2020-2021学年最新湖南省邵阳中考数学四模试卷及答案

合集下载

湖南省邵阳市2020届中考模拟考试数学试题(含答案)

湖南省邵阳市2020届中考模拟考试数学试题(含答案)

2020年初中毕业学业模拟考试试题卷数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.|3|-的相反数是( )A .3-B .3-C .3D .32.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.下列计算正确的是( )A .632a a a =⋅B .339a a a =÷C .222)(b a b a +=+D .26328)2(y x y x =4.如图(一), 80,1001,//=∠=∠AED DE BC 则A ∠的大小是( )A . 20B . 30C . 35D . 405.某种计算机完成一次基本运算的时间为1纳秒(ns ),已知1纳秒000000001.0=秒, 该计算机完成16次基本运算,所用时间用科学记数法表示为( )A .9106.1-⨯秒B .91016-⨯秒C .81016-⨯秒D .8106.1-⨯秒6.不等式组⎩⎨⎧≤<-4212x x 的解集在数轴上表示正确的是( )A .B .C .D .7.下列函数图象中,当0>x 时,函数值y 随x 增大而增大的是( )A .B .C .D .8.如图(二),在平面直角坐标系中,F O E ''∆与EOF ∆是以坐标原点O 为位似中心, 位似比为21的位似图形. 若点E 的坐标为)2,4(-,则点E 的对应点E '的坐标是( )A .)4,8(B .)4,8(-C .)1,2(D .)1,2(-9.如图(三),⊙O 的直径4=AB ,弦AB CD ⊥,点E 为垂足,5.22=∠CAB ,则由弧BD 及线段BE 、ED 围成图形(图中阴影部分)的面积等于( )A .121-π B .2-π C .π D .210.在“卫生文明城市”创建活动中,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内“A 、B 、C ”三个小区中的一个进行检查, 则两个组恰好抽到同一个小区的概率是( )A .32B .31C .61D .91 第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.因式分解=+-22396xy y x x .12.如图(四),正方形OABC 的边长为1,OA 在数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧,交 正半轴于一点D ,则这个点D 表示的实数是 .13.根据某商场2019年四个季度的营业额绘制成如图 (五)所示的扇形统计图,其中二季度的营业额为600万元,则该商场全年的营业额为 万元.14已知关于x 的方程0212=-+-m mx x 的一个解为1-, 则它的另一个解是 .15. 如图(六),正比例函数kx y =与反比例函数xy 2=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则ABC ∆的面积等于 .16.《九章算术》是我国古代数学名著,书中有如下问题: “今有井径5尺,不知其深,立五尺木于井上,从木末 望水岸,入径四寸。

2020届中考复习湖南省邵阳市中考数学模拟试题有配套答案(Word版)

2020届中考复习湖南省邵阳市中考数学模拟试题有配套答案(Word版)

邵阳市初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20° B.60°C.70° D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1) B.x(1-x2) C.x(x+1)(x-1) D.x(1+x)(1-x) 4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.A .80°B .120°C .100°D .90°7.小明参加100m 短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心 缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2+3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手 服装普通话主题演讲技巧 李明85708085张华90 75 75 80结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000 kg 材料所用的时间与B 型机器人搬运800 kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB 长为10m ,坡角∠ABD 为30°;改造后的斜坡式自动扶梯的坡角∠ACB 为15°,请你计算改造后的斜坡式自动扶梯AC 的长度.(结果精确到0.1m .温馨提示:sin15°≈0.26, cos15°≈0.97,tan15°≈0.27 )25.如图(十五)所示,在四边形ABCD 中,点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,连接OE ,EF ,FG ,GO ,GE .(1)证明:四边形OEFG 是平行四边形;(2)将△OGE 绕点O 顺时针旋转得到△OMN ,如图(十六)所示,连接GM ,EN .①若OE =3,OG =1,求ENGM的值;②试在四边形ABCD 中添加一个条件,使GM ,EN 的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市初中毕业学业考试参考答案及评分标准数学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10答案 C D D B B B D A C A二、填空题(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC∽△AFD,△EAB∽△AFD,△EFC∽△EAB.13.x=014.40°15.1600016.x=217. 318.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分=2-2+2……………………………………………………………………7分=2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分 将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分 21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分 ∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x=800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC, 所以AC =ADsin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分)解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC . ∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分(2)①∵△OGE 绕点O 顺时针旋转得到△OMN ,∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OGOE =OM ON.∴△OGM ∽△OEN . ∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分)解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2,将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分(2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD . A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0),可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分 (3)S △ABC =12 AC ·BO =12×3×4=6. ①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC .设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y=-2x +4,其中0≤x ≤2,所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4) =13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2. tan ∠MAN =MN AN =22=1.……………5分 当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分 ②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN , 所以MN =13BC =253. 因为S △ABC =12BC ·AN =12×25·AN =6, 所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分 ③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN .设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA ,所以BN BG =MN AG ,即17-t 75=MN 65,求得MN =617-6t 7, 所以S △AMN =12AN ·MN =12t ·617-6t 7=2, 化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分 注:解答题用其它方法解答参照给分.。

2020届邵阳市中考数学模拟试卷(有答案)(Word版)

2020届邵阳市中考数学模拟试卷(有答案)(Word版)

湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.25的算术平方根是()A.5 B.±5 C.﹣5 D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,∴|3﹣π|=π﹣3.故选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示如下:故选B.【点评】本题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°(两直线平行,同旁内角互补).故选D.【点评】本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a的圆的面积,本题得以解决.【解答】解:由图可得,阴影部分的面积为:a2﹣,故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;故选D.【点评】本题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米 D.37千米【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为1.1千米.【解答】解:由图象可以看出菜地离小徐家1.1千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.10.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)【分析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.【点评】本题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.将多项式mn2+2mn+m因式分解的结果是m(n+1)2.【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m(n2+2n+1)=m(n+1)2,故答案为:m(n+1)2.【点评】本题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为 1.24.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万=1.24×107,故a=1.24.故答案为:1.24.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.【点评】本题考查了二次函数的性质,是基础题,需熟记.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.15.如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为90°.【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.17.掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是(20﹣20)km.【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,∵LR=ARcos30°=40×=20(km),AL=ARsin30°=20(km),在Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题(本大题共8小题,共66分)19.计算:4sin60°﹣()﹣1﹣.【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×﹣2﹣2=2﹣2﹣2=﹣2.【点评】本题主要考查的是实数的运算,熟练掌握特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.【分析】(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】本题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值..【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,,2中选择一个使得原分式有意义的x的值代入即可解答本题.【解答】解:=====x,当x=﹣1时,原式=﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.【分析】(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11﹣a)≥300+30,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.如图所示,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【分析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得=,即=,同理由△ACG∽△OCN得=,结合AO=CO得NG=CN,从而由==可得答案;(2)由=、=知==1;(3)由(2)知,在△ABD中有=1、在△ACD中有=1,从而=,据此知===.【解答】解:(1)过点A作AG∥MN交BN延长线于点G,∴∠G=∠BNM,又∠B=∠B,∴△ABG∽△MBN,∴=,∴﹣1=﹣1,∴=,即=,同理,在△ACG和△OCN中,=,∴=,∵O为AC中点,∴AO=CO,∴NG=CN,∴===;(2)由(1)知,=、=,∴==1;(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延长线相交于点C,由(2)得=1,在△ACD中,点P是AD上一点,过点P是AD上一点,过点P的直线与AC、AD的延长线分别相交于点E、B,由(2)得=1,∴=,∴===×=.【点评】本题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的基本性质是解题的关键.26.如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.【分析】(1)设抛物线方程为顶点式y=a(x﹣)2﹣,将点M的坐标代入求a的值即可;(2)设直线y=x+1与y轴交于点G,易求G(0,1).则直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k >0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:(1)依题意可设抛物线方程为顶点式y=a(x﹣)2﹣(a≠0),将点M(2,0)代入可得:a(2﹣)2﹣=0,解得a=1.故抛物线的解析式为:y=(x﹣)2﹣;(2)由(1)知,抛物线的解析式为:y=(x﹣)2﹣.则对称轴为x=,∴点A与点M(2,0)关于直线x=对称,∴A(1,0).令x=0,则y=﹣2,∴B(0,﹣2).在直角△OAB中,OA=1,OB=2,则AB=.设直线y=x+1与y轴交于点G,易求G(0,1).∴直角△AOG是等腰直角三角形,∴∠AGO=45°.∵点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k>0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,如图1所示,过点D作DN⊥y轴于点N,在直角△BDN中,∵∠DBN=∠AGO=45°,∴DN=BN==,∴D(﹣,﹣﹣2),∵点D在反比例函数y=(k>0)图象上,∴k=﹣×(﹣﹣2)=+;②此菱形以AB为对角线,如图2,作AB的垂直平分线CD交直线y=x+1于点C,交反比例函数y=(k>0)的图象于点D.再分别过点D、B作DE⊥x轴于点F,BE⊥y轴,DE与BE相较于点E.在直角△BDE中,同①可证∠AGO=∠DBO=∠BDE=45°,∴BE=DE.可设点D的坐标为(x,x﹣2).∵BE2+DE2=BD2,∴BD=BE=x.∵四边形ABCD是菱形,∴AD=BD=x.∴在直角△ADF中,AD2=AF2+DF2,即(x)=(x+1)2+(x﹣2)2,解得x=,∴点D的坐标是(,).∵点D在反比例函数y=(k>0)图象上,∴k=×=,综上所述,k的值是+或.【点评】本题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答(2)题时要分类讨论,以防漏解.。

(4份试卷汇总)2020-2021学年邵阳市中考数学教学质量检测试题

(4份试卷汇总)2020-2021学年邵阳市中考数学教学质量检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣52.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元3.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或04.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .805.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分6.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D7.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A .(32,0)B .(2,0)C .(52,0)D .(3,0)8.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.59.下列运算正确的是( )A .624a a a -=B .()222a b a b +=+C .()232622ab a b =D .2326a a a =10.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小二、填空题(本题包括8个小题)11.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.12.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是13.在△ABC中,∠C=90°,若tanA=12,则sinB=______. 14.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+.其中正确的序号是 (把你认为正确的都填上).15.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 16.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.18.如图,点,A B 是反比例函数(0,0)k y k x x=>>图像上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D ,交OB 于点E ,延长AB 交x 轴于点C ,已知2125OAB ADC S S ∆∆=,145OAE S ∆=,则k 的值为__________.三、解答题(本题包括8个小题)19.(6分)关于x 的一元二次方程ax 2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.20.(6分)在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围.21.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?22.(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)23.(8分)关于x 的一元二次方程230x x k -+=有实数根.求k 的取值范围;如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值. 24.(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.25.(10分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.求证:四边形ABCD是菱形;若AB=5,BD=2,求OE的长.26.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168⨯⨯2=100-24=76.故选C.考点:勾股定理.5.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B【解析】【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=12∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.8.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =1. 故选B .9.D【解析】【分析】分别根据合并同类项、完全平方公式、积的乘方、单项式的乘法法则进行计算即可.【详解】A 、a 6和a 2不是同类项,无法合并,故本项错误;B 、()2222a b a ab b +=++,故本项错误;C 、()232624ab a b =,故本项错误;D 、23?26a a a =,故本项正确;故本题答案应为:D.【点睛】合并同类项、完全平方公式、积的乘方、单项式的乘法是本题的考点,熟练掌握运算法则是解题的关键. 10.C【解析】如图所示,连接CM ,∵M 是AB 的中点,∴S △ACM =S △BCM =12S △ABC , 开始时,S △MPQ =S △ACM =12S △ABC ; 由于P ,Q 两点同时出发,并同时到达终点,从而点P 到达AC 的中点时,点Q 也到达BC 的中点,此时,S △MPQ =14S △ABC ;结束时,S△MPQ=S△BCM=12S△ABC.△MPQ的面积大小变化情况是:先减小后增大.故选C.二、填空题(本题包括8个小题)11.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.12.4【解析】【分析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.13.25【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=12,∴设BC=x,则AC=2x,故5,则sinB=255ACAB x==.25.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.14.①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。

