江苏省丹阳市横塘中学2016届九年级上学期第二次月考数学试题

合集下载

九年级上学期第二次月考数学检测试卷

九年级上学期第二次月考数学检测试卷

九年级上学期第二次月考数学检测试卷(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除22008-2009学年第一学期九年级期末考试数学模拟试卷(四)第 Ⅰ 卷一、选择题(每小题3分,共24分)1、方程x 2 = 5x 的根是A 、x 1 = 0,x 2 = 5B 、x 1 = 0 ,x 2 = - 5C 、x = 0D 、x = 5 2、化简 ABC、3、下列图案中是轴对称图形的是A. B. C. D. 4、一元二次方程( 1 – k )x 2 – 2 x – 1 = 0有两个不相等的实数根,则k 的取值范围是 A 、k > 2 B 、k < 2 C 、k < 2且k ≠1 D 、k > 2且k ≠1 5、如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB = a.2008年北京 2004年雅典 1988年汉城 1980年莫斯班 姓 考 号3则a 的值为.A. 135°B. 120°C. 110°D. 100°6、半径分别为5cm 和2cm 的两圆相切,则两圆的圆心距为A 、3cmB 、7cmC 、3cm 或7cmD 、以上答案均不正确7、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 A .6cmB..8cmD.cm8、如图,在ΔABC 中,AB = 13,AC = 5,BC = 12,经过点C 且与边 AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是A 、125 B 、6013C 、5D 、无法确定 二、填空题(每小题3分,共18分) 9、若3x -有意义,则x 的取值范围是 ;10、配方:-=+-x x x (342 +2) 。

11、若用半径为r 的圆形桌布将边长为60 cm 的正方形餐桌盖住,则r 的 最小值为 .412、某型号的手机连续两次降价,每个售价由原来的1185元降到了580元, 设平均每次降价的百分率为x ,则可列方程为。

江苏省丹阳市横塘中学2016届九年级数学上学期第二次月考试题苏科版 (1)

江苏省丹阳市横塘中学2016届九年级数学上学期第二次月考试题苏科版 (1)

江苏省丹阳市横塘中学2016届九年级数学上学期第二次月考试题考试时间:120分钟 总分:120分 一、填空题:(2*12=24分)1.方程x 2﹣3x=0的根为 .2.一条弦把圆分成1:3两部分,则弦所对的圆周角为 .3.有一组数据:2,3,5,5,x ,它们的平均数是10,则这组数据的众数是 . 4.已知一元二次方程0572=--x x 的两个根为α、β,那么α+β的值是 5.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm ):168,166,168,167, 169,168,则她们身高的极差是 .6.抛物线y =-x 2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是______________________.7.三张完全相同的卡片上分别写有函数32--=x y ,3y x=,21y x =+,从中随机抽取一张,则所得函数的图象在第一象限内y 随x 的增大而增大的概率是 .8.已知一个圆锥底面圆的半径为5 cm ,高为12 cm ,则圆锥的侧面积为_______cm 2. 9.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为 .10.如图的平面直角坐标系中有一个正六边形ABC DEF ,其中C 、D 的坐标分别为(1,0)和 (2,0).若在无滑动的情况下,将这个六边形沿着x 轴向右滚动,则在滚动过程中,这个六边形的顶点A 、B 、C 、D 、E 、F 中,会过点(50,2)的是点 _________ .F第10题 第11题 第12题11.如图,已知圆锥的母线OA=8,底面圆的半径r=2,若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是_______________.12.如图,过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,若∠A=63 º,那么∠B= .二、选择题(3*5=15分)13.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15 C .15 D .不能确定14.为了解某校七年级300名学生的视力情况,从中抽出60名学生进行调查,以下说法正确的是( )A .该校七年级学生是总体B .该校七年级的每一个学生是个体C .抽出的60名学生是样本D .样本容量是6015.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A.点P B .点Q C .点R D .点M 16.下列说法中错误的是( )A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是61 17.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :x 轴、y 轴分别交于A 、B ,∠OAB =30º,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12三、解答题:(81分) 18.(本题满分8分,每小题4分)计算:(1)解方程:9)3(22=+-y y (2)解方程:x x x 22)1(3-=-19.(本题满分6分)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,求另一个根及k 的值.20. (本题满分8分)九(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩和方差;(4分)21. (本题满分8分)如图,点B 、C 、D 都在⊙O 上,过点C 的⊙O 的切线交OB 延长线于点A,C 连接CD 、BD ,若∠CDB=∠OBD=30°,OB=6cm . (1)求证:AC ∥BD ;(4分)(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)(4分)22.(本题满分6分)有一类随机事件概率的计算方法:设试验结果落在某个区域S 中的每一点的机会均等,用A 表示事件“试验结果落在S 中的一个小区域M 中”,那么事件A 发生的概率P (A )的面积的面积S M .有一块边长为30cm 的正方形ABCD 飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:(1)在飞镖游戏板上画有半径为5cm 的一个圆(如图1),求飞镖落在圆内的概率;(3分) (2)飞镖在游戏板上的落点记为点O ,求△OAB 为钝角三角形的概率.(3分)AB D图123.(本题满分6分)三门旅行社为吸引市民组团去蛇蟠岛风景区旅游,推出如下收费标 准:(备用图)BD某中学九(一)班去蛇蟠岛风景区旅游,共支付给三门旅行社旅游费用5888元,请问该班这次共有多少名同学去蛇蟠岛风景区旅游? 24.(本题满分8分)如图,在下面的网格图中有一个直角△ABC 中,∠ACB=90°,AC=4,BC=3.(1)请画出将△ABC 绕点A 按逆时针方向旋转90°后的D A 1B 1C 1;(2分)(2)若(1)中△ABC 的点A 、点B 坐标分别为(3,5)、(0,1),直接写出(1)中旋转后D A 1B 1C 1的点B 1坐标是_____________;点C 1坐标是_____________;点B 在旋转过程中所经过的路径长是___________;(每一空2分) (3)求出(1)中△ABC 扫过的面积.(2分) 25.(本题满分6分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC 于点D ,点E 为BC 的中点,连结DE . (1)求证:DE 是半圆⊙O 的切线;(3分) (2)若︒=∠30BAC ,DE =2,求AD 的长.(3分)·26.(本题满分6分)已知抛物线2y ax bx =+经过点(33)A --,和点P (t ,0),且t ≠0.(1)如图,若A 点恰好是抛物线的顶点,请写出它的对称轴和t 的值; (2分)(2分) ..写出t 的取值范围.(2分)27.(本题满分7分)二次函数y=x 2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(3分)(2)求经过两次平移后的图象与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?(4分)28.(本题满分12分)如图,在平面直角坐标系中,以点C (1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上。

【初中数学】江苏省丹阳市2016届九年级上学期期中考试数学试卷 苏科版

【初中数学】江苏省丹阳市2016届九年级上学期期中考试数学试卷 苏科版

江苏省丹阳市2016届九年级上学期期中考试数学试卷一、填空题:(每题2分,共24分)1、若方程()03412=+--x x m 是一元二次方程,当m 满足条件 。

2、如图:∠A 是⊙O 的圆周角,∠A =40°,则∠BOC 的度数为 °.3、3x -y=0, 则x :y= 。

4、 关于x 的一元二次方程230x mx ++=的一个根是1,则m 的值为 5、 图中△ABC6、已知ECAEBD AD =,AD=10,AB=30,AC=24,则AE= . 7、若0252=+-m m ,则=+-20151022m m __________________. 8、如图:AB 为⊙O 的直径,则∠1+∠2=______°。

9、如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且60=∠AEB ,则 =∠P __ _度.10、已知△ABC 中,AB=8,AC=6,点D 是线段AC 的中点,点E 在线段AB 上且△ADE ∽△ABC ,则AE= .11、若22222()3()700m n m n +-+-=,则22___________m n +=。

12、如图,在平面直角坐标系中,以坐标原点为圆心,半径为1的⊙O 与x 轴交于A 、B 两点,与y 轴交于C 、D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数关系式为_ __. 二、选择题:(每题3分,共15分)第8题图第6题图C B A O 第2题 第9题第10题图ABCDE第12题13、已知线段m 、n 、p 、q 的长度满足等式mn=pq ,将它改写成比例式的形式,错误..的是( )A、n q p m = B、q n m p = C、p n m q = D、qpn m = 14、方程x x 42=的解是( ) A .x=4B .x=2C .x=4或x=0D .x=015、如图,⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( ) A、2 B、3 C、4 D、516、下列图形中不一定是相似图形的是 ( ) A 、两个等边三角形 B 、两个等腰直角三角形 C 、两个长方形 D 、两个正方形17.在Rt △ABC 中,∠C =90°,BC =6,AC =8,D 、E 分别是AC 、BC 上的一点,且DE =6, 若以DE 为直径的圆与斜边AB 相交于M 、N ,则MN 的最大值...为( ) A. 524B.516C. 512D. 59三、解答题:18、解方程:(每题5分,共10分) (1)5)5(-=-x x x(2)2250x x --=(用配方法....)19、(6分)先化简,再求值:a a a a 291312+-÷--,其中a 是方程02142=-+x x 的根.20、(5分)如图,已知∠C=∠E ,∠BAD=∠CAE ,试说明ΔABC ∽ΔADE 。

苏科版九年级数学上 第二次月考测试题(Word版 含答案)(1)

苏科版九年级数学上 第二次月考测试题(Word版 含答案)(1)

苏科版九年级数学上 第二次月考测试题(Word 版 含答案)(1)一、选择题1.sin 30°的值为( ) A .3B .32C .12D .222.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5 B .4 C .3 D .2 3.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .14.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13 C .14 D .195.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 6.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=0 7.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1D .m <18.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =9.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x10.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差 B .众数C .平均数D .中位数11.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .212.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( ) A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)13.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm14.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=60015.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.18.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21=,…,则123420192020⎡⎡⎡⎤⎡⎡⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎣⎣⎦⎣⎣⎣⎦(其中“+”“-”依次相间)的值为______.19.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.20.二次函数y=x 2−4x+5的图象的顶点坐标为 .21.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.22.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.23.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.24.数据8,8,10,6,7的众数是__________. 25.一组数据3,2,1,4,x 的极差为5,则x 为______.26.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)27.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.28.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.29.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.解方程(1)x 2-6x -7=0; (2) (2x -1)2=9.32.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.33.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ; (3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.4.B解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.5.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.6.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意; D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C .本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.D解析:D 【解析】 【分析】先将方程左边提公因式x ,解方程即可得答案. 【详解】 x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.9.D解析:D 【解析】 【分析】根据比例的性质,把等积式写成比例式即可得出结论. 【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y=,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y=,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意,D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.12.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 13.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 14.C解析:C【解析】【分析】设快递量平均每年增长率为x ,根据我国2018年及2020年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x ,依题意,得:600(1+x )2=950.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .二、填空题16.3【解析】【分析】把m 代入方程2x2﹣3x =1,得到2m2-3m=1,再把6m2-9m 变形为3(2m2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x2﹣3x =1的一个根,解析:3【解析】【分析】把m 代入方程2x 2﹣3x =1,得到2m 2-3m=1,再把6m 2-9m 变形为3(2m 2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x 2﹣3x =1的一个根,∴2m 2﹣3m =1,∴6m 2﹣9m =3(2m 2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.18.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.19.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.20.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 21.【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【 解析:32【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【详解】解:如图,取AB 的中点E ,连接CE,ME,AD,∵E 是AB 的中点,M 是BD 的中点,AD=2,∴EM 为△BAD 的中位线, ∴112122EM AD , 在Rt △ACB 中,AC=4,BC=3,由勾股定理得,5==∵CE 为Rt △ACB 斜边的中线,∴1155222CE AB , 在△CEM 中,551122CM ,即3722CM , ∴CM 的最大值为32 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.22.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴51-【解析】【分析】设BC=EC=a,根据相似三角形得到222aa=+,求出a的值,再利用tan DAE∠=tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴AB ECBF CF=,即222aa=+解得51(-51舍去)∴tan DAE ∠=tanF=2EC a CF ==512- 故答案为:51-. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 23.16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠C解析:16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD ,∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 24.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.25.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.26.【解析】【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求解析:4 12333π--【解析】【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆O的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出∠AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和∠EOF,最后利用S阴影=S梯形AFCD-S△AOE-S扇形EOF计算即可.【详解】解:设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE∵四边形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=23AB=∴AF为圆O的直径∵23AB=cm,圆O的半径为2cm,∴AF=4cm在Rt△ABF中sin∠AFB=3ABAF,BF=222AF AB-=∴∠AFB=60°,FC=BC-BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt△AOG中,OG=sin∠EAF·3cm,AG= cos∠EAF·AO=1cm 根据垂径定理,AE=2AG=2cm∴S阴影=S梯形AFCD-S△AOE-S扇形EOF=()21112022360OE CD FC AD AE OG π•+-•- =()211120223232232322360π•⨯⨯-+-⨯⨯- =2412333cm π⎛⎫-- ⎪⎝⎭故答案为:412333π--. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键. 27.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF 中,即可求解析:2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK , ∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:2, ∴KO=OF=12CF=12BF ,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.28.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.29.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMHS∆=∴9BMHS∆=∴9CFHBCFMS S∆+=四边形∴9DEFBCFMS S∆+=四边形∴9DME DFMBCFMS S S∆∆++=四边形∴19BCDS∆+=∴8BCDS∆=∵四边形ABCD是平行四边形∴2816ABCDS=⨯=四边形故答案为:16.30.【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.解析:42【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为42.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+32.∴当x=4时,BD取得最小值为42.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为2.故答案为:2.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)x1=7,x2=-1;(2)x1=2,x2=-1【解析】【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+9-9-7=0(x-3) 2=16x-3=±4x1=7,x2=-1(2)2x -1=±32x =1±3x 1=2,x 2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.32.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.33.(1)45;(2)25°;(3)51【解析】【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=12AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,AB CDBAD CDAAE DF⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,AD CDADG CDGDG DG⎧⎪∠∠⎨⎪⎩===,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=12AB=1,在Rt△AOD中,OD2222125AO AD++=根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH5.【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.34.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵x 高=()110+6+7+8+9=85⨯(℃), x 低 =()11+01+0+3=0.65⨯-(℃),2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2) 2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低∴这5天的日最高气温波动大.【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.35.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似;(3)根据三角形相似得出AB AC AF EF =,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB AC AF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度.【详解】解:(1)如答图1,连接CD ,∵AC 是⊙O 的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC ,∠EAB=∠ADB ,∴∠BAC=∠EAB+∠BAC=90°∴EA 是⊙O 的切线;(2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90°∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF∴∠BAC=∠AFE∴△EAF ∽△CBA .。

九年级上学期第二次月考数学试题 (含答案) (精选5套试题) (3)

九年级上学期第二次月考数学试题 (含答案)  (精选5套试题) (3)

