王利娜榆林学院论文
任务书 参考范本
[9]汪凯.转型中Байду номын сангаас;媒体、民意与公共政策[M].上海:复旦大学出版社,2005
[10]张淑华.网络民意与公共决策:权利与权力的对话[M].复旦大学出版社,2010
指导教师(签字)日期:年月日
教研室主任(签字)日期:年月日
课题主要内容:
媒体与政府的关系向来是密不可分的,媒体始终作为政府管理公共事务的重要工具。随着信息时代的到来,社会各方面事务的复杂化,传统媒体因其自身的缺陷不能再满足政府处理各种公共事务的需求,在飞速发展的科技环境下,新型媒体以其各种优点逐渐成为政府管理国家公共事务工具的新选择。但是新型媒体在满足政府种种需求的同时也难免存在着我们意想不到的种种弊端。新型媒体兴起对于作为发展中国家的中国来讲既是一种机遇也是一种挑战。政府怎样去完善技术和提高驾驭新型媒体的能力,怎样调节政府行为使新媒体真正成为政府管理公共事务有效的工具。
课题任务的具体要求:
1.认真查阅文献资料,搞清该课题在国内外的研究情况,写出简要的“学术史回顾”;
2.进行实地调查,补充完善相关资料;
3.搜集整理资料,按进度独立完成,有自己的见解,严禁抄袭;
4.符合《榆林学院本科毕业论文写作规范》的要求。
拟定的工作进度及要求(以周为单位):
1-6周:选题并确定题目、下达《毕业论文任务书》;
[4]王升华.政府与媒体的互动关系[J].中共中央党校学报,2009,4.
[5]万小广.网络时代的时政报道转型—以新华社《中国网事》为例[J].青年记者.2012,(6).
[6]孙芙佳.从“新华社中国网事”谈微博新闻的叙事结构[J].中国地市报人.2013,(4).
工程力学类实验的教学改革实践
工 程 力 学 课 程 是许 多 工科 专 业 ( 如机 械 实 际 最 直 接 有 效 的 过 程 之 一 , 此 环 节 学 生 的 主 观 能 动性 、 主 体性 、 创 造性 , 而 且 可 以 激 发 学 生 初步 的科 研兴趣 , 为 学生 以后 的 学 习、 工 作 奠定 一定
摘 要: 《 工程 力学》 课程 是过 控 类专业 的一 门重要 的 专业技 术基 础课 。 通过 加 强理 论联 系实 际和 实验 环 节, 激 发 学生的 学习兴趣 , 促使 学生 养 成爱 思考 的 习惯和 动手 能 力, 对 培养 学生的 工程 意识 , 协作 能 力 、 创新 能 力起 着不可 替代 的作 用。 关键词 : 工程 力学 实验 教 学改革 实践 中图分类号 : 03 4 文献 标识 码 : A 文章 编 号 : 1 6 7 2 -3 7 9 1 ( 2 0 1 4 ) 0 8 ( a ) -0 1 5 7 -0 1
( 1 . S c h o o l o f C h e mi s t r y a n d C h e mi c a l E n g i n e e r i n g , Y u l i n U n i v e r s i t y , Y u l i n S h a n x i 。 7 1 9 0 0 0 , C h i n a 2. P e t r o - C h e mi c a l P l a n t T u h a Oi l f i e l d C o mp a n y 。 H a mi Xi n j i a n g 。 8 3 8 2 0 2, C h i n a )
Ab s t r a c t : T h e c o u r s e o f Eng i n e e r i n g Me c h a ni c s i s a n i mp o r t a n t a n d e l e me n t a r y p r o f e s s i o n h l c o u r s e. Th i s t e a c h i n g r e f o r m e mp h a s i z e s t h e
图书馆馆藏资源与私藏资源的互助合作
