大学遗传学第三章遗传的染色体学说
遗传的染色体学说
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
遗传的染色体学说孟德尔和他的遗传定律在20世纪初被重新发现后,掀起了一个宏大的科学热潮,遗传学迅速成为当时生物学家们的研究热点,“遗传”“变异”“遗传因子”等名词也成了颇为时髦的流行语。
在实践研究工作中,“遗传因子”是用得比较多的概念。
1909年,丹麦植物学家和遗传学家约翰逊提出,“遗传因子”使用起来很不方便,而“基因”则比“遗传因子”更能反应出事物的本质,说起来也琅琅上口。
此后人们便习惯于将决定和控制生物遗传和变异内在某种细微因子称为“基因”。
但是基因究竟是什么东西?当时谁也没有亲眼见到过。
那么,基因在哪里?究竟是什么样子呢?比较正常的推测是,基因必定孕育于细胞中,而且很可能就是染色体或在染色体上。
1902年,美国哥伦比亚大学生物学研究生沃·萨顿发现,染色体显然不是基因,但是染色体与基因有许多相似之处,比如在受精时来自父方的一个基因与来自母方的一个基因合在一起恢复成双,而来自父方的一条染色体与来自母方的一条染色体也是合在起,恢复成双。
这种比较研究的结果令萨顿极为振奋,因为他已经意识到,基因很可能就在染色体上。
据此,萨顿提出了一个假说:染色体是基因的载体。
然而,美国生物胚胎学家摩尔根对孟德尔遗传定律和萨顿的染色体学说持怀疑态度,他认为萨顿的观点是“猜测”、“臆断”。
摩尔根是一位非常严谨的生物胚胎学家,他非常强调实验的重要性,强调理论思考必须以实验事实为依据,反对超出实验事实可以检验的范围而作无根据的推测等等。
在1910年以前,没有来自细胞学方面的直接证据,证明细胞中的确有基因存在,没有证据显示染色体与基因的遗传方式有必然的联系。
谁能为萨顿的染色体学说提供可靠的证据呢?一只小小白眼果蝇的出现,使摩尔根的观点发生了戏剧性的变化!由怀疑孟德尔遗传定律、质疑萨顿染色体说学转变成坚定的支持者。
正是这位勇于挑战权威的科学家进行的一系列果蝇实验,为“基因位于染色体上”的观点提供了有力的证据,证明了萨顿的观点是正确的,才使得孟德尔遗传学发展起来。
第三章 遗传的染色体学说
有丝分裂与减数分裂的区别
有丝分裂
分裂细胞类型 体细胞
减数分裂
原始生殖细胞(孢母细胞)
细胞分裂次数
子细胞数目 染色体数目变化 DNA分子数变化 染色单体数目变 化 同源染色体行为 可能发生的变异 意义
复制一次分裂一次
2 2n→2n 2n→4n→2n 0→4n→0
不联会、无四分体形成 基因突变和染色体变异
一套染色体(n)。
核型分析(analysis of karyotype)
把生物细胞核内全部染色体的形态特征(染色体长度、着丝点位置、 长短臂比、随体有无等)所进行的分析,也称为染色体组型分析 (genome analysis) 。
例如,人类的染色体有23对(2n = 46),其中22对为常染色体,另一 对为性染色体。 人类的染色体组型分析,对于鉴定和确诊染色体疾病具有重要 的作用。
(2)高等植物的受精
授粉 pollination:成熟的花粉粒落到柱头上并 开始萌发的过程。 自花授粉 异花授粉(风媒、虫媒) 常异花授粉 受精 fertilization:雌雄配子融合成为合子的过 程。
被子植物的双受精
1898年俄国科学家纳瓦兴发现了被子植物的双受精现象 double fertilization。
着丝粒
后期(anaphase)
4、末期(telophase)
在核的四周核膜重新形成,染色体又变为均匀的 染色质,核仁又重新出现,又形成了间期核。细胞质被 新的细胞膜分隔为两部分,结果产生了两个子细胞。
末期(telophase)
早前期
晚前期
中期
间期
末期
晚后期
遗传的染色体学说PPT课件
