤B.①③⑥C.①③D.⑤⑥2.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y3.一元一次方程3x﹣(x﹣1)=1的解是()A.x=2B.x=1C.x=0D.x=﹣14.解一元一次方程,去分母正确的是()A.5(3x+1)﹣2=(3x﹣2)﹣2(2x+3)B.5(3x+1)﹣20=(3x﹣2)﹣2(2x+3)C.5(3x+1)﹣20=(3x﹣2)﹣(2x+3)D.5(3x+1)﹣20=3x﹣2﹣4x+65.下列方程变形中,正确的是()A.方程5x﹣2=2x+1,移项,得5x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+1C.方程x=,系数化为1,得x=1D.方程=,去分母得x+1=3x﹣16.关于x的一次二项式ax+b的值随x的变化而变化,分析下表列举的数据,若ax+b=11,则x的值是()x﹣101 1.5ax+b﹣3﹣112 A.3B.﹣5C.6D.不存在7.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x,﹣x}=3x﹣2的解为()A.B.1C.1或D.或8.学校组织同学们春游,如果每辆汽车坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x辆汽车,则可列方程()A.45x+28=50x﹣12B.45x﹣28=50x+12C.45x﹣28=50x﹣12D.45x+28=50x+129.某车间有30名工人,生产某种由一个螺栓两个螺母组成的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程正确的是()A.22x=16(30﹣x)B.16x=22(30﹣x)C.2×16x=22(30﹣x)D.2×22x=16(30﹣x)10.现定义运算“*”,对于任意有理数a,b满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,若x*3=5,则有理数x的值为()A.4B.11C.4或11D.1或11二.填空题11.关于x的一元一次方程x+k=6的解为x=8,则k=.12.如果2x+3的值与1﹣3x的值互为相反数,那么x=.13.若(a﹣2)x|a|﹣1﹣7=0是一个关于x的一元一次方程,则a=.14.已知y1=x+2,y2=4x﹣7,当x=时,y1﹣y2=0.15.关于x的方程:﹣x﹣5=4的解为.16.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.17.解方程5(x﹣2)=6(﹣).有以下四个步骤,其中第①步的依据是.解:①去括号,得5x﹣10=3x﹣2.②移项,得5x﹣3x=10﹣2.③合并同类项,得2x=8.④系数化为1,得x=4.18.一艘船往返于A、B两地,由A到B顺流行驶需要6小时,由B到A逆流行驶需要8小时,已知水流速度为3千米/时,船在静水中的速度为v千米/时,则可以列方程为.19.定义一种新运算“⊙”规则如下:对于两个有理数a,b,a⊙b=ab﹣b,若(5⊙x)⊙(﹣2)=﹣1,则x=.20.对于任意有理数a,b,c,d,我们规定=ad﹣bc,如=1×4﹣2×3.若=﹣2,则可列方程为.三.解答题21.解方程:(1)2x﹣3=5;(2).22.解方程(1)3x+7=32﹣2x;(2).23.当m为何值时,式子与的值相等?24.几个人共同种一批树苗,如果每人种13棵,则缺4棵树苗;如果每人种11棵,又剩下6棵树苗未种.求这批树苗的棵数.25.马虎同学在解方程﹣m=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.26.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,给南昌6台,每台机器的运费(单位:元/台)如下表.设杭州厂运往南昌的机器为x台.南昌武汉终点起点温州厂400800杭州厂300500(1)用含x的代数式来表示总运费;(2)若总运费为8400元,求杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能,请写出相应的调动方案;若无可能,请说明理由.参考答案一.选择题1.解:①=+1属于一元一次方程;②x+y=3属于二元一次方程;③x=0属于一元一次方程;④x2+4x=3属于一元二次方程;⑤x﹣3=属于分式方程;⑥x(1﹣2x)=3x﹣1属于一元二次方程;故选:C.2.解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.3.解:去括号得3x﹣x+1=1,移项得3x﹣x=1﹣1,合并得2x=0,系数化为1得x=0.故选:C.4.解:方程两边都乘以10,得:5(3x+1)﹣20=(3x﹣2)﹣2(2x+3).故选:B.5.解:A.方程5x﹣2=2x+1,移项,得5x﹣2x=1+2,此选项错误;B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,此选项错误;C.方程x=,系数化为1,得x=,此选项错误;D.方程=,去分母得x+1=3x﹣1,此选项正确;故选:D.6.解:设y=ax+b,把(0,﹣1)和(1,1)代入得:,解得:,∴2x﹣1=11,解得:x=6.故选:C.7.解:当x>﹣x,即x>0时,方程变形得:x=3x﹣2,解得:x=1;当x<﹣x,即x<0时,方程变形得:﹣x=3x﹣2,解得:x=,不符合题意;∴方程max{x,﹣x}=3x﹣2的解为1,故选:B.8.解:设有x辆汽车,根据题意得:45x+28=50x﹣12.故选:A.9.解:设分配x名工人生产螺栓,则(30﹣x)人生产螺母,由题意得:2×22x=16(30﹣x),故选:D.10.解:当x≥3,则x*3=2x﹣3=5,x=4;当x<3,则x*3=x﹣2×3=5,x=11,但11>3,这与x<3矛盾,所以此种情况舍去.即:若x*3=5,则有理数x的值为4,故选:A.二.填空题11.解:把x=8代入方程x+k=6得:4+k=6,解得:k=2,故答案为:2.12.解:∵2x+3的值与1﹣3x的值互为相反数,∴2x+3+1﹣3x=0,﹣x=﹣4,x=4.故答案为:4.13.解:∵(a﹣2)x|a|﹣1﹣7=0是一个关于x的一元一次方程,∴a﹣2≠0且|a|﹣1=1,解得a=﹣2;故答案为:﹣2.14.解:由题意可得,(x+2)﹣(4x﹣7)=0,去括号,得x+2﹣4x+7=0,移项,得x﹣4x=0﹣2﹣7,合并同类项,得﹣3x=﹣9,系数化1,得x=3.故答案为:3.15.解:移项,合并同类项,可得:﹣x=9,系数化为1,可得:x=﹣27.故答案为:x=﹣27.16.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.17.解:第①步去括号的依据是:乘法分配律.故答案是:乘法分配律.18.解:由题意得:6(v+3)=8(v﹣3),故答案为:6(v+3)=8(v﹣3).19.解:∵a⊙b=ab﹣b,(5⊙x)⊙(﹣2)=﹣1,∴(5x﹣x)⊙(﹣2)=﹣1,4x⊙(﹣2)=﹣1,(﹣2)×4x﹣(﹣2)=﹣1,﹣8x=﹣1﹣2,﹣8x=﹣3,x=.故答案为:.20.解:∵=ad﹣bc,=﹣2,∴﹣4x﹣3×(﹣2)=﹣2.故答案为:﹣4x﹣3×(﹣2)=﹣2.三.解答题21.解:(1)2x﹣3=5,移项得:2x=5+3,合并同类项得:2x=8,系数化为1得:x=4;(2),去分母得:x+1+6=3x,移项得:x﹣3x=﹣1﹣6,合并同类项得:﹣2x=﹣7,系数化为1得:x=3.5.22.解:(1)3x+7=32﹣2x,3x+2x=32﹣7,5x=25,x=5;(2),5(3x+1)﹣20=2(3x﹣2)﹣(2x+3),15x+5﹣20=6x﹣4﹣2x﹣3,15x﹣6x+2x=﹣4﹣3﹣5+20,11x=8,.23.解:根据题意得:=,去分母得:15m﹣5m+5=105﹣3m﹣9,移项合并得:13m=91,解得:m=7,所以,当m=7时,式子与的值相等.24.解:设x人参与种树,依题意,得13x﹣4=11x+6,解得:x=5.所以13x﹣4=13×5﹣4=61.答:这批树苗有61棵.25.解:把x=1代入方程+m=得:﹣1+m=,解得:m=1,当m=1时,m2﹣2m+1=1﹣2+1=0.26.解:(1)设杭州运往南昌的机器为x台,则杭州运往武汉的机器为(4﹣x)台,温州运往南昌的机器为(6﹣x)台,温州运往武汉的机器为[10﹣(6﹣x)]台,则总运费=300x+500(4﹣x)+400(6﹣x)+800[10﹣(6﹣x)]=(200x+7600)(元)(0≤x≤4);(2)当总运费为8400元时,得200x+7600=8400,解得:x=4.故杭州厂运往南昌的机器应为4台;(3)可能,依题意有200x+7600=7800,解得x=1,符合实际意义,方案为从杭州向南昌调动1台,向武汉调动3台;从温州向南昌调动5台,向武汉调动5台.。

2018年秋部编版七年级上册数学第三章一元一次方程单元测试卷含答案解析)

2018年秋部编版七年级上册数学第三章一元一次方程单元测试卷含答案解析)

