六年级数学下册重点知识点总结

合集下载

完整版)六年级数学下册总复习知识点整理版

完整版)六年级数学下册总复习知识点整理版

完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。

2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。

3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。

4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。

5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。

6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。

7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。

8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。

二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。

2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。

3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。

4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。

-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。

-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。

2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。

-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。

3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。

-百分数的应用,如折扣、税率、利率等问题的解决。

4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。

-圆心角、弧、扇形、圆锥和圆柱的相关计算。

-圆周率π的认识和应用。

5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。

-可能性的大小比较,简单事件发生的可能性计算。

6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。

-三角形、平行四边形、梯形的高线定义和画法。

-长方体、正方体、圆柱、圆锥的体积和表面积计算。

7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。

-解简易方程,包括一步方程和两步方程。

8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。

六年级数学下册知识点归纳

六年级数学下册知识点归纳

第一章分数与小数1.分数的认识(1)分数的定义和书写方法(2)分数的大小比较(3)分数的整数部分和小数部分2.分数的意义与应用(1)分数的实际应用(2)分数的等分与比较3.小数的认识(1)小数的定义和书写方法(2)小数和分数之间的关系第二章矩形1.正方形和长方形的认识(1)正方形和长方形的性质(2)正方形和长方形的面积计算2.计算矩形面积(1)矩形面积的计算公式(2)已知面积求解边长第三章平面图形1.点、线、面(1)点、线、面的概念及表示方法(2)线段的长度计算(3)角的概念及角的度量2.四边形(1)四边形的概念及分类(2)四边形的周长计算(3)矩形内角之和及矩形的判定(4)平行四边形的性质(5)梯形的性质及面积计算3.三角形(1)三角形的概念及分类(2)直角三角形的性质及勾股定理(3)三角形的周长计算及面积计算第四章质数与倍数1.质数(1)质数的概念及判断方法(2)质数与合数的关系2.整数的倍数(1)倍数的概念及计算(2)两个数的最小公倍数第五章分类与描述1.规律性的继续与发现(1)规律、特征与描述(2)图形的特征与描述(3)数字序列的特征与描述2.事件与概率(1)事件和概率的认识(2)概率的计算第六章数据统计1.统计调查(1)统计调查的概念及方法(2)调查数据的整理和表示2.图表与分析(1)统计图表的认识(2)直方图和折线图的绘制与分析(3)统计图表的比较第七章立体图形1.立体图形的认识(1)立体图形的性质及分类(2)正方体、长方体和圆柱体的认识2.立体图形的表面积计算(1)立方体表面积计算(2)长方体和圆柱体表面积的计算第八章两位数的认识和计算1.两位数的认识(1)十位和个位的认识(2)两位数的读法与写法2.两位数加减法(1)进位与退位(2)两位数的加法及应用(3)两位数的减法及应用第九章三位数的认识和计算1.三位数的认识(1)百位、十位和个位的认识(2)三位数的读法与写法2.三位数的加减法(1)进位与退位(2)三位数的加法及应用(3)三位数的减法及应用第十章表中数的认识和计算1.表中数的认识(1)表的读法和数据的整理(2)表中的最大数、最小数和中间数2.表中数的计算(1)数据的查找与整理(2)数据的统计与分析以上是六年级数学下册的知识点归纳,主要包括分数与小数、矩形、平面图形、质数与倍数、分类与描述、数据统计、立体图形、两位数的认识和计算、三位数的认识和计算、表中数的认识和计算等内容。

六年级下册数学书知识点

六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

六年级下册数学重点知识笔记

六年级下册数学重点知识笔记

六年级下册数学重点知识笔记
以下是六年级下册数学的一些重点知识笔记:
1. 负数:理解负数的概念,掌握正负数的读写方法,能用正负数表示日常生活中的问题。

2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。

3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱的侧面积和表面积的计算方法,掌握圆柱的体积的计算方法。