图1九年级上学期第二次月考数学试卷(考试时间:100分钟,满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是( ) A .02=++c bx ax B .162-+x xC .02142333=--x x D .032)3(22=-++x x m 2.分别以下列四组数为一个三角形的边长① 6,8,10 ② 5,12,13 ③ 8,15,16④ 4,5,6,其中能构成直角三角形的有( )A .①④B .②③C .①②D .②④3.有三条公路相交如图1,现计划修建一个油库,要求到三条公路的距离相等,则符合条件的油库的位置有( )A .1处B .2处C .3处D .4处4.根据下表的对应值,判断方程02=++c bx ax (c b a a ,,,0≠为常数)的一个解x 的范围是( )x3.23 3.24 3.25 3.26 c bx ax ++2-0.06-0.020.030.09A .3<x <3.33B .3.23<x <3.24C .3.24<x <3.25 D. 3.25<x <3.26 5.方程0422=-+x x 的根的情况是( )A .有两个不相等实数根 B. 有两个相等实数根C. 有一个实数根D.没有实数根6.关于x 的一元二次方程0122=-+x kx 有两个不相等的实数根,则k 的取值范围是( )A .1->k B. 1>k C. 0≠k D. 1->k 且0≠k 7.已知等腰三角形的一个内角为30°,则这个等腰三角形的顶角..为( ) A. 30° B. 75° C. 75°或120° D. 30°或120°8.九年级(2)的每个同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了2550张,若全班有x 名学生,根据题意列方程为( ) A.2550)1(=+x x B.2550)1(=-x x C.2550)1(2=+x xD.25502)1(⨯=-x x9.如图2,在△ABC 与△DEF 中,已有条件AB =DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能..添加的一组条件是( ) A .∠B =∠E ,BC =EF B. BC =EF ,AC =DFC . ∠A =∠D ,∠B =∠E D. ∠A =∠D ,BC =EF10.如图3,在等腰△ABC 中,AB =AC ,∠A =30°,线段AC 的垂直平分线交AC 于D ,交AB 于E ,连接CE ,则∠BCE 等于( )A.70°B.60°C.45°D.50° 二、填空题(每小题4分,共24分)11.22____)(_____8-=+-x x x12.已知等腰△ABC 的腰AB =AC =10㎝,底BC =12㎝,则∠A 的平分线长是________㎝。

苏科版九年级数学上 第二次月考测试题(Word版 含答案)(1)

苏科版九年级数学上 第二次月考测试题(Word版 含答案)(1)

苏科版九年级数学上 第二次月考测试题(Word 版 含答案)(1)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6) 2.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( ) A .1a =B .1a =-C .1a ≠-D .1a ≠3.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或44.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1 C .94-≤b ≤12D .94-≤b ≤1 5.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A 3B 31C 31D .236.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤7.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,108.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.方程2x x =的解是( ) A .x=0B .x=1C .x=0或x=1D .x=0或x=-111.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)12.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+=13.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3414.2的相反数是( ) A .12-B .12C .2D .2-15.抛物线y =(x ﹣2)2+3的顶点坐标是( ) A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题16.已知tan (α+15°)=33,则锐角α的度数为______°. 17.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.18.二次函数y=x 2−4x+5的图象的顶点坐标为 .19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.21.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.22.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 23.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 24.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.25.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.26.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).27.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.28.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____. 30.已知234x y z x z y+===,则_______ 三、解答题31.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由. 32.如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.33.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23,∠DPA=45°. (1)求⊙O 的半径;(2)求图中阴影部分的面积.34.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根, 35.如图,O 的半径为23AB 是O 的直径,F 是O 上一点,连接FO 、FB .C 为劣弧BF 的中点,过点C 作CD AB ⊥,垂足为D ,CD 交FB 于点E ,//CG FB ,交AB 的延长线于点G .(1)求证:CG 是O 的切线;(2)连接BC ,若//BC OF ,如图2. ①求CE 的长;②图中阴影部分的面积等于_________.四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.38.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.39.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD的边长为4,E为AD的中点,点F,H分别在边AB和CD上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标. 【详解】解:∵y =x 2﹣6x =x 2﹣6x +9﹣9=(x ﹣3)2﹣9, ∴二次函数y =x 2﹣6x 图象的顶点坐标为(3,﹣9). 故选:C . 【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.D解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.3.A解析:A【解析】 【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可. 【详解】 解:如图所示,∵△ABC 、△ABD 都是直角三角形, ∴A,B,C,D 四点共圆, ∵AC=BC ,∴BAC ABC 45∠∠==︒, ∴ADC ABC 45∠∠==︒, 作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x, ∵AB 52= ∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+, ∴()22257x x =+- 解得,x=3或x=4, ∴AD 232x ==2.故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.4.B解析:B 【解析】 【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PANA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围. 【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN . 在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PANA NC =, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.5.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴2EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴tan 1x EG ACD CG∠==.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.6.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a>1,故13a ,⑤正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.7.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.8.C解析:C【解析】【分析】四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【详解】作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=5x,∴y=S四边形ABCD=S梯形ACDE=12×(DE+AC)×DF=12×(a+4a)×4a=10a2=25x2.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.11.C解析:C【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.12.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.13.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题16.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.17.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.18.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 19.46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠A DB =54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD ∥BC ,可得∠DBC=∠ADB =54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC 的度数,从而使问题得解.【详解】解:连接OB ,OC ,∵直线EF 是⊙O 的切线,B 是切点∴∠OBF=90°∵AD ∥BC∴∠DBC=∠ADB =54°又∵∠D CB =80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)442-= ∴∠CBF =∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x 1x- 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】 本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.21.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.22.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:35【解析】分析:2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35. 故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.23.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4,解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得3m =±,所以3m =-,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或3-时,二次函数有最大值.故答案为:2或3-.【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键. 25.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 26.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S 甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S 甲2 >S 乙2, 所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.27.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.28.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.29.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题31.(1)抛物线的方点坐标是()0,0,()3,3;(2)当32m =时,PBC ∆的面积最大,最大值为278;(3)存在,()1,4Q 或()2,5-- 【解析】【分析】(1)由定义得出x=y ,直接代入求解即可(2)作辅助线PD 平行于y 轴,先求出抛物线与直线的解析式,设出点P 的坐标,利用点坐标求出PD 的长,进而求出面积的二次函数,再利用配方法得出最大值(3)通过抛物线与直线的解析式可求出点B ,C 的坐标,得出△OBC 为等腰直角三角形,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N ,得出M ,N 的坐标,得出直线BN 、MC 的解析式然后解方程组即可.【详解】解:(1)由题意得:x y =∴24x x x -+=解得10x =,23x =∴抛物线的方点坐标是()0,0,()3,3.(2)过P 点作y 轴的平行线交BC 于点D .易得平移后抛物线的表达式为2y x 2x 3=-++,直线BC 的解析式为3y x =-+. 设()2,23P m m m -++,则(),3D m m -+. ∴()222333PD m m m m m =-++--+=-+()03m << ∴()2213327332228PBC S m m m ∆⎛⎫=-+⨯=--+ ⎪⎝⎭()03m << ∴当32m =时,PBC ∆的面积最大,最大值为278. (3)如图所示,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N由已知条件得出点B 的坐标为B(3,0),C 的坐标为C(0,3),∴△COB 是等腰直角三角形,∴可得出M 、N 的坐标分别为:M(-3,0),N(0,-3)直线CM 的解析式为:y=x+3直线BN 的解析式为:y=x-3由此可得出:2233y x x y x ⎧=-++⎨=+⎩或2233y x x y x ⎧=-++⎨=-⎩解方程组得出:14x y =⎧⎨=⎩或25x y =-⎧⎨=-⎩ ∴()1,4Q 或()2,5--【点睛】本题是一道关于二次函数的综合题目,解题的关键是根据题意得出抛物线与直线的解析式. 32.(1)证明见解析;(2)2933()22cm . 【解析】【分析】 (1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:3cm .∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm 扇形 33.(1) 2 ;(2)π-2.【解析】 【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得【详解】解:(1)∵直径AB ⊥DE∴132CE DE == ∵DE 平分AO ∴1122CO AO OE == 又∵90OCE ︒∠=∴30CEO ︒∠=在Rt △COE 中,2OE =∴⊙O 的半径为2(2)连结OF在Rt △DCP 中,∵45DPC ︒∠=∴904545D ︒︒︒∠=-=∴290EOF D ︒∠=∠=∵2902360OWF S ππ=⨯⨯=扇形 ∴S 阴影=2π-【点睛】 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.34.(1)b=2或b=10-;(2)x 1=x 2=2;【解析】【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案. 【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0,∴28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2-4x+4=0,∴2(2)0x -=,∴x 1=x 2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.35.(1)见解析;(2)①2CE =,②2S π=阴.【解析】【分析】(1)连接OC ,利用等腰三角形三线合一的性质证得OC ⊥BF ,再根据CG ∥FB 即可证得结论; (2)①根据已知条件易证得OBC 是等边三角形,利用三角函数可求得CD 的长,根据三角形重心的性质即可求得答案;②易证得OBC FBC S S =,利用扇形的面积公式即可求得答案. 【详解】(1)连接CO .C 是BF 的中点,BOC FOC ∴∠=∠.又OF OB =,OC BF ∴⊥.//CG FB ,OC CG ∴⊥.CG ∴是O 的切线.(2)①//OF CB ,∴FOC OCB ∠=∠.。

2016届江苏省镇江市丹阳市横塘中学中考模拟数学

2016届江苏省镇江市丹阳市横塘中学中考模拟数学

2016届江苏省镇江市丹阳市横塘中学中考模拟数学一、选择题(共3小题;共15分)1. 三角形内切圆的圆心为A. 三条边的高的交点B. 三个角的平分线的交点C. 三条边的垂直平分线的交点D. 三条边的中线的交点2. 如图,个正方形的边长均为,则图中阴影部分三个小扇形的面积和为A. B. C. D.3. 二次函数的图象如图所示,则下列结论:①;②>;③>;④中,正确的结论的个数是A. 个B. 个C. 个D. 个二、填空题(共15小题;共75分)4. 将一元二次方程化成一般形式后的常数项是______.5. 函数中自变量的取值范围是______.6. 样本方差的计算式中中,数表示样本的______.7. 二次函数图象的顶点坐标为 ______.8. 如图是一个小熊的图象,图中反映出圆与圆的四种位置关系,但是其中有一种位置关系没有反映出来,请你写出这种位置关系,它是______.9. 若和内切,它们的半径分别为和,则圆心距为______.10. 如图,圆锥的母线长是,底面半径是,是底面圆周上一点,从点出发绕侧面一周,再回到点的最短的路线长是______.11. 如图:半径为的圆心在直线上运动,当与轴相切时圆心的坐标为______.12. 若直角三角形的两条直角边长分别是和,则它的外接圆半径为______,内切圆半径为______.13. 有一组数据,,,,的极差是______,方差是______.14. 抛物线的图象如图,则它的函数表达式是______ .当 ______ 时,.15. 已知抛物线与轴交点的横坐标为,则 ______.16. 形状与抛物线的图象形状相同,但开口方向不同,顶点坐标是的抛物线的关系式为 ______.17. 如图,已知点,,在上,若,则 ______ 度.18. 如图,,是的两条切线,,是切点,若,,则的半径等于______.三、解答题(共7小题;共91分)19. 已知点在抛物线上,(1)求点的坐标;(2)在轴上是否存在点,使是等腰三角形?若存在写出点坐标;若不存在,说明理由.20. 依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.21. 一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.22. 某商店进了一批服装,每件成本元,如果按每件元出售,可销售件,如果每件提价元出售,其销量将减少件.(1)求售价为元时的销售量及销售利润;(2)求销售利润(元)与售价(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利元,那么这批服装的定价是多少元?23. 如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.(1)求证:是的切线;(2)求证:;(3)点是的中点,交于点,若,求的值.24. 如图,在直角梯形中,,,,,,为的直径.动点从点开始沿边向点以的速度运动,动点从点开始沿边向点以的速度运动,,两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为,求:(1)分别为何值时,四边形为平行四边形、等腰梯形?(2)分别为何值时,直线与相切、相离、相交?25. 如图,抛物线与轴交于,两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是轴上的一个动点,当的值最小时,求的值.答案第一部分1. B2. A3. C第二部分4.5.6. 平均数7.8. 相交9.10.11. 或12. ;13. ;14. ;或15.16.17.18.第三部分19. (1)点在抛物线上,.点的坐标为.(2)如图.为顶点时,,点坐标:;以为顶点时.或,点,,以为顶点时, .设 ..解得 .综上所述:使是等腰三角形则点坐标为:,,,.20. (1)根据题意列表如下.右按钮右按钮左按钮发音器灯泡闯关失败灯泡灯泡闯关成功左按钮发音器发音器闯关失败灯泡发音器闯关失败(2)由⑴中列表可知成功.21. 根据题意列表如下.红黄白白红白黄白白白黄红黄黄黄白黄红红红黄红白红由表可得共有种等可能的结果,两次都能摸到白球的结果有种,所以白白.22. (1)销售量为:(件) .销售利润为:(元).(2)所以当销售价为元时获得最大利润为元.(3)当时, .解得,,即定价为元或元时这批服装可获利元.23. (1),.,,.是的直径,.,即 .是的半径,是的切线.(2),..,,...(3)连接, .点是的中点,..,.,...是的直径,,,.,..24. (1),当时,四边形为平行四边形.,,.解得 .秒时,四边形为平行四边形.当,时,四边形为等腰梯形,过、分别作的垂线交于、两点., ..解得,所以当秒时,四边形为等腰梯形.(2)设运动秒时,直线与相切于点,过作于点 ., ..,,切于,,,, ..由勾股定理,得,即 .化简整理得 .解得或 .所以,当或时直线与相切.因为秒时,直线与相交.当秒时,点运动到点,点尚未运动到点,但也停止运动,直线也与相交. 当或时,直线与相切;当或时,直线与相交;当时,直线与相离.25. (1)点在抛物线上,.解得 .抛物线的解析式为..顶点的坐标为.(2)当时,,.当时, ., ..,,.,,,.是直角三角形.(3)作出点关于轴的对称点,则,,连接交轴于点,点即为所求.的解析式为 .则解得.当时,,..。