2021年湖南省邵阳县下中考数学四模试卷(有答案)

2021年湖南省邵阳县下中考数学四模试卷(有答案)

湖南省邵阳县2021年中考数学四模试卷姓名:__________ 班级:__________考号:__________考试时间 100分钟满分120分1.下面简单几何体的主视图是()A. B.C. D.2.有长度分别为3、5、7、9的四条线段,从中任取三条线段能组成三角形的概率是()A. B. C.D.3.如果单项式-3x4a-b y2与x3y a+b的和是单项式,那么这两个单项式的积是()A. 3x6y4B. -3x3y2 C. -3x3y2 D. -3x6y44.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米5.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4) B. (2,4)或(8,4)C. (3,4)或(8,4) D. (3,4)或(2,4)或(8,4)6.如图,在△ABC中,把△ABC沿直线AD翻折180°,使点C 落在点B的位置,则线段AD是()A. 边BC上的中线B. 边BC上的高 C. ∠BAC的平分线 D. 以上都是7.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A. 148°B. 132° C. 128°D. 90°8.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A. 40°B. 3 0°C. 20°D. 10°9.如图所示,在△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别等于()A. 16cm,40°B. 8cm,50° C. 16cm,50° D. 8cm,40°10.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.A. 36°B. 5 2°C. 48°D. 30°二、填空题(共10小题;共30分)11.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个.12.若a=﹣10,那么﹣a=________13.如图,∠AOB,∠BOC,∠AOC的大小关系用“>”连接起来:________ .14.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是________.15.已知= ,则=________.16.下图是在正方形的方格中按规律填成的阴影,根据此规律,则第个图中阴影部分小正方形的个数是________ .17.如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC= ,则tan∠BAD=________.18.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i= ,则AC的长度是________ cm.19.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C 落在EF上的点H处,折痕为FG,则A、H两点间的距离为________.20.如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A,B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为________,________.三、解答题(共8小题;共60分)21.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .22. (1)因式分解:a(n﹣1)2﹣2a(n﹣1)+a.(2)解方程:.23.求图中阴影部分的周长和面积.(单位:cm)24.网络时代的到来,很多家庭都拉入了网络,一家电信公司给顾客提供上网费的两种计费方式:方式A以每分钟0.05 元的价格按上网时间计费;方式B除收月基费54元外加每分0.02元的价格按上网时间计费.如何选择更经济?25.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.如:8=32﹣12,16=52﹣32,24=72﹣52,…因此8,16,24这三个数都是奇特数.(1)56这个数是奇特数吗?为什么?(2)设两个连续奇数的2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?26.如图,在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2= (m≠0,x>0)的图象交于第一象限内的A、B两点,过点A作AC⊥x轴于点C,AC=3,点B的坐标为(2,6)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象,请直接写出y1<y2时x的取值范围.27.在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG 按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.(1)图1中,小明发现DG=BE,请你帮他说明理由.(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE的长.28.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.(1)求A、B两点的坐标?(2)若点D为AB中点,求OE的长?(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.参考答案与试题解析一、选择题1.【答案】C【解析】【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形。

2020届湖南省邵阳市中考数学模拟试题有答案(Word版)

2020届湖南省邵阳市中考数学模拟试题有答案(Word版)

邵阳市初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20°B.60°C.70°D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1)B.x(1-x2)C.x(x+1)(x-1) D.x(1+x)(1-x)4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是A.80°B.120°C.100°D.90°7.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2 +3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4). 结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若A E =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.项目 选手服装 普通话 主题 演讲 技巧 李明 85 70 80 85 张华9075758023.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000 kg材料所用的时间与B型机器人搬运800 kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800 kg,则至少购进A型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)25.如图(十五)所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图(十六)所示,连接GM,EN.①若OE=3,OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 9 10 答案CDDBBBDACA(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC ∽△AFD ,△EAB ∽△AFD ,△EFC ∽△EAB . 13.x =0 14.40° 15.16000 16.x =2 17. 3 18.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分 =2-2+2 ……………………………………………………………………7分 =2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分 ∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分) 解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x =800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC, 所以AC =AD sin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分) 解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC .∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分 (2)①∵△OGE 绕点O 顺时针旋转得到△OMN , ∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OG OE =OMON .∴△OGM ∽△OEN .∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分) 解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2, 将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分 (2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD .A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0),可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分(3)S △ABC =12 AC ·BO =12×3×4=6.①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC .设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y =-2x +4,其中0≤x ≤2, 所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4)=13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2.tan ∠MAN =MN AN =22=1.……………5分当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN ,所以MN =13BC =253.因为S △ABC =12BC ·AN =12×25·AN =6,所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN . 设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA , 所以BN BG =MNAG ,即17-t 75=MN 65, 求得MN =617-6t7,所以S △AMN =12AN ·MN =12t ·617-6t7=2,化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分注:解答题用其它方法解答参照给分.。

湖南邵阳达标名校2024届中考四模数学试题含解析

湖南邵阳达标名校2024届中考四模数学试题含解析

湖南邵阳达标名校2024届中考四模数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分) 1.分式方程213xx =-的解为( ) A .x=-2B .x=-3C .x=2D .x=32.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是53.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ) A .11;B .6;C .3;D .1.4.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( ) A .9B .4C .43D .335.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+6.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( )A .a c =B .0ab >C .1a c +=D .1b a -=72 ,0,π,13,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15B .25C .35D .458.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .339.定义运算“※”为:a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x 的图象大致是( ) A . B .C .D .10.二次函数y=﹣12(x+2)2﹣1的图象的对称轴是( ) A .直线x=1B .直线x=﹣1C .直线x=2D .直线x=﹣2二、填空题(本大题共6个小题,每小题3分,共18分) 11.分解因式:x 2y ﹣y =_____.12.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若CG GB 1k =,则ADAB= (用含k 的代数式表示).13.分解因式:2363m m -+=__________.14.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________.15.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.16.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.三、解答题(共8题,共72分)17.(8分)如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD .求证:AD 平分∠BAC ;若∠BAC =60∘,OA =4,求阴影部分的面积(结果保留π).18.(8分)如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =kx 交于点A (1,m ),这两条直线分别与x 轴交于B ,C两点.(1)求y 与x 之间的函数关系式; (2)直接写出当x >0时,不等式34x +b >kx 的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.19.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100学生甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.20.(8分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.在方格纸中.21.(8分)如图,ABC(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .22.(10分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S23.(12分)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5 km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)24.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .求证:BC 是⊙O 的切线;设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;若BE =8,sinB =513,求DG 的长,参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.2、D【解题分析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;5出现了2次,最多,∴众数是5,故选项C正确;极差为:14﹣5=9,故选项D错误.故选D3、D【解题分析】∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,∴上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.4、D【解题分析】解:设方程的另一个根为a a =解得a=故选D. 5、C 【解题分析】设I 的边长为x ,根据“I 、II 的面积之和等于III 、IV 面积之和的2倍”列出方程并解方程即可. 【题目详解】 设I 的边长为x根据题意有2222(22)x x x +=+解得4x =-4x =+ 故选:C . 【题目点拨】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键. 6、C 【解题分析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答. 【题目详解】解:∵AO =2,OB =1,BC =2, ∴a =-2,b =1,c =3,∴|a|≠|c|,ab <0,1a c +=,()123b a -=--=, 故选:C . 【题目点拨】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解. 7、C 【解题分析】,0,π,13,6这5个数中只有0、13、6为有理数,再根据概率公式即可求出抽到有理数的概率. 【题目详解】,0,π,13,6这5个数中有理数只有0、13、6这3个数, ∴抽到有理数的概率是35,故选C . 【题目点拨】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键. 8、A 【解题分析】设AC =a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可. 【题目详解】设AC =a ,则BC =30AC tan ︒,AB =30AC sin ︒=2a ,∴BD =BA =2a ,∴CD =(a ,∴tan ∠DAC . 故选A. 【题目点拨】本题主要考查特殊角的三角函数值. 9、C 【解题分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【题目详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分; 当x <0时,图象是y=22x -对称轴左侧的部分, 所以C 选项是正确的. 【题目点拨】本题考查了二次函数的图象,利用定义运算“※”为: a※b=()()220 ab bab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.10、D【解题分析】根据二次函数顶点式的性质解答即可. 【题目详解】∵y=﹣12(x+2)2﹣1是顶点式,∴对称轴是:x=-2,故选D.【题目点拨】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、y(x+1)(x﹣1)【解题分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【题目详解】解:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【题目点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、2。

2021年湖南省邵阳市中考数学模拟试卷(附答案详解)

2021年湖南省邵阳市中考数学模拟试卷(附答案详解)