4. 比例尺:理解比例尺的概念,掌握计算方法,能根据比例尺计算图上距离和实际距离。

5. 正比例和反比例:理解正比例和反比例的概念,能判断两个量是否成正比例或反比例,能用正反比例解决简单的问题。

6. 统计:掌握扇形统计图和折线统计图的绘制方法,能根据数据选择合适的统计图进行描述。

7. 数学广角:通过实例使学生初步学会用假设法进行逻辑推理,体会假设法在解决实际问题中的应用。

以上仅为基础内容,具体的教学重点可能会有所不同,建议以教学大纲为准。

六年级下册数学重要知识点笔记

六年级下册数学重要知识点笔记

六年级下册数学重要知识点笔记六年级下册数学重要知识点1、认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。

这种取近似值的方法叫做进一法。

9、圆锥只有一个底面,底面是个圆。

圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。

圆锥只有一条高。

(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13、常见的圆柱圆锥解决问题:①压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

小学数学正方形对角线怎么算1、正方形对角线公式正方形的对角线,与两边成形的是等腰直角三角形。

六年级数学下册必背知识点归纳

六年级数学下册必背知识点归纳

六年级数学下册知识点总结负数知识点1、0既不是正数,也不是负数,它是正数和负数的分界。

0大于负数,小于正数。

负数比较大小时,不考虑负号,数字大的数反而小。

2、“+”可以省略不写,“-”不能省略。

3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

数轴上0左边的数都是负数,0右边的数都是正数从左到右逐渐变大最大负整数-1 最小正整数1百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。

通称“打折”。

2、几折就表示十分之几,也就是百分之几十。

例如,八折就表示十分之八,就是按原价的80﹪出售。

3、原价×折扣=现价原价×(1-折扣)=便宜的钱4、折扣=现价÷原价便宜的钱÷(1-折扣)=原价5、原价=现价÷折扣成数:“几成”就是十分之几,也就是百分之几十。

三成五就是十分之三点五,也就是35%应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率6、利息=本金×利率×存期7、本金=利息÷利率÷存期8、利率=利息÷本金÷存期9、存期=利息÷本金÷利率10、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。

圆、圆柱、圆柱必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径,直径=周长÷圆周率,公式C=πd,公式d=C÷π3、已知半径求周长:半径=周长÷圆周率的2倍,圆的周长=2×圆周率×半径,公式r=C÷2π公式C=2πr,=πr24、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆=π(d÷5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆2)26、圆柱的侧面积=底面的周长×高,;圆柱的底面周长=侧面积÷高,圆柱的高=侧面积÷底面周长,7、圆柱的表面积=侧面积+2×底面积,8、圆柱的体积=底面积×高,。

六年级下册数学知识点汇总

六年级下册数学知识点汇总

六年级下册数学知识点汇总六年级下册数学知识点汇总一单元、负数在生活中初步认识负数,能正确读写正数和负数,知道既不是正数也不是负数。

学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

能借助数轴初步学会比较正数和负数之间的大小。

负数是像-16、-500、-3/8、-0.4这样的数。

正数是像16、200、3/8、6.3这样的数。

在数轴上,从左到右的顺序就是数从小到大的顺序。

负数都在数轴的左边,负号后面的数越大,这个数就越小。

如:-8<-6.二单元、圆柱和圆锥认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

圆柱的底面是个圆,侧面是个曲面。

圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高。

当底面周长和高相等时,侧面沿高展开后是一个正方形。

圆柱的表面积=圆柱的侧面积+底面积×2,即S表=S侧+S底×2或2πr×h + 2×πr2.圆柱的侧面积=底面周长×高,即S 侧=Ch或2πr×h。

圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h(使用进一法)。

圆锥只有一个底面,底面是个圆。

圆锥的侧面是个曲面。

3、圆的面积和半径不成比例,因为它们之间的关系不一定是半径越大,面积就越大。

实际上,圆的面积除以半径等于圆周率和半径的积,但这个积不一定相同。

4、如果两种相关联的量中,相对应的两个数的积一定,那么这两种量就是成反比例的。

例如,当y=5x时,y和x成正比例,因为y除以x等于5,即y和x的比例是固定的。

5、如果每天看的页数一定,那么总页数和天数就成正比例。

六年级下册数学全册知识点

六年级下册数学全册知识点

六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。

在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。

六年级数学下册知识点(整理6篇)

