2018最新人教版七年级数学上册知识大全
人教版七年级上册数学知识点(必背基础打印稿)
人教版七年级上册数学知识点(必背基础
打印稿)
本文档旨在帮助学生掌握人教版七年级上册数学的必背基础知
识点,以下是其中的重点内容:
1. 数的概念和整数运算
- 自然数的概念:自然数是以1为开始的整数序列,用N表示。
- 整数的概念:整数是正整数、零和负整数的统称,用Z表示。
- 整数的加法和减法运算规则:整数之间的加法和减法满足交
换律和结合律。
- 整数的乘法和除法运算规则:整数之间的乘法和除法满足交
换律和结合律。
2. 有理数
- 有理数的概念:有理数是可以表示为两个整数之商的数,包
括整数、分数和小数。
- 有理数的加法和减法运算规则:有理数之间的加法和减法满足交换律和结合律。
- 有理数的乘法和除法运算规则:有理数之间的乘法和除法满足交换律和结合律。
3. 分数
- 分数的概念:分数是一个整数与一个自然数的比值,可以表示为a/b的形式,其中a为分子,b为分母。
- 分数的加法和减法运算规则:分数之间的加法和减法需要先找到相同的分母,然后进行相应的运算。
- 分数的乘法和除法运算规则:分数之间的乘法和除法直接进行相应的运算。
4. 整数、分数和小数的大小比较
- 整数的大小比较规则:整数之间比较大小可以根据它们的绝对值进行判断。
- 分数和小数的大小比较规则:将分数和小数转化为带分子的整数进行比较。
5. 数轴
- 数轴的概念:数轴是用来表示数的一种方法,是将数与点在一条直线上对应起来。
- 数轴上的数的位置:数轴上的数从左到右依次增大。
以上是人教版七年级上册数学的必背基础知识点的简要介绍,希望能对学生的学习有所帮助。
完整版)人教版七年级数学上册知识点归纳
完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。
有些数既不是正数也不是负数,它们被称为零。
在同一个问题中,用正数和负数表示的量具有相反的意义。
需要注意的是,-a不一定是负数,+a也不一定是正数。
自然数指的是正整数和零的集合,也就是我们常说的自然数。
我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。
1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。
正整数和负整数统称为整数。
有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。
我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。
一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。
两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。
相反数指的是只有符号不同的两个数,它们互为相反数。
a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。
绝对值是数a到原点的距离,用|a|表示。
一个正数的绝对值是其本身,一个负数的绝对值是其相反数。
的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。
如果a>0,则|a|=a,如果a<0,则|a|=-a。
有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。
需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。
1.3 有理数的加减法有理数的加减法可以用数轴来表示。
当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。
同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。
新人教版七年级数学上册重要知识点汇总
新人教版七年级数学上册重要知识点汇总以下是新人教版七年级数学上册的重要知识点汇总:
1. 整数的概念和表示方法,正整数和负整数的比较
2. 整数的加法和减法运算,数轴上的加法和减法运算
3. 整数的乘法和除法运算,同号相乘除法的规律,异号相乘除法的规律
4. 分数的概念和表示方法,分数的大小比较
5. 分数的加法和减法运算,同分母的分数相加减,不同分母的分数相加减
6. 分数的乘法和除法运算,分数乘整数/分数,分数除以整数/分数
7. 小数的概念和表示方法,小数的大小比较
8. 小数的加法和减法运算,同数位的小数相加减
9. 小数的乘法和除法运算,小数乘整数/小数,小数除以整数/小数
10. 比例的概念和表示方法,比例的性质和运算,比例的倒数、倒数的比例
11. 百分数的概念和表示方法,百分数的大小比较,百分数的转化和计算
12. 简单利益的计算,利率的概念和表示方法,复利的计算
13. 平均数的概念和表示方法,算术平均数的计算
14. 数据的收集和整理,可以文章描述的数据和实际情况不符的数据
15. 数据的分组和统计,频数、频率、众数、中位数的计算
以上是新人教版七年级数学上册的重要知识点汇总,希望对你有帮助。
人教版七年级数学上册各章知识点总结(最新最全)
人教版七年级数学上册各章知识点总结(最新最全)在有理数加法中,同号两数相加时,取相同的符号,绝对值相加;异号两数相加时,取绝对值较大的加数的符号,用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;一个数与0相加仍得这个数。