2017年03月第27卷第2期榆林学院学报JOURNAL OF YULIN UNIVERSITYMar.2017Vol.27 No.2图书馆馆藏资源与私藏资源的互助合作马佳立(榆林学院图书馆,陕西榆林719000)摘要:通过对馆藏资源与私藏资源具有一定的历史渊源、私藏资源在传承文化历史中的贡献、私藏与馆藏今后的发展关系三方面进行了详细论述。
强调图书馆要加强私人藏书与图书馆的互助合作,最大限度的实现资源共享。
关键词:私人藏书;图书馆;互助合作中图分类号:G253文献标志码:A文章编号= 1008 -3871(2017)02 -0110 -03DOI:10.16752/j. cnki. jylu.2017.02.031从藏书者的角度看,社会藏书可以分为公共藏 书和私家藏书两种形式。
私家藏书顾名思义是指私 人收集典藏的图书文献。
纵观人类文明发展史,公 共藏书在社会文明中起着栋梁作用,但藏书量远远 大于馆藏的私家藏书作为一种补充也发挥了不可替 代的作用。
譬如《四库全书》的编纂过程中私人藏 书就作出了突出的贡献。
《中国历代藏书家辞典》中收入从先秦到现代私人藏书家达2747人之多,他 们为我国文化遗产的保存、发扬广大起着不可小觑 的作用。
1馆藏资源与私藏资源具有一定的历史渊源中国私家藏书自萌生以来,与官府藏书、书院藏 书、寺观藏书互相补益,共同构成了古代藏书事业的 一个整体,并称为我国古代图书馆事业的四大支柱。
为保护、传承古代纸本文化做出了极大的贡献。
从 人类进入文明时代,第一次出现文字和图书以来,就 有了开始收藏图书的事业。
作为世界四大文明古国 之一,我们国家拥有五千年悠久文化历史,灿烂的文 化典籍。
图书馆事业的发展同样有着悠久历史,据 《尚书.多土》记载“惟殷先人,有册有典”可见,图书 馆的起源要追溯到在中国古代殷商时代。
而据《史 记》讲,老子曾经当过周藏室史,相当于现在国家图 书馆馆长。
在古中国,一些比较重要的图书古籍都是官方 在收藏和管理,西汉武帝时,中国现存最早的目录学 文献《汉书.艺文志》中就记载“建藏书策、置写书之 官,下及诸子传说,皆充秘府”。
基于D-S证据理论的肉类食品冷链温度数据分类的研究
数据挖掘处理过程如图 1所示:
类食品的腐败主要是由各种的微生物的生长造成 的, 细菌的浓度主要受温度影响, 肉类食品冷链物流
3 ] 是在低温条件下进行的 [ 。针对不同的物流环节,
设置针对性的传感器对各阶段温度数据进行采集和 存储, 温度传感器是实现温度采集和检测的重要部 分, 由于冷链环节信息采集的需要, 需要对冷链各环 节环境温度数据进行采集和对应时间的记录, 这样 就产生大量的时间 -温度数据需要分析和处理, 因 此提出了对肉类食品冷链温度数据的自动分类。 1基于数据挖掘的温度数据规则提取 数据挖掘是数据库知识发现中的一个步骤, 其 一般是指从大量的数据中通过算法搜索隐藏于其中 信息的过程
㊀2 0 1 7年 1 1月 第2 7卷㊀第 6期
榆 林 学 院 学 报 J O U R N A LO FY U L I NU N I V E R S I T Y
N o v . 2 0 1 7 V o l . 2 7N o . 6
基于 D-S证据理论的肉类食品冷链温度数据分类的研究
吴敏宁
( 榆林学院 信息工程学院, 陕西 榆林 7 1 9 0 0 0 ) 摘㊀要: 针对肉类食品冷链物流系统中缺少对各环节中时间 - 温度数据进行自动分类, 预处理过程造成 各时段温度数据的混乱繁杂, 不能对冷链各环节问题进行有效的分析处理, 增加了肉类食品冷链质量安 全危险因素。利用数据挖掘技术对肉类食品冷链中的时间 - 温度信息进行特征识别和数据规则提取, 利用粗糙集算法建立分类规则, 利用基于 D- S的证据理论的多传感器数据融合方法对时间 -温度数 据进行融合处理, 最终实现对肉类食品冷链中时间 - 温度数据的自动分类, 可提高时间 - 温度数据依据 的独立性、 物流环节存储的合理性, 达到对肉类食品冷链安全分析的目的。 关键词: 肉类食品冷链; D- S 证据理论; 多传感器; 融合算法 中图分类号: T S 2 5 1 ㊀文献标志码: A ㊀文章编号: 1 0 0 8- 3 8 7 1 ( 2 0 1 7 ) 0 6- 0 0 8 3- 0 5 : 1 0 . 1 6 7 5 2 / j . c n k i . j y l u . 2 0 1 7 . 0 6 . 0 2 0 D O I ㊀㊀肉类食品与其他加工食品物流的区别在于物品 的高腐败性, 肉类食品从养殖场到餐桌的供应链过 程中, 伴随着复杂的化学变化, 任何一个环节的失误 都可引起食品安全风险问题