2016年苏科版九年级上月考数学试卷(12月)含答案

2016年苏科版九年级上月考数学试卷(12月)含答案

2016-2017学年九年级(上)月考数学试卷(12月份)一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.方程x2﹣3x=0的解为( )A.x=0 B.x=3 C.x1=0,x2=﹣3 D.x1=0,x2=32.二次函数y=(x+1)2+2的顶点坐标是( )A.(﹣1,2)B.(1,2)C.(2,1)D.(﹣1,﹣2)3.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )A.9 B.12 C.15 D.184.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是( )A.20°B.25°C.40°D.50°5.如图,∠1=∠2=∠3,则图中相似三角形共有( )A.1对B.2对C.3对D.4对6.如图:将半径为2厘米的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )A.B. C.3 D.7.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐标是( )A.(﹣4,2)B.(﹣4.5,2)C.(﹣5,2)D.(﹣5.5,2)8.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是( )A.2 B.3 C.4 D.5二、填空题:(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于__________.10.若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则k的取值范围是__________.11.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于__________cm.12.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为__________.13.如图,▱ABCD的面积为12,E为BC中点,DE、AC交于F点,△EFC的面积为__________.14.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为__________.15.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为__________cm2.16.一段抛物线y=﹣x(x﹣3),(0≤x>3),记为C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C672.若P在图象上,则m=__________.三、解答题:(本大题共有10小题,满分72分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程(1)(2)2(x2﹣2)=7x.18.在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=__________°,BC=__________.(2)判断△ABC与△DEF是否相似,并说明理由.(3)请在图中再画出一个和△ABC相似,但与图中三角形均不全等的格点三角形.19.小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.20.已知关于x的方程x2﹣(k+2)x+k2+1=0(1)k取什么值时,方程有两个不相等的实数根?(2)如果方程的两个实数根x1、x2(x1<x2)满足x1+|x2|=3,求k的值和方程的两根.21.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件赢利40元,为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加赢利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装赢利1200元,那么每件童装应降价多少元?22.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.23.阅读以下内容,并回答问题:定义:如果二次函数y=a1x2+b1x+c1(a1,b1,c1是常数,a1≠0)与y=a2x2+b2x+c2(a2,b2,c2是常数,a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.(1)函数y=﹣x2+3x﹣2的“旋转函数”是__________;(2)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.24.如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G(1)判断△FAG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=10,BD﹣DF=1,求AB的长.25.如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.26.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c 的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C 不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.2016-2017学年九年级(上)月考数学试卷(12月份)一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.方程x2﹣3x=0的解为( )A.x=0 B.x=3 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程-因式分解法.【分析】将方程左边的多项式提取x,分解因式后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:方程x2﹣3x=0,因式分解得:x(x﹣3)=0,可化为x=0或x﹣3=0,解得:x1=0,x2=3.故选D【点评】此题考查了利用因式分解法求一元二次方程的解,利用此方法解方程时,应先将方程整理为一般形式,然后将方程左边的多项式分解因式,根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.2.二次函数y=(x+1)2+2的顶点坐标是( )A.(﹣1,2)B.(1,2)C.(2,1)D.(﹣1,﹣2)【考点】二次函数的性质.【分析】根据二次函数y=(x+1)2+2符合顶点式的形式,直接就得出它的顶点坐标.【解答】解:∵二次函数y=(x+1)2+2,∴二次函数的顶点坐标(﹣1,2).故选A.【点评】本题考查了二次函数的性质,利用顶点式直接得出对称轴的直线方程是考查重点,同学们应重点掌握.3.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )A.9 B.12 C.15 D.18【考点】相似三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=AB﹣3;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;∴,即;解得AB=9.故选:A.【点评】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE是解答此题的关键.4.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是( )A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=50°,∴∠COD=180°﹣90°﹣50°=40°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=40°,∴∠A=20°.故选A.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.5.如图,∠1=∠2=∠3,则图中相似三角形共有( )A.1对B.2对C.3对D.4对【考点】相似三角形的判定.【专题】几何图形问题.【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【解答】解:∵∠1=∠2,∠C=∠C∴△ACE∽△ECD∵∠2=∠3∴DE∥AB∴△BCA∽△ECD∵△ACE∽△ECD,△BCA∽△ECD∴△ACE∽△BCA∵DE∥AB∴∠AED=∠BAE∵∠1=∠3∴△AED∽△BAE∴共有4对故选D.【点评】此题考查学生对相似三角形判断依据的理解掌握,也考查学生的看图分辨能力6.如图:将半径为2厘米的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )A.B. C.3 D.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得AB=2 cm.故选D.【点评】注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.7.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐标是( )A.(﹣4,2)B.(﹣4.5,2)C.(﹣5,2)D.(﹣5.5,2)【考点】坐标与图形性质;勾股定理;垂径定理.【专题】压轴题.【分析】因为⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐纵标是2,设PQ=2x,作MA⊥PQ,利用垂径定理可求QA=PA=x,连接MP,则MP=MO=x+1,在Rt△AMP中,利用勾股定理即可求出x的值,从而求出Q的横坐标=﹣(2x+1).【解答】解:∵⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,点P的坐标是(﹣1,2)∴点Q的纵坐标是2设PQ=2x,作MA⊥PQ,利用垂径定理可知QA=PA=x,连接MP,则MP=MO=x+1,在Rt△AMP中,MA2+AP2=MP2∴22+x2=(x+1)2∴x=1.5∴PQ=3,Q的横坐标=﹣(1+3)=﹣4∴Q(﹣4,2)故选:A.【点评】本题需仔细分析题意,结合图形,利用垂径定理与勾股定理即可解决问题.8.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是( )A.2 B.3 C.4 D.5【考点】轴对称-最短路线问题.【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD′交BC于P,交⊙A、⊙D′于E、F′,连接PD,交⊙D于F,EF′就是PE+PF最小值;根据勾股定理求得AD′的长,即可求得PE+PF最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D 交BC于P,则DE′就是PE+PD最小值;∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,AA′=2AB=4,AE=D′F′=1,∴AD′=5,EF′=5﹣2=3∴PE+PF=PF′+PE=EF′=3,故选B.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形是本题的关键.二、填空题:(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于17.【考点】二次函数的最值.【分析】将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:y=(x﹣4)2﹣16+m,∵函数的最小值是1,∴﹣16+m=1,解得m=17.故答案为:17.【点评】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.10.若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则k的取值范围是k≥﹣1且k≠0.【考点】根的判别式;一元二次方程的定义.【分析】首先利用根的判别式△=b2﹣4ac=4+4k≥0,根据一元二次方程的意义得出k≠0,两者结合得出答案即可.【解答】解:∵关于x的一元二次方程kx2+2x﹣1=0有两个实数根,∴△=b2﹣4ac=4+4k≥0,k≠0,解得:k≥﹣1且k≠0.故答案为:k≥﹣1且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及一元二次方程的意义.11.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于3cm.【考点】圆锥的计算.【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为6πcm,底面半径=6π÷2π.【解答】解:由题意知:底面周长=6πcm,∴底面半径=6π÷2π=3cm.故答案为:3.【点评】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.12.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.【考点】概率公式;勾股定理的逆定理.【专题】计算题.【分析】先确定第三枚棋子随机放在格点上的所有可能的情况,再利用正方形的性质可判断其中以这三枚棋子所在的格点为顶点的三角形是直角三角形的情况数,然后利用概率公式求解.【解答】解:第三枚棋子共有4个格点可以放,放在其中三个格点可以以这三枚棋子所在的格点为顶点的三角形是直角三角形,所以以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.如图,▱ABCD的面积为12,E为BC中点,DE、AC交于F点,△EFC的面积为1.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】利用相似三角形的判定与性质得出S△AEF:S△ADF=1:2,S△EFC:S△AEF=1:2,S△FEC=S△AFD,则S△EFC=S△AED,进而求出答案.【解答】解:连接AE,∵平行四边形ABCD中E为BC中点,∴EC=BC=AD,∵AD∥CB,∴△FEC∽△FDA,∴===,∴S△AEF:S△ADF=1:2,S△EFC:S△AEF=1:2,S△FEC=S△AFD,∴S△EFC=S△AED,∵平行四边形ABCD的面积为12,∴S△AED=6,∴S△EFC=S△AED=×6=1.故答案为:1.【点评】此题主要考查了相似三角形的判定与性质以及三角形面积求法等知识,根据已知得出S△EFC=S△AED是解题关键.14.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为π﹣.【考点】扇形面积的计算;翻折变换(折叠问题).【分析】连接OD交BC于点E,由翻折的性质可知:OE=DE=3,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,然后在Rt△COB中,可求得CO=,从而可求得△COB的面积=,最后根据阴影部分的面积=扇形面积﹣2倍的△COB的面积求解即可.【解答】解:连接OD交BC于点E.∴扇形的面积=×22π=π,∵点O与点D关于BC对称,∴OE=ED=1,OD⊥BC.在Rt△OBE中,sin∠OBE=,∴∠OBC=30°.在Rt△COB中,=tan30°,∴=.∴CO=.∴△COB的面积=×=.阴影部分的面积=扇形面积﹣2倍的△COB的面积=π﹣..故答案为:π﹣.【点评】本题主要考查的是翻折的性质,扇形面积的计算以及特殊锐角三角函数值的应用,根据翻折的性质求得OE的长,然后再求得∠OBC的度数是解题的关键.15.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为40cm2.【考点】正多边形和圆.【专题】压轴题.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=20,四边形ABGH面积=(AH+BG)×HM=(+1)x2=10,∴正八边形的面积为:10×2+20=40(cm2).故答案为:40.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH 面积是解题关键.16.一段抛物线y=﹣x(x﹣3),(0≤x>3),记为C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C672.若P在图象上,则m=﹣2.【考点】二次函数图象与几何变换.【分析】求出抛物线C1与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线C671平移的距离,再根据向右平移横坐标加表示出抛物线C672的解析式,然后把点P的坐标代入计算即可得解.【解答】解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C672在x轴下方,相当于抛物线C1向右平移3×(672﹣1)=2013个单位得到得到C671,再将C671绕点A671旋转180°得C672,∴抛物线C672的解析式为y=(x﹣2013)(x﹣2013﹣3)=(x﹣2013)(x﹣2016),∵P在第672段抛物线C672上,∴m==﹣2.故答案是:﹣2.【点评】本题考查了二次函数图象与几何变换,利用点的变化确定函数图象的变化更简便,平移的规律:左加右减,上加下减.三、解答题:(本大题共有10小题,满分72分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程(1)(2)2(x2﹣2)=7x.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)先分解因式,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x+3=0,(x﹣)2=0,x﹣=,x1=x2=;(2)2(x2﹣2)=7x,2x2﹣7x﹣4=0,(2x+1)(x﹣4)=0,2x+1=0,x﹣4=0,x1=﹣,x2=4.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.18.在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2.(2)判断△ABC与△DEF是否相似,并说明理由.(3)请在图中再画出一个和△ABC相似,但与图中三角形均不全等的格点三角形.【考点】作图—相似变换.【专题】网格型.【分析】(1)利用图形结合正方形的性质以及勾股定理得出即可;(2)利用相似三角形的判定方法得出即可;(3)将三角形的三边变为原来的,进而得出答案.【解答】解:(1)由题意可得:∠ABC=90°+45°=135°,BC=2;故答案为:135°,2;(2)相似,理由:∵AB=2BC=2,AC=2,DE=,EF=2,DF=,∴===,∴△ABC∽△DEF;(3)如图所示:△A′B′C′.【点评】此题主要考查了相似三角形的判定与性质,正确结合网格求出答案是解题关键.19.小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.【考点】列表法与树状图法.【分析】(1)由小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好客厅灯和走廊灯同时亮的情况,再利用概率公式即可求得答案.【解答】解:(1)∵小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小晗任意按下一个开关,正好楼梯灯亮的概率是:;(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.已知关于x的方程x2﹣(k+2)x+k2+1=0(1)k取什么值时,方程有两个不相等的实数根?(2)如果方程的两个实数根x1、x2(x1<x2)满足x1+|x2|=3,求k的值和方程的两根.【考点】根与系数的关系;解一元二次方程-公式法;根的判别式.【专题】计算题;整体思想.【分析】(1)由于方程有两个不相等的实数根,所以方程的判别式是正数,一次即可确定k 的取值范围;(2)由于方程的两个实数根x1、x2(x1<x2)满足x1+|x2|=3,通过分类讨论去掉绝对值的符号,然后利用根与系数的关系即可求出k的值和方程的两个根.【解答】解:(1)在已知一元二次方程中,a=1,b=﹣(k+2),c=(k2+1),又由△=b2﹣4ac=[﹣(k+2)]2﹣4(k2+1)=k2+4k+4﹣k2﹣4=4k>0,得k>0,即k>0时方程有两个不相等的实数根;〖无、所在行之中间步骤,即跳过此步不扣分,余同〗(2)法一:由,∵x1<x2,k>0,∴>0∴|x2|=x2.由x1+|x2|=3,得x1+x2=3,由根与系数关得k+2=3.即k=1此时,原方程化为x2﹣3x+=0,解此方程得,x1=,x2=,法二:由x1x2=k2+1>0,又∵k>0,∴x1+x2=k+2>0,∴x1>0,x2>0;∴|x2|=x2.下同法一.【点评】本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.21.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件赢利40元,为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加赢利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装赢利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】可设每件童装应降价x元,利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可.【解答】解:设每件童装应降价x元,根据题意列方程得,(40﹣x)=1200,解得x1=20,x2=10(因为尽快减少库存,不合题意,舍去).答:每件童装应降价20元.【点评】本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.22.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.【考点】相似三角形的应用.【专题】探究型.【分析】先根据AB⊥OC′,OS⊥OC′可知△ABC∽△SOC,同理可得△A′B′C′∽△SOC′,再由相似三角形的对应边成比例即可得出h的值.【解答】解:∵AB⊥OC′,OS⊥OC′,∴SO∥AB,∴△ABC∽△SOC,∴=,即=,解得OB=h﹣1①,同理,∵A′B′⊥OC′,∴△A′B′C′∽△SOC′,∴=,=②,把①代入②得,=,解得h=9(米).答:路灯离地面的高度是9米.【点评】本题考查的是相似三角形在实际生活中的应用,熟知相似三角形的对应边成比例是解答此题的关键.23.阅读以下内容,并回答问题:定义:如果二次函数y=a1x2+b1x+c1(a1,b1,c1是常数,a1≠0)与y=a2x2+b2x+c2(a2,b2,c2是常数,a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.(1)函数y=﹣x2+3x﹣2的“旋转函数”是y=x2+3x+2;(2)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【考点】抛物线与x轴的交点.【专题】阅读型;新定义.【分析】(1)利用“旋转函数”的定义,两二次函数的二次项系数互为相反数,一次项系数相等,常数项互为相反数,于是易得函数y=﹣x2+3x﹣2的“旋转函数;(2)根据抛物线与x轴的交点问题可得A(﹣1,0),B(4,0),再计算自变量为0时的函数值得到C(0,2),接着利用关于原点中心对称的点的坐标特征得到A1(1,0),B1(﹣4,0),C1(0,﹣2),然后解交点式可求出经过点A1,B1,C1的二次函数解析式为y=(x﹣1)(x+4),即y=x2+x﹣2,再利用“旋转函数”的定义即可判断经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【解答】(1)解:函数y=﹣x2+3x﹣2的“旋转函数”是y=x2+3x+2;故答案为y=x2+3x+2;(2)证明:∵函数y=﹣(x+1)(x﹣4)=﹣x2+x+2的图象与x轴交于A,B两点,与轴交于点C,∴A(﹣1,0),B(4,0),C(0,2),∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(1,0),B1(﹣4,0),C1(0,﹣2),设经过点A1,B1,C1的二次函数为y=a(x﹣1)(x+4),把C1(0,﹣2)代入得a•(﹣1)•4=﹣2,解得a=,∴经过点A1,B1,C1的二次函数为y=(x﹣1)(x+4),即y=x2+x﹣2,∵﹣+=0,=,2+(﹣2)=0,∴经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是理解“旋转函数”的定义.24.如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G(1)判断△FAG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=10,BD﹣DF=1,求AB的长.【考点】圆的综合题.【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,证明方法同(1);(3)首先根据上题得到AF=BF=FG,从而利用已知条件得到FB=5,然后利用勾股定理得到BD=4,DF=3,从而求得AD=2,最后求得AB=2.【解答】解:(1)等腰三角形;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=10,∴FB=5,∴,解得:BD=4,DF=3,∴AD=2,∴AB==2.【点评】本题考查了圆的综合知识及垂径定理、勾股定理等知识,解题的过程中注意等腰三角形的判定与圆的知识的结合,难度不大.25.如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.【考点】勾股定理的逆定理;三角形的面积;相似三角形的判定与性质.【专题】压轴题;开放型.【分析】(1)由于PQ∥AB,故△PQC∽△ABC,当△PQC的面积与四边形PABQ的面积相等时,△CPQ与△CAB的面积比为1:2,根据相似三角形的面积比等于相似比的平方,可求出CP的长;(2)由于△PQC∽△ABC,根据相似三角形的性质,可用CP表示出PQ和CQ的长,进而可表示出AP、BQ的长.根据△CPQ和四边形ABQP的周长相等,可将相关的各边相加,即可求出CP的长;(3)因为不能确定哪个角是直角,故应分类讨论.①当∠MPQ=90°,且PM=PQ时.因为△CPQ∽△CAB,根据相似三角形边长的比等于高的比,可求出PQ的值;②∠PQM=90°时与①相同;③当∠PMQ=90°,且PM=MQ时,过M作ME⊥PQ,则ME=PQ,根据相似三角形边长的比等于高的比,可求出PQ的值.【解答】解:(1)∵PQ∥AB,∴△PQC∽△ABC,∵S△PQC=S,四边形PABQ∴S△PQC:S△ABC=1:2,∴==,∴CP=•CA=2;(2)∵△PQC∽△ABC,∴==,∴=,∴CQ=CP,。