2018年七年级上学期第三章单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各式符合代数式书写规范的是()A .b aB .a ×7C .2m ﹣1元D .321x2.(4分)已知苹果每千克m 元,则2千克苹果共多少元?()A .m ﹣2B .m +2C .2mD .2m3.(4分)按如图所示的运算程序,能使输出的结果为12的是()A .x=3,y=3B .x=﹣4,y=﹣2C .x=2,y=4D .x=4,y=24.(4分)下列各式中不是方程的是()A .2x +3y=1B .3π+4≠5C .﹣x +y=4D .x=85.(4分)已知x=2是关于x 的方程3x +a=0的一个解,则a 的值是()A .﹣6B .﹣3C .﹣4D .﹣56.(4分)已知k=1234-+x x ,则满足k 为整数的所有整数x 的和是()A .﹣1B .0C .1D .27.(4分)下列变形中:①由方程512-x =2去分母,得x ﹣12=10;②由方程92x=29两边同除以92,得x=1;③由方程6x ﹣4=x +4移项,得7x=0;④由方程2﹣2365+=-x x 两边同乘以6,得12﹣x ﹣5=3(x +3).错误变形的个数是()个.A .4B .3C .2D .18.(4分)若2x ﹣3和1﹣4x 互为相反数,则x 的值是()A .0B .1C .﹣1D .329.(4分)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是()A .3x ﹣2=2x +9B .3(x ﹣2)=2x +9C .9223-=+x xD .3(x ﹣2)=2(x +9)10.(4分)甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为()A .5B .4C .3D .2评卷人得分二.填空题(共4小题,满分20分,每小题5分)11.(5分)将等式3a ﹣2b=2a ﹣2b 变形,过程如下:因为3a ﹣2b=2a ﹣2b ,所以3a=2a (第一步),所以3=2(第二步),上述过程中,第一步的根据是,第二步得出了明显错误的结论,其原因是.12.(5分)规定一种运算“*”,a*b=a ﹣2b ,则方程x*3=2*3的解为13.(5分)若(5x +2)与(﹣2x +9)互为相反数,则x ﹣2的值为.14.(5分)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.评卷人得分三.解答题(共9小题,满分90分)15.(8分)解下列方程:(1)2(x +3)=5(x ﹣3)(2)x x x --=-53431216.(8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.17.(8分)老师在黑板上写了一个等式:(a +3)x=4(a +3).王聪说x=4,刘敏说不一定,当x ≠4时,这个等式也可能成立.你认为他俩的说法正确吗?用等式的性质说明理由.18.(8分)小李读一本名著,星期六读了36页,第二天读了剩余部分的1,这两天共读了整本书的83,这本名著共有多少页?19.(10分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.20.(10分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(12分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.22.(12分)植树节前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同,每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.23.(14分)某市对供水范围内的居民用水实行“阶梯收费”,具体收费标准如表:一户居民一个月用水为x立方米水费单价(单位:元/立方米)x≤22a超出22立方米的部分a+1.1某户居民三月份用水10立方米时,缴纳水费23元(1)求a的值;(2)若该户居民四月份所缴水贵为71元,求该户居民四月份的用水量.2018年七年级上学期第三章单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据代数式的书写要求判断各项.【解答】解:A、代数式书写规范,故A符合题意;B、数字与字母相乘时,数字要写在字母的前面,故B不符合题意;C、代数式作为一个整体,应该加括号,故C不符合题意;D、带分数要写成假分数的形式,故D不符合题意;故选:A.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C .【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据方程的定义(含有未知数的等式叫方程),即可解答.【解答】解:3π+4≠5中不含未知数,所以错误.故选:B .【点评】本题主要考查了方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.5.【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.【解答】解:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A .【点评】本题主要考查了方程解的定义,已知x=2是方程的解实际就是得到了一个关于a 的方程.6.【分析】将k 变形为2+125-x ,据此可得2x ﹣1=±1或±5时k 取得整数,解之求得x 的值可得答案.【解答】解:∵k=1234-+x x =12524-+-x x =()125122-+-x x =2+125-x ,∴当2x ﹣1=1或2x ﹣1=﹣1或2x ﹣1=5或2x ﹣1=﹣5时,k 为整数,解得:x=1或x=0或x=3或x=﹣2,则满足k 为整数的所有整数x 的和为1+0+3﹣2=2,故选:D .【点评】本题主要考查一元一次方程的解,解题的关键是将k 变形为2+125-x ,并根据k 为整数得出关于x 的方程.7.【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【解答】解:①方程512-x =2去分母,两边同时乘以5,得x ﹣12=10.②方程92x=29,两边同除以92,得x=481;要注意除以一个数等于乘以这个数的倒数.③方程6x ﹣4=x +4移项,得5x=8;要注意移项要变号.④方程2﹣2365+=-x x 两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号.故②③④变形错误故选:B .【点评】在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.8.【分析】根据相反数的定义即可求出答案.【解答】解:由题意可知:2x ﹣3+1﹣4x=0∴﹣2x ﹣2=0,∴x=﹣1故选:C .【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.9.【分析】设车x 辆,根据乘车人数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设车x 辆,根据题意得:3(x ﹣2)=2x +9.故选:B .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.【分析】可设两人相遇的次数为x ,根据每次相遇的时间452100+⨯,总共时间为100s ,列出方程求解即可.【解答】解:设两人相遇的次数为x ,依题意有452100+⨯x=100,解得x=4.5,∵x 为整数,∴x 取4.故选:B .【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.二.填空题(共4小题,满分20分,每小题5分)11.【分析】利用等式的基本性质判断即可.【解答】解:将等式3a ﹣2b=2a ﹣2b 变形,过程如下:因为3a ﹣2b=2a ﹣2b ,所以3a=2a (第一步),所以3=2(第二步),上述过程中,第一步的根据是等式的基本性质1,第二步得出了明显错误的结论,其原因是没有考虑a=0的情况,故答案为:等式的基本性质1;没有考虑a=0的情况【点评】此题考查了等式的性质,熟练掌握等式的基本性质是解本题的关键.12.【分析】根据新定义运算法则列出关于x 的一元一次方程,通过解该方程来求x 的值.【解答】解:依题意得:x ﹣2×3=2﹣2×3,解得:x=2,故答案为:x=2【点评】本题立意新颖,借助新运算,实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.13.【分析】利用互为相反数两数之和为0列出关于x 的方程,求出方程的解得到x 的值,即可确定出x ﹣2的值.【解答】解:由题意可列方程5x +2=﹣(﹣2x +9),解得:x=﹣13;则x ﹣2=﹣311﹣2=﹣317.故答案为:﹣317.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.14.【分析】设小华购买了x 个笔袋,根据原单价×购买数量(x ﹣1)﹣打九折后的单价×购买数量(x )=节省的钱数,即可得出关于x 的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.【解答】解:设小华购买了x 个笔袋,根据题意得:18(x ﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共9小题,满分90分)15.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)2x+6=5x﹣15﹣3x=﹣21x=7(2)10x﹣5=12﹣9x﹣15x34x=171x=2【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.16.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解答】解:(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:4m;(2)矩形的面积为(m+n)(m﹣n),把m=7,n=4代入(m+n)(m﹣n)=11×3=33.【点评】此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答.17.【分析】利用等式的基本性质分别得出答案.【解答】解:他俩的说法正确,当a +3=0时,x 为任意实数,当a +3≠0时,x=4.【点评】此题主要考查了等式的基本性质,利用分类讨论得出是解题关键.18.【分析】设这本名著共有x 页,根据头两天读的页数是整本书的83,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设这本名著共有x 页,根据题意得:36+41(x ﹣36)=83x ,解得:x=216.