六年级数学下册知识点(整理6篇)

六年级数学下册知识点〔整理6篇〕篇1:六年级下册数学知识点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

假设一个数小于0,那么称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数假设一个数大于0,那么称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限6、比拟两数的大小:①利用数轴:负数篇2:六年级下册数学知识点第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是非常之几,也就是百分之几十。

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。

商品如今打八折:如今的售价是原价的80﹪商品如今打六折五:如今的售价是原价的65﹪2、成数:几成就是非常之几,也就是百分之几十。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一局部缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来之一。

六年级下册数学知识总结

六年级下册数学知识总结

六年级下册数学知识总结六年级下册数学主要包括数与式、图形与位置、数据与概率三个大的模块。

其中数与式包括了整数、分数、小数、百分数、正比例和反比例、代数式等内容;图形与位置包括了平面图形、三维图形、位置关系等内容;数据与概率包括了统计数据、概率等内容。

接下来我们将分模块进行总结。

一、数与式1.整数六年级下册的整数主要包括整数的加减法和乘除法、整数的大小比较、整数的乘方和除法、整数的倍数和因数、约数和公约数等内容。

学生需要掌握整数的运算规则,正确使用负数和正数的规则。

2.分数分数的认识和分数的加减法是六年级下册的主要内容。

学生需要通过综合应用的方式,掌握分数的加减法。

此外,分数的乘除法也是重要的知识点。

3.小数小数是从四年级开始学的数学概念,而六年级下册主要是关于小数的加减法、乘除法等应用题。

学生需要熟练掌握小数的运算。

4.百分数百分数是小数的一种表达方式。

学生需要了解百分数和小数之间的转换,并熟练掌握百分数的加减法、乘除法。

同时,应用题也是考察学生理解能力的重要手段。

5.正比例和反比例六年级下册学习了正比例和反比例的概念,并通过实际问题应用进行深入理解。

学生需要熟练掌握正比例和反比例的性质和运用。

6.代数式代数式是代数学中的基础,六年级下册主要是关于代数式的计算与应用。

学生需要熟练掌握单项式和多项式的加减法、乘除法,并能够根据实际问题建立代数式。

二、图形与位置1.平面图形六年级下册的平面图形主要包括了五芒星、五边形、六边形等图形的性质、面积和周长等知识。

学生需要了解各种图形的特征和性质,并能够计算图形的面积和周长。

2.三维图形三维图形主要包括了长方体、正方体、棱柱、棱锥等图形的性质、表面积和体积等知识。

学生需要掌握各种三维图形的性质,并能够计算三维图形的表面积和体积。

3.位置关系位置关系是关于平行线、垂直线、角的性质和测量、相交线、相似图形等知识。

学生需要能够判断和描述各种位置关系,并应用到实际问题中。

小学六年级下册数学知识点总结

小学六年级下册数学知识点总结

小学六年级下册数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!小学六年级下册数学知识点总结小学六年级下册数学知识点总结精选5篇总结还可以促进自我评估和评价,以便更好地发掘自身的潜力和优势。

六年级下册数学知识点归纳

六年级下册数学知识点归纳

六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。

通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。

(2)分母不同时,先通分,再比较分子大小。

3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。

如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。

(2)相乘:把两个分数的分子和分母分别相乘即可。

(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。

二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。

通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。

2.小数的大小比较(1)相同位数,大小由高位数决定。

(2)位数不同时,以比较到的位数为准,不够0补齐。

3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。

(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。

(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。

三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。

一个数的倍数有无穷多个。

2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。

一个数的因数是有限多个。

四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。

2.整数的大小比较(1)一正一负,正数大。

(2)同号但绝对值不同时,绝对值大的数大。

(3)同号且绝对值相同时,大小相同。

3.绝对值表示一个数到原点的距离,用“|”表示。

六年级数学下册总复习知识点

六年级数学下册总复习知识点

六年级数学下册总复习知识点下面是格式错误的段落,需要删除:14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间14、相遇问题的解法:相遇路程等于速度和乘以相遇时间,相遇时间等于相遇路程除以速度和,速度和等于相遇路程除以相遇时间。