解析 孟德尔的豌豆杂交实验为假说—演绎法;萨 顿提出假说“基因在染色体上”为类比推理的方 法;而摩尔根进行果蝇杂交实验也是假说—演绎 法。 答案 C
13
考点二 染色体组型、性染色体和性别决定
1.染色体组型(染色体核型)的理解 (1)概念:将某种生物体细胞内的全部染色 体,按大小和形态特征进行配对、分组和排列所 构成的图像。 (2)步骤:显微摄影→测量→剪贴→配对、分 组和排列→图像。 (3)用途:根据种的特异性来判断生物的亲缘 关系和遗传病的诊断。
3
三、染色体组型
染色体组型又称 染色体核型 ,是指将某种生物体 细胞中的全部染色体,按 大小和形态特征 进行 配对、分组和 排列所构成的图像。
四、性染色体和性别决定
1 . 染 色 体 分 类 : 一 类 是 性染色体 , 另 一 类 是 常染色体 。
2.性别决定的主要类型: XY 型和 ZW 型。
9
3.方法:类比推理法,即借助已知的事实及事物间 的联系推理得出假说。染色体上呈线性排列。每种生物的体细胞含 有一定数目的染色体,DNA主要存在于细胞核内, 少量存在于线粒体、叶绿体中。前者DNA位于染色 体上,复制前每条染色体有1个DNA分子,复制后每 条染色体有2个DNA分子,而后者DNA是裸露的。每 个DNA分子上含有许多基因,基因在染色体上呈线 性排列。
6
练一练 某种遗传病的遗传系谱如图所示。该病受一对基因 控制,设显性基因为A,隐性基因为a。请分析回答: (阴影为患者)
(1)该遗传病的致病基因位于常 染色体上 显性遗 传。 (2)Ⅰ2和Ⅱ4的基因型分别是aa和Aa 。 (3)Ⅱ4和Ⅱ5再生一个患病男孩的概率是3/8 。
7
构建知识网络
8
高频考点突破
遗传的染色体学说
遗传的染色体学说介绍遗传的染色体学说是基因遗传学的基础理论之一。
该理论认为,遗传信息通过染色体传递给后代,决定了个体的遗传特征和性状。
本文将深入探讨遗传的染色体学说,从染色体的发现、结构与功能、遗传物质的定位等多个方面进行分析。
染色体的发现与研究遗传学与染色体学的关系遗传学是研究遗传现象及遗传规律的科学,而染色体学则是研究染色体的结构、功能和遗传规律的分支学科。
遗传学与染色体学密切相关,染色体学的建立对于遗传学的发展起到了重要推动作用。
染色体的发现染色体的发现可以追溯到19世纪。
1838年,德国细胞学家沙万在肝藻(Aphanocapsa)细胞中首次观察到纤细的结构,被后来的科学家称之为染色体。
随后,另一名德国细胞学家弗莱明在观察动植物细胞时,进一步确认了染色体的存在。
染色体的结构与功能染色体的结构对于大多数生物来说,染色体是由DNA和蛋白质组成的复合物。
在非分裂细胞中,染色质是染色体主要的可见部分。
染色质是由DNA、组蛋白和其他蛋白质组成的复合结构,呈现出一种线状的、纺锤状的或环状的形式。
染色体的功能染色体担负着许多重要的功能,包括: 1. 遗传信息的存储和传递:染色体承载了个体的所有遗传信息,并能通过有丝分裂和减数分裂传递给后代。
2. 基因的表达和调控:染色体上的基因通过转录和翻译等过程表达出来,决定了个体的性状和特征。
3. 遗传多样性的产生:染色体在有丝分裂和减数分裂过程中的交换、断裂和重新组合等事件,导致了个体之间的遗传多样性。
遗传物质的定位DNA的发现与结构DNA(脱氧核糖核酸)被认为是遗传物质。
20世纪初,摩尔根等科学家通过实验证明了遗传物质位于染色体中,并由DNA组成。
1953年,沃森和克里克提出了DNA 的双螺旋结构模型,即著名的DNA双螺旋结构。
基因与DNA的关系基因是决定个体性状的基本单位,而DNA则是基因存在的物质基础。
每个基因都包含在染色体上的特定位置,称为基因座。
而基因座上的DNA序列则决定了基因的信息。
遗传学1-7答案