2、绝对值与加法的关系:1)︱a+b︱≤︱a︱+︱b︱;2)︱a︱-︱b︱≤︱a+b︱;3)︱a︱≤︱a+b︱+︱b︱.3、有理数减法:a-b=a+(-b)4、有理数乘法法则:1)同号得正,异号得负;2)0与任何数相乘得0;3)1与任何数相乘得这个数本身。
5、有理数乘方:1)a的平方表示为a²,a²=a×a;2)a的立方表示为a³,a³=a×a×a;3)a的n次方表示为aⁿ,aⁿ=a×a×a×……×a(n个a相乘).6、有理数除法:1)a÷b=a×(1÷b)(b≠0);2)a÷0没有意义.7、有理数的混合运算:先乘方,再乘除,最后加减.有理数运算法则有理数是指可以表示为分数形式的数,包括整数、分数和小数。
有理数的运算法则包括加法、减法、乘法、除法和乘方。
加法法则同号相加:若a>0,b>0,则a+b=|a|+|b|;若a<0,b<0,则a+b=-(|a|+|b|)。
异号相加:若a>0,b|b|,则a+b=|a|-|b|;若a>0,b<0,|a|<|b|,则a+b=-(|b|-|a|);若a、b互为相反数,则a+b=0.加法交换律:a+b=b+a。
加法结合律:(a+b)+c=a+(b+c)。
减法法则减去一个数,等于加上这个数的相反数。
即a-b=a+(-b)。
乘法法则同号相乘:若a>0,b>0,则ab=+|a|×|b|;若a<0,b<0,则ab=+|a|×|b|。
人教七年级数学上知识点
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
人教版七年级数学上册知识点大全(最新最全)
人教版七年级数学上册知识点大全1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版七年级数学上册知识点总结大全
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级数学上册知识点归纳
人教版七年级数学上册知识点归纳人教版七年级数学上册是初中阶段的第一本数学教材,旨在帮助学生建立扎实的数学基础,培养良好的数学思维和解决实际问题的能力。
这本书内容涵盖了数与式、方程、几何等多个方面,适合七年级的学生学习。
通过对这些知识的掌握,学生能够为后续更深入的学习打下坚实的基础。
一、数与式1.认识数的概念学生需要理解整数、分数、小数的概念,以及它们之间的关系。
数的分类是学习数学的重要起点。
2.运算符的使用学生应掌握四则运算的基本规则,包括加、减、乘、除的运算顺序以及括号的使用。
3.字母表示数介绍用字母表示数的概念,了解代数式的构成,并能用代数式表示实际问题中的数量关系。
4.代数式的运算学习如何对代数式进行加、减、乘、除运算,培养学生的运算能力和对代数表达式的处理能力。
5.整式与分式进一步区分整式和分式的不同,掌握它们的加减法和乘法,以及如何进行约分和通分。
6.数的性质研究合数与质数,了解不同数之间的关系,以及如何判断一个数是否为质数。
二、方程与不等式1.线性方程的定义使学生能够理解线性方程的基本结构以及如何通过方程来解决问题。
2.解方程的方法学习一元一次方程的求解方法,包括移项、合并同类项等基本技巧。
3.方程的应用引导学生通过实际问题设置方程,使其意识到数学与实际生活的联系。
4.不等式的认识解释不等式的概念,学习如何表示不等式及其解集。
5.不等式的性质了解不等式的基本性质,如何进行不等式的加减乘除运算,以及保持不等式方向的条件。
6.应用题解析通过具体题目,训练学生将实际问题转化为不等式或方程,并加以求解。
三、几何初步1.平面图形的认识介绍基本的平面图形,学习对图形进行分类、比对和计算周长及面积的方法。
2.线段、角的概念让学生理解线段和角的定义,掌握基本性质,特别是直角、锐角、钝角的区分。
3.三角形的特性了解三角形的种类,学习三角形的内角和、外角及其性质。
4.图形的对称性学习对称的概念,通过平面图形的对称性理解几何图形的美学及其实际应用。
人教初一数学上册知识点
人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
人教版七年级上册数学知识要点汇总(全册)
七年级上册数学知识要点(全册)第一章 有理数1、有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数(小数)负整数零正整数整数有理数 (分类标准不同,分类不同)2.数轴三要素:原点、正方向、单位长度。
3.数轴上0左边的数是负数,0右边的数是正数;左边的数<0<右边的数(负数 < 0 < 正数)。
4.相反数:(1)只有符号不同的两个数互为相反数;(2)相反数是相互依存的,单独一个数不能说是相反数数;(例如2与-2互为相反数,就是指:2的相反数是-2,-2的相反数是2)。
(3)a 的相反数是-a, 0的相反数是0.(4)相反数的和为0 ;如果 a+b=0 ,则a 与b 互为相反数.5、倒数:(1)乘积为1的两个数互为倒数。
(例如83×38=1,则83与38互为倒数,就是指83的倒数是38,38的倒数是83。
)(2)1的倒数是1,0没有倒数。
注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数。
6、绝对值:(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .(2)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