答:这本名著共有216页.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【分析】(1)设每套课桌椅的成本为x 元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.20.【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+x=100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.22.【分析】设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x﹣5)元,根据购进200棵柏树苗和120棵枣树苗所需费用相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x﹣5)元,根据题意得:200x=120(2x﹣5),解得:x=15.答:每棵柏树苗的进价是15元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.【分析】(1)由三月份的水费=水费单价×用水量,即可得出关于a的一元一次方程,解之即可得出结论;(2)设该户居民四月份的用水量为x立方米,先求出当用水量为22立方米时的应缴水费,比较后可得出x>22,再根据四月份的水费=2.3×22+(2.3+1.1)×超出22立方米的部分,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:10a=23,解得:a=2.3.答:a的值为2.3.(2)设该户居民四月份的用水量为x立方米.∵22×2.3=50.6(元),50.6<71,∴x>22.根据题意得:22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28.答:该户居民四月份的用水量为28立方米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。

【数学】人教版七年级数学上册第三章一元一次方程单元测试(解析版).doc

【数学】人教版七年级数学上册第三章一元一次方程单元测试(解析版).doc

人教版七年级上册第三章一元一次方程单元测试卷一、选择题(每小题3分,共30分)1.以下方程是一元一次方程的是( )A.3x+2y=5B.y2-6y+5=0C.x=D.3x-2=4x-72.方程---=1中有一个数字被墨水盖住了,看后面的答案,知道这个方程的解是x=-1,那么墨水盖住的数字是( )A. B.1 C.- D.03.(2017山东日照一中期末)如图3-5-1,为做一个试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2 cm,则x(单位:cm)等于( )图3-5-1A. B.- C.- D.-4.下列变形正确的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x+x=1+2C.若-2x=5,则x=5+2D.若-x=1,则x=-35.若代数式3a4b2x与0.2b3x-1a4是同类项,则x的值是( )A. B.1 C. D.06.下列做法正确的是( )A.方程-=1+-去分母,得2(2x-1)=1+3(x-3)B.方程4x=7x-8移项,得4x-7x=8C.方程3(5x-1)-2(2x-3)=7去括号,得15x-3-4x-6=7D.方程1-x=3x+移项,得-x-3x=-17.(2017湖南娄底中考)湖南省2017年公务员录用考试是这样统计成绩的:综合成绩=笔试成绩×60%+面试成绩×40%.小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多( )A.2.4分B.4分C.5分D.6分8.定义“*”运算为“a*b=ab+2a”,若(3*x)+(x*3)=14,则x=( )A.-1B.1C.-2D.29.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个足球队踢了14场比赛,负了5场,共得19分,那么这个队胜了的场数是( )A.3B.4C.5D.610.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款( )A.288元B.332元C.288元或316元D.332元或363元二、填空题(每小题3分,共30分)11.(2017安徽淮北一中月考)方程3x+1=7的解是.答案x=212.当x= 时,代数式x+2与代数式-的值相等.13.小明在解方程5a-x=13(x为未知数)时,误将-x看成了+x,解得方程的解是x=-2,则原方程的解为.14.(2016山东济南一中月考)方程x+2m=3x-4与方程x-1=2的解相同,则m的值为.15.有一个密码系统,其原理如图3-5-2:图3-5-2当输出11时,则输入的x= .16.(2016湖北荆门中考)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.17.有一个两位数,个位上的数字比十位上的数字大4,且个位上的数字与十位上的数字的和只有这个两位数的,则这个两位数是.18.(2016湖北襄阳中考)王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜袋.19.某商店的老板销售服装,他要以不低于进价120%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的大衣,最多降价元. 20.当m的值为时(只需写出一个即可),关于x的方程--=的解为整数.三、解答题(共40分)21.(10分)解方程:(1)4y-3(20-y)=6y-7(11-y);(2)=-1.22.(2017安徽中考)(6分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?23.(8分)如果关于x的方程--8=-的解与方程4x-(3a+1)=6x+2a-1的解相同,求字母a 的值.24.(2016江西中考)(8分)图3-5-3是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成的.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图3-5-3①所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图3-5-3②所示).图3-5-3③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50 cm,第2节套管长46 cm,依此类推,每一节套管均比前一节套管少4 cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311 cm,求x的值.①②③图3-5-325.(2017四川绵阳中学期末)(8分)某校计划购买20张书柜和一批书架,现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每个70元.A超市的优惠政策为每买一张书柜赠送一个书架,B超市的优惠政策为所有商品打8折出售.设该校购买x(x>20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A超市需准备元货款,到B超市需准备元货款;(用含x的式子表示)(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20张书柜和100个书架,且可到两家超市自由选购,你认为至少需准备多少元货款, 并说明理由.第三章一元一次方程满分:100分,限时:60分钟一、选择题(每小题3分,共30分)1.以下方程是一元一次方程的是( )A.3x+2y=5B.y2-6y+5=0C.x=D.3x-2=4x-7答案 D 本题考查一元一次方程的定义.需注意三点:(1)只含有一个未知数;(2)未知数的次数是1;(3)分母中不含未知数.2.方程---=1中有一个数字被墨水盖住了,看后面的答案,知道这个方程的解是x=-1,那么墨水盖住的数字是( )A. B.1 C.- D.0答案 B 把x=-1代入方程得-----=1,则 =1,故选B.3.(2017山东日照一中期末)如图3-5-1,为做一个试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2 cm,则x(单位:cm)等于( )图3-5-1A. B.- C.- D.-答案 D 由题意知5x+2×4=a,解得x=-=-.4.下列变形正确的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x+x=1+2C.若-2x=5,则x=5+2D.若-x=1,则x=-3答案 D A中,若2x-3=7,则2x=7+3,故此选项错误;B中,若3x-2=x+1,则3x-x=1+2,故此选项错误;C中,若-2x=5,则x=-,故此选项错误;D中,若-x=1,则x=-3,故此选项正确.故选D.5.若代数式3a4b2x与0.2b3x-1a4是同类项,则x的值是( )A. B.1 C. D.0答案 B 因为3a4b2x与0.2b3x-1a4是同类项,所以2x=3x-1,解得x=1.6.下列做法正确的是( )A.方程-=1+-去分母,得2(2x-1)=1+3(x-3)B.方程4x=7x-8移项,得4x-7x=8C.方程3(5x-1)-2(2x-3)=7去括号,得15x-3-4x-6=7D.方程1-x=3x+移项,得-x-3x=-1答案 D A.去分母得2(2x-1)=6+3(x-3);B.移项得4x-7x=-8;C.去括号得15x-3-4x+6=7,D 正确.7.(2017湖南娄底中考)湖南省2017年公务员录用考试是这样统计成绩的:综合成绩=笔试成绩×60%+面试成绩×40%.