不同压裂液对煤层气解吸影响的实验研究
不同压裂液对煤层气解吸影响的实验研究随着煤层气开发技术的日益完善,钻井工程师可以在不同地区搜索煤层气,并利用压裂技术开采出更多的煤层气。
但是,由于压裂方法所使用的压裂液不同,压裂效果也会有所不同,从而影响煤层气的解吸量。
因此,为了研究不同压裂液对煤层气解吸量的影响,本文以《不同压裂液对煤层气解吸影响的实验研究》为主题,通过实验研究来探究不同压裂液对煤层气解吸量的影响。
首先,本文研究的实验采用的是煤层气模拟压裂实验装置,该装置可以以实验室中的作用形式优化压裂条件的压裂效果,并采用不同压裂液进行压裂。
设备的主要组成部分包括金属压裂管、钢制压裂块、相变液体仪表、传感器、液压驱动装置、控制系统等。
为了模拟地层的真实状态,在实验中采用了模拟煤与石英砂混合物,其中模拟煤的密度和粘度等物理特性与实际煤质比较接近,研究了不同压裂液对压裂效果的影响。
在实验中,我们采用了3种不同成分的压裂液进行实验,分别是水压裂液、油压裂液和硫酸盐压裂液。
采用不同成分的压裂液在不同的压力、温度和流量下进行压裂,改变压裂参数,观察煤层气的解吸量。
通过实验表明,不同类型的压裂液会对煤层气的解吸量产生不同的影响。
结果显示,在相同的压裂参数下,油压裂液能够较为有效地提升煤层气渗透率和解吸量;而水压裂液的解吸量及其改善效果要明显低于油压裂液,但油压裂液会产生更多的废水;硫酸合成液的压裂效果则要明显低于前两者。
实验结果还表明,不同成分的压裂液在不同的压力、温度和流量条件下可能产生不同的效果。
从本文研究的实验结果可以看出,不同成分的压裂液对煤层气解吸量有明显的影响,油压裂液比水压裂液具有更好的解吸效果,而硫酸合成液的压裂效果则要明显低于前两者。
此外,压力、温度和流量也会影响压裂液的效果。
因此,为了实现最佳煤层气解吸效果,在实际开发利用煤层气时,应根据地层特性选择合适的压裂液,并充分考虑压力、温度和流量等因素,从而获得更好的开采效果。
本文以《不同压裂液对煤层气解吸影响的实验研究》为主题,采用实验室试验的方法,研究了不同压裂液对煤层气解吸量的影响。
立体构成课程教学创新研究
性, 导致 一 方面许 多 低 年级 的学 生 在 学 习立 体 构 成 基 本原 理 与方法 时 , 不 明 白学 习的 目的是什 么 , 这 门 课程“ 有 什 么用 , 该 如 何用 ? ” , 于 是在 实 践 练 习环 节
理 的学 习来充 实设 计 基 础 知 识 ; 通 过 三 维 空 间 中形
式美 规律 的认 知来 提高 审 美 能 力 ; 通 过 立 体 造 形 基 本方 法 和表现 技巧 的掌握来 为 艺术设 计 相关专 业 方 向 的实践 奠定基 础 。其 关键 点是 对 三维 空间 中设计 能力 的培 养 , 以为 现代设 计 服务 。 以往 的立 体 构成 教学 中 , 一 般 将 教学 的重 点 放 在对 构成 要素 点 、 线、 面、 体、 空 间 的掌握 以及在 设计 中 的运 用 , 难点 放 在 对 于 构 成要 素在 实 际 设 计 应 用
性的组合。立体 构成是在三维空 间中, 将形态 、 色 彩、 材料 , 按照 情感 、 意 义 和美 学 法则 等 原 则 组 合 成
具有个 性 的 、 有 审 美价 值 的 、 实 际 占据 三维 空 间 的形
课 程 的专业基 础作 用 ” 。
1 立体 构成 的教 学现 状及存 在 问题