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word 版 含答案)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个5.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .6.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.27.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .238.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)9.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .10.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10011.cos60︒的值等于( ) A .12B .22C 3D 3 12.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D 31013.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A.50°B.49°C.48°D.47°14.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是()A.32B.3 C.323D.315.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0二、填空题16.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.17.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.18.如图,在□ABCD中,AB=5,AD=6,AD、AB、BC分别与⊙O相切于E、F、G三点,过点C作⊙O的切线交AD于点N,切点为M.当CN⊥AD时,⊙O的半径为____.19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x,则可列方程____.20.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.21.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.22.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.23.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 24.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 25.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.28.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.29.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 30.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题31.如图1,AB 、CD 是圆O 的两条弦,交点为P .连接AD 、BC .OM ⊥ AD ,ON ⊥BC ,垂足分别为M 、N.连接PM 、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 32.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.33.从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.34.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.35.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =﹣x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.39.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8.(1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.40.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标. 【详解】解:∵y =x 2﹣6x =x 2﹣6x +9﹣9=(x ﹣3)2﹣9, ∴二次函数y =x 2﹣6x 图象的顶点坐标为(3,﹣9). 故选:C . 【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.4.C解析:C 【解析】 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可. 【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点, 把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确; 对称轴为直线x =﹣1,即:﹣2ba=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的; 由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确; 故选C . 【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.5.C解析:C 【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.6.B解析:B【解析】【分析】根据平行线分线段成比例定理即可解决问题.【详解】解:////AD BE CF ,AB DE BC EF ∴=,即1 1.23EF=, 3.6EF ∴=,3.6 1.24.8DF EF DE ∴++===,故选B .【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D .【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.8.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x=-+的顶点坐标是(1,2).故选D.9.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.10.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.11.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.12.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB=10x,sin A=BCAB=10,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.13.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.14.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ), ∴AP=12AB=3, ∴tan ∠OAP=tan30°=OP AP =33, ∴33.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.15.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.二、填空题16.20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.17.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.18.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.19.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).20.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.21.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 22.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】 【分析】结合等腰三角形的性质,根据勾股定理求解即可. 【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA > 6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.23.【解析】 【分析】直接利用概率公式计算. 【详解】解:设袋中共有小球只, 根据题意得,解得x =10, 经检验,x=10是原方程的解, 所以袋中共有小球10只. 故答案为10. 【点睛】 此题主解析:【解析】 【分析】直接利用概率公式计算. 【详解】解:设袋中共有小球只, 根据题意得635x =,解得x =10, 经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.24.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例. 25.【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值. 【详解】如图,连接OA 、OD ,取 解析:51-【解析】 【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值. 【详解】如图,连接OA 、OD ,取AB 的中点G ,连接GF ,CG ,∵ABCD 是圆内接正方形,2OA OD ==,∴90AOD ∠=︒, ∴()222222AD OA OD =+==,∵AF ⊥BE , ∴90AFB ∠=︒, ∴112GF AB ==, 2222125CG BG BC =+=+=,当点C 、F 、G 在同一直线上时,CF 有最小值,如下图:51, 51. 【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF 的最小值是解决本题的关键.26.15π 【解析】 【分析】圆锥的侧面积=底面周长×母线长÷2. 【详解】解:底面圆的半径为3cm ,则底面周长=6πcm,侧面面积=×6π×5=15πcm2. 故答案为:15π. 【点睛】 本题考解析:15π 【解析】 【分析】圆锥的侧面积=底面周长×母线长÷2. 【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π. 【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.27.10 【解析】 【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可. 【详解】 解:当时,, 解得,(舍去),. 故答案为10. 【点睛】本题考查了二次函数的实际应用,解析式中自解析:10 【解析】 【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =. 故答案为10. 【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.28.相离 【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离 【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离29.y =﹣(x+1)2﹣2 【解析】 【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式. 【详解】解析:y =﹣(x +1)2﹣2【解析】 【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式. 【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2), 设平移后函数的解析式为()212y a x +-=, ∵所得的抛物线经过点(0,﹣3), ∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--, 故答案为()212y x +=--. 【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

江苏省镇江市丹阳市九年级上学期第二次月考模拟数学试题

江苏省镇江市丹阳市九年级上学期第二次月考模拟数学试题

江苏省镇江市丹阳市九年级上学期第二次月考模拟数学试题一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0) B .(﹣3,﹣9) C .(3,﹣9) D .(0,﹣6) 2.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π3.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .104.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .3242B .3或4C .2242D .2或45.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度 6.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 7.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20208.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°9.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 10.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .6 11.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:412.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°13.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,3 14.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣215.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A.2 B.3C.32D.2二、填空题16.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.17.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.18.将边长分别为2cm,3cm,4cm的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm.19.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.20.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm2.21.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.23.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).24.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).25.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…26.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.27.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.28.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m29.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.30.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =4GB =,求O 的半径.32.如图,直线y=kx+b(b>0)与抛物线y=14x 2相交于点A (x 1,y 1),B(x 2,y 2)两点,与x 轴正半轴相交于点D ,于y 轴相交于点C ,设∆OCD 的面积为S ,且kS+8=0.(1)求b 的值.(2)求证:点(y 1,y 2)在反比例函数y=16x的图像上. 33.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.34.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围, (3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由, 35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.37.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?38.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.39.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA 5tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF 是直角三角形时,求EF 的长;(3)是否存在点F ,使得S △CEF =4S △BOF ,若存在,请求EF 的长,若不存在,请说明理由.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π, 故选:B . 【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.3.A解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.4.A解析:A 【解析】 【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可. 【详解】 解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =, ∵CD=7,CE=7-x, ∵AB 52=∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4, ∴AD 232x ==2. 故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解. 5.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.6.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A 、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B 、方程x 2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C 、方程y 2+x =1含有两个未知数,是二元二次方程,故不是一元二次方程;D 、方程1x=1不是整式方程,是分式方程,故不是一元二次方程. 故选:B.【点睛】 本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.7.C解析:C【解析】【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.8.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数.∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 9.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 10.C解析:C【解析】【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答.【详解】如图,作直径BD ,连接CD ,∵∠BDC 和∠BAC 是BC 所对的圆周角,∠BAC =30°,∴∠BDC =∠BAC =30°,∵BD 是直径,∠BCD 是BD 所对的圆周角,∴∠BCD =90°,∴BD =2BC =4,【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.11.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.12.C解析:C【解析】【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.13.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=453.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.14.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.15.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD2AB,再证明△CBD为等边三角形得到BC=BD2AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD2AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.二、填空题16.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案. 【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.19.y=-5(x+2)2-3【解析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 20.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 23.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.24.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm 2). 故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 25.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.26.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-3≤−1−2≤ 2.5 ,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.27.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.28.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.29.【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF≌△DAE,得出AE =AF ,从而证得△AEF 是等边三角形,进一步证得∠ABC=60°,即可解析:3 【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF ≌△DAE ,得出AE =AF ,从而证得△AEF 是等边三角形,进一步证得∠ABC =60°,即可求得结论.【详解】取DE 的中点F ,连接AF ,∴EF =DF ,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.30.或【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt△ADB 中,AD=m ,BD= 解析:9y x =或16y x= 【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为7,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt △ADB 中,AD=m ,BD=7-m ,根据勾股定理列方程即可求出m 的值,进而可得A 点坐标,即可求出该反比例函数的表达式.【详解】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),∵A 在直线y=x 上,∴m=n , ∵AC 长的最大值为7,∴AC 过圆心B 交⊙B 于C ,∴AB=7-2=5,在Rt △ADB 中,AD=m ,BD=7-m ,AB=5, ∴m 2+(7-m)2=52,解得:m=3或m=4,∵A 点在反比例函数y =k x(k >0)的图像上, ∴当m=3时,k=9;当m=4时,k=16, ∴该反比例函数的表达式为:9y x = 或16y x= ,故答案为9y x =或16y x= 【点睛】 本题考查一次函数与反比例函数的性质,理解题意找出AC 的最长值是通过圆心的直线是解题关键.三、解答题31.(1)见解析;(2)O 的半径为4.【解析】【分析】(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可.【详解】解:(1)证明:连接OE .∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒ ∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.32.(1)b=4(b>0) ;(2)见解析【解析】【分析】(1)根据直线解析式求OC 和OD 长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)∵D(0,b),C(-b k,0) ∴由题意得OD=b,OC= -b k ∴S=22b k- ∴k•(22b k-)+8=0 ∴b=4(b>0) (2)∵2144x kx =+ ∴21404x kx --= ∴1216x x ⋅=-∴()222121************y y x x x x ⋅=⋅=⋅= ∴点(y 1,y 2)在反比例函数y=16x 的图像上. 【点睛】本题考查二次函数的性质及图象与直线的关系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.33.(1)223y x x =--;(2)(1,2)P -;(3)1(1Q - ,2(1Q + ,3(1,4)Q -【解析】【分析】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++即可求出b,c 即可求解; (2)根据A,B 关于对称轴对称,连接BC 交对称轴于P 点,即为所求,再求出坐标及PAC 的周长;(3)根据△QAB 的底边为4,故三角形的高为4,令y =4,求出对应的x 即可求解.【详解】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++得01093b c b c =-+⎧⎨=++⎩ 解得23b c =-⎧⎨=-⎩∴抛物线的解析式为:223y x x =--;(2)如图,连接BC 交对称轴于P 点,即为所求,∵223y x x =--∴C(0,-3),对称轴x=1设直线BC 为y=kx+b, 把(30)B ,, C(0,-3)代入y=kx+b 求得k=1,b=-3, ∴直线BC 为y=x-3令x=1,得y=-2,∴P (1,-2),∴PAC 的周长;(3)∵△QAB 的底边为AB=4, 182QAB SAB H =⨯= ∴三角形的高为4, 令y =4,即2234x x --=±解得x 1=122-2=122+3=1故点Q 的坐标为1(122,4)Q - , 2(122,4)Q + ,3(1,4)Q -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.34.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P 的坐标为:(352-+55+35--55-313-+113+313--,113-. 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,。

江苏省镇江市丹阳市横塘中学中考数学模拟试题(含解析)

江苏省镇江市丹阳市横塘中学中考数学模拟试题(含解析)