注意:绝对值的几何意义是数轴上表示某数的点与原点的距离。
(3) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或 ⎩⎨⎧<-≥=)0a (a )0a (a a注:涉及到绝对值的问题经常需要分类讨论。
7、绝对值具有非负性的性质:a≥0,若+a b =0,则a=0,b=0 8、比较两个数的大小: (1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小。
人教版初中数学七年级上册知识点
人教版初中数学七年级上册知识点人教版初中数学七年级上册的知识点涵盖了许多基础的数学概念和技能,为学生后续的数学学习打下坚实的基础。
以下是该教材中的核心知识点:1. 有理数的运算:学生需要掌握有理数的加、减、乘、除和乘方运算,以及这些运算的规则和性质。
例如,同号相加、异号相减、乘法的分配律和结合律等。
2. 代数式:学生将学习如何用字母表示数,以及代数式的简化和求值。
这包括合并同类项、去括号和代数式的运算顺序。
3. 一元一次方程:学生将学习如何解一元一次方程,包括移项、合并同类项、系数化为1等步骤。
4. 几何图形的认识:学生将了解点、线、面和体的基本概念,以及平面图形的基本性质。
5. 直线、射线、线段:学生将学习直线、射线和线段的定义、性质和区别。
6. 角的度量:学生需要掌握角的概念,包括锐角、直角、钝角、平角和周角,以及如何测量和比较角的大小。
7. 相交线与平行线:学生将学习相交线和平行线的定义、性质和判定方法,包括对顶角、邻补角、同位角、内错角等概念。
8. 平面直角坐标系:学生将学习平面直角坐标系的基本概念,包括坐标轴、坐标点、坐标平面等,并学会如何用坐标表示点的位置。
9. 统计初步:学生将学习收集、整理和描述数据的初步方法,包括统计表、条形图、折线图和扇形图等。
10. 概率初步:学生将接触概率的基本概念,了解随机事件发生的可能性,并学会计算简单事件的概率。
这些知识点不仅有助于学生建立数学思维,而且对于培养解决问题的能力也至关重要。
通过这些基础知识的学习,学生可以更好地理解数学概念,为进一步的数学学习做好准备。
人教版七年级数学上册知识点
人教版七年级数学上册知识点篇1:七年级上册数学人教版知识点七年级上册数学人教版知识点1、代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。
单独的一个数或一个字母也是代数式。
2、单项式:表示数与字母的乘积的代数式叫单项式。
单独的一个数或一个字母也是代数式。
3.单项的系数:单项中的数值因子。
4、单项式的个数:一个单项式中所有字母的指数之和。
5、多项式:几个单项式的和叫做多项式。
每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式中最高次项的次数称为该多项式的次数。
常数项的次数为0。
6、整式:单项式和多项式统称为整式。
注意:分母上含有字母的不是整式。
7、代数式书写规范:(1)数与字母、字母与字母中的乘号可以省略不写或用“·”表示,并把数字放到字母前;(2)出现除式时,用分数表示;(3)带分数与字母相乘时,带分数要化成假分数;(4)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
数学概率知识点一般地,对于一个随机事件a,我们把刻画其发生可能性大小的数值,称为随机事件a发生的概率,记作p(a)。
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件a包含其中的m种结果,那么事件a 发生的概率p(a)=。
由m和n的含义可知0≤m≤n,因此0≤≤1,因此0≤p(a)≤1.当a为必然事件时,p(a)=1;当a为不可能事件时,p(a)=0.如何学好初中数学的方法1重视课本的内容书本知识是初中生学习数学最基础的部分。
初中生一定要注意书本上的知识点,无论是书本上的概念、公式还是习题,都要熟练掌握。
初中生如果想更熟练地掌握书本上的知识点,可以把数学教材的每一章都从头到尾认真读一遍,这样可以增加对容易忽略的知识点的理解。
许多学生经常忽略课本上的练习。
教材上的练习虽然简单,但是考察的知识点特别有针对性,同学们一定要重视。
2通过联系对比进行辨析数学知识中有许多种和其他相关的知识来源于相同的基本概念和方法,或者看起来一样但本质不同的知识。
人教版七年级上册数学必背知识点归纳总结
人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。
2018年人教版七年级上册数学必背考点(试题答案)
2018年人教版七年级上册数学必背考点,吃透不考优秀都难(答案)第一章 有理数2、正数和负数的相反意义(记得写上单位,切记切记!) (1)-20米. (2)380克~390克. (3) 解:① 10-3+4+2-8+13-2+12+8+5=41(千米);② |+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-2|+|+12|+|+8|+|+5|=67(千米),67×0.2=13.4(升)。
答:收工时距A 地前面41千米,从A 地出发到收工时共耗油13.4升。
点评:(1)约定前进为正,后退为负,依题意列式求出和即可;(2)要求耗油量,需求他共走了多少路程(绝对值之和),这与方向无关。
3、数轴(数轴三要素:原点(0)、正方向和单位长度。