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr解:3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr粉红红色白色粉红粉红粉红解:4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd 解:序号杂交基因型表现型1 WWDD×wwdd WwDd 白色、盘状果实2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
第三篇遗传的染色体学说
2. 2. 2 真核类的有丝分裂
在有丝分裂过程中染色体的变迁是这样的:从 间期的S期前期中期,每个染色体具有两 根染色单体(即具两条完整的DNA双链);从后 期末期下一个细胞周期的G1期,在这些 阶段中,所谓的染色体实质上只有一根染色单 体(即只有一条DNA双链)。
2.3 染色体在减数分裂中的行为
图2—27 减数分裂过程示 意图
1 细线期 2 偶线期 3 粗线期 4 双线期 5 终变期 6 中期I 7 后期I 8 末期I 9 前期II 10 中期II 11 后期II 12 末期II
(1) 前期I:
第一次减数分裂的前期特别长,包括细线期、 偶线期、粗线期、双线期、浓缩期。
(1) 前期I:
中期开始时,核膜崩解,核质(nucleoplasm) 与胞质混和。纺锤体的细丝——纺锤丝 (spindle fibers)与染色体的着丝粒区域连接。 染色体向赤道面移动,着丝粒区域排列在赤道 板上。这时最为容易计算染色体的数目。
(3) 后期(anaphase):
每一染色体的着丝粒已分裂为二,相互离开。 着丝粒离开后,即被纺锤丝拉向两极,同时并 列的染色单体也跟着分开,分别向两极移动。 这时染色体又是单条了,也可叫做子染色体。
图 染色体复制后含有两条纵向并列的染色单体
2. 2 染色体在有丝分裂中的行为
像细菌、蓝藻等原核类生物,体细胞和生殖细 胞不分,细胞的分裂就是个体的增殖。而高等 生物是通过单个细胞即合子(zygote)的一分为 二、二分为四的细胞分裂发育而成的具有亿万 个细胞组成的个体,譬如说人就是通过单个细 胞即受精卵的细胞分裂发育而成的具有1014个 细胞组成的。
(1) 前期I:
粗线期:到了粗线期的最后,亦可看到每一染 色体的双重性,即每一染色体含有两条染色单 体(姐妹染色单体),因此,双价体就含有4条 染色单体了,每一双价体中4条染色单体相互 绞扭在一起。
第三章遗传的染色体学说 (1)
第三章遗传的染色体学说1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。
答:有丝分裂和减数分裂的区别列于下表:有丝分裂减数分裂发生在所有正在生长着的组织中从合子阶段开始,继续到个体的整个生活周期无联会,无交叉和互换使姊妹染色体分离的均等分裂每个周期产生两个子细胞,产物的遗传成分相同子细胞的染色体数与母细胞相同只发生在有性繁殖组织中高等生物限于成熟个体;许多藻类和真菌发生在合子阶段有联会,可以有交叉和互换后期I是同源染色体分离的减数分裂;后期II是姊妹染色单体分离的均等分裂产生四个细胞产物(配子或孢子)产物的遗传成分不同,是父本和母本染色体的不同组合为母细胞的一半有丝分裂的遗传意义:首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。
其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。
减数分裂的遗传学意义首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。
保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。
其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。