江苏省镇江市丹阳市横塘中学2016年中考数学模拟试题一、选择题(共3小题,每小题3分,满分9分)1.三角形内切圆的圆心为()A.三条边的高的交点 B.三个角的平分线的交点C.三条边的垂直平分线的交点 D.三条边的中线的交点2.如图,4个正方形的边长均为1,则图中阴影部分三个小扇形的面积和为()A. B. C. D.3.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc >0;④b=2a中,正确的结论的个数是()A.1个B.2个C.3个D.4个二、填空题(共15小题,每小题3分,满分45分)4.将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是.5.函数y=中自变量x的取值范围是.6.样本方差的计算式中S2= [(x1﹣30)2+(x2﹣30)2+…+(x n﹣30)2]中,数30表示样本的.7.二次函数y=x2+6x+5图象的顶点坐标为.8.如图是一个小熊的图象,图中反映出圆与圆的四种位置关系,但是其中有一种位置关系没有反映出来,请你写出这种位置关系,它是.9.若⊙O和⊙O′内切,它们的半径分别为5和3,则圆心距为.10.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.11.如图:半径为2的圆心P在直线y=2x﹣1上运动,当⊙P与x轴相切时圆心P的坐标为.12.若直角三角形的两条直角边长分别是6和8,则它的外接圆半径为,内切圆半径为.13.有一组数据11,8,10,9,12的极差是,方差是.14.抛物线的图象如图,则它的函数表达式是.当x 时,y>0.15.已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c= .16.形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为.17.如图,已知点A,B,C在⊙O上,若∠ACB=40°,则∠AOB= 度.18.如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于.三、解答题(共7小题,满分0分)19.已知点A(2,a)在抛物线y=x2上(1)求A点的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.20.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.21.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.22.某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?23.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MNMC的值.24.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O 的直径.动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB 边向点B以3cm/s的速度运动,P、Q两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t,求:(1)t分别为何值时,四边形PQCD为平行四边形、等腰梯形?(2)t分别为何值时,直线PQ与⊙O相切、相离、相交?25.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.2016年江苏省镇江市丹阳市横塘中学中考数学模拟试卷参考答案与试题解析一、选择题(共3小题,每小题3分,满分9分)1.三角形内切圆的圆心为()A.三条边的高的交点 B.三个角的平分线的交点C.三条边的垂直平分线的交点 D.三条边的中线的交点【考点】三角形的内切圆与内心.【分析】根据角平分线上的点到这个角的两边的距离相等,所以三角形内切圆的圆心是三内角平分线的交点.【解答】解:∵角平分线上的点到角的两边的距离相等,∴三角形内切圆的圆心是三内角平分线的交点.故选B.【点评】此题主要考查了三角形的内切圆与内心,正确掌握三角形内切圆的做法是解题关键.2.如图,4个正方形的边长均为1,则图中阴影部分三个小扇形的面积和为()A. B. C. D.【考点】扇形面积的计算;正方形的性质.【专题】数形结合.【分析】根据正方形的性质可得出每个扇形的圆心角的度数,从而阴影部分可看成是圆心角为135°,半径为1是扇形,求解即可.【解答】解:由观察知三个扇形的半径相等均为1,且左边上下两个扇形的圆心角正好是直角三角形的两个锐角,所以它们的和为90°,右上面扇形圆心角的度数为45°,∴阴影部分的面积应为:S==π.故选A.【点评】本题考查了扇形面积的计算及正方形的性质,也考察了学生的观察能力及计算能力,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.3.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc >0;④b=2a中,正确的结论的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;二次函数的图象;二次函数的性质;抛物线与x轴的交点.【分析】根据二次函数图象与x交点的个数来判定b2﹣4ac的符号;将x=﹣1时,y<0来推知a﹣b+c的符号;根据函数图象的开口方向、与坐标轴的交点的位置以及对称轴的位置来判定abc的符号;根据图象的对称轴来判断b=2a的正误.【解答】解:①根据二次函数的图象知,该抛物线与x轴有两个不同的交点,所以b2﹣4ac >0;故本选项错误;②根据图示知,当x=﹣1时,y>0,即a﹣b+c>0;故本选项正确;③∵抛物线的开口向下,∴a<0;又∵该抛物线与y交于正半轴,∴c>0,而对称轴x=﹣=﹣1,∴b=2a<0,∴abc>0;故本选项正确;④由③知,b=2a;故本选项正确;综上所述,正确的选项有3个.故选C.【点评】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共15小题,每小题3分,满分45分)4.将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是 2 .【考点】一元二次方程的一般形式.【分析】首先利用多项式乘法计算方程的左边,可化为x2+3x+2=0,进而可得到常数项.【解答】解:(x+1)(x+2)=0,x2+3x+2=0,常数项为2,故答案为:2.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.函数y=中自变量x的取值范围是x≥.【考点】函数自变量的取值范围.【专题】计算题.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2x﹣3≥0,解得x≥.故答案为:x≥.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.样本方差的计算式中S2= [(x1﹣30)2+(x2﹣30)2+…+(x n﹣30)2]中,数30表示样本的平均数.【考点】方差.【分析】由于方差公式为,其中90为数据的个数,为这组数据的平均数,由此即可求解.【解答】解:依题意得数30表示样本的平均数.故答案为:平均数.【点评】此题主要考查了方差的计算公式,熟练掌握方差公式即可求解.7.二次函数y=x2+6x+5图象的顶点坐标为(﹣3,﹣4).【考点】二次函数的性质.【分析】已知二次函数y=x2﹣2x﹣3为一般式,运用配方法转化为顶点式,可求顶点坐标.【解答】解:∵y=x2+6x+5=(x+3)2﹣4,∴抛物线顶点坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【点评】考查了二次函数的性质,已知抛物线的一般式,可以用配方法写成顶点式求顶点坐标,也可以用顶点坐标公式求解.8.如图是一个小熊的图象,图中反映出圆与圆的四种位置关系,但是其中有一种位置关系没有反映出来,请你写出这种位置关系,它是相交.【考点】圆与圆的位置关系.【分析】直接根据圆与圆的位置关系特点可知,图中没有相交这种位置关系.【解答】解:直接根据圆与圆的位置关系特点从图中可看出,相交这种关系没有反映出来.【点评】主要考查了圆与圆之间的位置关系,要掌握住特点依据图形直观的判断.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.9.若⊙O和⊙O′内切,它们的半径分别为5和3,则圆心距为 2 .【考点】圆与圆的位置关系.【分析】两圆内切,则圆心距=半径之差.【解答】解:∵两圆内切,它们的半径分别为3和5,∴圆心距=5﹣3=2.故答案为:2【点评】此题考查相切两圆的性质.根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).10.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是3.【考点】圆锥的计算;平面展开-最短路径问题;特殊角的三角函数值.【专题】压轴题;转化思想.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=3【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11.如图:半径为2的圆心P在直线y=2x﹣1上运动,当⊙P与x轴相切时圆心P的坐标为(1.5,2)或(﹣0.5,﹣2).【考点】直线与圆的位置关系;坐标与图形性质.【专题】压轴题;动点型.【分析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是2或﹣2.当y=2时,则x=1.5;当y=﹣2时,则x=﹣0.5.【解答】解:∵P的圆心在直线y=2x﹣1上∴设P(x,2x﹣1)(1)当圆与x正半轴相切时,则2x﹣1=2,x=1.5,∴P(1.5,2);(2)当圆与x负半轴相切时,则2x﹣1=﹣2,x=﹣0.5∴P(﹣0.5,﹣2),∴由(1)(2)可知P的坐标为:(1.5,2)或(﹣0.5,﹣2).【点评】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.12.若直角三角形的两条直角边长分别是6和8,则它的外接圆半径为 5 ,内切圆半径为 2 .【考点】三角形的内切圆与内心.【专题】计算题.【分析】根据直角三角形外接圆的圆心是斜边的中点,由勾股定理求得斜边,设内切圆的半径为r,由切线长定理得6﹣r+8﹣r=10,求解即可.【解答】解:如图,∵AC=8,BC=6,∴AB=10,∴外接圆半径为5,设内切圆的半径为r,∴CE=CF=r,∴AD=AF=8﹣r,BD=BE=6﹣r,∴6﹣r+8﹣r=10,解得r=2.故答案为:5;2.【点评】本题考查了三角形的内切圆和内心,以及外心,注:直角三角形的外心是斜边的中点.13.有一组数据11,8,10,9,12的极差是 4 ,方差是 2 .【考点】方差;极差.【专题】计算题.【分析】极差是数据中最大数与最小数的差,此数据中最大数是12,最小数是8,所以极差是把两数相减即可;要求方差,首先求这组数据的平均数,求出平均数后,再利用方差公式方差公式S2= [(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2],代入数据求出即可.【解答】解;极差是;12﹣8=4;平均数: =(11+8+10+9+12)÷5=10方差:S2= [(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2],= [(11﹣10)2+(8﹣10)2+(10﹣10)2+(9﹣10)2+(12﹣10)2]=(1+4+0+1+4),=2,故答案为:4,2.【点评】此题主要考查了极差与方差的有关知识,方差大小代表数据的波动大小,方差越大代表这组数据波动越大,方差越小波动越小,极差则是最值之间的差值,方差与极差在中考中是热点问题.14.抛物线的图象如图,则它的函数表达式是y=x2﹣4x+3 .当x <1,或x>3 时,y >0.【考点】待定系数法求二次函数解析式.【分析】观察可知抛物线的图象经过(1,0),(3,0),(0,3),可设交点式用待定系数法得到二次函数的解析式.y>0时,求x的取值范围,即求抛物线落在x轴上方时所对应的x的值.【解答】解:观察可知抛物线的图象经过(1,0),(3,0),(0,3),由“交点式”,得抛物线解析式为y=a(x﹣1)(x﹣3),将(0,3)代入,3=a(0﹣1)(0﹣3),解得a=1.故函数表达式为y=x2﹣4x+3.由图可知当x<1,或x>3时,y>0.【点评】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.15.已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c= 1 .【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据题意,将(﹣1,0)代入解析式即可求得a+c的值.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.【点评】本题考查了抛物线与x轴的交点问题,是基础知识要熟练掌握.16.形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为y=﹣2x2﹣5 .【考点】待定系数法求二次函数解析式.【分析】形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,因此可设顶点式为y=﹣2(x﹣h)2+k,其中(h,k)为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【解答】解:∵形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,设抛物线的关系式为y=﹣2(x﹣h)2+k,将顶点坐标是(0,﹣5)代入,y=﹣2(x﹣0)2﹣5,即y=﹣2x2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【点评】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.17.如图,已知点A,B,C在⊙O上,若∠ACB=40°,则∠AOB=80 度.【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠ACB=80°.【解答】解:∵∠ACB=40°,∴∠AOB=2∠ACB=80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于 1 .【考点】切线长定理.【专题】计算题.【分析】根据切线的性质求得∠APO=30°,∠PAO=90°,再由直角三角形的性质得AO=1.【解答】解:∵PA、PB是⊙O的两条切线,∴∠APO=∠BPO=∠APB,∠PAO=90°∵∠APB=60°,∴∠APO=30°,∵PO=2,∴AO=1.故答案为:1.【点评】本题考查了切线长定理、切线的性质和直角三角形的性质,是基础知识要熟练掌握.三、解答题(共7小题,满分0分)19.已知点A(2,a)在抛物线y=x2上(1)求A点的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)直接将A点代入解析式求出即可A点坐标即可;(2)分别根据以O为顶点时,以A为顶点时,以P为顶点时求出符合题意的点的坐标即可.【解答】解:(1)∵点A(2,a)在抛物线y=x2上,∴a=22=4,∴A点的坐标为:(2,4);(2)如图所示:以O为顶点时,AO=P1O=2或AO=AP2=2∴点P坐标:(2,0),(﹣2,0),以A为顶点时,AO=OP,∴点P坐标:(4,0);以P为顶点时,OP′=AP′,∴AE2+P′E2=P′A2,设AP′=x,则42+(x﹣2)2=x2,解得:x=5,∴点P坐标:(5,0),综上所述:使△OAP是等腰三角形则P点坐标为:(2,0),(﹣2,0),(4,0),(5,0).【点评】此题主要考查了二次函数图象上点的性质以及等腰三角形的判定,利用分类讨论得出是解题关键.20.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.【考点】列表法与树状图法.【专题】探究型.【分析】列举出所有情况,看所求的情况占总情况的多少即可.解题时要注意是放回实验还是不放回实验,此题为放回实验.【解答】(本题满分7分)(1)解:列表(2)由(1)中列表可知:P(成功)=.(说明:第(1)题答对得(4分),第(2)题答对得3分)【点评】此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树用到的知识点为:概率=所求情况数与总情况数之比.21.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】解此题的关键是准确列表,找出所有的可能情况,即可求得概率.【解答】答:解法一:画树状图:P(白,白)=;(5分)解法二:列表得白(红,白)(黄,白)(白,白)黄(红,黄)(黄,黄)(白,黄)红(红,红)(黄,红)(白,红)红黄白P(白,白)=(5分).【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?【考点】二次函数的应用.【分析】此题应明确公式:销售利润=销售量×(售价﹣成本),求售价为多少元时获得最大利润,需考虑二次函数最值问题.【解答】解:(1)销售量为800﹣20×(70﹣60)=600(件),600×(70﹣50)=600×20=12000(元)(2)y=(x﹣50)[800﹣20(x﹣60)]=﹣20x2+3000x﹣100000,=﹣20(x﹣75)2+12500,所以当销售价为75元时获得最大利润为12500元.(3)当y=12000时,﹣20(x﹣75)2+12500=12000,解得x1=70,x2=80,即定价为70元或80元时这批服装可获利12000元.【点评】此题主要考查了销售利润的求法,以及二次函数的最值问题.23.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MNMC的值.【考点】切线的判定;圆周角定理;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MNMC;代入数据可得MNMC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴.∴BM2=MNMC.又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM.∵AB=4,∴BM=2.∴MNMC=BM2=8.【点评】此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用.24.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O 的直径.动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB 边向点B以3cm/s的速度运动,P、Q两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t,求:(1)t分别为何值时,四边形PQCD为平行四边形、等腰梯形?(2)t分别为何值时,直线PQ与⊙O相切、相离、相交?【考点】直线与圆的位置关系;平行四边形的判定;直角梯形;等腰梯形的判定.【专题】压轴题.【分析】(1)若PQCD为平行四边形,则需QC=PD,即3t=24﹣t,得t=6秒;同理只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形,如图,过P、D分别作BC的垂线,交BC于E、F点,则EF=PD,QE=FC=2,即3t﹣(24﹣t)=4,解得t=7秒,问题得解.(2)因为点P、Q分别在线段AD和BC上的运动,可以统一到直线PQ的运动中,要探求时间t对直线PQ与⊙O位置关系的影响,可先求出t为何值时,直线PQ与⊙O相切这一整个运动过程中的一瞬,再结合PQ的初始与终了位置一起加以考虑,设运动t秒时,直线PQ 与⊙O相切于点G,如图因为,AB=8,AP=t,BQ=26﹣3t,所以,PQ=26﹣2t,因而,过p做PH⊥BC,得HQ=26﹣4t,于是由勾股定理,可的关于t的一元二次方程,则t可求.问题得解.【解答】解:(1)因为AD∥BC,所以,只要QC=PD,则四边形PQCD为平行四边形,此时有,3t=24﹣t,解得t=6,所以t=6秒时,四边形PQCD为平行四边形.又由题意得,只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形,过P、D分别作BC的垂线交BC于E、F两点,则由等腰梯形的性质可知,EF=PD,QE=FC=2,所以3t﹣(24﹣t)=4,解得t=7秒所以当t=7秒时,四边形PQCD为等腰梯形.(2)设运动t秒时,直线PQ与⊙O相切于点G,过P作PH⊥BC于点H,则PH=AB=8,BH=AP,可得HQ=26﹣3t﹣t=26﹣4t,由切线长定理得,AP=PG,QG=BQ,则PQ=PG+QG=AP+BQ=t+26﹣3t=26﹣2t由勾股定理得:PQ2=PH2+HQ2,即(26﹣2t)2=82+(26﹣4t)2化简整理得 3t2﹣26t+16=0,解得t1=或 t2=8,所以,当t1=或 t2=8时直线PQ与⊙O相切.因为t=0秒时,直线PQ与⊙O相交,当t=秒时,Q点运动到B点,P点尚未运动到D点,但也停止运动,直线PQ也与⊙O相交,所以可得以下结论:当t1=或 t2=8秒时,直线PQ与⊙O相切;当0≤t<或8<t≤(单位秒)时,直线PQ与⊙O相交;当<t<8时,直线PQ与⊙O相离.【点评】此题主要考查了直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d >r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.25.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标;(2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得b=∴抛物线的解析式为y=x2﹣x﹣2.y=x2﹣x﹣2=( x2﹣3x﹣4 )=(x﹣)2﹣,∴顶点D的坐标为(,﹣).(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时, x2﹣x﹣2=0,∴x1=﹣1,x2=4,∴B (4,0)∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴A C2+BC2=AB2.∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:设直线C′D的解析式为y=kx+n,则,解得:.∴.∴当y=0时,,.∴.【点评】本题着重考查了待定系数法求二次函数解析式、直角三角形的性质及判定、轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.21。