2021年湖南省邵阳市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.|−2021|的倒数是()A. −2021B. −12021C. 12021D. 20212.下列说法中不正确的是()A. 函数y=3x的图象经过原点B. 函数y=1x的图象位于第一、三象限C. 函数y=2x−1的图象不经过第二象限D. 函数y=−3x的值随x的值的增大而减小3.我市去年一季度国内生产总数值为468.15亿,这个数用科学记数法表示为()A. 0.46815×1011B. 4.6815×1010C. 4.6815×1011D. 46815×1064.如图,直线l1//l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为()A. 30°B. 40°C. 50°D. 60°5.在△ABC中,若|sinA−√32|+(cosB−√32)2=0,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°6.如果2x a−1y与x3y b−2是同类项,那么ab的值是()A. 34B. 43C. 1D. 37.如图所示,正六棱柱的左视图是()A.B.C.D.8. 学校决定从甲、乙两人中选一人去参加全县的射击比赛,在最后5次射击训练中,甲、乙两人的射击成绩分别为(单位:环): 甲:10,9,10,8,8 乙:7,9,10,10,9 则选谁去参加比赛更合适( )A. 甲、乙选谁都一样B. 选甲C. 选乙D. 无法确定9. 若正多边形的一个外角是36°,则该正多边形的内角和为( )A. 360°B. 720°C. 1440°D. 1800°10. 在同一平面直角坐标系中,函数y =ax 2+bx 与y =ax 的大致图象可能为( )A.B.C.D.二、填空题(本大题共8小题,共24.0分) 11. 化简x 2−x(x −1)的结果是______ .12. 把(a −2b)+(a 2−4b 2)因式分解的结果是______ . 13. 如图,△ABC 与△DEF 位似,点O 为位似中心,OA =AD ,则△ABC 与△DEF 的面积比为______ .14. 若√6−3x 在实数范围内有意义,则x 的取值范围是______ . 15. 已知x ,y 满足方程组{3x +2y =233x −2y =−5,则9x 2−4y 2的值为______ .16. 从3,−2,5这三个数中任取两个不同的数,作为点的坐标,则该点在第一象限的概率为______ .17. 如图,已知在△ABC 中,AB =AC ,点D ,E 在BC 上,且BD =CE ,请你在图中找出一组全等三角形______ .(不添加任何字母和辅助线)18. 如图所示,我国汉代数学家赵爽,为了证明勾股定理创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3.若正方形EFGH的边长为5,则S1+S2+S3=______ .三、解答题(本大题共8小题,共66.0分)19.计算:(−2021)0+√16−|−2|×2−2.20.先化简,再求值:xx2−1÷(1+1x−1),其中x=2021.21.如图,AC是⊙O的直径,OD与⊙O相交于点B,∠DAB=∠ACB.(1)求证:AD是⊙O的切线.(2)若∠ADB=30°,DB=2,求直径AC的长度.22.某市举行“文明城市”书画比赛,已知每篇参赛作品成绩记作n分(60≤n≤100),组委会从1000篇作品中随机抽取了部分参赛作品,统计了他们的成绩,并绘制了不完整的两幅统计图表.书画比赛成绩频数分布表分数段频数频率60≤m<70380.3870≤m<80a0.2980≤m<90b c90≤m≤100100.1合计1请根据以上信息,解决下列问题:(1)书画比赛成绩频数分布表中b的值是______ .(2)补全书画比赛成绩频数分布直方图.(3)若80分以上(含80分)的书画将被评为一等奖,试估计全市获得一等奖作品的篇数.23.某校为了举办“植树节”活动,计划购买甲、乙两种树苗,已知购买2棵甲种树苗和3棵乙种树苗共需60元,购买3棵甲种树苗和2棵乙种树苗共需65元.(1)求每棵甲种树苗和每棵乙种树苗的价格分别为多少元?(2)学校计划购买甲种树苗和乙种树苗共50棵,总费用不超过600元,那么最多可购买甲种树苗多少棵?24.某县城为加快5G网络信号覆盖,在高度BC为90米的小山顶上架设了信号发射塔,如图所示.小茜为了知道发射塔的高度,从地面上的一点A测得发射塔顶端D点的仰角是45°,测得发射塔底部C点的仰角是30°.请你帮小茜计算出信号发射塔DC的高度.(结果精确到0.1米,√3≈1.732)25.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图2,小华继续将图1中的纸片Rt△DEF沿AC方向平移,连接AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形(2)如图3,若BC=EF=6cm,AC=DF=8cm,当AF=92ABDE的形状,并说明理由.26.如图所示,抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴相交于点C(0,−3),其对称轴x=1与x轴相交于点D,点M为抛物线的顶点.(1)求抛物线的表达式.(2)若直线CM交x轴于点E,求证:BC=EC.(3)若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:|−2021|=2021,2021的倒数是1.2021故选:C.利用绝对值的代数意义,以及倒数的性质计算即可.此题考查了倒数,以及绝对值,熟练掌握各自的性质是解本题的关键.2.【答案】D【解析】解:A.函数y=3x的图象经过原点,正确,不合题意;B.函数y=1的图象位于第一、三象限,正确,不合题意;xC.函数y=2x−1的图象不经过第二象限,正确,不合题意;D.函数y=−3的值,在每一个象限内,y随x的增大而增大,故错误.符合题意.x故选:D.分别利用一次函数和反比例函数的性质分析得出答案.本题考查了一次函数和反比例函数的定义与性质,正确把握相关性质是解题的关键.3.【答案】B【解析】解:468.15亿=46815000000=4.6815×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB =180°−90°−30°=60°, ∵l 1//l 2,∴∠1=∠CAB =60°. 故选:D .根据平行线的性质和垂直的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质解答.5.【答案】D【解析】解:∵|sinA −√32|+(cosB −√32)2=0,∴sinA =√32,cosB =√32, ∴∠A =60°,∠B =30°, ∴∠C 的度数是90°. 故选:D .直接利用特殊角的三角函数值以及偶次方和绝对值的性质得出∠A 和∠B 的度数进而求出即可.此题主要考查了特殊角的三角函数值以及偶次方和绝对值的性质,正确得出∠A 和∠B 的度数是解题关键.6.【答案】B【解析】解:由题意得:a −1=3,b −2=1, 解得:a =4,b =3, 则ab =43, 故选:B .根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项可得a ,b 的值,再代入所求式子计算即可.此题主要考查了同类项,关键是掌握同类项定义.7.【答案】D【解析】解:从左面看可得到左右相邻的2个长方形, 故选:D .找到从左面看所得到的图形即可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图;本题需注意左视图中只能看到正六棱柱的两个面.8.【答案】B【解析】解:甲的平均成绩为15(10+9+10+8+8)=9, 乙的平均成绩为15(7+9+10+10+9)=9,甲的方差S 甲2=15[(10−9)2+(9−9)2+(10−9)2+(8−9)2+(8−9)2]=45,乙的方差S 2=15[(7−9)2+(9−9)2+(10−9)2+(10−9)2+(9−9)2]=65.∵甲,乙两人方差的大小关系是:S 乙2>S 甲2.∴选甲去参加比赛更合适. 故选:B .分别计算两人的平均数和方差后比较即可.本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x −,则方差S 2=1n [(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.【答案】C【解析】解:∵360°÷36°=10, ∴这个正多边形是正十边形,∴该正多边形的内角和为(10−2)×180°=1440°. 故选:C .先利用多边形的外角和是360°,正多边形的每个外角都是36°,求出边数,再根据多边形内角和定理求解.本题考查了多边形的内角与外角,掌握多边形的内角和与外角和定理是解题的关键.10.【答案】A【解析】解:A 、由反比例函数y =ax 图象可知,a >0,由二次函数y =ax 2+bx 的图象可知,a >0,一致;B 、由反比例函数y =ax 图象可知,a >0,由二次函数y =ax 2+bx 的图象可知,a <0,不一致;C、由反比例函数y=ax图象可知,a<0,由二次函数y=ax2+bx的图象可知,a>0,不一致;D、由反比例函数y=ax图象可知,a>0,由二次函数y=ax2+bx的图象可知,a<0,不一致.故选:A.本题可先由反比例函数y=ax图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.本题考查抛物线和反比例函数的性质,用假设法来搞定这种数形结合题是一种很好的方法.11.【答案】x【解析】解:x2−x(x−1)=x2−x2+x=x.故答案为:x.直接利用单项式乘多项式以及合并同类项法则化简得出答案.此题主要考查了单项式乘多项式,正确掌握相关运算法则是解题关键.12.【答案】(a−2b)(1+a+2b)【解析】解:原式=(a−2b)+(a+2b)(a−2b)=(a−2b)(1+a+2b).故答案为:(a−2b)(1+a+2b).直接利用公式法分解因式,再结合提取公因式法分解因式得出答案.此题主要考查了分组分解法分解因式,正确运用乘法公式分解因式是解题关键.13.