例如,水稻n=12,其非同源染色体分离时的可能组合数为212 = 4096。
各个子细胞之间在染色体组成上将可能出现多种多样的组合。
此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。
为生物的变异提供了重要的物质基础。
2、水稻的正常的孢子体组织,染色体数目是12对,问下列各组织的染色体数目是多少?(1)胚乳;(2)花粉管的管核;(3)胚囊;(4)叶;(5)根端;(6)种子的胚;(7)颖片;答;(1)36;(2)12;(3)12*8;(4)24;(5)24;(6)24;(7)24;3、用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例如何?答:雌配子极核雄配子AbAB AABB AAABBb AAaBBbAb AAbb AAAbbb AAabbbAaaBBbAaabbb即下一代胚乳有八种基因型,且比例相等。
遗传学第三版答案 第3章 遗传的染色体学说
第三章遗传的染色体学说1 有丝分裂和减数分裂的区别在哪里?从遗传学的角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加以说明。
解:有丝分裂和减数分裂的区别:(1)有丝分裂是体细胞的分裂方式,而减数分裂一般仅存在于生殖细胞中。
(2)有丝分裂DNA复制一次,细胞分裂一次,染色体数由2n-2n,减数分裂DNA 复制一次,细胞分裂两次,染色体数由2n-n。
(3)有丝分裂在S期进行DNA合成,然后经过G2期进入有丝分裂期。
减数分裂前DNA合成时间较长,合成后立即进入减数分裂,G2期很短或没有。
(4)有丝分裂时每一条染色体独立活动,减数分裂中染色体会发生配对、联会、交叉、交换等。
(5)有丝分裂进行的时间较短,一般为1-2小时,减数分裂进行时间长, 例如人的雄性配子减数分裂需24小时,雌配子甚至可长达数年。
有丝分裂的遗传学意义:通过有丝分裂维持了生物个体的正常生长和发育(组织及细胞间遗传组成的一致性);并且保证了物种的连续性和稳定性(单细胞生物及无性繁殖生物个体间及世代间的遗传组成的一致性)。
减数分裂的遗传学意义:(1)通过减数分裂和受精过程中的染色体数目交替(2n-n-2n),保证了物种世代间染色体数目的稳定性。
(2)在减数分裂过程中,由于同源染色体分开,移向两极是随机的(染色体重组) ,加上同源染色体的交换(染色体片断重组) ,大大增加了配子的种类,从而增加了生物的变异,提高了生物的适应性,为生物的发展进化提供了物质基础。
无性生殖不经过两性生殖细胞的结合,而是由生物体自身的分裂生殖或其体细胞生长发育形成个体过程一般没有和其他个体或结构发生基因交流,自身也不发生减数分裂,因此在正常情况下不会发生分离,但由于外界环境条件的影响通过无性生殖方式产生的个体也有可能会发生变异。
2 水稻正常的孢子体组织,染色体数目是12对,问下列各组织的染色体数目是多少?(1)胚乳;(2)花粉管的管核;(3)胚囊;(4)叶;(5)根端;(6)种子的胚;(7)颖片;解析:(1)胚乳3n=36(2)花粉管的管核n=12(3)胚囊8n=96(4)叶2n=24(5)根端2n=24(6)种子的胚2n=24(7)颖片2n=243 用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例如何?解析:基因型Aabb的花粉产生的雄配子Ab,ab基因型AaBb产生的极核为AB,Ab,aB和ab胚乳基因型为AAABBb,AAAbbb,AaaBBb,Aaabbb,AAaBBb,AAabbb,aaaBBb和aaabbb,比例相等。
遗传学(笔记)1-10