学 与后续 专业 课 程 教学 如何 衔 接 、 与 专业 设 计 如 何 接轨 的 的角度 出 发 , 合 理 调 整 授 课 内容 与重 、 难点,
收稿 口期 : 2 0 1 4 — 0 6 — 0 9 拈盒项 日: 三明学院教 育教学改 革项 f l j ( WI 2 0 7 / Q)
抱着 完成 任务 的心 态 应 付作 业 , 或 临 摹 特定 的构 成 样 式 案例 , 或照搬 网上 的优 秀案 例 , 很 少去 体会基 本
应用型人才培养模式下高等数学教学改革探究
黑龙江科学HEILONGJIANG SCIENCE第10卷第13期2019年7月Voe.10Jue.2019应用型人才培养模式下高等数学教学改革探究张媛,祁兰(榆林学院数学与统计学院,陕西榆林719000)摘要:高等数学是高等院校一门重要的基础课程,作为一所应用型本科院校,榆林学院一直以培养具有较强竞争能力和适应社会 能力的高素质复合应用型人才为目标。
学院现有的课程设置已不能满足有些专业的教学需求,传统教学模式呈现出的教学效果较 为一般。
从教学内容体系、教学模式以及考核方式等几个方面探究对高等数学课程的改革,以适应应用型人才培养的要求。
关键词:高等数学#应用型人才培养模式;教学改革;教学模式中图分类号:O158 -4 文献标志码:A 文章编号:1674 -8646(2019)13 -0020 -02On the reform of higher mathemahcs teacCing underthe model of applied talene cultivationZHANG Yuan , QI Lan(Schoo- of Mathematicc and Statistics, Yulin Universita , Yulin 719000, China)Abstract : Higher mathematicc is an impoWant basic couwo in 011x 10 and universities. As an applicatmn-owentedunderaraduata colleyc , Yulin Universita aims te cultivate high-qudlity composite application-yiented talents wii strong compeiiiieeabieiiaand sieongsociaeabieiia.Theeiisiingcu eicueum ooihecoeegecan noimeeiiheieachingneedsoosoma maors , and tha traditional teaching model has a general teaching effect. Tha aticla studies tha refomi of tha higheemaihemaiicscu eicueumoeomseeeeaeaspecis , such asiheieachingconienisasiem , ieachingmodeand asesmenimethod , in ordas te adapt te tha requirements of tha training of applied talents.Key wo %S : Higher mathematics ; Applied talent cultivation ; Teaching refomi ; Teaching mode1 前言高等数学是高等院校一门重要的基础课程,它不仅讲述数学基本概念和理论,也培养学生的逻辑思维和抽象思维能力,锻炼学生的运算能力,更能提高学生解决问题的能力[1]。
不同活化剂制备沙柳活性炭的工艺研究
刨花板、中密度板外[15],大多被废弃,不仅造成资源 的浪费,还降低了当地农民平茬复种沙柳的积极性, 使沙柳枯死,造成沙漠沙化更加严重[16-17]。