【答案】1:4【解析】解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AB//DE,∴△OAB∽△ODE,∴ABDE =OAOD=12,∴△ABC 与△DEF 的面积比=(12)2=14,故答案为:1:4.根据位似图形的概念得到△ABC∽△DEF ,根据相似三角形的性质求出AB DE ,根据相似三角形的面积比等于相似比的平方计算即可.本题考查的是位似变换的概念和性质,掌握位似图形是相似图形、相似三角形的面积比等于相似比的平方是解题的关键. 14.【答案】x ≤2【解析】解:∵√6−3x 有意义,∴6−3x ≥0,解得x ≤2.故答案为:x ≤2.先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键. 15.【答案】−115【解析】解:∵x ,y 满足方程组{3x +2y =233x −2y =−5, ∴9x 2−4y 2=(3x +2y)(3x −2y)=23×(−5)=−115.故答案为:−115.由已知条件得到3x +2y =23,3x −2y =−5,再把9x 2−4y 2分解得到(3x +2y)(3x −2y),然后利用整体代入的方法计算.本题考查了因式分解−运用公式法:如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法;平方差公式:a 2−b 2=(a +b)(a −b);完全平方公式:a 2±2ab +b 2=(a ±b)2.16.【答案】13【解析】解:画树状图如图:共有6个等可能的结果,该点在第一象限的结果有2个,∴该点在第一象限的概率为26=13,故答案为:13.画树状图,共有6个等可能的结果,该点在第一象限的结果有2个,再由概率公式求解即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;也考查了点的坐标特征.17.【答案】△ABD≌△ACE或△ABE≌△ACD【解析】解:在△ABD与△ACE中,{AB=AC ∠B=∠C BD=CE,∴△ABD≌△ACE(SAS);∵BD=CE,∴BD+DE=CE+DE,∴BE=CD.在△ABD与△ACD中,{AB=AC ∠B=∠C BE=CD,∴△ABE≌△ACD(SAS);故答案为:△ABD≌△ACE或△ABE≌△ACD.首先根据等腰三角形的性质:等角对等边得出∠B=∠C,然后根据SAS证明△ABD≌△ACE,△ABE≌△ACD,则图中全等的三角形共有2对.本题主要考查了等腰三角形的性质及全等三角形的判定与性质,属于基础题型,比较简单.18.【答案】75【解析】解:在Rt△CFG中,由勾股定理得:CG2+CF2=GF2,∵八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,∴CG=KG=FN,CF=DG=KF,∴S1=(CG+DG)2=CG2+DG2+2CG⋅DG=CG2+CF2+2CG⋅DG=GF2+2CG⋅DG,S2=GF2,S3=(KF−NF)2,=KF2+NF2−2KF⋅NF=KF2+KG2−2DG⋅CG=FG2−2CG⋅DG,∵正方形EFGH的边长为5,∴GF2=25,∴S1+S2+S3=GF2+2CG⋅DG+GF2+FG2−2CG⋅DG=3GF2=75,故答案为:75.根据八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,得出CG=KG,CF=DG=KF,再根据S1=(CG+DG)2,S2=GF2,S3=(KF−NF)2,S1+S2+S3=3GF2,即可求解.此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质等知识,根据已知得出S1+S2+S3=3GF2=27是解题的关键.19.【答案】解:原式=1+4−2×14=1+4−1 2=92.【解析】直接利用零指数幂的性质以及二次根式的性质、绝对值的性质、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=x(x+1)(x−1)÷xx−1=1x+1,当x=2021时,原式=12022.【解析】根据分式的运算法则进行化简,然后将x的值代入原式即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.【答案】(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,又∵∠ACB=∠DAB,∴∠DAB+∠CAB=90°,即∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:由(1)可知∠OAD=90°,∵∠ADB=30°,∴OA=12OD=12(OB+BD),∵OA=OB,BD=2,∴OA=2,∴AC=2OA=4.【解析】(1)根据圆周角定理得出∠ABC=90°,求出∠ACB+∠CAB=90°,求出∠OAD= 90°,再根据切线的判定得出即可;(2)根据含30°角的直角三角形的性质得出OA=12OD,求出OA,再求出答案即可.本题考查了直角三角形的性质,圆周角定理和切线的判定等知识点,能灵活运用知识点进行推理和计算是解此题的关键.22.【答案】23【解析】解:(1)∵样本容量为38÷0.38=100,∴a=100×0.29=29,∴b=100−38−29−10=23.故答案为:23;(2)根据(1)补全频数分布直方图如下:(3)1000×23+10100=330(篇),答:估计全市获得一等奖作品的篇数有330篇.(1)根据60≤m <70的频数与频率求出总数,再用总数乘以70≤m <80的频率求出a 的值,再用总人数减去其它频数,求出b ;(2)根据(1)求出a 和b 的值,直接补全频数分布直方图即可;(3)用总人数乘以80分以上(含80分)的书画所占的百分比即可.本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】解:(1)设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元,由题意可得:{2 x +3y =603x +2y =65, 解得:{ x =15y =10, 答:每棵甲种树苗的价格为15元,每棵乙种树苗的价格10元;(2)设甲种树苗a 棵,由题意可得:15a +10(50−a)≤600,解得:a ≤20,答:最多可购买甲种树苗20棵.【解析】(1)设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元,由“购买2棵甲种树苗和3棵乙种树苗共需60元,购买3棵甲种树苗和2棵乙种树苗共需65元”列出方程组,可求解;(2)设甲种树苗a 棵,由“总费用不超过600元”列出不等式,可求解.本题考查了一元一次不等式的应用,二元一次方程组的应用,找到正确的数量关系是本题的关键.24.【答案】解:由题可知:∠DAB=45°,∠CAB=30°,DB⊥AB,BC=90,在Rt△ABC与中,∵tan∠CAB=BCAB,∴AB=BCtan∠CAB =√33=90√3,在Rt△ABD中,∵∠DAB=45°,∴∠ADB=45°,∴∠DAB=∠ADB,∴BD=AB=90√3,∴DC=DB−BC=90√3−90≈65.9.答:信号发射塔DC的高度为65.9米.【解析】在Rt△ABC中,根据三角函数的定义求出AB,在Rt△ABC中,根据等腰直角三角形的性质求出BD,即可得到DC.本题考查了解直角三角形的应用,仰角的定义,以及三角函数,正确求得AB的长度是解决问题的关键.25.【答案】(1)答:四边形ABDE是平行四边形.理由如下:∵Rt△ABC≌Rt△DEF,∴∠BAC=∠EDF,AB=DE∴AB//DE∴四边形ABDE是平行四边形;(2)在Rt△ABC与Rt△DEF中,∵BC=EF=6cm,AC=DF=8cm,∴AB=√BC2+AC2=10cm,∵AF=92cm,DE=AB=10(cm),∵AFEF =926=34,EFFD=68=34,∴AFEF =EFFD,∵∠AFE=∠DFE=90°,∴△AFE∽△EFD,又∠FAE+∠AEF=90°,即∠AED=90°,由(1)可知:ABDE是平行四边形,∴平行四边形ABDE为矩形.【解析】(1)由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB//DE,可得出结论;(2)根据勾股定理可得AB的长,然后证明△AFE∽△EFD,进而可得结论.本题是四边形综合题,考查了平行四边形的判定与性质,平移的性质,矩形的性质,全等三角形的判定与性质,平行线的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.26.【答案】解:(1)∵y=x2+bx+c与y轴相交于点C(0,−3),将点C(0,−3)代入可得:c=−3,=1,又∵对称轴x=−b2a∴b=−2,即抛物线的表达式为y=x2−2x−3;(2)∵对称轴为x=1,代入抛物线表达式得y=1−2−3=4,即点M(1,−4),设直线CM的表达式为y=kx+n,把点C(0,−3),M(1,−4)代入解得k=−1,n=−3,∴CM的表达式为y=−x−3,∵点E在x轴上,即纵坐标y=0,此时x=−3,∴E(−3,0),由平面直角坐标系的可知:OE=OC=OB=3,∠EOC=∠BOC=90°,∴△EOC≌△BOC(SAS),∴EC=BC;(3)存在,∵点P在线段EM上,可设P(t,−t−3),如图1所示,作PN⊥x轴于N,∴PN=t+3,MN=OE−ON=3+t,由勾股定理可知PE=√PN2+MN2=(t+3)√2,BC=√OA2+OB2=√32+32=3√2,又∵AB=OA+OB=4,由(2)可知△EOC≌△BOC,∴∠OEC=∠OBC,当△PEO∽△ABC时,PE AB =OEBC,即(t+3)√24=3√2,解得t=−1,即点P的坐标为(−1,−2),当△PEO∽△CBA时,PE BC =OEAB,√23√2=34,解得t=−34,即点P的坐标为(−34,−94),综上P的坐标为(−1,−2)或(−34,−94).【解析】(1)根据点C坐标和对称轴代入表达式即可得出;(2)根据(1)写出M点坐标,求出直线CM表达式,求出E点坐标构造△EOC≌△BOC,结论即得证;(3)分情况构造△PEO∽△ABC,根据线段比例关系即可求出P点坐标.本题主要考查二次函数、一次函数、全等三角形、相似三角形等知识点,难点在第三问分情况构造三角形相似.。