遗传学课件第一章绪论第一节遗传学的定义、研究内容和任务一、什么是遗传学1、遗传学(Genetics)是研究生物遗传与变异规律的一门科学2、遗传(heredity)是指生物的繁殖过程中,亲代和子代各个方面的相似现象。
3、变异(variation)是指子代个体发生了改变,在某些方面不同于原来的亲代。
4、遗传与变异的辨证关系5、现代的观点:遗传学是研究生物体遗传信息的组成、传递和表达规律的一门科学,其主题是研究基因的结构和功能以及两者之间的关系,所以遗传学可称为基因学。
二、遗传学研究的任务:就是研究生物的遗传变异现象,深入探讨它们的本质,并利用所得成果,能动地改造生物,更好地为人类服务。
三、遗传学研究的内容1、遗传物质的结构2、遗传物质的传递3、遗传物质的表达◆基因在世代之间传递的方式与规律1、孟德尔遗传规律2、摩尔根连锁交换定律3、染色体外遗传(extrachromosomal inheritance):细胞质基因和其他核外基因的非孟德尔传递方式。
4、母性影响(maternal effect):由母体基因型决定子代性状,但受胞质因子影响,F3代才分离的一种单亲遗传方式。
5、群体遗传的Hardy-Winberg 定律与进化◆遗传学基本概念Key Terms1、遗传(heredity, inheritance):生物在以有性或无性生殖方式进行种族繁衍的过程中,子代与亲代相似的现象2、变异(variation)生物个体之间差异的现象3、遗传学(Genetics)◇经典定义∶研究生物遗传和变异规律的一门科学◇现代定义∶研究基因的结构功能、传递和表达规律的一门科学——基因学◇基因(gene)是遗传、发育和进化的交汇点。
◆常用的重要遗传学研究材料1、大肠杆菌(Escherichia coli)2、酿酒酵母(Saccharomyces cerevisiae)3、豌豆(Pisum sativum)4、果蝇(Drosophila)5、玉米(Zea mays)6、小鼠(Mus musculus)7、人(Homo sapiens)8、线虫(Caenorhabditis elegant)9、拟南芥(Arabidopisis)第二节遗传学发展的里程碑一、遗传学的产生1、亚里士多德(Aristotle)2、“先成论”(theory of performation)3、渐成论(theory of epigenesis)4、拉马克(mark,1744-1829)5、达尔文(C.K.Darwin,1809-1882)6、魏斯曼(A. Weismann,1834~1914)7、孟德尔(G.J.Mendel 1822~1884)8、荷兰的德弗里斯(Hugo De Vries),德国的科伦斯(KarlCorrens)奥地利的切尔马克(Erich.S.Tsehermark)二、遗传学的发展1、萨顿(W.S.Sutton,1876~1916)2、贝特逊(W.Bateson,英国遗传学家)3、约翰逊(W.L.Johannson,1857~1927)4、摩尔根(T.H.Morgan ,1866~1945)美国实验胚胎学家5、比德尔(G.W.Beadle 美)和他的老师泰特姆(E.L.Tatum)6、埃弗里(O.T.Arery 美)等。
[3]第三章 遗传的染色体学说
(二)染色体的形态
每一物种的染色体都有其特定的形态,结构, 每一物种的染色体都有其特定的形态,结构, 数目。其形态,结构,数目具有稳定性,连续性。 数目。其形态,结构,数目具有稳定性,连续性。 在高等动植物中体细胞染色体具有成对性。
1 2 3 1.中间着丝粒染色体或亚中间着丝粒染色体 1.中间着丝粒染色体或亚中间着丝粒染色体 (metacentric chromosome or submetacentric chromosome M or SM ) 2.近端着丝粒染色体 近端着丝粒染色体(subtelocentric 2.近端着丝粒染色体(subtelocentric chromosome ST) 3.端着丝粒染色体 端着丝粒染色体(telocentric 3.端着丝粒染色体(telocentric chromosome T )