九年级数学上学期第二次月考试题(含解析) 苏科版-苏科版初中九年级全册数学试题

九年级数学上学期第二次月考试题(含解析) 苏科版-苏科版初中九年级全册数学试题

某某省某某市江都区国际学校2016届九年级数学上学期第二次月考试题一、解答题(共7小题,满分21分)1.方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=12.已知圆锥的底面半径为2,母线长为4,则它的侧面积为()A.4πB.16π C.4πD.8π3.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣34.如图,在平行四边形ABCD中,AE:EB=1:2,如果S△AEF=4cm2,那么S△DCF=()A.12cm2B.24cm2C.36cm2D.48cm25.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值X围是()A.a<3 B.a>3 C.a<﹣3 D.a>﹣36.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且∠OBC=45°,则下列各式成立的是()A.b﹣c﹣1=0 B.b+c﹣1=0 C.b﹣c+1=0 D.b+c+1=07.如图,定点C、动点D在⊙O上,并且位于直径AB的两侧,AB=10,AC=6,过点C在作CE⊥CD交DB的延长线于点E,则线段CE长度的最大值为()A.B.C.16 D.二.填空题(本大题共10个小题,每小题3分,共30分)8.把抛物线y=﹣2x2先向上平移1个单位,再向左平移1个单位所得的函数解析式为.9.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=(x+1)2+a上的三点,则y1,y2,y3的大小关系为.(用>号连接)10.若二次函数y=(m+1)x2+m2﹣9有最小值,且图象经过原点,则m=.11.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=.12.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值X围为.13.在平面直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的4倍得到△△A′B′C′,那么落在第四象限的A′的坐标是.14.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值X围是.15.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么=.16.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且AC=6,连结BC,点D为BC 的中点.已知点E在直线AC上,△CDE与△ACB相似,则线段AE的长为.17.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是.三、解答题(本大题共有10小题,共96分.)18.已知抛物线的顶点坐标C(4,﹣9),且过点(﹣1,16).(1)求抛物线的解析式.(2)若函数图象与x轴交于A,B两点,求△ABC的面积.19.如图,在直角坐标系中,抛物线y=ax2+2x+c过点A、B且与y轴交与点C(0,3),点P为抛物线对称轴x=l上一动点.(1)求抛物线的解析式;(2)求当AP+CP最小时点P的坐标.20.某学校对学生进行体育测试,规定参加测试的每名学生从“1.立定跳远、2.1分钟跳绳3.掷实心球、4.50米跑”四个项目中随机抽取两项作为测试项目.(1)小明同学恰好抽到“立定跳远”、“1分钟跳绳”两项的概率是多少?(2)据统计,初三一班共12名男生参加了“立定跳远”的测试,他们的成绩如下:95 100 90 82 90 65 89 74 75 93 92 85①这组数据的众数是,中位数是;②若将不低于90分的成绩评为优秀,请你估计初三年级选“立定跳远”的240名男生中成绩为优秀的学生约为多少人.21.如图,在△ABC中,∠C=90°,D在AB边上,以BD为直径的半圆与AC相切于点E,连接BE.(1)试说明:BE平分∠ABC;(2)若∠A=30°,⊙O的半径为6,求图中阴影部分的面积.22.如图,在等边△ABC中,点D、E分别是边BC、AC上的点,且BD=CE,连接BE、AD,相交于点F.(1)求证:△ABD≌△BCE;(2)图中共有对相似三角形(全等除外).并请你任选其中一对加以证明.你选择的是.23.如图,在▱ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)求证:DE=DC;(2)求证:直线DC是⊙O的切线.24.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B 左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.25.如图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么X围时,输出的y的值满足3≤y≤6.26.如图,正方形ABCD的边CD与Rt△EFG的直角边EF重合,将正方形ABCD以1cm/s的速度沿FE 方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点C 作AE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cm,EF=4cm,设正方形移动时间为x(s),线段EH的长为y(cm),其中0≤x≤2.5.(1)当x=2时,AE的长为;(2)试求出y关于x的函数关系式,并求出△EHD与△ADE的面积之差;(3)当正方形ABCD移动时间x=时,线段HD所在直线经过点B.27.在一个三角形中,若一条边等于另一条边的两倍,则称这种三角形为“倍边三角形”.例如:边长为a=2,b=3,c=4的三角形就是一个倍边三角形.(1)如果一个倍边三角形的两边长为6和8,那么第三条边长所有可能的值为.(2)如图①,在△ABC中,AB=AC,延长AB到D,使BD=AB,E是AB的中点.求证:△DCE是倍边三角形;(3)如图②,Rt△ABC中,∠C=90°,AC=4,BC=8,若点D在边AB上(点D不与A、B重合),且△BCD是倍边三角形,求BD的长.某某省某某市江都区国际学校2016届九年级上学期第二次月考数学试卷参考答案与试题解析一、解答题(共7小题,满分21分)1.方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=1【考点】解一元二次方程-配方法.【分析】在本题中,把一次项、常数项2分别移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:由原方程,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,即(x﹣2)2=1故选:D.【点评】此题配方法解一元二次方程,掌握配方法的一般步骤是本题的关键,配方法的一般步骤是(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.2.已知圆锥的底面半径为2,母线长为4,则它的侧面积为()A.4πB.16π C.4πD.8π【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×4÷2=8π,故选D.【点评】本题考查圆锥的侧面积的求法,解题的关键是熟记圆锥的侧面积的计算公式.3.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【考点】二次函数的性质.【专题】计算题.【分析】采用逐一排除的方法.先根据对称轴为直线x=2排除B、D,再将点(0,1)代入A、C两个抛物线解析式检验即可.【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.【点评】本题考查了二次函数的性质.关键是根据对称轴,点的坐标与抛物线解析式的关系,逐一排除.4.如图,在平行四边形ABCD中,AE:EB=1:2,如果S△AEF=4cm2,那么S△DCF=()A.12cm2B.24cm2C.36cm2D.48cm2【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】先根据平行四边形的性质得到AB=CD,AB∥CD,再计算出AE:CD=1:3,接着证明△AEF∽△CDF,然后根据相似三角形的性质求解.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵AE:EB=1:2,∴AE:AB=1:3,∴AE:CD=1:3,∵AE∥CD,∴△AEF∽△CDF,∴=()2=,∴S△DCF=9×=4cm2=36cm2.故选C.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;运用相似三角形的性质时主要利用相似比计算相应线段的长.解决本题的关键熟练运用平行四边形的性质.5.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值X围是()A.a<3 B.a>3 C.a<﹣3 D.a>﹣3【考点】抛物线与x轴的交点.【专题】压轴题.【分析】根据题意可知,当x=0时,函数y=ax2+2x﹣5=﹣5;当x=1时,函数y=a+2﹣5=a﹣3.因为关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),所以当x=1时,函数图象必在x轴的上方,所以得到关于a的不等式,解不等式即可求出a的取值X围.【解答】解:依题意得:当x=0时,函数y=ax2+2x﹣5=﹣5;当x=1时,函数y=a+2﹣5=a﹣3.又关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),所以当x=1时,函数图象必在x轴的上方,所以y=a﹣3>0,即a>3.故选B.【点评】主要考查了一元二次方程和二次函数之间的关系,要会利用二次函数的模型来解决有关一元二次方程的问题.6.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且∠OBC=45°,则下列各式成立的是()A.b﹣c﹣1=0 B.b+c﹣1=0 C.b﹣c+1=0 D.b+c+1=0【考点】二次函数图象与系数的关系.【分析】根据∠OBC=45°,有OB=OC,可设点C,B的坐标为(0,c),(c,0),把点B(c,0)代入二次函数y=x2+bx+c,得c2+bc+c=0,从而求出关系式.【解答】解:∵∠OBC=45°,∴OB=OC,∴点C,B的坐标为(0,c),(c,0);把点B(c,0)代入二次函数y=x2+bx+c,得c2+bc+c=0,即c(c+b+1)=0,∵c≠0,∴b+c+1=0.故选D.【点评】此题考查了学生的综合应用能力,考查了二次函数的点与函数的关系,考查了直角三角形的性质,考查了数形结合思想.7.如图,定点C、动点D在⊙O上,并且位于直径AB的两侧,AB=10,AC=6,过点C在作CE⊥CD交DB的延长线于点E,则线段CE长度的最大值为()A.B.C.16 D.【考点】圆周角定理;相似三角形的判定与性质.【分析】当CD是直径时,CE最长,由AB是直径,得到∠ACB=90°,利用勾股定理得出BC的长度,又因为∠A=∠D,∠ABC=∠ACE=90°,推出△ABC∽△DCE,根据相似三角形的性质列方程求解.【解答】解:当CD是直径时,CE最长,∵AB是直径,∴∠ACB=90°,∴BC===8,∵∠A=∠D,∠ABC=∠DCE=90°,∴△ABC∽△DCE,∴=,即=,∴CE=.故选:B.【点评】本题考查了相似三角形的判定和性质,圆周角定理,解直角三角形,勾股定理的应用,确定CE什么时候取最大值是解题的关键.二.填空题(本大题共10个小题,每小题3分,共30分)8.把抛物线y=﹣2x2先向上平移1个单位,再向左平移1个单位所得的函数解析式为y=﹣2(x+1)2+1 .【考点】二次函数图象与几何变换.【分析】先得到抛物线y=﹣2x2的顶点坐标为(0,0),由于点(0,0)向上平移1个单位,再向左平移1个单位得到的点的坐标为(﹣1,1),则利用顶点式可得到平移后的抛物线的解析式为y=﹣2(x+4)2+6.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向上平移1个单位,再向左平移1个单位得到的点的坐标为(﹣1,1),所以平移后的抛物线的解析式为y=﹣2(x+1)2+1.故答案为y=﹣2(x+1)2+1.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=(x+1)2+a上的三点,则y1,y2,y3的大小关系为y3>y2>y1.(用>号连接)【考点】二次函数图象上点的坐标特征.【分析】先求出抛物线对称轴,再根据点A、B、C与对称轴的距离的大小与二次函数的增减性解答.【解答】解:抛物线y=(x+1)2+a的对称轴是直线x=﹣1,∵抛物线开口向上,点A、B、C到对称轴的距离分别为1、2、3,∴y3>y2>y1.故答案为:y3>y2>y1.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.10.若二次函数y=(m+1)x2+m2﹣9有最小值,且图象经过原点,则m= 3 .【考点】二次函数的最值.【专题】计算题.【分析】根据二次函数的最值问题得到m+1>0,而抛物线过原点,则m2﹣9=0,然后解不等式和方程即可得到满足条件的m的值.【解答】解:∵二次函数y=(m+1)x2+m2﹣9有最小值,且图象经过原点,∴m+1>0且m2﹣9=0,∴m=3.故答案为3.【点评】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y 随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=时,y=.(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=时,y=.11.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=50°.【考点】切线的性质.【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【解答】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=40°,∴∠E=90°﹣∠COB=50°.故答案为:50°.【点评】此题考查了切线的性质与圆周角定理.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.12.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值X围为k≤4.【考点】抛物线与x轴的交点.【分析】分为两种情况:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,求出△=b2﹣4ac=﹣4k+16≥0的解集即可;②当k﹣3=0时,得到一次函数y=2x+1,与X轴有交点;即可得到答案.【解答】解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点;故k的取值X围是k≤4,故答案为:k≤4.【点评】本题主要考查对抛物线与x轴的交点,根的判别式,一次函数的性质等知识点的理解和掌握,能进行分类求出每种情况的k是解此题的关键.13.在平面直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的4倍得到△△A′B′C′,那么落在第四象限的A′的坐标是(4,﹣8).【考点】位似变换;坐标与图形性质.【分析】根据位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或﹣k,即可得出A′的坐标.【解答】解:∵A(﹣1,2),以原点O为位似中心,将△ABC放大到原来的4倍得到△A′B′C′,∴落在第四象限的A′的坐标是:(4,﹣8).故答案为:(4,﹣8).【点评】此题主要考查了位似图形的性质,根据已知得出对应点之间的关系是解题关键.14.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值X 围是﹣2≤x≤1.【考点】二次函数与不等式(组).【分析】求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值X围,由两个函数图象的交点及图象的位置,可求X围.【解答】解:依题意得求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值X围,由两个函数图象的交点及图象的位置可以得到此时x的取值X围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.【点评】解答此题的关键是把解不等式的问题转化为比较函数值大小的问题,然后结合两个函数图象的交点坐标解答,本题锻炼了学生数形结合的思想方法.15.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么=.【考点】相似三角形的判定与性质.【专题】计算题.【分析】先证明△ADB∽△ABC,则利用相似比得到==,再设AD=x,CD=2x,则AC=3x,则利用相似比可表示出AB=x,然后计算的值.【解答】解:∵∠ABD=∠C,而∠DAB=∠BAC,∴△ADB∽△ABC,∴==,由=,设AD=x,CD=2x,则AC=3x,∴=,∴AB=x,∴==.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;运用相似三角形的性质时只要利用相似比计算相应线段的长.解决本题的关键是设AD=x,CD=2x,然后用x表示出AB的长.16.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且AC=6,连结BC,点D为BC 的中点.已知点E在直线AC上,△CDE与△ACB相似,则线段AE的长为3或或9或.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【专题】分类讨论.【分析】根据E点在直线AC上,得出对应点不同求出的EC长度不同,分别得出即可.【解答】解:∵AB是半圆O的直径,∴∠ACB=90°,∵AB=10,AC=6,∴BC==8,∵点D为BC的中点,∴CD=4,当DE∥AB时,△CED∽△CAB,∴=,∴=,解得:EC=3,∴AE=6﹣EC=3,当=,且∠ACB=∠DCE′时,△CE′D∽△CBA,则=,解得:CE′=,∴AE′=6﹣=;当=,且∠ACB=∠DCE1时,△CE1D∽△CBA,则=,解得:CE1=,∴AE1=6+=;当=,且∠ACB=∠DCE″时,△CE″D∽△CBA,则=,解得:CE″=3,∴AE″=6+3=9;综上所述:点E在直线AC上,△CDE与△ACB相似,则线段AE的长为3或或9或.故答案为:3或或9或.【点评】此题主要考查了相似三角形的判定与性质,注意在直线AC上有一点E,进行分类讨论得出是解题关键.17.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是 5 .【考点】相似三角形的判定与性质;二次函数的最值;正方形的性质.【专题】计算题.【分析】设BE=x,则EC=4﹣x,先利用等角的余角相等得到∠BAE=∠FEC,则可判断Rt△ABE∽Rt△ECF,利用相似比可表示出FC=,则DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3,所以x=2时,DF有最小值3,而AF2=AD2+DF2,即DF最小时,AF最小,AF的最小值为=5.【解答】解:设BE=x,则EC=4﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,即=,解得FC=,∴DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3当x=2时,DF有最小值3,∵AF2=AD2+DF2,∴AF的最小值为=5.故答案为:5.【点评】本题考查了相似三角形的判定与性质:有两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似;相似三角形的对应角相等,对应边的比相等.也考查了正方形的性质以及二次函数的最值问题.三、解答题(本大题共有10小题,共96分.)18.已知抛物线的顶点坐标C(4,﹣9),且过点(﹣1,16).(1)求抛物线的解析式.(2)若函数图象与x轴交于A,B两点,求△ABC的面积.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)设该抛物线方程为y=a(x﹣4)2﹣9,然后将点(﹣1,16)代入即可求得a的值;(2)令y=0,求出抛物线与x轴的交点坐标,然后根据三角形的面积公式列式进行计算即可求解.【解答】解:(1)∵抛物线的顶点坐标为C(4,﹣9),∴设该抛物线方程为y=a(x﹣4)2﹣9,又∵它的图象经过点(﹣1,16),∴16=a(﹣1﹣4)2﹣9,解得:a=1,∴该抛物线的解析式为y=(x﹣4)2﹣9=x2﹣8x+7;(2)令y=0,则x2﹣8x+7=0,解得x1=1,x2=7,则A点坐标为,B两点△ABC的面积=×(7﹣1)×9=27.【点评】本题考查了抛物线与x轴的交点坐标,待定系数法求二次函数解析式,利用顶点式解析式求得函数解析式是解题的关键.19.如图,在直角坐标系中,抛物线y=ax2+2x+c过点A、B且与y轴交与点C(0,3),点P为抛物线对称轴x=l上一动点.(1)求抛物线的解析式;(2)求当AP+CP最小时点P的坐标.【考点】待定系数法求二次函数解析式;轴对称-最短路线问题.【专题】计算题.【分析】(1)先把C(0,3)代入y=ax2+2x+c可求得c=3,再利用对称轴方程可求出a=﹣1,于是得到抛物线的解析式为y=﹣x2+2x+3;(2)利用抛物线与x轴的交点问题,通过解方程﹣x2+2x+3=0得到A(﹣1,0),B(3,0),连结BC 交直线x=1于点P,如图,利用两点之间线段最短可判断此时PC+PA最小,利用待定系数法可计算出直线BC的解析式为y=﹣x+3,然后计算x=1的函数值即可得到P点坐标.【解答】解:(1)把C(0,3)代入y=ax2+2x+c得c=3,因为抛物线的对称轴为直线x=1,所以﹣=1,解得a=﹣1,所以抛物线的解析式为y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=﹣3,则A(﹣1,0),B(3,0),连结BC交直线x=1于点P,连接PA,如图,∵PA=PB,∴PA+PC=PC+PB=BC,∴此时PC+PA最小,设直线BC的解析式为y=kx+b,把B(3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣x+3=2,∴P点坐标为(1,2).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了最短路径问题.20.某学校对学生进行体育测试,规定参加测试的每名学生从“1.立定跳远、2.1分钟跳绳3.掷实心球、4.50米跑”四个项目中随机抽取两项作为测试项目.(1)小明同学恰好抽到“立定跳远”、“1分钟跳绳”两项的概率是多少?(2)据统计,初三一班共12名男生参加了“立定跳远”的测试,他们的成绩如下:95 100 90 82 90 65 89 74 75 93 92 85①这组数据的众数是90 ,中位数是89.5 ;②若将不低于90分的成绩评为优秀,请你估计初三年级选“立定跳远”的240名男生中成绩为优秀的学生约为多少人.【考点】列表法与树状图法;用样本估计总体;中位数;众数.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明同学恰好抽到“立定跳远”、“1分钟跳绳”两项的情况,再利用概率公式即可求得答案.(2)①根据众数与中位数的定义求解即可求得答案;②首先求得这12名男生中成绩为优秀的百分数,继而求得答案.【解答】解:(1)画树状图得:∵共有12种等可能的结果,小明同学恰好抽到“立定跳远”、“1分钟跳绳”两项的有2种情况,∴小明同学恰好抽到“立定跳远”、“1分钟跳绳”两项的概率是:=;(2)①这组数据的众数是90,中位数是=89.5;故答案为:90,89.5;②∵这12名男生中,优秀的学生有6名,∴初三年级选“立定跳远”的240名男生中成绩为优秀的学生约为:240×=120(人).【点评】此题考查了列表法或树状图法求概率、用样本估计总体以及众数、中位数的定义.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,在△ABC中,∠C=90°,D在AB边上,以BD为直径的半圆与AC相切于点E,连接BE.(1)试说明:BE平分∠ABC;(2)若∠A=30°,⊙O的半径为6,求图中阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】(1)连接OE,根据切线的性质得出OE⊥AC,即可证得OE∥BC,得出∠EBC=∠OEB,因为∠OEB=∠OBE,证得∠OBE=∠EBC,得出结论;(2)分别求得三角形AOE和扇形的面积,根据S阴影=S△AOE﹣S扇形ODE即可求得.【解答】(1)证明:连接OE,∵半圆与AC相切于点E,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠EBC=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠OBE=∠EBC,∴BE平分∠ABC;(2)∵OE⊥AC,∠A=30°,⊙O的半径为6,∴OE=6,∠AOE=60°,∴OA=2OE=12,∴AE==6,∴S阴影=S△AOE﹣S扇形ODE=×6×6﹣=18﹣6π.【点评】本题考查了切线的性质,等腰三角形的性质,平行线的判定依据扇形的面积等,作出辅助线构建直角三角形是解题的关键.22.如图,在等边△ABC中,点D、E分别是边BC、AC上的点,且BD=CE,连接BE、AD,相交于点F.(1)求证:△ABD≌△BCE;(2)图中共有 4 对相似三角形(全等除外).并请你任选其中一对加以证明.你选择的是△AEF∽△BEA.【考点】相似三角形的判定;全等三角形的判定;等边三角形的性质.【分析】(1)由等边三角形ABC可得出的条件是:AB=AC=BC,∠BAC=∠ABC=∠ACB;由BD=CE可根据SAS证明△ABD≌△BCE;(2)易证:△ACD≌△BAE(SAS),所以可得:∠DAC=∠ABE,再加上公共角∠AEF,可根据两个对应角相等的三角形相似证得△AEF∽△BEA.【解答】(1)证明:∵△ABC是等边三角形,∴AC=BA,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)4对,分别是△BDF∽△BEC,△DBF∽△DAB,△AFE∽△ACD,△AFE∽△BAE,选择证明△AEF∽△BEA,∵△ABC是等边三角形,∴AC=BA,∠C=∠BAE=60°,AC=BC,∵BD=CE,∴AE=CD,∴△ACD≌△BAE(SAS),∴∠DAC=∠ABE,又∵∠AEF=∠BEA,∴△AEF∽△BEA.【点评】本题主要考查了等边三角形的性质,以及全等三角形、相似三角形的判定和性质,题目的开放性较好,是一道不错的2016届中考题.23.如图,在▱ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)求证:DE=DC;(2)求证:直线DC是⊙O的切线.【考点】切线的判定;平行四边形的性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB=DC,进而证得∠DAE=∠AEB,证出=,即可得出DE=DC;(2)作直径DF,连接EF,则∠EFD=∠EAD,证出∠EFD=∠CDE,再由DF是⊙O的直径,得出∠DEF=90°,得出∠FDC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=DC,∴∠DAE=∠AEB.∴=,∴AB=DE,∴DE=DC;(2)解:如图所示:作直径DF,连接EF.则∠EFD=∠EAD,∵∠CDE=∠DAE,∴∠EFD=∠CDE.∵DF是⊙O的直径,∴∠DEF=90°,∴∠EFD+∠FDE=90°,∴∠CDE+∠FDE=90°∴∠FDC=90°.∴直线DC是⊙O的切线.【点评】本题考查了切线的判定、平行四边形的性质、圆周角定理;熟练掌握切线的判定方法,并能进行有关推理计算是解决问题的关键.24.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B 左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.【考点】二次函数的性质;待定系数法求二次函数解析式.【分析】(1)已知了B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.【解答】解:(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3);∵y=ax2+3ax+c过B(1,0)、C(0,﹣3),∴;解这个方程组,得,∴抛物线的解析式为:y=x2+x﹣3;(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N在y=x2+x﹣3中,令y=0,得方程x2+x﹣3=0解这个方程,得x1=﹣4,x2=1∴A(﹣4,0)设直线AC的解析式为y=kx+b∴,解这个方程组,得,∴AC的解析式为:y=﹣x﹣3,∵S四边形ABCD=S△ABC+S△ADC=+•DM•(AN+ON)=+2•DM设D(x,x2+x﹣3),M(x,﹣x﹣3),DM=﹣x﹣3﹣(x2+x﹣3)=﹣(x+2)2+3,当x=﹣2时,DM有最大值3此时四边形ABCD面积有最大值.【点评】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.25.如图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么X围时,输出的y的值满足3≤y≤6.【考点】二次函数的性质;一次函数的图象;一次函数的性质;二次函数的图象.【专题】代数几何综合题;压轴题.【分析】(1)当0≤x≤4时,函数关系式为y=x+3;当x>4时,函数关系式为y=(x﹣6)2+2;(2)根据一次函数与二次函数的性质,分别求出自变量在其取值X围内的最小值,然后比较即可;(3)由题意,可得不等式和,解答出x的值即可.【解答】解:(1)由图可知,当0≤x≤4时,y=x+3;当x>4时,y=(x﹣6)2+2;(2)当0≤x≤4时,y=x+3,此时y随x的增大而增大,∴当x=0时,y=x+3有最小值,为y=3;当x>4时,y=(x﹣6)2+2,y在顶点处取最小值,即当x=6时,y=(x﹣6)2+2的最小值为y=2;∴所输出的y的值中最小一个数值为2;(3)由题意得,当0≤x≤4时,解得,0≤x≤4;当x>4时,,。