活性炭又称活性炭黑,是一种以石墨微晶为基 础的无定型结构,通常为黑色粉末或颗粒。活性炭 主要由碳元素组成,占 80% ~90%以上,还有氧、氢 等其他元素[1]。活性炭既不溶于水,也不溶于有机 溶剂,与强酸强碱不反应,且热稳定性良好[2],是常 用的吸附剂和催化载体材料,广泛应用于污水处理、 空气净化、工业催化等领域。活性炭制备工艺简单, 原料来源广泛,各种含碳材料都可以用于制备活性 炭[3-6]。木材、果核、玉米芯等农林废弃物因其资源 丰富,绿色环保而备受青睐。活化方法是制备活性 炭的重要影响因素,活化过程是决定活性炭性能高 低的关键。目前,活性炭制备方法主要有气体活化 法,物理活化法和化学活化法[7]。而化学活化法是 较成熟常用的活化方法,具有活化温度低,活化时间 短,产品比表面积大、孔结构丰富等优点。常用的活 化剂有 KOH,H3PO4,H2SO4,ZnCl2 等[8],不 同 的 活 化剂会导致活性炭表面特性不同,活性炭的性能也 不同。
转移到箱式电阻炉,以 10°C/min升温到设定温度,
在设定的恒温条件下活化一定时间。将制备的样品
从电 阻 炉 中 取 出,常 温 冷 却,研 细,转 入 烧 杯,加 入
5%的盐酸,煮沸,冷却,抽滤,烘干。烘干后的样品
用馏水反复洗涤,直至为中性,再烘干,得沙柳活性
榆林北部风沙滩井灌区玉米农艺节水技术研究
西
农
业
科
学
榆 林 北 部 风 沙 滩 井 灌 区玉 米 农 艺 节 水 技 术 研 究
纪 晓玲 , 张 雄。 刘 翠英
( 榆 林 学 院 生命 科 学 学院 , 陕西 榆林
摘
பைடு நூலகம்
7 1 9 0 0 0 )
要: 通 过 田 间试 验 ,研 究 了几 种 农 艺 节 水 措 施 对 榆 林 北 部 风 沙 滩 井 灌 区 玉 米 产 量 和 水 分 利 用 效 率 的 影
雨、 蓄水 保 墒 、 防 止植 物 过 度蒸 腾等 途 径 , 利 用 有
限降水 改 善作 物 的 生 长环 境 , 促 进 农 作 物 的 生 长 发育 , 可 以提高 农 作 物 的水 分 利 用 效 率 与 籽 粒 产 量_ 4 ] 。有 研究 表 明 , 地 膜 覆 盖栽 培 技 术 由 于其
响 。 结 果表 明 ,地 膜 覆 盖 处理 玉 米 比 对 照 增 产 8 . 1 6 , 黄腐酸处理减产 1 2 . 1 7 , 秸秆覆盖 处理减产 1 . 7 4 ,
保 水剂处理减产 9 . 1 O ; 地 膜覆 盖 、 旱 地龙 、 秸秆 覆盖 、 保 水剂水 分利 用效率 分别是 1 5 . 3 3 k g / ( mm . h m2 ) 、 1 2 . 6 3 k g / ( am ・ r h m 2 ) 、 1 4 . 1 8 k g / ( r D _ m・ h m ) 、 1 3 . 2 9 k g / ( mm ・ h m 。 ) , 分 别比对 照增加 8 . 4 3 、 一1 2 . 8 O 、
究 采用 田问试 验 的方 法 , 筛 选 出节水 、 稳 产或 高产
的节 水技 术 , 以期 在榆林 风 沙滩井 灌 区广 泛推 广 。
掌握读者需求 优化馆藏结构:榆林学院图书馆读者利用馆藏资源调查报告
读能力不强,尚不具备查阅外文文献的能力。教师的外文水平也不很高,教学科研活动中查阅外文文献的频率较 低。因此图书馆目前仍应以入藏中文文献为主,适量入藏外文文献.小量采购小语种类的图书,外文文献学科等 级应以普及型为宜. 3.5复本结构 复本结构是藏书结构中一个较特殊的子结构。复本量大小、复本指数高低往往因馆而异、因书刊而异、因时 而异,同时受购书经费、读者需求、阅读倾向等诸多因素的制约,不能一概而论。建议我馆复本选择应遵循的原 则是:教师用书3册:小专业学生用书3册;凡是大专业和全校师生通用的英语、高等数学、公务员考试、计算 机等,则以5册为主:常用工具书以l’3册为宜。馆藏建设的基本思路应是多品种、少复本,多品种给学生提供 更多地选择参考书的余地。
吼雌漕鹏 辊棚醐卜 觯雌椭m 鸯帔拍耄! 摊始婵坤
性删徘磊|
俐‰
撇哪饕|躺 籼螂黼嫦 们碱南.