小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多( )A.2.4分B.4分C.5分D.6分答案 D 设小红姐姐要使自己的综合成绩追平竞争对手,她的面试成绩必须比竞争对手多x分,根据题意得,86×60%=82×60%+x×40%,解得x=6,故选D.8.定义“*”运算为“a*b=ab+2a”,若(3*x)+(x*3)=14,则x=( )A.-1B.1C.-2D.2答案 B 由题意得3x+6+3x+2x=14,解得x=1.9.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个足球队踢了14场比赛,负了5场,共得19分,那么这个队胜了的场数是( )A.3B.4C.5D.6答案 C 设这个队胜了x场,则平了(14-5-x)场,根据题意,得3x+(14-5-x ×1+5×0=19,解得x=5,故选C.10.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款( )A.288元B.332元C.288元或316元D.332元或363元答案 C 第一次购物显然没有超过100元,即在第一次消费80元的情况下,李明的实际购物价钱只能是80元.第二次购物消费252元,可能有两种情况,这两种情况下的付款方式不同(折扣不同 :①李明消费超过100元但不足300元,这时候他是按照9折付款的,设第二次实际购物价钱为x元,依题意有x×0.9=252,解得x=280;②李明消费超过300元,这时候他是按照8折付款的,设第二次实际购物价钱为y元,依题意有y×0.8=252,解得y=315.综上所述,在第二次消费252元的情况下,他的实际购物价钱可能是280元,也可能是315元,即李明两次购物的实际价钱为80+280=360(元)或80+315=395(元),若李明一次性购买,则应付款360×0.8=288 元)或395×0.8=316 元),故选C.二、填空题(每小题3分,共30分)11.(2017安徽淮北一中月考)方程3x+1=7的解是.答案x=2解析因为3x+1=7,所以3x=6,所以x=2.12.当x= 时,代数式x+2与代数式-的值相等.答案解析由题意得x+2=-,去分母,得2x+4=8-x,移项,得2x+x=8-4,合并同类项,得3x=4,系数化为1,得x=.13.小明在解方程5a-x=13(x为未知数)时,误将-x看成了+x,解得方程的解是x=-2,则原方程的解为.答案x=2解析先将x=-2代入方程5a+x=13中,解得a=3,再解方程5×3-x=13,得x=2.14.(2016山东济南一中月考)方程x+2m=3x-4与方程x-1=2的解相同,则m的值为.答案 1解析由题意得,x=3,把x=3代入方程x+2m=3x-4,解得m=1.15.有一个密码系统,其原理如图3-5-2:图3-5-2当输出11时,则输入的x= .答案 3解析根据题意,列方程得2x+5=11,解得x=3.16.(2016湖北荆门中考)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台. 答案16解析设台式电脑为x台,那么笔记本电脑的数量是-台,根据题意,得x+-=100,解得 x=84,当x=84时,x-5=16,故答案为16.17.有一个两位数,个位上的数字比十位上的数字大4,且个位上的数字与十位上的数字的和只有这个两位数的,则这个两位数是.答案48解析设这个两位数的十位上的数字为x,则个位上的数字为x+4,根据题意得x+x+4=(10x+x+4),解得x=4,所以x+4=4+4=8.所以这个两位数为48.18.(2016湖北襄阳中考)王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜袋.答案33解析设王经理带回孔明菜x袋,根据题意得-=.解这个方程,得x=33.19.某商店的老板销售服装,他要以不低于进价120%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的大衣,最多降价元.答案120解析设该件大衣的进价为x元,根据题意得x(1+80%)=360,解得x=200,则该件大衣的进价为200元.老板出售该件大衣的最低价为200×120%=240 元).因此最多降价360-240=120(元).20.当m的值为时(只需写出一个即可),关于x的方程--=的解为整数.答案答案不唯一,如6等解析去分母后,解得x=,只需使5m+5是7的整数倍即可.三、解答题(共40分)21.(10分)解方程:(1)4y-3(20-y)=6y-7(11-y);(2)=-1.解析(1)去括号,得4y-60+3y=6y-77+7y,移项,得4y+3y-6y-7y=-77+60,合并同类项,得-6y=-17,系数化为1,得y=.(2)去分母,得4(x+1)=5(x+1)-6,去括号,得4x+4=5x+5-6,移项,得4x-5x=5-6-4,合并同类项,得-x=-5,系数化为1,得x=5.22.(2017安徽中考)(6分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.解析设共有x人.根据题意,得8x-3=7x+4,解得x=7.所以这个物品的价格为8×7-3=53(元).答:共有7人,这个物品的价格为53元.23.(8分)如果关于x的方程--8=-的解与方程4x-(3a+1)=6x+2a-1的解相同,求字母a 的值.解析解方程--8=-得x=10.把x=10代入4x-(3a+1)=6x+2a-1中,得40-(3a+1)=60+2a-1,去括号得40-3a-1=60+2a-1,移项、合并同类项得5a=-20,系数化为1得a=-4.24.(2016江西中考)(8分)图3-5-3是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成的.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图3-5-3①所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图3-5-3②所示).图3-5-3③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50 cm,第2 人教版七年级上册数学《第3章一元一次方程》单元测试题(解析版)一.选择题(共10小题)1.比x的五分之三多7的数表示为()A.B.C.D.2.若关于x的方程(m﹣2)x|m﹣1|+5m+1=0是一元一次方程,则m的值是()A.0B.1C.2D.2或03.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.104.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1B.1C.5D.﹣55.下列方程变形过程正确的是()A.由x+1=6x﹣7得x﹣6x=7﹣1B.由4﹣2(x﹣1)=3得4﹣2x﹣2=3C.由得2x﹣3=0D.由得2x=96.在有理数范围内定义运算“*”,其规则为a*b=﹣,则方程(2*3)(4*x)=49的解为()A.﹣3B.﹣55C.﹣56D.557.根据“x的3倍与5的和比x的2倍少1”列出方程是()A.3x+5=2x+1B.3x+5=2x﹣1C.3(x+5)=2x﹣1D.3(x+5)=2x+18.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.259.如图是某运算程序,该程序是循环迭代的一种.根据该程序的指令,如果输入x的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是()A.4B.3C.2D.110.在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x名司机师傅挖土,其他的人运土,列方程①=;②72﹣x=;③x+3x=72;④=3上述所列方程,正确的有()个.A.1B.2C.3D.4二.填空题(共8小题)11.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.12.已知x﹣2y+3=8,那么整式2x﹣4y﹣2的值是.13.如果x7﹣2k+2=5是关于x的一元一次方程,那么k=.14.若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于.15.当x=时,代数式x+1与3x﹣5的值互为相反数.16.已知a、b、c、d为有理数,现规定一种新运算:=ad﹣bc,那么当=4时,则x=.17.七、八年级学生分别到李中水上森林公园和施耐庵纪念馆参加社会实践活动,共648人,到李中水上森林公园的人数是到施耐庵纪念纪念馆人数的2倍多48人.设到施耐庵纪念馆的人数为x,可列方程为.18.如图,在2018年10月的月历上,任意圈出一个由3个数组成的竖列如果它们的和为36,那么其中最小的数是2018年10月号.三.解答题(共7小题)19.解方程:(1)5x+2=3(x+2)(2)=120.如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:(1)菜地的长a=m,宽b=m;(2)菜地面积S=m2;(3)当x=0.5m时,菜地面积是多少?21.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.22.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若a的相反数还是a,b=﹣3,c是最大的负整数,求a+b﹣c的值.23.用一段长60厘米的铁丝围成一个长方形,如果长方形的宽是长的,求这个长方形的长和宽.24.2018年的夏季特别炎热,某空调厂家研究决定多生产A、B、C三种型号的空调共2000台,其中A、B、C三种型号的空调多生产的数量比为1:6:3,问A、B、C三种型号的空调各多生产多少台?25.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动.