2020年湖南省邵阳市中考数学模拟试卷(附解析)

2020年湖南省邵阳市中考数学模拟试卷(附解析)

2020年湖南省邵阳市中考数学模拟试卷1.−2的绝对值的倒数是()A. −12B. 2 C. 12D. −22.下列计算正确的是()A. x3⋅x2=x6B. (a3+1)(a3−1)=a9−1C. √a2=aD. √a33=a3.如图,AB//CD,∠CDE=140°,则∠A的度数为()A. 140°B. 60°C. 50°D. 40°4.纳米是一种长度单位,1纳米=0.000000001米,已知某种花粉的直径为5300纳米,这种花粉的直径用科学记数法表示为()A. 5.3×10−4米B. 5.3×10−5米C. 5.3×10−6米D. 5.3×10−7米5.如图是某个几何体的三视图,该几何体是()A. 圆锥B. 三棱锥C. 圆柱D. 三棱柱6.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.下列说法中,正确的是()A. 不可能事件发生的概率为1B. 旅客上飞机前的安检要全面调查C. 概率很小的事件不可能发生D. 随机事件发生的概率为0.58.使函数y=√x+1x有意义的自变量x的取值范围为()A. x≠0B. x≥−1C. x≥−1且x≠0D. x>−1且x≠09.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A. 3B. 6C. 3πD. 6π10.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A. 671B. 672C. 673D. 67411.若x+y=−2,xy=−3,则x2y+xy2的值是______ .12.若关于x的一元二次方程x2−4x+k=0有两个相等的实数根,则k的值为______.13.四边形ABCD内接于⊙O,∠A=80°,则∠C=______ .14.不等式组{2x−1≥58−4x<0的解集是______ .15.如图,在⊙O中,弦AC=2√2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=______.16.如图,已知平行四边形ABCD中,∠BCD的平分线交边AD于E,∠ABC的平分线交AD于F,若AB=12,AE=5,则EF=______ .17.小明在离路灯底部6m处测得自己的影子长为1.2m,小明的身高为1.6m,那么路灯的高度为______ m.18.等腰三角形的底和腰是方程x2−6x+8=0的两根,则这个三角形的周长为______.)−2.19.计算:−14−(√3−1)0−(−3)2+2cos60°+(−1220.先化简,再求值,其中x是从2,−2和√5中选取的一个合适的数,x2−2x÷(x−2−x2−42x−4).x+221.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:请根据以图表信息,解答下列问题:(1)表中m=______,n=______;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.22.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.23. 由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲 乙 原料成本 12 8 销售单价 18 12生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入−投入总成本)24. 如图,AB 是长为5m ,倾斜角为37°的自动扶梯,平台BD与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)25.如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为6,∠BAC=60°,求DE的长.26.如图,已知抛物线y=−x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以√2个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.答案和解析1.【答案】C【解析】解:∵|−2|=2,而2的倒数为1÷2=12, ∴−2的绝对值的倒数是12. 故选:C .首先根据负数的绝对值等于它的相反数求出−2的绝对值,然后利用乘积为1的两数互为倒数,用1除以求出的绝对值即可得到最后结果. 主要考查绝对值,倒数的概念及性质.若两个数的乘积是1,我们就称这两个数互为倒数.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:A.x 3⋅x 2=x 5,故选项A 错误; B .(a 3+1)(a 3−1)=a 6−1,故选项B 错误; C .√a 2=|a|={a(a >0)0(a =0)−a(a <0),故选项C 错误;D .√a 33=a ,正确. 故选:D .根据同底数幂的运算法则、平方差公式、算术平方根以及立方根的意义对各项进行判断即可.本题主要考查了同底数幂的乘法、平方差公式、二次根式以及立方根的性质,正确掌握相关运算法则是解题关键.3.【答案】D【解析】解:∵∠CDE =140°, ∴∠ADC =180°−140°=40°, ∵AB//CD ,∴∠A =∠ADC =40°. 故选:D .先求出∠CDE 的邻补角,再根据两直线平行,内错角相等解答.本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.4.【答案】C【解析】解:由题意可知:5300纳米=5300×10−9米=5.3×10−6米.故选:C.先把5300纳米换算成5300×10−9米,再用科学记数法表示.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】D【解析】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:D.本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.由主视图和左视图确定这个几何体是柱体,再由俯视图确定具体形状.6.【答案】A【解析】解:A、既是轴对称图形又是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形又是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】B【解析】解:A、不可能事件发生的概率为0,所以A选项错误;B、旅客上飞机前的安检要全面调查,所以B选项正确;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、随机事件发生的概率在0与1之间,所以D选项错误.故选:B.根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0,随机事件发生的概率在0与1之间,A、D、C进行判定;根据全面调查的定义对B进行判定.本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.8.【答案】C【解析】解:由题意得,x+1≥0且x≠0,解得x≥−1且x≠0.故选:C.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.9.【答案】B【解析】【分析】本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.直接根据弧长公式即可得出结论.【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,×2π×10,解得r=6.∴2πr=216360故选:B.10.【答案】B【解析】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.11.【答案】6【解析】解:x2y+xy2=xy(x+y),当x+y=−2,xy=−3时,原式=−3×(−2)=6;故答案为:6.根据提公因式法,把(x2y+xy2)分解因式,进而将已知条件代入求出即可.此题主要考查了提取公因式分解因式以及求代数式的值,正确分解因式是解题关键.12.【答案】4【解析】解:根据题意得△=(−4)2−4k=0,解得k=4.故答案为4.根据判别式的意义得到△=(−4)2−4k=0,然后解一次方程即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.【答案】100°【解析】解:∵四边形ABCD内接于⊙O,∠A=80°,∴∠C=180°−∠A=100°.故答案为:100°.由四边形ABCD内接于⊙O,∠A=80°,根据圆的内接四边形的对角互补,即可求得答案.此题考查了圆的内接多边形的性质.此题比较简单,注意圆的内接四边形的对角互补定理的应用是解此题的关键.14.【答案】x≥3【解析】解:解不等式2x−1≥5,得x≥3;解不等式8−4x<0,得x>2;∴不等式组的解集为x≥3,故答案为:x≥3.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】2【解析】解:∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵OA=OC=R,∴△AOC是等腰直角三角形,AC=2.∴R=OA=OC=√22故答案为:2.由圆周角定理得出∠AOC=90°,根据等腰直角三角形的性质即可得出答案.本题考查了圆周角定理、勾股定理、等腰直角三角形的性质,解题的关键是通过圆周角定理得到∠AOC的度数.16.【答案】7【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF;∵AB=12,AE=5,∴EF=AF−AE=12−5=7,故答案为:7.根据平行四边形的性质可得AD//BC,根据两直线平行内错角相等可得∠AFB=∠FBC,再由角平分线的定义可得∠ABF=∠FBC,从而不难推出∠AFB=∠ABF,由等角对等边可得AB=AF,已知AE的长,从而EF的长不难求解.此题主要考查平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.17.【答案】9.6【解析】解:如图,AB=1.6m,DB=6m,BE=1.2m,∵AB⊥DE,CD⊥DE,∴AB//CD∴△EAB∽△ECD,∴ABCD =EBED,∵AB=1.6m,DB=6m,BE=1.2m,∴1.6CD =1.27.2,解得:CD=9.6,故答案为:9.6.如图,设AB为小亮,CD为路灯,DB=6米,利用相似三角形求得CD的长即可.本题考查的是相似三角形在实际生活中的运用,根据题意画出图形,构造出相似三角形是解答此题的关键.18.【答案】10【解析】解:∵x2−6x+8=0,∴(x−2)(x−4)=0,解得:x=2或x=4,∵等腰三角形的底和腰是方程x2−6x+8=0的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10.∴这个三角形的周长为10.故答案为:10.由等腰三角形的底和腰是方程x2−6x+8=0的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当2是等腰三角形的腰时与当4是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.此题考查了等腰三角形的性质,一元二次方程的解法.解题的关键是注意分类讨论你思想的应用.19.【答案】解:原式=−1−1−9+2×12+4=−1−1−9+1+4=−6.【解析】直接利用负整数指数幂的性质和零指数幂的性质、特殊角的三角函数值分别化简得出答案.本题主要考查了实数的运算能力,关键是熟练掌握运算法则以及熟记特殊角的三角函数值并注意细心运算.20.【答案】解:原式=x(x−2)(x+2)(x−2)÷(x2−4x+2−2x−4x+2)=xx+2÷x2−2xx+2 =xx+2⋅x+2x(x−2)=1x−2,∵x≠±2且x≠0,∴x=√5,则原式=√5−2=√5+2.【解析】根据分式的加减乘除运算法则进行运算化简,然后选择x=√5代入求值即可.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.21.【答案】解:(1)120;0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,120+45300=0.55,即这名选手恰好是获奖者的概率是0.55;(4)由题意可得,120+45300=0.55,即这名选手恰好是获奖者的概率是0.55.【解析】本题考查频数分布直方图、频数分布表、中位数、概率公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;(2)根据(1)中的m的值,可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为120,0.2;(2)见答案;(3)见答案;(4)见答案.22.【答案】(1)证明:∵在△ADB和△BCA中,{AD=BC AB=BA BD=AC,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.【解析】(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边得出即可.本题考查了全等三角形的性质和判定,等腰三角形的判定的应用,能正确运用定理进行推理是解此题的关键.23.【答案】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20−x)万只,根据题意得:18x+12(20−x)=300,解得:x=10,则20−x=20−10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20−y)万只,根据题意得:13y+8.8(20−y)≤239,解得:y≤15,根据题意得:利润W=(18−12−1)y+(12−8−0.8)(20−y)=1.8y+64,当y=15时,W最大,最大值为91万元.【解析】此题考查了一元一次方程的应用,以及一次函数的应用,弄清题中的等量关系是解本题的关键.1)设甲型号的产品有x万只,则乙型号的产品有(20−x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20−y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价−成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.24.【答案】解:如图,作BF⊥AE于点F,则BF=DE,由题意得:BD=AB=5m,BD⊥CE,∠BAF=37°,∠CBD=65°,,在Rt△ABF中,sin∠BAF=BFAB=3(m),则BF=AB⋅sin37°≈5×35,在Rt△CDB中,tan∠CBD=CDBD≈11(m),则CD=BD⋅tab65°≈5×157则CE=DE+CD=BF+CD≈3+11=14(m),答:大楼CE的高度约为14m.【解析】作BF⊥AE于点F,则BF=DE,先在Rt△ABF中,利用正弦三角函数可求出BF的长,再在Rt△CDB中,利用正切三角函数可求出CD的长,然后根据线段的和差即可得.本题考查了解直角三角形的应用−仰角俯角问题,坡度坡角问题,通过作辅助线,构造直角三角形是解题关键.25.【答案】(1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD//BC,∵DE⊥BC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=12,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=6,DE//BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=12,AF=6,根据勾股定理得:BF=6√3,BF=3√3.∴DE=12【解析】(1)连接AD,由AB=AC,BD=CD,利用等腰三角形三线合一性质得到AD⊥BC,利用90°的圆周角所对的弦为直径即可得证;(2)DE与圆O相切,理由为:连接OD,由O、D分别为AB、CB中点,利用中位线定理得到OD与AC平行,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且∠BAC=60°,得到三角形ABC为等边三角形,设AC与⊙O交于点F,连接BF,DE为三角形CBF中位线,求出BF的长,即可确定出DE的长.此题是圆的综合题,主要考查直线与圆相切的判定与性质,圆周角定理,等腰三角形的性质,等边三角形的性质,以及平行线的性质,熟练掌握定理及性质是解本题的关键.26.【答案】解:(1)∵抛物线y=−x2+bx+c经过A(3,0),B(0,3)两点,∴{−9+3b+c=0c=3,∴{b=2c=3,∴y=−x2+2x+3,设直线AB的解析式为y=kx+n,∵A(3,0),B(0,3)∴{3k+n=0n=3,∴{k=−1n=3,∴y=−x+3;(2)由运动得,OE=t,AF=√2t,∵OA=3,∴AE=OA−OE=3−t,∵△AEF和△AOB为直角三角形,且∠EAF=∠OAB,①如图1,当△AOB∽△AEF时,∴AFAB =AEOA,∴√2t3√2=3−t3,∴t=32,②如图2,当△AOB∽△AFE时,∴OAAF =ABAE,∴3√2t =3√23−t,∴t=1;(3)如图,存在,过点P 作PC//AB 交y 轴于C ,∵直线AB 解析式为y =−x +3,∴设直线PC 解析式为y =−x +b , 联立{y =−x +by =−x 2+2x +3,∴−x +b =−x 2+2x +3,∴x 2−3x +b −3=0∴△=9−4(b −3)=0∴b =214, ∴BC =214−3=94,x =32,∴P(32,154).过点B 作BD ⊥PC ,∴直线BD 解析式为y =x +3,∴√2BD =94,∴BD =9√28,∵AB =3√2S 最大=12AB ×BD =12×3√2×9√28=278.即:存在面积最大,最大是278,此时点P(32,154).方法2、如图②,过点P 作PN ⊥x 轴于N ,交AB 于M , 设点P(m,−m 2+2m +3),∴M(m,−m +3),∴PM =−m 2+2m +3+m −3=−m 2+3m ,∴S=S△PAB=S△PAM+S△PBM=12(−m2+3m)×3=−32(m2−3m)=−32(m−32)2+278,∴当m=32时,S最大=278,此时,P(32,154).【解析】(1)用待定系数法求出抛物线,直线解析式;(2)分两种情况进行计算即可;(3)方法1、确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式为y=−x+214,根据锐角三角函数求出BD,计算即可.方法2、设出点P的坐标,进而表示出点M坐标,即可表示出PM,最后用面积和即可得出二次函数,即可得出结论.此题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的性质和判定,平行线的解析式的确定方法,互相垂直的直线解析式的确定方法,解本题的关键是确定出△PAB面积最大时点P的特点.第21页,共21页。