魁跚刚 所稍艏 蝴¨斛
…"量,…m浦Ⅻ:l|.…胜;|l㈣m=!|社
篙勰燃慧i|黧裟擞篙 械情神种帆姆;葚酗
嘴茑!斌柯析翘删徽 从貅胍 耻删绷 籼蜘挂 一好靴 撇;|;戤
篡赫黛黧一嚣黧蕊熟篓= 醉胖硼灿再三一舢¨ 蝴哪 一
作者: 作者单位: 张建娥, 李歌维, 曹保卫 榆林学院图书馆 陕西榆林 719000
本文链接:/Conference_7178321.aspx
【31黄如花.利用开放存取资源提升馆藏质量【J1.2008(5):26-32
作者简介:张建娥。女,1963年生,榆抹学院图书馆副馆长,副研究馆员,发表论文20篇:李歌堆,女.1970年生。副研宛馆员;t保
卫。男,1975年生,硕士.
掌握读者需求 优化馆藏结构——榆林学院图书馆读者利用馆 藏资源调查报告
目t懵怅j诈,,
把区域优势转化为专业强势——榆林学院艺术系音乐学专业以陕北民歌为内容的特色教学模式构建的实践与探
模 式 , 通 过 相 应 的 教 学 过 程 把 潜 在 的 文 化 资 源 转 化 为 自 身 的 强 势 , 音 乐 专 业 焕 发 出 并 使
蓬勃的 生机 与活 力 。
关 键浏 : 化资 源 文
区域优 势
特 色教学
专 业 强 势
特 色 教 学 指特 定 院 校 中 所设 置 的 某专 业 根 据 自身 的 优 势 在
二、 坚持 特 色 实 践
奇葩 , 甚至在我国的民族音乐中 占据重要 的席位。处在这样一个 得天独厚的风水宝地 , 从音乐学专业创办之 日起 , 我们就把陕北
民歌作为本专业特色教学 的主要 内容并力争使学生 的陕北 民歌 理论 修养 和演唱技 能从整 体上 明显优 于同类 院校 相 同专业 学 生 。基于这一认识 , 经过几年 的积极探索 和大 胆实践 , 该专业 特
习和演唱做好充分的前期准备和知识积 累。主要内容有陕北 民
歌的类型 、 术手法 、 艺 人物塑造 、 情感表 达 、 文化价值 、 音乐特 点 和语言特色等。 3《 .陕北民歌 合唱》 本课程是前 两门课 的延 伸和拓展 , : 使特 色教学的课 程设 置在理论教学与技能培养相结合 的高度 上形 成
一
量是一个专业 的生命 , 教学特色便是灵魂 。质量和特色固然是两
个截然不同的概念 , 又有着千丝万缕 的内在联系。有特色的专业 不一定有质量 , 但有质量的专业必然有 自己的特色 。在现行 的高
等 院校教学内容与课程体 系中 , 同历史背景 、 同文化氛 围 、 不 不
个 配 套 的 完 整 体 系 。 学 生 不 但 从 教 学 中学 到 陕北 民 歌 合 唱 的
1 歌词创作与赏析 》 . 《 :目的是提高学生 的音乐文学修养 , 使 学生掌握歌 词创作和赏析的基本方法和要领 ,有效 地克服和纠
《榆林学院学报》的文献计量分析——基于2009~2018年载文的研究
收稿日期:2020-06-09作者简介:季潇 (1990-),女,黑龙江大庆人,编辑,主要从事编辑出版、认知语言学研究。
《榆林学院学报》的文献计量分析———基于2009~2018年载文的研究季潇(榆林学院学报编辑部,陕西榆林719000)摘 要:运用文献计量学的方法对《榆林学院学报》2009~2018年刊载的1942篇学术论文进行综合评价,统计分析了其载文量、学科分布、核心作者群、基金项目等内容,可得出近10年来《榆林学院学报》的发展历程及定位变化,为本刊的可持续发展提供了量化参考。
提高载文质量才能在本质上提高其学术影响力,未来编辑部还需在培养作者队伍、缩短出版时滞、合理调整栏目、加强学习四个方面作出改善。
关键词:《榆林学院学报》;载文分析;文献计量学;中国知网(CNKI);学术影响力中图分类号:G353.1 文献标志码:A 文章编号:1008-3871(2020)04-0097-05DOI:10.16752/j.cnki.jylu.2020.04.021 高校学报作为综合性学术期刊,是校内外科研人员学术交流的重要平台,反映了一个学校甚至一个地区的科学研究水平,有助于促进学术交流和科学发展。
《榆林学院学报》(以下简称为《学报》)原名《榆林高等专科学校学报》,创刊于1991年,2004年更名至今,已有30年的发展历程,是由陕西省教育厅主管、榆林学院主办的综合性学术期刊。