已知点A的速度是1单位长度/秒,点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求请在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点在(1)中的位置,数轴上是否存在一点P到点A,点B的距离之和为16,并求出此时点P表示的数;若不存在,请说明理由.(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A 点时,C点立即停止运动.若点C一直以10单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?2018年秋人教版七年级上册数学《第3章一元一次方程》单元测试题参考答案与试题解析一.选择题(共10小题)1.比x的五分之三多7的数表示为()A.B.C.D.【分析】利用已知假设出这个数为x,x的五分之三即为x,比x的五分之三多7,即为x+7.【解答】解:假设出这个数为x:∵x的五分之三是为x,比x的五分之三多7的数即为:x+7;故选:A.【点评】此题主要考查了如何列代数式,应注意搞清题目要求,即分解好题干,分步进行列代数式.2.若关于x的方程(m﹣2)x|m﹣1|+5m+1=0是一元一次方程,则m的值是()A.0B.1C.2D.2或0【分析】根据一元一次方程的定义,需满足x的指数为1,系数为0.【解答】解:因为方程是关于x的一元一次方程,所以|m﹣1|=1,且m﹣2≠0解得m=0.故选:A.【点评】本题考查了一元一次方程的定义,解决本题的关键是理解一元一次方程的定义3.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.10【分析】根据一元一次方程的解法求解即可.【解答】解:移项,得2x﹣3x=6+4整理,得﹣x=10,系数化为1,得x=﹣10.故选:C.【点评】本题考查了一元一次方程的解法.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.4.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1B.1C.5D.﹣5【分析】根据互为相反数的和为零,可得关于x的方程,根据解方程,可得x的值,根据有理数的减法,可得答案.【解答】解:由题意,得5x+2+(﹣2x+7)=0,解得x=﹣3,2﹣x=5,故选:C.【点评】本题考查了解一元一次方程,相反数,利用相反数的意义得出关于x的方程是解题关键.5.下列方程变形过程正确的是()A.由x+1=6x﹣7得x﹣6x=7﹣1B.由4﹣2(x﹣1)=3得4﹣2x﹣2=3C.由得2x﹣3=0D.由得2x=9【分析】将四个选项中的方程进行变形,对比后即可得出结论.【解答】解:A、∵x+1=6x﹣7,∴x﹣6x=﹣7﹣1,选项A错误;B、∵4﹣2(x﹣1)=3,∴4﹣2x+2=3,选项B错误;C、∵,∴2x﹣3=0,选项C正确;D、∵,∴2x=﹣9,选项D错误.故选:C.【点评】本题考查了解一元一次方程,利用解一元一次方程的方法将原方程进行变形是解题的关键.6.在有理数范围内定义运算“*”,其规则为a*b=﹣,则方程(2*3)(4*x)=49的解为()A.﹣3B.﹣55C.﹣56D.55【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:﹣×(﹣)=49,整理得:56+7x=441,解得:x=55,故选:D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.根据“x的3倍与5的和比x的2倍少1”列出方程是()A.3x+5=2x+1B.3x+5=2x﹣1C.3(x+5)=2x﹣1D.3(x+5)=2x+1【分析】直接利用x的3倍与5的和为3x+5,比x的2倍少1,进而得出等式【解答】解:由题意可得:3x+5=2x﹣1.故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.8.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.25【分析】设乙中途离开了x天,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设乙中途离开了x天,根据题意得:×40+×(40﹣x)=1,解得:x=25,则乙中途离开了25天.故选:D.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.9.如图是某运算程序,该程序是循环迭代的一种.根据该程序的指令,如果输入x的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是()A.4B.3C.2D.1【分析】把x=10代入运算程序中计算,找出一般性规律,即可得到结果.【解答】解:把x=10代入得:×10=5,把x=5代入得:5+1=6,把x=6代入得:×6=3,把x=3代入得:3+1=4,把x=4代入得:×4=2,把x=2代入得:×2=1,把x=1代入得:1+1=2,依此类推,∵(2018﹣4)÷2=1002,∴第2018次输出的结果为1.故选:D.【点评】本题主要考查的是求代数式的值,通过计算找出其中的规律是解题的关键.10.在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x名司机师傅挖土,其他的人运土,列方程①=;②72﹣x=;③x+3x=72;④=3上述所列方程,正确的有()个.A.1B.2C.3D.4【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:①=;②72﹣x=;④=3,故①②④正确,故正确的有3个,故选:C.【点评】考查了由实际问题抽象出一元一次方程.解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.二.填空题(共8小题)11.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数.【分析】根据练习本每本a元,铅笔每支b元,知道8a+3b是买8本练习本和3支铅笔需要的总钱数.【解答】解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.【点评】本题考查了代数式的实际意义,此类问题应结合实际,根据代数式的特点解答.12.已知x﹣2y+3=8,那么整式2x﹣4y﹣2的值是8.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x﹣2y+3=8,∴x﹣2y=5,∴原式=2(x﹣2y)﹣2=10﹣2=8.故答案为:8.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.如果x7﹣2k+2=5是关于x的一元一次方程,那么k=3.【分析】根据一元一次方程的定义,列出关于k的一元一次方程,解之即可.【解答】解:根据题意得:7﹣2k=1,解得:k=3,故答案为:3.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.14.若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于5.【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.15.当x=1时,代数式x+1与3x﹣5的值互为相反数.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+1+3x﹣5=0,移项合并得:4x=4,解得:x=1,故答案为:1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.已知a、b、c、d为有理数,现规定一种新运算:=ad﹣bc,那么当=4时,则x=﹣0.5.【分析】根据新运算规定,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:由题意,得5(2x+3)﹣4(1﹣x)=4,解得x=﹣0.5,故答案为:x=﹣0.5【点评】此题考查了解一元一次方程,利用新运算规定得出一元一次方程是解题关键.17.七、八年级学生分别到李中水上森林公园和施耐庵纪念馆参加社会实践活动,共648人,到李中水上森林公园的人数是到施耐庵纪念纪念馆人数的2倍多48人.设到施耐庵纪念馆的人数为x,可列方程为x+2x+48=648.【分析】设到施耐庵纪念馆的人数为x,则到李中水上森林公园的人数为(2x+48),根据到李中水上森林公园和施耐庵纪念馆参加社会实践活动的共648人,即可得出关于x的一元一次方程,此题得解.【解答】解:设到施耐庵纪念馆的人数为x,则到李中水上森林公园的人数为(2x+48),根据题意得:x+2x+48=648.故答案为:x+2x+48=648.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.18.如图,在2018年10月的月历上,任意圈出一个由3个数组成的竖列如果它们的和为36,那么其中最小的数是2018年10月5号.【分析】设3个数中最小的数为x,则另外2数为x+7,x+14,根据3个数之和为36,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设3个数中最小的数为x,则另外2数为x+7,x+14,根据题意得:x+(x+7)+(x+14)=36,解得:x=5.故答案为:5.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共7小题)19.