湖南省邵阳市2019-2020学年中考数学四模试卷含解析

湖南省邵阳市2019-2020学年中考数学四模试卷含解析

湖南省邵阳市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.2.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,503.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°4.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌5.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.32C.74D.1546.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.7.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是48.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE 的长为()A.5 B.6 C.8 D.129.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A .B .C .D .10.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( ) A .2 B .3 C .4 D .611.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 12.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( ) A .()16.516.50.5x 125%x +=+B .()16.516.50.5x 1-25%x +=C .()16.516.5-0.5x 125%x =+ D .()16.516.5-0.5x 1-25%x =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.14.如图,从一块直径是8m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m .15.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.16.如图,矩形ABCD 中,AB =2,点E 在AD 边上,以E 为圆心,EA 长为半径的⊙E 与BC 相切,交CD 于点F ,连接EF .若扇形EAF 的面积为,则BC 的长是_____.17.若﹣4x a y+x 2y b =﹣3x 2y ,则a+b =_____.18.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) 如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .求证:BE =2CF ;试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明.20.(6分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.21.(6分)如图,点A (m ,m +1),B (m +1,2m -3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)23.(8分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.24.(10分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.(10分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.26.(12分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数myx=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.27.(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组2.A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.3.B【解析】【分析】【详解】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选B.【点睛】本题考查圆周角定理;圆心角、弧、弦的关系.4.C【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.5.C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=12AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴AE AO AC AD=,即5 108 AE=,解得,AE=254,∴DE=8﹣254=74,故选:C.【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.6.A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.7.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法 8.B 【解析】试题分析:由基本作图得到AB=AF ,AG 平分∠BAD ,故可得出四边形ABEF 是菱形,由菱形的性质可知AE ⊥BF ,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1. 故选B .考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质 9.A 【解析】 【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可. 【详解】∵BD=2,∠B=60°, ∴点D 到AB 3 当0≤x≤2时, y=21332x x x ; 当2≤x≤4时,y=13 32x x =. 根据函数解析式,A 符合条件. 故选A . 【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式. 10.C 【解析】设母线长为R ,底面半径是3cm ,则底面周长=6π,侧面积=3πR=12π, ∴R=4cm . 故选C . 11.D 【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x=23.故选D . 12.B 【解析】分析:根据数量=钱数单价,可知第一次买了16.5x 千克,第二次买了()16.501250x -,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,()16.516.50.501250x x +=-.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()()()21212121----,,,,,,,(写出一个即可) 【解析】【分析】根据点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值,进行求解即可.【详解】设P (x ,y ), 根据题意,得 |x|=2,|y|=1, 即x=±2,y=±1, 则点P 的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值是解题的关键.14【解析】分析:首先连接AO ,求出AB 的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO ,∵AB=AC ,点O 是BC 的中点,∴AO ⊥BC ,又∵90BAC ∠=︒,∴45ABO ACO ∠=∠=︒, ∴22()AB OB m ==,∴弧BC 的长为:90π4222π180=⨯⨯=(m), ∴将剪下的扇形围成的圆锥的半径是:22π2π2÷=, 22(42)(2)30().m -= 30点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键. 15.32- 2 13- 2 【解析】【分析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y 1=32-, y 2=−1312-+=2, y 3=−112+=13-, y 4=−1113-+=32-, …,∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同,∴y2006=2,故答案为32-;2;13-;2.【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.16.1【解析】分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.详解:设∠AEF=n°,由题意,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=EF=1,∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.1【解析】【分析】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.18.35°【解析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】【分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN 为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∵EF =GF ,∴NB =GF ,又∵NB ∥GF ,∴NBFG 是平行四边形,∵EF =BF ,∴NB =BF ,∴平行四边NBFG 是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN ≌△HFE 是解题的关键.20.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【点睛】熟练掌握将一般式化为顶点式是解题关键.21.(1)m =3,k =12;(2)或 【解析】【分析】(1)把A(m ,m +1),B(m +3,m -1)代入反比例函数y =k x,得k =m(m +1)=(m +3)(m -1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,两线交于点P.根据平行四边形判定和勾股定理可求出M,N 的坐标.【详解】解:(1)∵点A(m ,m +1),B(m +3,m -1)都在反比例函数y =k x的图像上, ∴k =xy ,∴k =m(m +1)=(m +3)(m -1),∴m 2+m =m 2+2m -3,解得m =3,∴k =3×(3+1)=12.∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得2 36kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.22.(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=1BD,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.23.证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB =90°,故可得出∠EDB =∠C .再由∠B =∠B ,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED ⊥AB ,∴∠EDB =90°.∵∠C =90°,∴∠EDB =∠C .∵∠B =∠B ,∴ABC V ∽EBD V .点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键. 24.1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.25.(【解析】【分析】【详解】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°, ∴tan ∠ACB=AB CBx∴3360xx=+∴x=30+30∴建筑物AB的高度为(30+30)米26.(1)-6;(2)122y x=-+.【解析】【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上,∴233n mn m-=⎧⎨-=⎩,解得:36nm=⎧⎨=-⎩;(2)由(1)知反比例函数解析式为6yx=-,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴2321k bk b-+=⎧⎨+=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,∴122y x=-+.【点睛】长.27.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。

湖南省邵阳市2019-2020学年中考第四次模拟数学试题含解析

湖南省邵阳市2019-2020学年中考第四次模拟数学试题含解析

湖南省邵阳市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×10112.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×1053.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°4.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±25.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A.(5,5) B.(5,4) C.(6,4) D.(6,5)6.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3 B.0.4 C.0.5 D.0.67.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()A.B.C.D.8.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是().A.B.C.D.9.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A .B .C .D .10.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°11.已知二次函数y=x 2 + bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A .b 2 -4c +1=0B .b 2 -4c -1=0C .b 2 -4c +4 =0D .b 2 -4c -4=012.下列各式中,计算正确的是 ( ) A .235+= B .236a a a ⋅= C .32a a a ÷=D .()2222a ba b =二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.14.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.15.如图,为了测量铁塔AB 高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=________米.16.如果关于x 的方程的两个实数根分别为x 1,x 2,那么的值为________________.17.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的18.关于x的一元二次方程2210-+=有实数根,则a的取值范围是__________.ax x三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.20.(6分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).21.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,在ABC ∆中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.23.(8分)在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE的延长线于点F .(1)求证:△AEF ≌△DEB ; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.24.(10分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.25.(10分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA =PB ,则点P 在线段AB 的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD 是等边△ABC 的对称轴,点D 在AB 上,点E 是线段CD 上的一动点(点E 不与点C 、D 重合),连结AE 、BE ,△ABE 经顺时针旋转后与△BCF 重合. (I )旋转中心是点 ,旋转了 (度);(II )当点E 从点D 向点C 移动时,连结AF ,设AF 与CD 交于点P ,在图②中将图形补全,并探究∠APC26.(12分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣2x相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣2x的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.27.(12分)如图,在四边形ABCD中,∠A=∠BCD=90°,210BC CD==,CE⊥AD于点E.(1)求证:AE=CE;(2)若tanD=3,求AB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】31600000000=3.16×1.故选:C.【点睛】2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】∵3804.2千=3804200,∴3804200=3.8042×106;故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.4.D【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a ,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 5.B【解析】【分析】由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形∴AB∥CD,AB=CD,AD=BC,AD∥BC,∵A(1,4)、B(1,1)、C(5,1),∴AB∥CD∥y轴,AD∥BC∥x轴∴点D坐标为(5,4)故选B.【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.6.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1.故选C.【点睛】本题考查了频数与频率,频率=频数数据总和.7.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.8.D【解析】【分析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【详解】由题意得,a=-.设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.9.D【解析】A 、根据函数的图象可知y 随x 的增大而增大,故本选项错误;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项错误;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项错误;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项正确. 故选 D . 【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键. 10.B 【解析】如图,分别过K 、H 作AB 的平行线MN 和RS ,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=12∠ABK ,∠SHC=∠DCF=12∠DCK ,∠NKB+∠ABK=∠MKC+∠DCK=180°, ∴∠BHC=180°﹣∠RHB ﹣∠SHC=180°﹣12(∠ABK+∠DCK ),∠BKC=180°﹣∠NKB ﹣∠MKC=180°﹣(180°﹣∠ABK )﹣(180°﹣∠DCK )=∠ABK+∠DCK ﹣180°, ∴∠BKC=360°﹣2∠BHC ﹣180°=180°﹣2∠BHC , 又∠BKC ﹣∠BHC=27°, ∴∠BHC=∠BKC ﹣27°,∴∠BKC=180°﹣2(∠BKC ﹣27°), ∴∠BKC=78°, 故选B . 11.D 【解析】 【分析】抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,关于b 、c 的等式. 【详解】解:∵1212,x x b x x c +=-=,∴AB =12x x -=∵若S △APB =1∴S △APB =12×AB×244c b - =1,214124c b -∴-=∴−12×2414b c -=,∴(248b ac-=,s , 则38s =, 故s =2,2, ∴2440b c --=. 故选D . 【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强. 12.C 【解析】 【分析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案. 【详解】A B 、a 2•a 3=a 5,故此选项错误; C 、a 3÷a 2=a ,正确;2242此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据弧长公式l=nπr180代入求解即可.【详解】解:∵nπrl180 =,∴180lr4nπ==.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=nπr 180.14.亏损 1【解析】【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【详解】设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=10;设亏本20%的电子琴的成本为y元,y(1-20%)=960,解得y=1200;∴960×2-(10+1200)=-1,∴亏损1元,故答案是:亏损;1.【点睛】考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.15.【解析】在Rt△ABC中,直接利用tan∠ACB=tan30°=ABBC=3即可.【详解】在Rt△ABC中,tan∠ACB=tan30°=ABBC=3,BC=60,解得AB=203.故答案为203.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.16.【解析】【分析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k 的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.【详解】∵方程x2+kx+=0有两个实数根,∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,∴k=3,代入方程得:x2+3x+=(x+)2=0,解得:x1=x2=-,则=-.故答案为-.【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.17.3 5【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案. 【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种, ∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:35. 故答案为35. 18.a≤1且a≠0 【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩n ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥n ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1),;(2)点的坐标为;(3)点的坐标为和【解析】 【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】 解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.20.(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE 即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.21.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:60048045, 2x x+=解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.(1)证明见解析;(2)证明见解析.【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可. 【详解】证明:(1)∵BG ∥AC ∴BGD CFD ∠=∠ ∵D 是BC 的中点 ∴BD CD =又∵BDG CDF ∠=∠ ∴△BDG ≌△CDF ∴BG CF =(2)由(1)中△BDG ≌△CDF ∴GD=FD,BG=CF 又∵ED DF ⊥ ∴ED 垂直平分DF ∴EG=EF∵在△BEG 中,BE+BG>GE, ∴BE CF +>EF 【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.23.(1)证明详见解析;(2)证明详见解析;(3)1. 【解析】 【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案. 【详解】(1)证明:∵AF ∥BC , ∴∠AFE=∠DBE , ∵E 是AD 的中点,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB . ∵AD 为BC 边上的中线 ∴DB=DC , ∴AF=CD . ∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点, ∴AD=DC=12BC , ∴四边形ADCF 是菱形; (3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形, ∴DF=AB=5,∵四边形ADCF 是菱形, ∴S 菱形ADCF =12AC▪DF=12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.24.(1)证明见解析;(2)-2. 【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p 取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=5、x 1x 2=6-p 2-p ,结合x 12+x 22-x 1x 2=3p 2+1,即可求出p 值. 详解:(1)证明:原方程可变形为x 2-5x+6-p 2-p=1.∵△=(-5)2-4(6-p 2-p )=25-24+4p 2+4p=4p 2+4p+1=(2p+1)2≥1, ∴无论p 取何值此方程总有两个实数根; (2)∵原方程的两根为x 1、x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p=3p 2+1, ∴3p=-6, ∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x 12+x 22-x 1x 2=3p 2+1,求出p 值. 25.B 60 【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF ,则点F 在线段BC 的垂直平分线上,又由AC=AB ,可得点A 在线段BC 的垂直平分线上,由AF 垂直平分BC,即∠CQP=90,进而得出∠APC 的度数. 详解:(1)B,60;(2)补全图形如图所示;APC ∠的大小保持不变,理由如下:设AF 与BC 交于点Q ∵直线CD 是等边ABC ∆的对称轴 ∴AE BE =,1302DCB ACD ACB ∠=∠=∠=︒ ∵ABE ∆经顺时针旋转后与BCF ∆重合 ∴ BE BF =,AE CF = ∴BF CF =∴点F 在线段BC 的垂直平分线上 ∵AC AB =∴点A 在线段BC 的垂直平分线上∴AF 垂直平分BC ,即90CQP ∠=︒ ∴120CPA PCB CQP ∠=∠+∠=︒点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.26.(1)m =﹣1;y =﹣3x ﹣1;(2)P 1(5,0),P 2(113-,0). 【解析】 【分析】(1)将A 代入反比例函数中求出m 的值,即可求出直线解析式,(2)联立方程组求出B 的坐标,理由过两点之间距离公式求出AB 的长,求出P 点坐标,表示出BP 长即可解题. 【详解】解:(1)∵点A (m ,2)在双曲线2y x=-上, ∴m =﹣1,∴A (﹣1,2),直线y =kx ﹣1, ∵点A (﹣1,2)在直线y =kx ﹣1上, ∴y =﹣3x ﹣1.(2)312y x y x =--⎧⎪⎨=-⎪⎩ ,解得12x y =-⎧⎨=⎩或233x y ⎧=⎪⎨⎪=-⎩, ∴B (23,﹣3), ∴ABP (n ,0), 则有(n ﹣23)2+32=2509, 解得n =5或113-,∴P 1(5,0),P 2(113-,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键. 27.(1)见解析;(2)AB =4 【解析】 【分析】(1)过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证;(2)由(1)可知:CF=DE ,四边形AEFB 是矩形,从而求得AB=EF ,利用锐角三角函数的定义得出DE 和CE 的长,即可求得AB 的长.【详解】(1)证明:过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°.∵∠BCD =90°,∴∠1+∠2=90°,∴∠2=∠D .又BC =CD∴△BHC ≌△CED (AAS ).∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE =BH .∴AE =CE .(2)∵四边形ABHE 是矩形,∴AB =HE .∵在Rt △CED 中,tan 3CE D DE ==, 设DE =x ,CE =3x ,∴10210CD x ==.∴x =2.∴DE =2,CE =3.∵CH =DE =2.∴AB =HE =3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.。