主要栏目包括哲学与社会学研究、语言文学研究、经济与法学研究、能化工程技术研究、生态农业与生命科学研究、数学与信息技术应用研究等,除了常设栏目以外,还设有特色栏目“陕北文化研究”以及紧跟当年时政热点的特稿专栏。
时值《学报》创刊30周年,为促进其可持续发展,本文采用文献计量学的方法对2009~2018年所载文献进行横向梳理与纵向比较,探析本刊的学科分布、作者结构及文献的传播利用情况,还可以为作者投稿、读者查阅文献及编辑部未来工作重点提供一定的参考。
烯效唑对淹水胁迫下大豆农艺性状及生理生化指标的影响
中国油料作物学报C h i n e s e Journal of Oil C r o p Sciences2017,39(5) :655- 663doi :10.7505/j. issn. 1007- 9084. 2017.05.010烯效唑对淹水胁迫下大豆农艺性状及生理生化指标的影响张洪鹏、张盼盼2’3,李冰1,李东、刘文彬、冯乃杰、郑殿峰^(1.黑龙江八一农垦大学农学院,黑龙江大庆,163319;2.黑龙江八一农垦大学国家杂粮工程技术研究中心,黑龙江大庆,163319 ;3.榆林学院生命科学学院,陕西榆林,719000)摘要:为研究烯效唑对大豆淹水胁迫的缓解作用,以亚有限结荚习性大豆品种垦丰14(耐涝品种)和垦丰16 (涝渍敏感品种)为试验材料,在大豆始花期叶面喷施烯效唑,喷药5d后进行淹水胁迫,5d后恢复正常水分管理,调查各处理大豆农艺性状和生理生化指标。
结果表明:淹水胁迫抑制大豆生长,降低大豆株高,增加茎基部茎粗,减少植株叶片、叶柄、茎、根等各部位干物质重的积累;涝渍导致大豆体内抗氧化酶活性降低。
喷施烯效唑处理能 有效缓解淹水胁迫下植物干物质的降低;显著提高大豆体内抗氧化系统酶活性,降低MDA含量,诱导叶片中脯氨 酸增加,提高根系中脯氨酸含量,增加根系中可溶性糖与淀粉的积累,为提高大豆耐涝性和恢复正常水分后产量积 累提供保障。
关键词:大豆;淹水胁迫;烯效唑;生理特性中图分类号:S565.1 文献标识码:A 文章编号:1007 -9084(2017)05 -0655 -09Effects of uniconazole on alleviation of waterlogging stress in soybeanZ H A N G H o n g -p e n g1,Z H A N G P a n -p a n2,3,LI B i n g1,LI D o n g1,L I U W e n -bin1,F E N G Nai -jie1,Z H E N G D i a n -f e n g1(1. College of Agronomy y Heilongjiang Bayi Agricultural University, Daqing 163319,China;2. National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University,Daqing 163319,China;3. Life Science College ,Yulin University ,Yulin 719000 ,China) Abstract:W i t h sub -indeterminate soybean varieties K e n f e n g 14 a n d K e n f e n g 16 as materials, a pot experim e n t w a s c o n ducted to analyze the effect of uniconazole o n agronomic traits a n d physiological a n d biochemical characteristics of soybean u n d e r waterlogging stress. Five days after spraying uniconazole at early flowering p e r i o d,w aterlogging