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word 版 含答案)一、选择题1.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤2.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+3.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2424.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .115.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .346.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2 B .3 C .4 D .5 7.若两个相似三角形的相似比是1:2,则它们的面积比等于( ) A .1:2 B .1:2 C .1:3 D .1:4 8.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-39.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm12.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,3 13.cos60︒的值等于( ) A .12B .22C .32D .3314.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣215.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .20.二次函数y=x 2−4x+5的图象的顶点坐标为 .21.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.22.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.23.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.24.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.25.若32x y =,则x y y+的值为_____. 26.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.27.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.28.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.29.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.30.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.三、解答题31.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x 轴对称的图像所对应的函数表达式 ;32.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。

苏科版九年级数学上册学期第二次月考.docx

苏科版九年级数学上册学期第二次月考.docx

初中数学试卷桑水出品江苏省徐州市沛县第五中学2016-2017学年九年级上学期第二次月考数学试题考试时间:90分钟 满分:140分一、选择题:(每小题3分,共24分) 1.下列方程有实数根的是 ( ▲ ) A .x 2﹣x ﹣1=0B .x 2+x+1=0C .x 2﹣6x+10=0D .x 2﹣x+1=02.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的( ▲ )A .众数B .平均数C .中位数D .方差 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ▲ ) A .平均数 B .众数 C .中位数 D .方差 4. 若二次函数y =x 2+bx 的图像的对称轴是直线x =2,则关于x 的方程x 2+bx =5的解为( ▲ ) A .120,4x x == B .121,5x x == C .121,5x x ==- D .121,5x x =-= 5.如图,⊙O 的半径为5,若OP =3,则经过点P 的弦长可能是 ( ▲ ) A .3B .6C .9D .126.在平行四边形ABCD 中,点E 是边AD 上一点,且AE =2ED ,EC 交对角线BD 于点F ,则等于( ▲ )A .B .C .D .7. 已知A 、B 两地的实际距离AB=5千米,画在地图上的距离A ′B ′=2cm ,则这张地图的比例尺是( ▲ ) A .2:5 B .1:25000 C .25000:1 D .1:2500008.如图所示,二次函数y =ax 2+bx +c 的图象中,王刚同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0,其中错误的有( ▲ )第6题第8题第5题A 、1个B 、2个C 、3个D 、4个二、填空题(每小题3分,共24分)9、已知⊙O 的直径为4,且OA=2,则点A 与⊙O 的位置关系是 ▲___.10、已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 ▲ 。

江苏省丹阳市横塘中学学九年级数学上学期质量调研试题

江苏省丹阳市横塘中学学九年级数学上学期质量调研试题

江苏省丹阳市横塘中学2014-2015学年度九年级数学上学期质量调研试题试题一、填空题(本大题共有12小题,每小题2分,共计24分.) 1.方程022=-x x的解为 .2.若x=﹣1是关于x 的一元二次方程x 2+3x+m+1=0的一个解,则m 的值为 .3. 关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围 4.如图,在△ABC 中∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则的度数为 .5.已知关于x 的一元二次方程02=++b ax x 有一个非零根﹣b ,则a ﹣b 的值为6.如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程 .7、在⊙O 中,AB 是⊙O 的直径,AB=8cm ,==,M 是AB 上一动点,CM+DM 的最小值是 cm .8、若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2=9、已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为10. 一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为 .11、如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,CE =1, DE =3,则⊙O 的半径是 .第4题第6题第7题第11题12、对于实数a,b,定义运算“*”:例如4*2,因为4>2,所以.若,是一元二次方程的两个根,则______.二、选择题(本大题共有5小题,每小题3分,共计15分.)13.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2若⊙P的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与⊙P的位置关系是( )A.在⊙P内 B.在⊙P内上 C.在⊙P外 D.无法确定15、在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A. 40cm B. 60cm C. 80cm D. 100cm16、如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD =,BD =,则AB的长为【】A.2 B.3 C.4 D.517.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB 的长为,则a的值是()三、解答题(本大题共11小题,满分81分)18、(本题8分)(1)解方程:2x2﹣4x﹣1=0.(2)解方程:x2﹣5x﹣6=0;A. 4 B.C.D.第15题第16题第17题19.(本题6分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+ =0有两个相等的实数根,求k的值.20、(本题8分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.21、(本题8分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D (如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.(本题6分)已知某校去年年底的绿化面积为平方米,预计到明年年底的绿化面积将会增加到平方米,求这两年的年平均增长率。

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word 版 含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或43.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .195.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .236.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2B .2C .-1D .18.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8 B .9 C .10 D .11 9.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .210.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 11.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.5 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=13.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似14.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.已知∠A =60°,则tan A =_____.18.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2. 19.若53x y x +=,则yx=______. 20.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.21.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.22.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 23.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .26.若32x y =,则x y y+的值为_____. 27.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)28.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.29.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).30.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.三、解答题31.已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.32.如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB =AD.(1)判断△FDB与△ABC是否相似,并说明理由;(2)BC=6,DE=2,求△BFD的面积.33.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?34.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.35.解方程:3x 2﹣4x +1=0.(用配方法解)四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意画出图形,连接OA 和OB ,根据勾股定理的逆定理得出∠AOB =90°,再根据圆周角定理和圆内接四边形的性质求出即可. 【详解】 解:如图所示,连接OA ,OB , 则OA =OB =3, ∵AB =2, ∴OA 2+OB 2=AB 2, ∴∠AOB =90°,∴劣弧AB 的度数是90°,优弧AB 的度数是360°﹣90°=270°, ∴弦AB 对的圆周角的度数是45°或135°, 故选:D . 【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.2.A解析:A 【解析】 【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可. 【详解】 解:如图所示,∵△ABC 、△ABD 都是直角三角形, ∴A,B,C,D 四点共圆, ∵AC=BC ,∴BAC ABC 45∠∠==︒, ∴ADC ABC 45∠∠==︒, 作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x, ∵AB 52= ∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+, ∴()22257x x =+- 解得,x=3或x=4, ∴AD 232x ==2.故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.3.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质 ∴点C 在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.4.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.5.C解析:C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52 xy=∴x=5k(k≠0),y=2k(k≠0)∴52322 x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC2、210只有选项B的各边为125B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.D解析:D 【解析】 【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可. 【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0, 解得b=1. 故选:D . 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.D解析:D 【解析】 【分析】计算最大数19与最小数8的差即可. 【详解】 19-8=11, 故选:D. 【点睛】此题考查极差,即一组数据中最大值与最小值的差.9.C解析:C 【解析】 【分析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 10.C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.11.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,8494x xx+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.13.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.14.D解析:D【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点,∴AE=DE=12AD , ∴12EF FC . 故选D .15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l 和⊙O 相交,则d <r ;②直线l 和⊙O 相切,则d=r ;③直线l 和⊙O 相离,则d >r (d 为直线与圆的距离,r 为圆的半径).因此,∵⊙O 的半径为6,圆心O 到直线l 的距离为5,∴6>5,即:d <r .∴直线l 与⊙O 的位置关系是相交.故选C .二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B (0,-3)、C (2,-3),∴BC ∥x 轴,而点A (1,-3)与C 、解析:不能【解析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.19.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴23 yx .故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.20.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).21.x1=-12,x2=8【解析】【分析】把后面一个方程中的x+3看作一个整体,相当于前面方程中的x来求解.【详解】解:∵关于x的方程的解是,(a,m,b均为常数,a≠0),∴方程变形为,即解析:x1=-12,x2=8【解析】【分析】把后面一个方程中的x+3看作一个整体,相当于前面方程中的x来求解.解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 22..【解析】试题分析:∵在△ABC 中,∠C=90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.23.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°, ∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+,解得:22m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.24.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.25.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.26..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.27.>【解析】【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 28.【解析】【分析】【详解】试题分析:把x=2代入y=x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD ∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D 的坐标代入反比例函数的解析式求出k 即可.解:∵点C 在直线AB 上,即在直线y=12x ﹣2上,C 的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.29.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.30.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.三、解答题31.(1)m<1;(2)m<0【解析】【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点则方程x2-2x+m=0有两个不相等的实数根∴b2-4ac>0,∴4-4m>0,解得:m<1;(2)∵点A、B位于原点的两侧则方程x2-2x+m=0的两根异号,即x1x2<0∵12cx x ma==∴m<0【点睛】本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.32.(1)相似,理由见解析;(2)94.【解析】【分析】(1)根据线段垂直平分线的性质得出BE=CE,根据等腰三角形的性质得出∠EBC=∠ECB,∠ABC=∠ADB,根据相似三角形的判定得出即可;(2)根据△FDB∽△ABC得出FDAB=BDBC=12,求出AB=2FD,可得AD=2FD,DF=AF,根据三角形的面积得出S△AFB=S△BFD,S△AEF=S△EFD,根据DE为BC的垂直平分线可得S△BDE=S△CDE,可求出△ABC的面积,再根据相似三角形的性质求出答案即可.【详解】(1)△FDB与△ABC相似,理由如下:∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC.(2)∵△FDB∽△ABC,∴FDAB=BDBC=12,∴AB=2FD,∵AB=AD,∴AD=2FD,∴DF=AF,∴S△AFB=S△BFD,S△AEF=S△EFD,∴S △ABC =3S △BDE =3×12×3×2=9, ∵△FDB ∽△ABC , ∴BFD ABC S S =(DB BC )2=(12)2=14, ∴S △BFD =14S △ABC =14×9=94. 【点睛】 本题考查线段垂直平分线的性质及相似三角形的判定与性质,线段存在平分线上的点到线段两端的距离相等;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.33.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐. 【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.34.(1)(60x)+,(80020)x -;(2)(60+x−50)(800−20x )=12000,70,见解析【解析】【分析】(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;(2)根据销售利润等于单件的利润乘以销售量即可解答.【详解】(1)设这种衬衫应提价x 元,则这种衬衫的销售价为(60+x )元,销售量为(800−1005x )=(800−20x )件. 故答案为(60+x );(800−20x ).(2)根据(1)得:(60+x−50)(800−20x )=12000整理,得x 2−30x +200=0解得:x 1=10,x 2=20.为使顾客获得更多的优惠,所以x=10,60+x=70.答:这种衬衫应提价10元,则这种衬衫的销售价为70元.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.35.x1=1,x2=1 3【解析】【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x2﹣4x+1=03(x2﹣43x)+1=0(x﹣23)2=19∴x﹣23=±13∴x1=1,x2=1 3【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.四、压轴题36.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,证明结论.【详解】解:(1)证明:∵AC=BD,∴AC BD,则AB DC,∴AB=CD;(2)如图1,连接OB 、OD ,作OH ⊥BD 于H ,∵弧BD 的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则BH=32OB=43, ∴BD=83,则四边形ABCD 的面积=12×AC×BD=96;(3)AD=2OM ,连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图2,∵OE ⊥AD ,∴AE=DE ,∵∠BOC=2∠BAC ,而∠BOC=2∠BOM ,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE ,在△BOM 和△OAE 中,OMB OEA OBM OAE OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM ≌△OAE (AAS ),∴OM=AE ,∴AD=2OM .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.37.(1)4;(2)52;(3)600(2+1).【解析】【分析】(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(2+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=52.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC+BC+BD2+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD=AC时,AB+BC+BD的值最大,最大值=600(2+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.38.(1)详见解析;(2)45【解析】【分析】(1)通过证明OE∥AD得出结论OE⊥CD,从而证明CD是⊙0的切线;(2)在Rt△ADE中,求出AD,DE,利用勾股定理即可解决问题.【详解】(1)证明:∵AE平分∠DAC,∴∠CAE=∠DAE.∵OA=OE,∴∠OEA=∠OAE.∴∠DAE=∠AEO,.∴AD∥OE.∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(2)解:连接BF交OE于K.∵AB是直径,∴∠AFB=90°,∵AB=10,AF=6,∴BF228,106∵OE∥AD,∴∠OKB=∠AFB=90°,∴OE⊥BF,∴FK=BK=4,∵OA=OB,KF=KB,∴OK=1AF=3,2∴EK=OE﹣OK=2,。