2021-2022学年湖南省邵阳市郊区重点中学中考四模数学试题含解析

2021-2022学年湖南省邵阳市郊区重点中学中考四模数学试题含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,//AB CD ,CE 交AB 于点E ,EF 平分BEC ∠,交CD 于F . 若50ECF ∠=,则CFE ∠ 的度数为( )A .35oB .45oC .55oD .65o2.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 23.如图,已知直线 PQ ⊥MN 于点 O ,点 A ,B 分别在 MN ,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C ,使△ABC 是等腰三角形,则这样的 C 点有( )A .3 个B .4 个C .7 个D .8 个4.把图中的五角星图案,绕着它的中心点O 进行旋转,若旋转后与自身重合,则至少旋转( )A .36°B .45°C .72°D .90°5.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )A .0.72×106平方米B .7.2×106平方米C .72×104平方米D .7.2×105平方米6.2(3)-的化简结果为( )A .3B .3-C .3±D .9 7.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A .9cmB .13cmC .16cmD .10cm8.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根9. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°10.单项式2a 3b 的次数是( )A .2B .3C .4D .5二、填空题(共7小题,每小题3分,满分21分)11.点A (a ,b )与点B (﹣3,4)关于y 轴对称,则a+b 的值为_____.12.计算:()235y y ÷=____________13.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.14.一个多边形的内角和是720,则它是______边形.15.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.16.已知直角三角形的两边长分别为3、1.则第三边长为________.17.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.19.(5分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.20.(8分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.21.(10分)“春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅(B)、菜馅(C)、三丁馅(D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人;(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有8000人,请估计爱吃D汤圆的人数.22.(10分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.23.(12分)“垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?24.(14分)如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF 是菱形.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分析:根据平行线的性质求得∠BEC 的度数,再由角平分线的性质即可求得∠CFE 的度数.详解:50,//180130ECF AB CDECF BEC BEC ∠=∴∠+∠=∴∠=又∵EF 平分∠BEC ,1652CEF BEF BEC ∴∠=∠=∠=. 故选D. 点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键. 2、C【解析】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.3、D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.4、C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C.点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.5、D【解析】试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.∴此题可记为1.2×105平方米.考点:科学记数法6、A3==.故选A .考点:二次根式的化简7、A【解析】试题分析:由折叠的性质知,CD=DE ,BC=BE .易求AE 及△AED 的周长.解:由折叠的性质知,CD=DE ,BC=BE=7cm .∵AB=10cm ,BC=7cm ,∴AE=AB ﹣BE=3cm .△AED 的周长=AD+DE+AE=AC+AE=6+3=9(cm ).故选A .点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8、D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 9、C由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.10、C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:∵点(,)A a b 与点()3,4B - 关于y 轴对称,∴3,4a b ==7a b +=故答案为1.【点睛】考查关于y 轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.12、y【解析】根据幂的乘方和同底数幂相除的法则即可解答.【详解】()23565y y y y y÷=÷=【点睛】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.13、1【解析】根据中位数的定义,结合图表信息解答即可.【详解】将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,则这八位女生的体重的中位数为38402+=1kg,故答案为1.【点睛】本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.14、六【解析】试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.考点:多边形内角与外角.15、59.【解析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可.【详解】解:画树状图得:共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59.【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.16、4或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:22437-=;②长为3、3的边都是直角边时:第三边的长为:22435+=;∴第三边的长为:7或4.考点:3.勾股定理;4.分类思想的应用.17、(,)【解析】如图,过点Q作QD⊥OA于点D,∴∠QDO=90°.∵四边形OABC是正方形,且边长为2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ==.∴点Q的坐标为.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析.【解析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四边形ABCE是平行四边形,∵∠ABC=90°,∴平行四边形ABCE是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.19、(1)36(2)不公平【解析】(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.【详解】(1)列表得:∴一共有36种等可能的结果,(2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P(两次掷的骰子的点数相同)61. 366 ==P(两次掷的骰子的点数的和是6)=5. 36∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20、(1)证明见解析;(2)610 5【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∵⊙O的半径为2,F为OA的中点,∴OF=1,BF=3,22AD2222=+=∴2222DF OF OD125=+=+,∵BD BD=,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴DF BFAD BE=53BE22=,∴6BE105=【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.21、(1)600;(2)120人,20%;30%;(3)108°(4)爱吃D汤圆的人数约为3200人【解析】试题分析:(1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为60÷10%=600(人);(2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120÷600×100%=20%,喜欢A类的占总人数的百分比为:180÷600×100%=30%,由此即可将统计图补充完整;(3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:360°×30%=108°;(4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:8000×40%=3200(人);试题解析:(1)本次参加抽样调查的居民的人数是:60÷10%=600(人);故答案为600;(2)由题意得:C的人数为600﹣(180+60+240)=600﹣480=120(人),C的百分比为120÷600×100%=20%;A的百分比为180÷600×100%=30%;将两幅统计图补充完整如下所示:(3)根据题意得:360°×30%=108°,∴图②中表示“A”的圆心角的度数108°;(4)8000×40%=3200(人),即爱吃D汤圆的人数约为3200人.22、证明见解析【解析】试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF 即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.试题解析:(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠ACD=∠CAD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形.23、(1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.【解析】(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;(2)根据众数的定义求解即可;(3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.【详解】(1)∵被调查的总人数为60÷30%=200人,∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为130200×100%=65%,补全图形如下:(2)由条形图知,B情况出现次数最多,所以众数为B,故答案为B.(3)1500×5%=75,答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.【点睛】本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.24、(1)见解析(2)当AF=75时,四边形BCEF是菱形.【解析】(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴2222AB+BC4+35=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴BC CGAC BC=,即3CG53=.∴9CG5=.∵FG=CG,∴FC=2CG=185,∴AF=AC﹣FC=5﹣187 55=.∴当AF=75时,四边形BCEF是菱形.。

2021年湖南省邵阳市邵阳县初中毕业学业模拟考试数学答案

2021年湖南省邵阳市邵阳县初中毕业学业模拟考试数学答案

2021年初中毕业学业模拟考试数学参考答案及评分标准一、选择题(本大题共有10个小题,每小题3分,共30分)1—5小题. CDBDD 6—10小题. BDBCA二. 填空题(本大题共有8个小题,每小题3分,共24分)11. x,12. )21)(2(baba++-,13. 1:4,14. 2≤x,15. -115,16.31,17. △ABD≌△ACE或△ABE≌△ACD,18. 75.三、解答题(本大题共有3个小题,每小题8分,共24分)19. 原式=1+4-2×41……4分(每对1个1分)=29……8分20.原式=⎪⎭⎫⎝⎛-+--÷-111112xxxxx……2分∴ =112-÷-xxxx……4分=xxxxx1)1)(1(-⨯-+……5分=11+x……6分当1202=x时,原式=20221.……8分26.解:(1)c bx x y ++=2 与y 轴相交于点C (0,-3) 将点C (0,-3)代入可得:C=-3 ……1分 又对称轴12=-=abx 2-=∴b ……2分即抛物线的表达式为322--=x x y ……3分 (2)由(1)可知322--=x x y 的对称轴为1=x 代入得y=1-2-3=4 即点)41(-,M设直线CM 的表达式为n kx y += 把点)30C -,( )41(-,M 代入解得k= -1,n= -3 3--=∴x y ……4分点E 在x 轴上,即纵坐标y=o ,此时x=-3 E ∴(-3,0)由平面直角坐标系的可知: OE=OC=OB=3∠EOC =∠BOC =90° ∴ΔEOC ≌ΔBOC (SAS ) ∴EC =BC ……6分 (3)存在 ……7分点P 在线段EM 上,可设P (t,-t-3) 由勾股定理可知PE =(t+3)2,BC =23 ……8分 AB =OA+OB =2由(2)可知ΔEOC ≌ΔBOC OBC OEC ∠=∠∴ 当ΔPEO ∽ΔABC 时23342)3(BC OE AB PE =+=t ,即 解得t=-2,即点P 的坐标为(-2,-1) ……9分 当ΔPEO ∽ΔCBA 时43232)3(AB OE BC PE =+=t ,即 解得t=43-,即点P 的坐标为(43-,-49)……10分25.(1)答:四边形ABDE 是平行四边形 ……1分 ΔABC Rt ≌ΔDEF RtDE AB DEAB EDF BAC //∴=∠=∠∴, ……3分 ∴四边形ABDE 是平行四边形(2)在ΔABC Rt 与Rt ΔDEF 中108622=+=∴====AC BC AB cm DF AC cm EF BC , ……4分AF=29,DE=AB=10FDEF EF AF FD EF EF AF =∴====438643629,∠AFE =∠DFE =90° ∴ΔAFD ∽ΔEFD ……6分FEDFAE ∠=∠∴ 又 ∠F AE +∠AEF=90° =∠+∠∴AEFFED 90° 即 ∠AED=90° ……7分 由(1)可知,ABDE 是平行四边形 ∴平行四边形ABDE 为矩形 ……8分。