教学难点:细胞减数分裂的过程, 三 教学难点:细胞减数分裂的过程,植物雌 雄配子形成过程。 雄配子形成过程。 本章主要阅读文献资料: 四 本章主要阅读文献资料: 1、P.C. Winner, G.I. Hickey & H.L. Fletcher,Instant Notes in Genetics, BIOS Scientific Publishers Limited,1998.12 王亚馥, 主编: 遗传学》 2、王亚馥,戴灼华 主编:《遗传学》,高 等教育出版社,1999年 月版。 等教育出版社,1999年6月版。 编著: 现代遗传学教程》 3、贺竹梅 编著:《现代遗传学教程》,中 山大学出版社,2002年 月版。 山大学出版社,2002年3月版。
核基质 (Nuclear Matrix) The Organization of 30nm fiber into chromosomal loops
《遗传的染色体学说》PPT课件
基因与遗传信息的表达
基因表达的调控
基因表达受到多种因素的调控,包括转录因子、miRNA和表 观遗传修饰等,这些调控机制决定了特定基因在特定时间和 空间中的表达水平。
基因表达与细胞分化
基因表达的差异是细胞分化的基础,不同细胞类型通过表达 特定的基因来发挥其功能,从而形成复杂的生物体。
基因突变与遗传信息的改变
03 染色体与遗传信息的传递
DNA的复制与遗传信息的传递
DNA复制的机制
DNA复制是遗传信息传递的关键过程,通过DNA聚合酶的作用,以亲代DNA为 模板合成子代DNA,确保遗传信息的准确传递。
DNA复制的调控
DNA复制受到多种因素的调控,包括细胞周期、DNA损伤修复和基因表达等, 这些调控机制确保了DNA复制的准确性和细胞分裂的稳定性。
染色体结构与功能的关系
跨学科研究的融合
目前对染色体结构与功能的关系仍有许多 未知领域,需要进一步探索染色体的精细 结构和动态变化。
染色体学说的研究需要与其他生物学、物 理学和化学等领域进行交叉融合,以推动 遗传学和相关领域的发展。
THANKS FOR WATCHING
感谢您的观看
染色体结构异常
染色体易位
染色体倒位
如唐氏综合征,由多一 条21号染色体引起。
如猫叫综合征,由于5号 染色体部分缺失引起。
染色体片段位置的交换 ,如罗伯逊易位。
染色体局部区段的反向 排列。
染色体异常导致的遗传疾病
威廉姆斯综合征
由于7号染色体部分缺失导 致,表现为心血管和面部 特征异常。
唐氏综合征
由于21号染色体多一条导 致,表现为智力障碍和特 殊面容。
囊性纤维化
由于第7号染色体部分缺失 导致,影响肺部和消化系 统。
遗传染色体学说的直接证明
遗传染色体学说的直接证明遗传染色体学说是描述遗传信息传递和基因遗传的重要理论之一。
它提出了“染色体是遗传信息的载体”这一核心观点,并通过多个实验证据来支持和证明这一理论。
本文将从几个方面来介绍遗传染色体学说的直接证明。
首先,遗传染色体学说的直接证据之一是关于显性隐性基因的研究。
通过观察不同基因在染色体上的分布情况,科学家们发现,显性基因与染色体上的某些区域有密切关联,而隐性基因则位于其他染色体区域。
这种分布规律表明,染色体上的特定区域携带着特定的遗传信息,并且这些信息的不同表现形式决定了显性或隐性基因的性状表达。
其次,遗传染色体学说的直接证明还可以通过遗传交叉实验证明。
遗传交叉是指染色体的交换与重组,它能够将两个染色体间的基因相互交换,从而改变后代个体的遗传组合。
通过研究遗传交叉的现象,科学家们发现,染色体上的特定基因遗传规律与染色体交叉的频率有关。