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word版 含答案)

苏科版九年级数学上 第二次月考测试题(Word 版 含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人3.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度 4.sin30°的值是( ) A .12B .2 C .3 D .15.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数6.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断 7.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--8.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .349.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断10.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 11.如图所示的网格是正方形网格,则sin A 的值为( )A.12B.22C.35D.4512.下列说法正确的是()A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似13.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.214.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.615.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2二、填空题16.已知∠A=60°,则tan A=_____.17.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为________________18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___. 20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.22.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.23.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.26.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________. 27.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.28.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.29.如图,已知△ABC 3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).30.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43FH 的长.32.如图,直线y=kx+b(b>0)与抛物线y=14x 2相交于点A (x 1,y 1),B(x 2,y 2)两点,与x 轴正半轴相交于点D ,于y 轴相交于点C ,设∆OCD 的面积为S ,且kS+8=0.(1)求b的值.(2)求证:点(y1,y2)在反比例函数y=16x的图像上.33.已知二次函数y=ax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x在什么范围内,y随x增大而减小?该函数有最大值还是有最小值?求出这个最值.34.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a2x+bx+c(a<0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,35.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案) 四、压轴题36.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.37.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.38.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使DF=7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....).时,求t的取值范围.(直接写出答案即可)............(.包括边界....x.轴上方的部分围成的图形中39.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.4.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.5.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差6.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.7.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 8.A解析:A【解析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.9.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.10.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.A解析:A【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.13.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.14.C解析:C【解析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC =. 故选D .二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.18.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.19.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为603 180π⨯=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴,故答案为:点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB 的长,延长BE 交AC 于H 点,作HM⊥AB 于M ,根据圆的性质可知BH 平分∠ABC,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.22.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.23.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m , 解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.24.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16. 故答案为16.25.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.26.【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数解析:3k <【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.1a ,23b =-,c k =方程有两个不相等的实数根,241240b ac k ∴∆=-=->,3k ∴<.故答案为:3k <.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.27.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.28.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.29.【解析】【分析】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,根据等边三角形的性质可求出AB的长,根据相似三角形的性质可得△ADE是等边三角形,可得出AE的长,根据角的和差33-【解析】【分析】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,根据等边三角形的性质可求出AB的长,根据相似三角形的性质可得△ADE是等边三角形,可得出AE的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH=HF=x,利用∠EFH的正确可用x表示出EH的长,根据AE=EH+AH列方程可求出x的值,根据三角形面积公式即可得答案.【详解】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,∵△ABC3CM⊥AB,∴12×AB×CM3,∠BCM=30°,BM=12AB,BC=AB,∴22AB BM-3 AB,∴123AB3解得:AB=2,(负值舍去)∵△ABC∽△ADE,△ABC是等边三角形,∴△ADE是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=3 x.∵AB=2AD,AD=AE,∴AE=12AB=1,∴x+3x=1,解得x=33233-=+.∴S△AEF=12×1×33-=33-.故答案为:334-.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.30.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.三、解答题31.(1)详见解析;(2)详见解析;(3)4【解析】【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出ABD∆∽DBC∆,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出FEH∆∽FHG∆,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:80ABC BD,︒∠=平分ABC∠,40,140ABD DBCA ADB︒︒∴∠=∠=∴∠+∠=140,140ADCBDC ADBA BDC,︒︒∠=∴∠+∠∠=∠∴=ABD ∴∆∽DBC ∆∴BD 是四边形ABCD 的“相似对角线”.(3)FH 是四边形EFGH 的“相似对角线”,三角形EFH 与三角形HFG 相似.又EFH HFG ∠=∠FEH ∴∆∽FHG ∆FE FH FH FG∴= 2FH FE FG ∴=⋅ 过点H 作EQ FG ⊥垂足为Q 则3sin 60EQ FE ︒=⨯= 1432134322FG EQ FG FE ∴=∴=16FG FE ∴=28FH FE FG ∴=⋅=216FH FG FE ∴==4FH =【点睛】本题考查相似三角形的判定与性质的综合应用及解直角三角形,对于这种新定义阅读材料题目读,懂题意是解答此题的关键.32.(1)b=4(b>0) ;(2)见解析【解析】 【分析】(1)根据直线解析式求OC 和OD 长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)∵D(0,b),C(-b k,0) ∴由题意得OD=b,OC= -b k ∴S=22b k- ∴k•(22b k-)+8=0 ∴b=4(b>0)(2)∵2144x kx =+ ∴21404x kx --= ∴1216x x ⋅=- ∴()222121************y y x x x x ⋅=⋅=⋅= ∴点(y 1,y 2)在反比例函数y=16x 的图像上. 【点睛】本题考查二次函数的性质及图象与直线的关系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.33.(1)y =x 2﹣2x ﹣3;(2)当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【解析】【分析】(1)将(1,﹣4)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得3430a b a b +-=-⎧⎨--=⎩, 解得12a b =⎧⎨=-⎩, 所以抛物线解析式为y =x 2﹣2x ﹣3;(2)∵y =(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,顶点坐标为(1,﹣4),∵a >0,∴当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.34.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P,12). 【解析】【分析】 (1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥, ∵31b a =+,∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2- 二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°,S △PAB =12×AB ×PH=12×32PQ 2=32, 则PQ=P Q y y -=1,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

横塘中学2016届九年级上学期第二次月考数学试题2015.12.10考试时间:120分钟 总分:120分一、填空题:(2*12=24分)1.方程x 2﹣3x=0的根为 .2.一条弦把圆分成1:3两部分,则弦所对的圆周角为 .3.有一组数据:2,3,5,5,x ,它们的平均数是10,则这组数据的众数是 . 4.已知一元二次方程0572=--x x 的两个根为α、β,那么α+β的值是 5.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm ):168,166,168,167, 169,168,则她们身高的极差是 .6.抛物线y =-x 2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是______________________.7.三张完全相同的卡片上分别写有函数32--=x y ,3y x=,21y x =+,从中随机抽取一张,则所得函数的图象在第一象限内y 随x 的增大而增大的概率是 .8.已知一个圆锥底面圆的半径为5 cm ,高为12 cm ,则圆锥的侧面积为_______cm 2. 9.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为 .10.如图的平面直角坐标系中有一个正六边形ABCDEF ,其中C 、D 的坐标分别为(1,0)和 (2,0).若在无滑动的情况下,将这个六边形沿着x 轴向右滚动,则在滚动过程中,这个六边形的顶点A 、B 、C 、D 、E 、F 中,会过点(50,2)的是点 _________ .F第10题 第11题 第12题11.如图,已知圆锥的母线OA=8,底面圆的半径r=2,若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是_______________.12.如图,过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,若∠A=63 º,那么∠B= .二、选择题(3*5=15分)13.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15 C .15 D .不能确定14.为了解某校七年级300名学生的视力情况,从中抽出60名学生进行调查,以下说法正确的是( )A .该校七年级学生是总体B .该校七年级的每一个学生是个体C .抽出的60名学生是样本D .样本容量是6015.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A.点P B .点Q C .点R D .点M 16.下列说法中错误的是( )A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是61 17.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :x 轴、y 轴分别交于A 、B ,∠OAB =30º,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12三、解答题:(81分) 18.(本题满分8分,每小题4分)计算:(1)解方程:9)3(22=+-y y (2)解方程:x x x 22)1(3-=-19.(本题满分6分)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,求另一个根及k 的值.20. (本题满分8分)九(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩和方差;(4分)21. (本题满分8分)如图,点B 、C 、D 都在⊙O 上,过点C 的⊙O 的切线交OB 延长线于点A ,C 连接CD 、BD ,若∠CDB=∠OBD=30°,OB=6cm . (1)求证:AC ∥BD ;(4分)(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)(4分)22.(本题满分6分)有一类随机事件概率的计算方法:设试验结果落在某个区域S 中的每一点的机会均等,用A 表示事件“试验结果落在S 中的一个小区域M 中”,那么事件A 发生的概率P (A )的面积的面积S M.有一块边长为30cm 的正方形ABCD 飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:(1)在飞镖游戏板上画有半径为5cm 的一个圆(如图1),求飞镖落在圆内的概率;(3分) (2)飞镖在游戏板上的落点记为点O ,求△OAB 为钝角三角形的概率.(3分)AB D图1(备用图)BD23.(本题满分6分)三门旅行社为吸引市民组团去蛇蟠岛风景区旅游,推出如下收费标 准:某中学九(一)班去蛇蟠岛风景区旅游,共支付给三门旅行社旅游费用5888元,请问该班这次共有多少名同学去蛇蟠岛风景区旅游? 24.(本题满分8分)如图,在下面的网格图中有一个直角△ABC 中,∠ACB=90°,AC=4,BC=3.(1)请画出将△ABC 绕点A 按逆时针方向旋转90°后的D A 1B 1C 1;(2分)(2)若(1)中△ABC 的点A 、点B 坐标分别为(3,5)、(0,1),直接写出(1)中旋转后D A 1B 1C 1的点B 1坐标是_____________;点C 1坐标是_____________;点B 在旋转过程中所经过的路径长是___________;(每一空2分) (3)求出(1)中△ABC 扫过的面积.(2分) 25.(本题满分6分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE . (1)求证:DE 是半圆⊙O 的切线;(3分) (2)若︒=∠30BAC ,DE =2,求AD 的长.(3分)(第25题)·26.(本题满分6分)已知抛物线2y ax bx =+经过点(33)A --,和点P (t ,0),且t ≠0.(1)如图,若A 点恰好是抛物线的顶点,请写出它的对称轴和t 的值; (2分)(2分) ..写出t 的取值范围.(2分)27.(本题满分7分)二次函数y=x 2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(3分)(2)求经过两次平移后的图象与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?(4分)28.(本题满分12分)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上。

(1)求∠ACB的大小;(2分)(2)写出A,B两点的坐标;(3分)(3)试确定此抛物线的解析式;(3分)(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由。

(4分)初三第二次质量检测数学参考答案15.12.10一·选择题 1. x 1=0,x 2=3. 2. 45°或135° 3. 5 4. 7 5. 36. y=—(x+1) 2+7 7. 3分之1 8. 65π9. x(x-1)=2070 10. A 11.12. 18° 二.选择题 13-17:CDBAA 三.解答题18. (1)120,3y y ==;(2)1221,3x x ==-. 19. k=-2,程的另一个根为1. 20.(1)9.5、10;(2)平均成绩9,方差1; 21.(1)略(2)6π22. (1)P=3630522π=⋅π(3分) (2)P=830152122π=⋅π⋅(6分)23. 46名24. (1)略;(2)(7,2),(7,5);.(3).25. (1)证明略;(3分) (2)AD 长为6 (6分)26.(1)根据题意观察图象可得:对称轴为x = -3; 再由对称性直观得出t=-6;(2分) (2)将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩;此时抛物线解析式为24y x x =+,该抛物线开口向上;(4分) (3)t >-3且t ≠0(6分,不交待t 非零扣1分)27. 解:(1)画图如图所示:依题意得:y=(x﹣1)2﹣2=x2﹣2x+1﹣2=x2﹣2x﹣1∴平移后图象的解析式为:x2﹣2x﹣1(2)当y=0时,x2﹣2x﹣1=0,即(x﹣1)2=2,∴,即∴平移后的图象与x轴交于两点,坐标分别为(,0)和(,0)由图可知,当x<或x>时,二次函数y=(x﹣1)2﹣2的函数值大于0.28. 解:(1)作CH⊥x轴,H为垂足,∵CH=1,半径CB=2,∵∠BCH=60°,(2)∵CH=1,半径CB=2,∴HB=,故A(1-,0),B(1+,0);(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),设抛物线解析式y=a(x-1)2+3,把点B(1+,0)代入上式,解得a=-1;∴y=-x2+2x+2;(4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形,∴PC∥OD且PC=OD,∵PC∥y轴,∴点D在y轴上,又∵PC=2,∴OD=2,即D(0,2),又D(0,2)满足y=-x2+2x+2,∴点D在抛物线上,所以存在D(0,2)使线段OP与CD互相平分.。

相关文档
最新文档