2020-2021学年最新湖南省邵阳市中考仿真模拟数学试题及答案

2020-2021学年最新湖南省邵阳市中考仿真模拟数学试题及答案

初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20°B.60°C.70°D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1) B.x(1-x2) C.x(x+1)(x-1) D.x(1+x)(1-x)4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是A.80°B.120°C.100°D.90°一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.7.小明参加100m 短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A(2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2+3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4). 结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若A E =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b)-(a -2b)2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.项目 选手服装 普通话 主题 演讲 技巧 李明 85 70 80 85 张华9075758023.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000 kg材料所用的时间与B型机器人搬运800 kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800 kg,则至少购进A型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27 )25.如图(十五)所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图(十六)所示,连接GM,EN.①若OE=3,OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt△AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 9 10 答案CDDBBBDACA(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC ∽△AFD ,△EAB ∽△AFD ,△EFC ∽△EAB . 13.x =0 14.40° 15.16000 16.x =2 17. 3 18.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分 =2-2+2 ……………………………………………………………………7分=2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b)-(a -2b)2+8b2=a 2-(2b)2-(a 2-4ab +4b 2)+8b 2=a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分 将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分 ∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运xkg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得: 1000x =800x-30.………………………………………………………2分解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y)台,依题意得:150y +120(20-y)≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC,所以AC=ADsin∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分) 解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点, ∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC .∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分 (2)①∵△OGE 绕点O 顺时针旋转得到△OMN , ∴OG =OM ,OE =ON ,∠GOM =∠EON . ∴OG OE =OMON .∴△OGM ∽△OEN .∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分) 解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2, 将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分 (2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD .A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0), 可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分(3)S △ABC =12 AC ·BO =12×3×4=6.①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC . 设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B(0,4),C(2,0)易得线段BC 的解析式为y =-2x +4,其中0≤x ≤2, 所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4)=13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2.tan ∠MAN =MN AN =22=1.……………5分 当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4. tan ∠MAN =MN AN =41=4.………………………………………………………6分 ②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN , 所以MN =13BC =253. 因为S △ABC =12BC ·AN =12×25·AN =6, 所以AN =65.所以tan ∠MAN =MN AN =25365=59.…………8分 ③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN .设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75.易证△BNM ∽△BGA ,所以BN BG =MN AG ,即17-t 75=MN 65, 求得MN =617-6t 7, 所以S △AMN =12AN ·MN =12t ·617-6t 7=2,化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分 注:解答题用其它方法解答参照给分.。

2021年湖南省邵阳市中考数学模拟试题有答案(Word版)

2021年湖南省邵阳市中考数学模拟试题有答案(Word版)

邵阳市2021年初中毕业学业模拟考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20° B.60°C.70° D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1) B.x(1-x2) C.x(x+1)(x-1) D.x(1+x)(1-x) 4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.A .80°B .120°C .100°D .90°7.小明参加100m 短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心 缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2+3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目 选手 服装 普通话 主题 演讲 技巧 李明85708085张华90 75 75 80结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000 kg 材料所用的时间与B 型机器人搬运800 kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB 长为10m ,坡角∠ABD 为30°;改造后的斜坡式自动扶梯的坡角∠ACB 为15°,请你计算改造后的斜坡式自动扶梯AC 的长度.(结果精确到0.1m .温馨提示:sin15°≈0.26, cos15°≈0.97,tan15°≈0.27 )25.如图(十五)所示,在四边形ABCD 中,点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,连接OE ,EF ,FG ,GO ,GE .(1)证明:四边形OEFG 是平行四边形;(2)将△OGE 绕点O 顺时针旋转得到△OMN ,如图(十六)所示,连接GM ,EN .①若OE =3,OG =1,求ENGM的值;②试在四边形ABCD 中添加一个条件,使GM ,EN 的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市2021年初中毕业学业模拟考试参考答案及评分标准数学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10答案 C D D B B B D A C A二、填空题(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC∽△AFD,△EAB∽△AFD,△EFC∽△EAB.13.x=014.40°15.1600016.x=217. 318.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分=2-2+2……………………………………………………………………7分=2.…………………………………………………………………………8分20.(8分)解:( a-2b )( a+2b)-(a-2b)2+8b2=a2-(2b)2-(a2-4ab+4b2)+8b2=a2-4b2-a2+4ab-4b2+8b2=4ab.……………………………………………………………………………6分将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分 21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分 ∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x=800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC,所以AC=ADsin∠ACD=5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分)解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC . ∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分(2)①∵△OGE 绕点O 顺时针旋转得到△OMN ,∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OG OE =OM ON .∴△OGM ∽△OEN .∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分)解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2,将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分(2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD . A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0),可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分 (3)S △ABC =12 AC ·BO =12×3×4=6. ①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC .设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y=-2x +4,其中0≤x ≤2,所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4) =13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2. tan ∠MAN =MN AN =22=1.……………5分 当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分 ②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN , 所以MN =13BC =253. 因为S △ABC =12BC ·AN =12×25·AN =6, 所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分 ③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN .设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA ,所以BN BG =MN AG ,即17-t 75=MN 65,求得MN =617-6t 7, 所以S △AMN =12AN ·MN =12t ·617-6t 7=2, 化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分 注:解答题用其它方法解答参照给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学四模试卷姓名:__________ 班级:__________考号:__________考试时间100分钟满分120分题号一二三总分评分一、选择题(每小题只有一个正确答案,共10小题,满分30分)1.下面简单几何体的主视图是()A. B. C. D.2.有长度分别为3、5、7、9的四条线段,从中任取三条线段能组成三角形的概率是()A. B. C. D.3.如果单项式-3x4a-b y2与x3y a+b的和是单项式,那么这两个单项式的积是()A.3x6y4B.-3x3y2C.-3x3y2D.-3x6y44.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米5.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A.(3,4)或(2,4)B.(2,4)或(8,4)C.(3,4)或(8,4)D.(3,4)或(2,4)或(8,4)6.如图,在△ABC中,把△ABC沿直线AD翻折180°,使点C 落在点B的位置,则线段AD是()A.边BC上的中线B.边BC上的高C.∠BAC的平分线D.以上都是7.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128°D.90°8.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°9.如图所示,在△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别等于()A.16cm,40°B.8cm,50°C.16cm,50°D.8cm,40°10.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B =52°,∠DAE=20°,则∠FED′的大小为_______.A.36°B.52°C.48°D.30°二、填空题(共10小题;共30分)11.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个.12.若a=﹣10,那么﹣a=________13.如图,∠AOB,∠BOC,∠AOC的大小关系用“>”连接起来:________.14.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC 的度数是________.15.已知= ,则=________.16.下图是在正方形的方格中按规律填成的阴影,根据此规律,则第个图中阴影部分小正方形的个数是________.17.如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC= ,则tan∠BAD=________.18.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i= ,则AC的长度是________cm.19.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C 落在EF上的点H处,折痕为FG,则A、H两点间的距离为________.20.如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A,B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为________,________.三、解答题(共8小题;共60分)21.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .22.(1)因式分解:a(n﹣1)2﹣2a(n﹣1)+a.(2)解方程:.23.求图中阴影部分的周长和面积.(单位:cm)24.网络时代的到来,很多家庭都拉入了网络,一家电信公司给顾客提供上网费的两种计费方式:方式A以每分钟0.05 元的价格按上网时间计费;方式B除收月基费54元外加每分0.02元的价格按上网时间计费.如何选择更经济?25.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.如:8=32﹣12,16=52﹣32,24=72﹣52,…因此8,16,24这三个数都是奇特数.(1)56这个数是奇特数吗?为什么?(2)设两个连续奇数的2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?26.如图,在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2= (m≠0,x>0)的图象交于第一象限内的A、B两点,过点A作AC⊥x轴于点C,AC=3,点B的坐标为(2,6)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象,请直接写出y1<y2时x的取值范围.27.在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG 按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.(1)图1中,小明发现DG=BE,请你帮他说明理由.(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE的长.28.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.(1)求A、B两点的坐标?(2)若点D为AB中点,求OE的长?(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.参考答案与试题解析一、选择题1.【答案】C【解析】【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形。

从物体正面看,左边2列,中间和右边都是1列。

故选C.2.【答案】A【解析】【分析】由四条线段中任意取3条,是一个列举法求概率问题,是无放回的问题,共有4种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有2个结果.因而就可以求出概率.【解答】由四条线段中任意取3条,共有4种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有3个结果,所以P(取出三条能构成三角形)=.【点评】用到的知识点为:概率等于所求情况数与总情况数之比;组成三角形的两条小边之和大于最大的边.3.【答案】D【解析】【分析】首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.【解答】由同类项的定义,得,解得.所以原单项式为:-3x3y2和x3y2,其积是-3x6y4.故选D.【点评】本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则;要准确把握法则:同类项相乘系数相乘,指数相加.4.【答案】C【解析】【解答】过点D作DF⊥AC于F,在直角△ADF中,AF=AD•cos30°=300 米,DF= AD=300米,设FC=x,则AC=300 +x,在直角△BDE中,BE= DE= x,则BC=300+ x,在直角△ACB中,∠BAC=45°,∴这个三角形是等腰直角三角形,∴AC=BC,∴300 +x=300+ x,解得:x=300,∴BC=AC=300+300 ,∴山高是300+300 -15=285+300 ≈805(米),故答案为:C.【分析】过点D作DF⊥AC于F,在直角△ADF中,由∠DAF的余弦函数可得AF=AD•cos30°=300,由直接角三角形中,30°角所对的直角边等于斜边的一半可得DF=AD=300,设FC=x,所以AC=300 +x,在直角△BDE中,同理可得BE=DE=x,则BC=300+x,在直角△ACB中,∠BAC=45°,根据等腰三角形的性质可得AC=BC,所以300+x=300+x,解得x=300,则BC=AC=300+300,所以山高=300+300-15=285+300≈805。

5.【答案】D【解析】【解答】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP= = =3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM= =3,当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故选D.【分析】此题分二种情况(1)OD是等腰三角形的底边时,(2)OD是等腰三角形的一条腰时,①若点O 是顶角顶点时,②若D是顶角顶点时,分别进行讨论得出P点的坐标,再选择即可.6.【答案】D【解析】【解答】解:∵把△ABC沿直线AD翻折180°,使点C 落在点B的位置,∴AB=AC,BD=CD,∠BAD=∠CAD,∠ADB=∠ADC= 180°=90°,∴AD⊥BC,∴线段AD是边BC上的中线,也是边BC上的高,还是∠BAC的平分线,故选D.【分析】根据折叠的性质即可得到结论.7.【答案】A【解析】【分析】根据两直线垂直,可得∠AOC=∠BOD=90°,由图示可得∠AOB=∠AOC-∠BOC,∠AOD=∠AOB+∠BOD,将∠BOC=32°代入即可求解.【解答】∵OB⊥OD,所以∠BOD=90°∵OC⊥OA∴∠AOC=90°∴∠AOB=∠AOC-∠BOC=90°-32°=58°∴∠AOD=∠AOB+∠BOD=90°+58°=148°故选A.【点评】本题考查垂线的定义和角的运算,比较简单8.【答案】D【解析】【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.9.【答案】A【解析】【解答】解:∵在△ABC中,AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,∵DE是AB的垂直平分线,∴AF=BF,∠BDE=90°,∴∠E=90°﹣∠ABC=25°,∴∠EFC=∠ACB﹣∠E=40°;∵AB+BC=16cm,∴△BCF的周长为:BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=16cm.故选A.【分析】由在△ABC中,AB=AC,∠A=50°,根据等腰三角形的性质,可求得∠ABC=∠ACB=65°,又由AB 的垂直平分线DE交BC的延长线于E,交AC于F,可求得∠F的度数,继而求得∠EFC的度数,易得△BCF 的周长=BC+AC=BC+AB.10.【答案】A【解析】【解答】解:∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.故答案为:A。

相关文档
最新文档