这说明染色体上的基因分布是有序的,并且通过遗传交叉可以进一步验证染色体在遗传信息传递中的重要作用。
此外,遗传染色体学说的直接证据还包括胞质遗传的实验证明。
胞质遗传是指除了染色体外,细胞质中的一些质体也可以传递遗传信息。
通过观察细胞质遗传现象,科学家们发现,染色体和细胞质中的遗传物质之间具有相互影响的关系。
例如,线粒体DNA的变异会导致一些遗传性疾病的发生,这说明细胞质中的遗传物质与染色体上基因的相互作用对遗传性状的表现有重要影响。
综上所述,遗传染色体学说的直接证明包括关于显性隐性基因的研究、遗传交叉实验证明以及胞质遗传的实验证明。
这些实验证据直接地支持和证明了遗传染色体学说中的核心观点,即染色体作为遗传信息的承载者在基因遗传中起着重要作用。
通过上述实验证据的支持,我们对遗传染色体学说有了更加深入的理解,也为进一步研究遗传学提供了坚实的基础。
第三章遗传的染色体学说课件
染色质和染色体是真核生物遗传物质存在的 两种不同形态,两者不存在成分上的差异, 仅反映它们处于细胞分裂周期的不同时期的 两种状态
1、染色体一般形态结构
分裂期出现,复制在间期,所以每条染色体含并列的两条染色单 体——姐妹染色单体。
初级缢痕:染色体一定部位、向内凹陷、着色 较浅且狭窄的部位叫初级缢痕;将染色体分两 部分,染色体的长、短臂。 着丝粒:在初级缢痕处把两条姐妹染色单体连 一起的颗粒状的结构,其位置固定。
后期
①着丝点一分为二, 姐妹染色单体分开, 成为两条染色体。
纺锤丝牵引着子染 色体分别向细胞的 两极移动。这时细 胞核内的全部染色
并分别向两极移动
体就平均分配到了
细胞两极
染色体特点:染色单体消失,染色体数目加倍。
末期
①染色体变成染 色质,纺锤体消 失。②核膜、核仁 重现
③在赤道板位置 出现细胞板,并 扩展成分隔两个 子细胞的细胞壁
(2) 中期I:
各个双价体排列在赤道面上,两个同源染色 体上的着丝粒逐渐远离,双价体开始分离, 但仍有交叉联系着
(3) 后期I:
双价体中的两条同源染色体分开,分别向两 极移动,每一染色体有两个染色单体,在着 丝粒区相连(相当于有丝分裂前期的一条染色 体)。这样,每一极得到n条染色体,即在后 期I时染色体数目减半。双价体中哪一条染色 体移向哪一极是完全随机的
(6) 前期II、中期II、后期II和末期II
前期II、中期II、后期II和末期II的情况和有丝 分裂过程完全一样,也是每一染色体具有两 条染色单体,所不同的是染色体在第一次分 裂过程中已经减数,只有n个染色体了
减数分裂的遗传学意义
(一) 减数分裂是有性生殖生物产生性细胞 所进行的细胞分裂方式;而两性性细胞受精结 合(细胞融合)产生的合子是后代个体的起始点
遗传的染色体学说 ppt课件
E D d
e
同源染色体上的非等位基因,能自由组合吗?
PPT课件 15
具有1对同源染色体(Aa)的一个生物体, 其精原细胞能产生几种类型的精子? 2种 具有2对同源染色体(AaBb)的一个生物 体,其精原细胞能产生几种类型的精子? 4种 具有3对同源染色体(AaBbCc)的一个生 物体,其精原细胞能产生几种类型的精子? 8种 具有n对同源染色体的一个生物体,其精 原细胞能产生几种类型的精子? 2n种
PPT课件
1
20世纪初,随着孟德尔定律的重新发 现,遗传学引起人们的极大兴趣。1902 年,美国细胞学家萨顿和德国胚胎学家 鲍维里,他们独立地认识到: 豌豆产生配子时,孟德尔的遗传因子 的行为和减数分裂中的一种物质的行为 有着精确的平行关系。
PPT课件 2
减数分裂的核心
孟德尔分离定律的核心
Dd
D
PPT课件 17
一个有1对同源染色体Aa(A和a、表示同源染 色体)的卵原细胞能产生几种类型的卵细胞?
1种
一个有2对同源染色体AaBb(A和a、B和b 表示同源染色体)的卵原细胞能产生几种类 1种 型的卵细胞?