删除了格式错误的段落,并对其他段落进行了小幅度改写,如下:六年级下数学知识归纳六年级数学下册总复知识点归纳一、小学数学图形计算公式1、正方形的周长等于边长乘以4,面积等于边长的平方。

2、正方体的表面积等于棱长的平方乘以6,体积等于棱长的立方。

3、长方形的周长等于长和宽的和乘以2,面积等于长乘以宽。

4、长方体的表面积等于长乘以宽乘以2加上长乘以高乘以2加上宽乘以高乘以2,或者等于底面周长乘以高乘以2加上底面积乘以2,体积等于长乘以宽乘以高。

5、三角形的面积等于底边乘以高除以2,高等于面积乘以2除以底边,底边等于面积乘以2除以高。

6、平行四边形的面积等于底边乘以高。

7、梯形的面积等于上底加下底的和乘以高除以2.8、圆形的周长等于直径乘以π,面积等于半径的平方乘以π。

9、圆柱体的侧面积等于底面周长乘以高,表面积等于侧面积加上底面积的两倍,体积等于底面积乘以高。

10、圆锥体的体积等于底面积乘以高除以3.11、平均数等于总数除以总份数。

二、判断平年与闰年的方法:普通年份除以4,余数为0则为闰年,否则为平年;整百年份除以400,余数为0则为闰年,否则为平年。

三、数学思考1、找规律:n个点连成线段的条数等于从1开始前(n-1)个连续自然数的和。

2、多边形内角和等于180度乘以(边数-2)。

3、植树问题:两端都种的棵数等于段数加1,只种一端的棵数等于段数减去顶点数。

3、两端都不种:根据规律,棵树数目等于段数减1.在圆形区域内种树时也是同样的公式。

第3种情况则变成了锯木问题:锯木次数等于段数减1.例如,如果2分钟可以锯3段木头,那么锯6段需要多少时间呢?4、找次品:如果要称量4到9个物品,需要称2次。

六年级下数学知识点归纳总结

六年级下数学知识点归纳总结

六年级下数学知识点归纳总结以下是六年级下数学知识点归纳总结:1. 负数:小于0的数。

2. 圆柱与圆锥圆柱:两个圆面和一个曲面。

圆锥:一个圆面和一个曲面。

3. 比例比例的基本性质:比例的两个内项之积等于两个外项之积。

正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

4. 比例尺图上距离:实际距离=比例尺数字式:1:1000线段式:文字式:图上1厘米代表实际距离的1000厘米。

5. 扇形统计图用扇形的面积表示部分在总体中所占的百分比。

易于显示每组数据相对于总数的大小。

6. 圆柱和圆锥的复习侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高7. 统计折线统计图:可以清楚的看出数量增减变化的情况。