解方程:(1)5x+2=3(x+2)(2)=1【分析】(1)依次经过去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次经过去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)5x+2=3(x+2),去括号得:5x+2=3x+6,移项得:5x﹣3x=6﹣2,合并同类项得:2x=4,系数化为1得:x=2,(2)﹣=1,去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项得:5x﹣8x=10+15+2,合并同类项得:﹣3x=27,系数化为1得:x=﹣9.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程是解题的关键.20.如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:(1)菜地的长a=(•18﹣2x)m,宽b=(10﹣x)m;(2)菜地面积S=(18﹣2x)(10﹣x)m2;(3)当x=0.5m时,菜地面积是多少?【分析】(1)根据题意表示出菜地的长与宽即可;(2)根据长方形面积公式表示出菜地面积S即可;(3)把x的值代入计算即可求出S的值.【解答】解:(1)根据题意得:菜地的长a=(18﹣2x)m,b=(10﹣x)m;(2)菜地的面积为S=(18﹣2x)(10﹣x)m2;(3)当x=0.5时,S=(18﹣1)×(10﹣0.5)=17×9.5=161.5(m2).故答案为:(1)(18﹣2x),(10﹣x);(2)(18﹣2x)(10﹣x)【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.21.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①。

2018年秋人教版七年级上《第三章一元一次方程》单元检测卷含解析

2018年秋人教版七年级上《第三章一元一次方程》单元检测卷含解析

一元一次方程单元检测一、单选题1、下列式子中,是一元一次方程的是()A、x﹣7B、=7C、4x﹣7y=6D、2x﹣6=02、解方程3x+7=32-2x正确的是()A、x=25B、x=5C、x=39D、3、若关于x的方程2k﹣3x=4与x﹣3=0的解相同,则k的值为()A、-10B、10C、-11D、114、方程﹣+x=2x的解是()A、-B、C、1D、-15、下列结论错误的是()A、若a=b,则a﹣c=b﹣cB、若a=b,则ax=bxC、若x=2,则x2=2xD、若ax=bx,则a=b6、方程−=1可变形为()A、-=1B、-=1C、-=10D、-=107、下列方程中,解为x=2的是()A、3x+6=3B、﹣x+6=2xC、4﹣2(x﹣1)=1D、8、若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A、±2B、﹣2C、2D、49、某同学解方程5x-1=□x+3时,把□处数字看错得x=-,他把□处看成了()A、3B、-8C、8D、-910、高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A、36B、37C、55D、9111、一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡的只数是x,依题意列方程为()A、2x+4(70﹣x)=196B、2x+4×70=196C、4x+2(70﹣x)=196D、4x+2×70=19612、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润率是5%,则出售时此商品可打()折.A、五B、六C、七D、八13、如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A、16cm2B、20cm2C、80cm2D、160cm2二、填空题14、“x的2倍与3的差等于零”用方程表示为________.15、已知关于x的方程5x m+2+3=0是一元一次方程,则m=________.16、若x=1是方程a(x﹣2)=a+2x的解,则a=________.17、由等式(a﹣2)x=a﹣2能得到x﹣1=0,则a必须满足的条件是________18、若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a=________.19、小王用一笔钱购买了某款一年期年利率为2%的理财产品,到期支取时得本利和为5100元,则当时小王花________元钱购买理财产品.20、一项工程,甲单独做需10小时完成,乙单独做需12小时完成;现在两人合作3小时后,由乙独做,若设乙队再用x小时完成,则可列方程________ .21、服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为 ________元.22、某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元.23、在等式(a+1)x=2+3x中,若x是负整数,则整数a的取值是________.24、2x+1=5的解也是关于x的方程3x﹣a=4的解,则a=________.25、现规定一种新的运算=ad﹣bc,那么=9时,x=________.三、解答题26、利用等式的性质解方程:2x+4=1027、x=2是方程ax﹣4=0的解,检验x=3是不是方程2ax﹣5=3x﹣4a的解.28、把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?29、某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体先安排多少人工作?(列方程解答)30、(列方程解决实际问题)安阳市政府为引导低碳生活、倡导绿色出行,于2015年11月1日起陆续投放公共自行车供市民出行免费使用,小明同学通过查阅资料发现:在这项惠民工程中,目前共建设大、中、小型三种公共自行车存放站点160个,共可停放公共自行车3730辆,其中每个大型站点可存放自行车40辆,每个中型站点可存放自行车30辆,每个小型站点可存放自行车20辆.已知大型站点有11个,则中、小型站点各应有多少个?31、列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?32、为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?33、据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?答案解析部分一、单选题1、【答案】D【考点】一元一次方程的定义【解析】【解答】解:A、x﹣7不是等式,故本选项错误;B、该方程是分式方程,故本选项错误;C、该方程中含有2个未知数,属于二元一次方程,故本选项错误;D、该方程符合一元一次方程的定义,故本选项正确.故选:D.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).2、【答案】 B【考点】解一元一次方程【解析】【解答】3x+7=32-2x移项得:3x+2x=32-7合并同类项得:5x=25系数化为1得:x=5故选B.【分析】合并同类项与移项解一元一次方程即可解得结果.3、【答案】D【考点】解一元一次方程【解析】【解答】解:解x﹣3=0,得x=6,程2k﹣3x=4与x﹣3=0的解相同,把x=6代入程2k﹣3x=4,得2k﹣18=4k=11,故选:D.【分析】根据解一元一次方程的一般步骤,可得同解方程的解,根据方程组的解满足方程,把解代入方程,可得答案.4、【答案】A【考点】解一元一次方程【解析】【解答】解:去分母得:﹣1+3x=6x,移项合并得:3x=﹣1,解得:x=﹣.故选A【分析】方程去分母,移项合并,将x系数化为1,即可求出解.5、【答案】D【考点】等式的性质【解析】【解答】解:A、根据等式性质1,此结论正确;B、符合等式的性质2,此结论正确;C、符合等式的性质2,此结论正确;D、当x=0时,此等式不成立,此结论错误;故选D.【分析】根据等式的基本性质解答即可.6、【答案】 A【考点】解一元一次方程【解析】【分析】变形的依据是分式的基本性质,在分式的分子、分母上同时乘以或除以同一个数或整式,分式的值不变.此题中在分式的分子、分母上同时乘以或除以10即可.【解答】在分式的分子、分母上同时乘以或除以10得:-=1化简得:−=1 .故选A.【点评】把分式的分子、分母的系数化为整数的依据是分式的性质,注意与方程的去分母要区别开来.7、【答案】 B【考点】一元一次方程的解【解析】【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选B【分析】把x=2代入方程判断即可.8、【答案】 B【考点】一元一次方程的定义【解析】【解答】解:根据题意,得,解得:m=﹣2.故选B.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.9、【答案】 C【考点】解一元一次方程【解析】【解答】把x=−代入5x-1=□x+3,得:--1=-□+3,解得:□=8.故选C.【分析】解此题要先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.本题求□的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法10、【答案】A【考点】一元一次方程的应用【解析】【解答】解:∵4和9的最小公倍数为36,∴第二次同时经过这两种设施是在36千米处.故选A.【分析】让4和9的最小公倍数加上19即为第二次同时经过这两种设施的千米数.11、【答案】 A【考点】一元一次方程的应用【解析】【解答】解:设鸡的只数是x,则猪的头数为(70﹣x)头,由题意得,2x+4(70﹣x)=196.故选A.【分析】设鸡的只数是x,则猪的头数为(70﹣x)头,根据鸡、猪的腿数之和是196,列方程.12、【答案】C【考点】一元一次方程的应用【解析】【解答】解:出售此商品可打x折,1200× ﹣800=800×5%,解得,x=7即出售此商品可打7折,故选C.【分析】根据题意可以列出相应的方程,从而可以解答本题.13、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选:C.