)(1)-4和2.(注意数轴有左右两边,不能只算一种情形) (2)b-a. 4、相反数、绝对值和倒数(1)相反数等于它本身的数是 0 .绝对值等于它本身的数是 正数和0 或者 非负数 .(3)2018, 2, 23(4)4. 因为(7-2x )+(5-x )=0,解得x=4.(5)0. 因为满足这个条件的只有-3、-4、3和4,他们的和刚好是0. 化简: 5 . (6)-1. 因为(a -2)2≥0,∣b +3∣≥0,所以只有在0+0的情况下才等于0,即a =2,b=-3,( a +b)2011=【(2+(-3)】=(-1)2011=-1.(7)解: ∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于3 ∴a+b=0 cd=1 m=3或-3 ∴原式=m -1+0 = m -1 当m=3时,上式=2;当m=-3时,上式=-4 故该代数值是2或-4.5、有理数的加减乘除、乘方混合运算(运算律)(1)-12+︱-21︱×(-2)+3 (2) (-1)2018+︱-51︱×(-5)+8解:原式﹦-1+21×(-2)+3 解:原式﹦1+51×(-5)+8﹦-1+(-1)+3 ﹦1+(-1)+8﹦-2+3 ﹦0+8 ﹦1 ﹦8(3) -32+︱-51︱×(-5)+6 (4) -22-5×51+︱-2︱解:原式﹦-9+51×(-5)+6 解:原式﹦-4-5×51+2﹦-9+(-1)+6 ﹦-4-1+2﹦-10+6 ﹦-5+2 ﹦-4 ﹦-3(5) 12)216141(⨯+- (6))12()216141(-⨯+- 解:原式﹦41×12-61×12+21×12 解:原式﹦41×(-12)-61×(-12)+21×(-12)﹦3-2+6 ﹦-3-(-2)+(-6) ﹦1+6 ﹦-3+2+(-6) ﹦7 ﹦-76、科学计数法(在a ×10n 中,1≤︱a ︱<10,指数n =整数位数-1)和近似数 (1)7108.2⨯. (2)B. (3)10.5万或51005.1⨯. 4.30.第二章 整数的加减1、用字母表示数、规律(1)0.09n. (2)10m +n. (3)1+21n n )(+ 2、单项式(概念、系数和次数)和多项式(项、次数、常数项)(3)52-, 5; -53π, 3. (4)四次四项式, -6.(5)22a 3b 或4a 3等等(答案不唯一,写出其中一个即可!)(6)2x +x +1或2x +2x +2或2x -x -1等等(答案不唯一,写出其中一个即可!) (7)C .(后面3个是)3、同类项(两相同:字母相同、相同字母的指数也相同。
人教版初一数学上册知识点总结
人教版初一数学上册知识点总结
一、数与代数
1. 有理数的加法和减法
- 有理数的定义
- 加法运算规则
- 减法运算规则
- 有理数的加减混合运算
2. 有理数的乘法和除法
- 乘法运算规则
- 除法运算规则
- 有理数的乘除混合运算
- 有理数的乘方
3. 代数表达式
- 字母表示数
- 单项式
- 多项式
- 代数式的简化和变形
4. 一元一次方程
- 方程的概念
- 解方程的基本方法
- 方程的应用问题
二、几何
1. 线段、射线、直线
- 线段的性质
- 射线的定义
- 直线的性质
2. 角
- 角的定义
- 角的分类
- 角的度量
3. 三角形
- 三角形的基本性质
- 等边三角形、等腰三角形的性质 - 三角形的内角和外角
4. 四边形
- 四边形的基本性质
- 平行四边形的性质
- 矩形、菱形、正方形的性质
三、统计与概率
1. 统计
- 数据的收集和整理
- 频数和频率
- 统计图表的绘制和解读
2. 概率
- 随机事件的概率
- 简单事件的概率计算
- 概率的直观理解
四、应用题
1. 利用数学知识解决实际问题
- 列方程解应用题
- 利用几何知识解决实际问题
- 统计与概率在实际问题中的应用
请注意,以上内容仅为人教版初一数学上册知识点的概要总结,具体每个知识点的详细解释和例题解析需要根据教材内容进行深入学习和理解。
教师和学生可以根据这个框架来组织教学和复习计划,确保对每个知识点都有充分的掌握。
人教版数学七年级上册知识点汇总
第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
(完整版)人教版初一数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级上册数学知识点大全(最新最全)
7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(b). 10 有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每
个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5. 整式
单项式 多项式
.
6.同类项:
所含字母相同,并且相同字母的指数也相同的单项式是同
数个负数为正。 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ac .(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除 数,即a 无意义 .
0
13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;
类项.
7.合并同类项法则: 系数相加,字母与字母的指数不变.
8.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号