条形统计图:可以清楚地看出各种数量的多少。

8. 总复习数与代数:数的认识、数的运算、式与方程、正比例与反比例、量的计量、探索规律。

空间与图形:图形的认识、图形的变换、图形的位置与方向、图形与坐标。

统计与概率:简单数据统计过程、根据统计图表进行简单的数据分析、随机事件及其发生的概率。

9. 解决问题的策略列表法:用列表的方法整理问题的条件和思路,解决问题的方法。

列方程:用字母表示未知数,根据题意列出方程,解方程求得未知数的方法。

10. 数学广角数与形结合的规律逻辑推理的方法和实际应用。

六年级下册数学笔记知识归纳

六年级下册数学笔记知识归纳

(一)基本算式被除数÷除数=商被除数=商×除数除数=被除数÷商一个因数×另一个因数=积一个因数=积÷另一个因数另一个因数=积÷一个因数一个加数+另一个加数=和一个加数=和—另一个加数另一个加数=和—个加数(二)行程问题路程=速度×时间速度=路程÷时间时间=路程÷速度(三)购买东西总价=单价×数量单价=总价÷数量数量=总价÷单价(四)工程问题工作量=工作效率×时间工作效率=工作量÷时间时间=工作量÷工作效率(五)利息问题利息=本金×利率×时间利率=利息÷本金÷时间时间=利息÷本金÷利率4、常见单位换算(一)面积单位1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米1平方千米=100公顷1毫升=1立方厘米(二)体积、容积单位1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1升=1立方分米5、常见公式。

(一)圆的周长、面积周长C=2πr 或c=πd面积S=πr²(二)圆柱、圆锥侧面积、表面积(三)圆柱、圆锥体积圆柱体积=底面积×高圆锥体积=底面积×高×1/36、常见应用题类型。

(一)分数、百分数问题(1)求一个数的几分之几、百分之几是多少。

(一个数×几分之几(百分之几))(2)求一个数是另一个数的(几倍)几分之几、百分之几。

(一个数÷另一个数)(3)求一个数比另一个数多(少)几分之几、百分之几。

((大—小)÷“比”字后面的)(4)已知一个数的几分之几(百分之几)是多少,求这个数。

(多少÷几分之几(百分之几))(5)已知比一个数多几分之几(百分之几)是多少,求这个数(多少÷(1+几分之几(百分之几)))(6)已知比一个数少几分之几(百分之几)是多少,求这个数(多少÷(1-几分之几(百分之几)))(7)前面是分数、百分数、后面是比,先把比转化为分数、百分数再计算。

六年级数学下册重点知识归纳

六年级数学下册重点知识归纳

人教版新课标六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。

○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。

(2)0既不是正数,也不是负数,它是正数与负数的分界点。

2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。

3.能表示出正数、0、负数的直线,我们把它叫做数轴。

4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。

(2)温度计也可以看作是一数轴。

5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。

因此,负数都比正数小。

(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。

6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。

7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。

如果上升用正数表示,那么下降一定用负数表示。

8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。

第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆。

3.(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

六年级下学期数学知识点归纳总结

六年级下学期数学知识点归纳总结

知识点归纳总结1.负数:负数是数学术语,指小于0的实数,如−3。

任何正数前加上负号都等于负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如−2,−5.33,−45,−0.6等。

2.正数:大于0的数叫正数(不包括0)若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中分正整数,正分数和正无理数。

3.正数的几何意义:数轴上0右边的数叫做正数4.数轴:规定了原点,正方向和单位长度的直线叫数轴。

所有的实数都可以用数轴上的点来表示。

也可以用数轴来比较两个实数的大小。

5.数轴的三要素:原点、单位长度、正方向。

6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。

其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。

7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch (注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。

特征:圆柱的底面都是圆,并且大小一样。

9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

该直角边叫圆锥的轴。

11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。

一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3ShS是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径12.圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学下册重点知识点总结班级__________ 姓名________第一单元 负数1. 表示相反意义的两种量可以用正数、负数来表示。