【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.二、填空题14、【答案】 2x﹣3=0【考点】根据数量关系列出方程【解析】【解答】解:根据题意可得:2x﹣3=0,故答案为:2x﹣3=0【分析】首先表示出“x的2倍”为2x,再表示“与3的差”为2x﹣3,列出方程即可.15、【答案】﹣1【考点】一元一次方程的定义【解析】【解答】解:由题意得:m+2=1,解得:m=﹣1,故答案为:﹣1.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行解答即可.16、【答案】 -1【考点】一元一次方程的解【解析】【解答】解:x=1是方程a(x﹣2)=a+2x的解,将x=1代入该方程,得:a(1﹣2)=a+2,是一个关于a为未知数的一元一次方程,去括号得:﹣a=a+2,移项得:﹣a﹣a=2,合并同类项得:﹣2a=2,两边同除以﹣2得:a=﹣1,∴a=﹣1.故填:﹣1.【分析】由于x=1是原方程的解,所以将x=1代入原方程得到一个关于a的方程,求解该方程即可.17、【答案】a≠2【考点】等式的性质【解析】【解答】解:∵由等式(a﹣2)x=a﹣2能得到x﹣1=0,∴a﹣2≠0,则a≠2.故答案为:a≠2.【分析】利用等式的基本性质得出a﹣2≠0时,由等式(a﹣2)x=a﹣2能得到x﹣1=0,即可得出答案.18、【答案】﹣1【考点】一元一次方程的定义【解析】【解答】解:由一元一次方程的特点得,解得:a=﹣1.故答案为:﹣1.【分析】根据一元一次方程的特点求出a的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.19、【答案】 5000【考点】一元一次方程的应用【解析】【解答】解:设小王花x元钱购买理财产品,根据题意得:x(1+2%)=5100解得:x=5000.故答案为:5000.【分析】设小王花x元钱购买理财产品,根据本利和=本金+利息,列出方程求解即可.20、【答案】(+)×3+x=1【考点】一元一次方程的应用【解析】【解答】解:设乙队再用x小时完成,由题意得:(+)×3+x=1,故答案为:(+)×3+x=1.【分析】根据题意可得甲的工作效率为,乙的工作效率为,此题等量关系为:甲和乙合作3小时的工作量+乙单独做x小时的工作量=1,根据等量关系列出方程即可.21、【答案】180【考点】一元一次方程的应用【解析】【解答】解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.故答案是:180.【分析】设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.22、【答案】90【考点】一元一次方程的应用【解析】【解答】解:设进货价为x元,由题意得,0.9×120﹣x=0.2x,解得:x=90.故答案为:90.【分析】设进货价为x元,根据九折降价出售,仍获利20%,列方程求解.23、【答案】0或1【考点】一元一次方程的解【解析】【解答】解:(a+1)x=2+3x (a﹣2)x=2,则x= ,∵x是负整数,∴x=﹣1,或x=﹣2,则整数a的取值是:0或1.故答案为:0或1.【分析】直接利用将原式变形得出x的值的值,进而求出a的值.24、【答案】2【考点】一元一次方程的解【解析】【解答】解:由2x+1=5,得x=2.把x=2代入方程3x﹣a=4,得:6﹣a=4,解得:a=2.故答案为2.【分析】先求出方程2x+1=5的解为x=2,把x=2代入方程3x﹣a=4,得到关于a的一元一次方程,解答即可.25、【答案】【考点】解一元一次方程【解析】【解答】解:由题意8﹣3(2﹣x)=9,8﹣6+3x=9,x=故答案为.【分析】根据新的运算=ad﹣bc,构建方程即可解决问题.三、解答题26、【答案】解:∵2x+4=10,∴2x+4﹣4=10﹣4,∴2x=6,∴x=3【考点】等式的性质【解析】【分析】首先在方程两边同减去4,再方程两边同除以2,即可求得答案27、【答案】解:x=3不是方程2ax﹣5=3x﹣4a的解,理由为:∵x=2是方程ax﹣4=0的解,∴把x=2代入得:2a﹣4=0,解得:a=2,将a=2代入方程2ax﹣5=3x﹣4a,得4x﹣5=3x﹣8,将x=3代入该方程左边,则左边=7,代入右边,则右边=1,左边≠右边,则x=3不是方程4x﹣5=3x﹣8的解.【考点】一元一次方程的定义【解析】【分析】x=3不是方程2ax﹣5=3x﹣4a的解,理由为:由x=2为已知方程的解,把x=2代入已知方程求出a 的值,再将a的值代入所求方程,检验即可.28、【答案】解:设这些学生有x名,根据题意得:3x+20=5x﹣26,解得:x=23.答:这些学生有23名【考点】一元一次方程的应用【解析】【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.29、【答案】解:由题意可得,每个人每小时完成,设具体先安排x人工作,则x×4+×(x+3)×6=1,解得:x=3.答:具体先安排3人工作.【考点】一元一次方程的应用【解析】【分析】根据题意可得,每个人每小时完成,设具体先安排x人工作,根据题意的工作方式可得出方程,解出即可.30、【答案】解:设小型站点应有x个,中型站点各应有160﹣11﹣x个,可得:40×11+30(160﹣11﹣x)+20x=3730,解得:x=118.答:中型站点应有31个,小型站点应有118个.【考点】一元一次方程的应用【解析】【分析】设小型站点应有x个,中型站点各应有160﹣11﹣x个,根据共可停放公共自行车3730辆列出方程解答即可.31、【答案】解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人.【考点】一元一次方程的应用【解析】【分析】可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.32、【答案】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算【考点】一元一次方程的应用【解析】【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.33、【答案】解:设严重缺水城市有x座,依题意得:(4x﹣50)+x+2x=664.解得:x=102.答:严重缺水城市有102座【考点】一元一次方程的应用【解析】【分析】本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年七年级数学上学期第三章一元一次方程单元测试卷考试时间:120分钟;满分:150分一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各式符合代数式书写规范的是( )A .b aB .a ×7C .2m ﹣1元D .321x2.(4分)已知苹果每千克m 元,则2千克苹果共多少元?( )A .m ﹣2B .m +2C .2mD .2m3.(4分)按如图所示的运算程序,能使输出的结果为12的是( )A .x=3,y=3B .x=﹣4,y=﹣2C .x=2,y=4D .x=4,y=24.(4分)下列各式中不是方程的是( )A .2x +3y=1B .3π+4≠5C .﹣x +y=4D .x=85.(4分)已知x=2是关于x 的方程3x +a=0的一个解,则a 的值是() A .﹣6 B .﹣3 C .﹣4 D .﹣56.(4分)已知k=1234-+x x ,则满足k 为整数的所有整数x 的和是( )A .﹣1B .0C .1D .27.(4分)下列变形中: ①由方程512-x =2去分母,得x ﹣12=10; ②由方程92x=29两边同除以92,得x=1;③由方程6x ﹣4=x +4移项,得7x=0;④由方程2﹣2365+=-x x 两边同乘以6,得12﹣x ﹣5=3(x +3).错误变形的个数是( )个.A .4B .3C .2D .18.(4分)若2x ﹣3和1﹣4x 互为相反数,则x 的值是( )A .0B .1C .﹣1D .32 9.(4分)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是( )A .3x ﹣2=2x +9B .3(x ﹣2)=2x +9C .9223-=+x x D .3(x ﹣2)=2(x +9) 10.(4分)甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2二.填空题(共4小题,满分20分,每小题5分)11.(5分)将等式3a ﹣2b=2a ﹣2b 变形,过程如下:因为3a ﹣2b=2a ﹣2b ,所以3a=2a (第一步),所以3=2(第二步),上述过程中,第一步的根据是 ,第二步得出了明显错误的结论,其原因是 .12.(5分)规定一种运算“*”,a*b=a ﹣2b ,则方程x*3=2*3的解为13.(5分)若(5x +2)与(﹣2x +9)互为相反数,则x ﹣2的值为 .14.(5分)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款 元.三.解答题(共9小题,满分90分)15.(8分)解下列方程:(1)2(x +3)=5(x ﹣3)(2)x x x --=-53431216.(8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.17.(8分)老师在黑板上写了一个等式:(a +3)x=4(a +3).王聪说x=4,刘敏说不一定,当x ≠4时,这个等式也可能成立.你认为他俩的说法正确吗?用等式的性质说明理由.18.(8分)小李读一本名著,星期六读了36页,第二天读了剩余部分的41,这两天共读了整本书的83,这本名著共有多少页?19.(10分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.20.(10分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(12分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.22.