人教版数学七年级上册知识点总结
人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。
1.概念负数: 在正数前面加上负号“—”的数叫做负数。
注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。
(不是带“—”号的数都是负数, 而是在正数前加“—”的数。
)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。
有理数: 整数和分数统称有理数。
1.概念整数: 正整数、0、负整数统称为整数。
分数: 正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。
2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。
三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。
三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。
3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。
(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。
2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。
四、相反数两个符号: 符号相同是正数, 符号不同是负数。
3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。
人教版数学七年级上册知识点总结(最新最全)
人教版数学七年级上册知识点总结第一章有理数知识点总结正数:大于0的数叫做正数。
1.概念负数:在正数前面加上负号“—”的数叫做负数。
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
2.分类:两种二、有理数⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数 0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)代数:只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
四、相反数两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
若a与b互为负倒数,则a·b=-1;反之,若a·b= -1则a与b互为负倒数。
a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)一个负数的绝对值是它的相反数的绝对值是0a >0,|a|=a 反之,|a|=a,则a≥0a = 0, |a|=0 |a|=﹣a,则a≦0a<0, |a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册知识大全第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{} 整数集合{} 负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a ,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0) 2、有理数的概念及分类整数和分数统称为有理数。
有理数的分类如下:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数;②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数;③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;例6 若a 为无限不循环小数且0>a,b 是a 的小数部分,则b a -是( )A 、无理数B 、整数C 、有理数D 、不能确定 例7 若a 为有理数,则a 不可能是( ) A 、整数 B 、整数和分数 C 、)0(≠p pqD 、π3、数轴标有原点、正方向和单位长度的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等; ④有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。
⑤在数轴上求任意两点a 、b 的距离L,则有公式ab L b a L -=-=或,这两个公式选择那个都一样。
例8 在数轴上表示数3的点到表示数a 的点之间的距离是10,则数=a ;若在数轴上表示数3的点到表示数a 的点之间的距离是b ,则数=a 。
例9 a,b 两数在数轴上的位置如图,则下列正确的是( )A 、 a +b <0B 、 ab <0C 、ba<0 D 、0<-b a例10 下列数轴画正确的是( )4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两个数,在数轴上位于原点的两则,并且与原点的距离相等。
概念剖析:①“如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数”,不要茫然的认为“如果两个数符号不同,那么其中一个数就叫另一个数的相反数”。