在数字前加“+”(正号),就得到一个正数。

以前所学的所有数(0除外)都是正数,正数前面的“+”是可以省略不写的。

负数就是在数字前加“-”(负号)。

注意:读数时先读符号,再读数,+3读作正三,-3读作负三,3只读作三。

2. 在数轴线上,负数都在0的(左侧),正数都在0的右侧,正数都大于0;所有的负数都比自然数小。

(0)既不是正数,也不是负数,它是正、负数的界限3. 正数和负数都有无数个,数分为正数,负数和04.第二单元 百分数)1、折扣商店有时降价出售商品,叫做打折。

几折就表示十分之几,也就是百分之几十。

打三折表示按原价的30%售出折扣=现价 ÷ 原价 所以:现价=原价×折扣,原价=现价÷折扣3、成数成数表示一个数是另一个数的十分之几,统称“几成”。

例如:“一成”就是十分之一,也就是10℅。

“三成五”就是十分之三点五,也就是35℅。

成数问题可以转化成百分数问题解答。

4、 税率)缴纳的税款叫应纳税款。

应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。

应纳税额 (即交给国家的钱)= 各种收入中应纳税的部分 × 税率5、利率存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金×利率×存期 注意:求取回的钱要加上本金 ,还要注意利率和存期的对应&常用的分数小数百分数之间的互化21=0.5=50% 41=0.25=25% 43=0.75=75% 51=0.2=20% 52=0.4=40% 53=0.6=60% 54=0.8=80% 81=0.125=12.5% 83=0.375=37.5% 85=0.625=62.5% 87=0.875=87.5%第三单元圆柱和圆锥1、圆柱的特征:¥(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。

这个长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高当底面周长和高相等时,沿高展开图是(正方形);<当不沿高展开时展开图是(平行四边形)。

4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch。

h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。

即S表= S侧+ S底×2[=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×26、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装(侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)² h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形状发生了变化,体积没有发生变化。

表面积增加了2rh.~9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

10、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

11、圆锥的体积:圆柱的体积等于和它等底等高的圆锥体积的3倍,反之圆锥的体积等于和它等底等高的圆柱体积的三分之一。

V锥=13V柱=13ShV锥= 13∏r²h¥V锥= 13∏(d÷2)²hV锥= 13∏(C÷∏÷2)²h12、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。

(3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。

13、生活中的圆锥:沙堆、漏斗、帽子。

第四单元1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7、比和比例的区别,(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示xy =k (一定) 9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x ×y=k (一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺~13、比例尺=图上距离:实际距离 图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 (计算时图距和实距单位必须统一)14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称](6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:单价×数量=总价单产量×数量=总产量@总价总产量= 数量 =数量单价单产量总价总产量=单价 =单产量数量数量】速度×时间=路程工效×工作时间=工作总量路程工作总量=时间 =工作时间速度工效,路程工作总量= 速度 = 工效时间工作时间第五单元鸽巢问题(抽屉原理)1、物体数÷抽屉数=商……余数至少数=商+12、^3、物体数÷抽屉数=商至少数=商典型题:1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的()倍。

<2、圆柱的底面半径扩大n倍,高不变,侧面积扩大n倍,体积扩大()倍。

3、圆柱的底面半径扩大n倍,高也扩大n倍,侧面积扩大()倍,体积\扩大()。

4、圆柱的底面半径扩大n倍,高缩小n倍,侧面积不变,体积扩大()倍。

5、…6、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。

[7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是()厘米。

8、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是()平方分米。

9、一个圆锥和一个圆柱的底面积相等,体积的比是1:6。

如果圆锥的高是 3.6厘米,圆柱的高是()厘米,如果圆柱的高是3.6厘米,圆锥的高是()厘米。

、10、一个圆柱体,把它的高截短3厘米,它的表面积减少94.2平方厘米,这个圆柱的体积减少了()立方厘米。

!11、把一个底面半径是5cm,高是10cm的圆柱体切削成若干等份,拼成一个近似的长方形,在这个切拼过程中,()没有发生变化,表面积增加了()平方厘米。

—12、一个圆锥的体积是12立方米,底面积是9平方米,高是几米?13、思考题:一个圆柱体和一个圆锥体积相等,底面半径的比是3:2,圆锥与圆柱高的比是()(14、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?(用比例的知识解答)【15、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少千米?(用比例的知识解答)(16、一块长方形试验田,长80米,宽60米,用1:2000的比例尺画出这块试验田的平面图。

17、用面积是15平方厘米的方砖给教室铺地,需要2000块,如果改用面积25平方厘米的方砖铺地,需要多少块砖?(用比例解)18、修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条公路还要多少天?(用比例解)。

相关文档
最新文档