(12分)植树节前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同,每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.23.(14分)某市对供水范围内的居民用水实行“阶梯收费”,具体收费标准如表:某户居民三月份用水10立方米时,缴纳水费23元(1)求a的值;(2)若该户居民四月份所缴水贵为71元,求该户居民四月份的用水量.2018年七年级上学期第三章一元一次方程单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据代数式的书写要求判断各项.【解答】解:A、代数式书写规范,故A符合题意;B、数字与字母相乘时,数字要写在字母的前面,故B不符合题意;C、代数式作为一个整体,应该加括号,故C不符合题意;D、带分数要写成假分数的形式,故D不符合题意;故选:A.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.【分析】根据方程的定义(含有未知数的等式叫方程),即可解答.【解答】解:3π+4≠5中不含未知数,所以错误.故选:B .【点评】本题主要考查了方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.5.【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.【解答】解:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A .【点评】本题主要考查了方程解的定义,已知x=2是方程的解实际就是得到了一个关于a 的方程.6.【分析】将k 变形为2+125-x ,据此可得2x ﹣1=±1或±5时k 取得整数,解之求得x 的值可得答案.【解答】解:∵k=1234-+x x =12524-+-x x =()125122-+-x x =2+125-x , ∴当2x ﹣1=1或2x ﹣1=﹣1或2x ﹣1=5或2x ﹣1=﹣5时,k 为整数,解得:x=1或x=0或x=3或x=﹣2,则满足k 为整数的所有整数x 的和为1+0+3﹣2=2,故选:D .【点评】本题主要考查一元一次方程的解,解题的关键是将k 变形为2+125-x ,并根据k 为整数得出关于x 的方程.【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【解答】解:①方程512-x =2去分母,两边同时乘以5,得x ﹣12=10. ②方程92x=29,两边同除以92,得x=481;要注意除以一个数等于乘以这个数的倒数. ③方程6x ﹣4=x +4移项,得5x=8;要注意移项要变号.④方程2﹣2365+=-x x 两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号.故②③④变形错误故选:B .【点评】在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.8.【分析】根据相反数的定义即可求出答案.【解答】解:由题意可知:2x ﹣3+1﹣4x=0∴﹣2x ﹣2=0,∴x=﹣1故选:C .【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.9.【分析】设车x 辆,根据乘车人数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设车x 辆,根据题意得:3(x ﹣2)=2x +9.故选:B .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.【分析】可设两人相遇的次数为x ,根据每次相遇的时间452100+⨯,总共时间为100s ,列出方程求解即可.【解答】解:设两人相遇的次数为x ,依题意有452100+⨯x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选:B .【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.二.填空题(共4小题,满分20分,每小题5分)11.【分析】利用等式的基本性质判断即可.【解答】解:将等式3a ﹣2b=2a ﹣2b 变形,过程如下:因为3a ﹣2b=2a ﹣2b ,所以3a=2a (第一步),所以3=2(第二步),上述过程中,第一步的根据是等式的基本性质1,第二步得出了明显错误的结论,其原因是没有考虑a=0的情况,故答案为:等式的基本性质1;没有考虑a=0的情况【点评】此题考查了等式的性质,熟练掌握等式的基本性质是解本题的关键. 12.【分析】根据新定义运算法则列出关于x 的一元一次方程,通过解该方程来求x 的值.【解答】解:依题意得:x ﹣2×3=2﹣2×3,解得:x=2,故答案为:x=2【点评】本题立意新颖,借助新运算,实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.【分析】利用互为相反数两数之和为0列出关于x 的方程,求出方程的解得到x 的值,即可确定出x ﹣2的值.【解答】解:由题意可列方程5x +2=﹣(﹣2x +9),解得:x=﹣313; 则x ﹣2=﹣311﹣2=﹣317. 故答案为:﹣317. 【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.14.【分析】设小华购买了x 个笔袋,根据原单价×购买数量(x ﹣1)﹣打九折后的单价×购买数量(x )=节省的钱数,即可得出关于x 的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.【解答】解:设小华购买了x 个笔袋,根据题意得:18(x ﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共9小题,满分90分)15.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)2x +6=5x ﹣15﹣3x=﹣21x=7(2)10x ﹣5=12﹣9x ﹣15x34x=17x=21 【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.16.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解答】解:(1)矩形的长为:m ﹣n ,矩形的宽为:m +n ,矩形的周长为:4m ;(2)矩形的面积为(m +n )(m ﹣n ),把m=7,n=4代入(m +n )(m ﹣n )=11×3=33.【点评】此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答. 17.【分析】利用等式的基本性质分别得出答案.【解答】解:他俩的说法正确,当a +3=0时,x 为任意实数,当a +3≠0时,x=4.【点评】此题主要考查了等式的基本性质,利用分类讨论得出是解题关键. 18.【分析】设这本名著共有x 页,根据头两天读的页数是整本书的83,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设这本名著共有x 页,根据题意得:36+41(x ﹣36)=83x , 解得:x=216.答:这本名著共有216页.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【分析】(1)设每套课桌椅的成本为x 元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.20.【分析】设市县级自然保护区有x 个,则省级自然保护区有(x +5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个, 根据题意得:10+x +5+x=49,解得:x=17,∴x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【分析】设城中有x 户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x 户人家,依题意得:x +3x =100 解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.22.【分析】设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x﹣5)元,根据购进200棵柏树苗和120棵枣树苗所需费用相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x﹣5)元,根据题意得:200x=120(2x﹣5),解得:x=15.答:每棵柏树苗的进价是15元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.【分析】(1)由三月份的水费=水费单价×用水量,即可得出关于a的一元一次方程,解之即可得出结论;(2)设该户居民四月份的用水量为x立方米,先求出当用水量为22立方米时的应缴水费,比较后可得出x>22,再根据四月份的水费=2.3×22+(2.3+1.1)×超出22立方米的部分,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:10a=23,解得:a=2.3.答:a的值为2.3.(2)设该户居民四月份的用水量为x立方米.∵22×2.3=50.6(元),50.6<71,∴x>22.根据题意得:22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28.答:该户居民四月份的用水量为28立方米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。

相关文档
最新文档