②很显然,数a 的相反数是a -,即a 与a -互为相反数。
要把它与倒数区分开。
③互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。
④在数轴上离某点的距离等于a 的点有两个。
⑤如果数a 和数b 互为相反数,则a +b =0;)0(1≠-=ab ba或)0(1≠-=ab ab; ⑥求一个数的相反数,只要在这个数的前面加上“—”即可; 例如b a -的相反数是a b -;例11 下列说法正确的是( )A 、若两个数互为相反数,则这两个数一定是一个正数,一个负数;B 、如果两个数互为相反数,则它们的商为-1;C 、如果a +b =0,则数a 和数b 互为相反数;D 、互为相反数的两个数一定不相等; 例12 求出下列各数的相反数①4a ②1+a ③b a - ④23c 例13 化简下列各数的符号①)5.4(-+ ②)531(-- ③[])2(+-- ④()[]{}2.0---- 知识窗口:①一个数前面加上“—”号,该数就成了它的相反数;②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。
5、绝对值数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a aa(3)两个负数比较大小,绝对值大的反而小。
A0 1-1B—2C—2D概念剖析:①“一个数的绝对值就是数轴上表示该数的点与原点的距离”,而距离是非负,也就是说任何一个数的绝对值都是非负数,即0≥a 。
②互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等。
例14 如果两个数的绝对值相等,那么这两个数是( )A 、互为相反数B 、相等C 、积为0D 、互为相反数或相等例15 已知ab >0,试求abab b b a a ||||||++的值。
例16 若|x |=-x ,则x 是_________数;例17 若│x +3∣+∣y —2∣=0,则2005)y x +( = ;例18 将下列各数从大到小排列起来0、65-、 43-、0001.0 例19 如果两个数a 和b 的绝对值相等,则下列说法正确的是( )A 、b a =B 、1-=baC 、0=+b aD 、不能确定二、有理数的运算 1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
例20 计算下列各式①(– 3)–(– 4)+7 ② )()(32312105--+--- ③()3.5-+()2.3-()5.2--()8.4+-(2)有理数加法的运算律:加法的交换律 :a+b=b+a ;加法的结合律:( a +b ) +c = a + (b +c )知识窗口:用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
例21 计算下列各式①2)10()8()3()7(+-+++++- ②)25.0()3211()813(413125.0-+++-++ 2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算; 概念剖析:减法是加法的逆运算,用法则“减去一个数等于加上这个数的相反数”即可转化。
转化后它满足加法法则和运算律。
例22 计算:59117+--- 例23 月球表面的温度中午是C o101,半夜是C o 153-,中午比半夜高多少度?例24 已知m 是6的相反数,n 比m 的相反数小5,求n 比m 大多少? 3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab =ba ;结合律:(ab )c =a (bc );交换律:a (b +c )=ab +ac 。
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a 和b 互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
概念剖析:①“两个有理数相乘,同号得正,异号得负”不要误认为成“同号得正,异号得负”②多个有理数相乘时,积的符号确定规律:多个有理数相乘,若有一个因数为0,则积为0;几个都不为0的因数相乘,积的符号由负因数的个数来决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
③有理数乘法的计算步骤:先确定积的符号,再求各因数绝对值的积。
例25 计算下列各式: ①)87()5.2(711)25.1(-⨯-⨯⨯- ② )1216141()12(-+-⨯-③)947(5.10)952()25.35(952)75.45(-⨯+-⨯-+⨯- ④)5(252449-⨯4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。
这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。
概念剖析:①除法是乘法的逆运算,用法则“除以一个数,等于乘上这个数的倒数”即可转化,转化后它满足乘法法则和运算律。
②倒数的求法:求一个整数的倒数,直接可写成这个数分之一,即a 的倒数为)0(1≠a a ;求一个真分数和假分数的倒数,只要将分子、分母颠倒一下即可,即m n 的倒数为nm ;求一个带分数的倒数,应先将带分数化为假分数,再求其倒数;求一个小数的倒数,应先将小数化为分数,再求其倒数。