一个有3对同源染色体AaBbCc的卵原细胞能 产生几种类型的卵细胞?
1种
一个有n 对同源染色体的卵原细胞能产生几 种类型的卵细胞? 1种
减数分裂
r R R r r
圆 形 : 皱 形 =
F1:
3:
R r
R
R
R
1
r
R
r
r
PPT课件
r
9
孟德尔定律的细胞学解释
一、基因分离定律的实质是:
在杂合体的细胞中,位于一对同源染色体的 等位基因,具有一定的独立性;在减数分裂形成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1⎛ ⎫
不对,各有 ⎪完全来自父亲或者母亲。
第三章
1. 有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意
义?无性生殖会发生性状分离吗?试加以说明。
答案:
参阅第三章第二节。
2. 水稻正常的孢子体组织中染色体数目是12 对,问下列各组织的染色体数目是多少?
(1)胚乳;(2)花粉管的管核;(3)胚囊;(4)叶;(5)根端;(6)种子的胚;(7)颖片。
答案:
(1)3n=36条;(2)n=12条;(3)n=12条;(4)2n=24条;(5)2n=24条;(6)2n=24
条;(7)2n=24条。
3. 用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基
因型是什么类型,比例如何?
答案:
AAABBb∶AAaBBb∶Aaabbb∶aaabbb∶AAAbbb∶AAabbb∶AaaBBb∶aaaBBb = 1∶1∶
1∶1∶1∶1∶1∶1。
4. 某生物有两对同源染色体,一对染色体是中间着丝粒,另一对是端部着丝粒,以模
式图方式画出:
(1)减数分裂Ⅰ的中期图;
(2)减数分裂Ⅱ的中期图。
答案:
5. 蚕豆的体细胞有12 条染色体,也就是6 对同源染色体(6 个来自父本,6 个来自母
本)。
一个学生说,在减数分裂时,只有1/4 的配子的 6 条染色体完全来自父本或母本,你
认为他的回答对吗?
答案:
6
⎝ 2 ⎭
6. 在玉米中:
(1)5 个小孢子母细胞能产生多少配子?
(2)5 个大孢子母细胞能产生多少配子?
(3)5 个花粉细胞能产生多少配子?
6
(4)5 个胚囊能产生多少配子?
答案:
(1)20 (2)5 (3)5 (4)5
7. 马的二倍体染色体数目是64,驴的二倍体染色体数目是62,请回答:
(1)马和驴的杂种的体细胞染色体数是多少?
(2)如果马和驴杂种在减数分裂时染色体很少配对或没有配对,是否能说明马-驴杂
种是可育还是不育?
答案:
(1)32I+31I (2)由于染色体不配对,不能形成正常的配子,所以不育。
8. 在玉米中,与糊粉层着色有关的基因很多,其中三对是A-a,I-i和Pr-pr。
要糊粉层着色,除其他有关基因必须存在外,还必须有A基因存在,而且不能有I基因存在。
如有Pr存在,糊粉层紫色。
如果基因型是prpr,糊粉层是红色。
假使在一个隔离的玉米试验区中,基因型AaprprII的种子种在偶数行,基因型aaPrprii的种子种在奇数行。
植株长起来时,允许天然授粉,问在偶数行生长的植株上的果穗的糊粉层颜色怎样?在奇数行上又怎样?(提示:糊粉层是胚乳的一部分,所以是3n。
)
答案:
自交当然无色。
杂交:
(1)偶数行
(2)奇数行
虽然♀配子有两个核(极核)与精核结合,但因显性是完全的,而且两个极核的遗传组
成是相同的,所以为了简便起见,只写一个就可以了。
9. 兔的卵没有受精,经过刺激,发育成兔。
在这种孤雌生殖的兔中,其中某些兔的有
些基因是杂合的。
你怎样解释?(提示:极体受精。
)
答案:
可能是第一极体参与受精,与卵细胞结合。
例如:
7
卵
8。