stress w a s performed for five d a y s,a n d then returned to no r m a l water. T h e results s h o w e d that the growth of soybean w a s inhibited b y flooding stress,the plant height,the accumulation of dry matter in plant leaves,petioles, stems a n d roots a n d antioxidant e n z y m e activities w e r e decreased, but the stem diameter w a s increased. Spraying uniconazole could effectively alleviate plant dry matter weight reduced u n d e r waterlogging stress,a n d significantly improve the activity of soybean antioxidant e n z y m e system, reduce M D A content, increase proline content in leaf a n d root, a n d soluble sugar a n d starch accumulation in root. All these could impr o v e soybean production b y increase their waterlogging resistance a n d returned to normal after moisture accumulation.Key words :soybean ;waterlogging stress;uniconazole;physiological characteristics淹水胁迫是作物生产的主要制约因素之一 m,着全球气候的变化,极端气候事件不断增多,雨量分土壤中水分升高会在短时间内产生缺氧条件。
改进演示实验 优化生物教学
改进演示实验优化生物教学
王丽娜
【期刊名称】《文理导航》
【年(卷),期】2016(000)07Z
【摘要】在初中生物教学中,常运用演示实验帮助学生理解知识。
文章围绕改进实验装置给演示增加创意,调整实验顺序给演示增加趣味,细化实验操作给演示增强可视化三个方面进行阐述,旨在优化演示实验,提高学习效果。
【总页数】1页(P57-)
【作者】王丽娜
【作者单位】苏州市第十六中学校
【正文语种】中文
【中图分类】G633.91
【相关文献】
1.改进演示实验优化生物教学 [J], 王丽娜
2.“电容器的电容”演示实验的改进和教学的优化设计 [J], 赖君;张军朋
3.乙醇与的反应演示实验的优化改进 [J],
4.乙醇与钠的反应演示实验的优化改进 [J], 秦笙鸣[1];安娅[1]
5.初中物理演示实验教学的优化与改进 [J], 邓永波
因版权原因,仅展示原文概要,查看原文内容请购买。
《Access数据库应用基础》教学改革探究
《Access数据库应用基础》教学改革探究
张永恒
【期刊名称】《榆林学院学报》
【年(卷),期】2012(022)006
【摘要】对榆林学院非计算机专业《Access数据库应用基础》课程的教学现状进行分析,提出优化整合教学知识、在教学实践中综合应用案例教学法和任务教学法的教学改革建议.
【总页数】3页(P42-44)
【作者】张永恒
【作者单位】榆林学院信息工程学院,陕西榆林719000
【正文语种】中文
【中图分类】G642.0
【相关文献】
1.高职计算机应用基础课程混合教学改革探究 [J], 王美琼
2.大数据背景下的高职计算机应用基础课程教学改革探究 [J],
3.中职计算机应用基础课程教学改革探究 [J], 邢乐园
4.转型背景下地方本科院校《计算机应用基础》课程教学改革探究 [J], 马丽君[1];庄严[1];陈松杰[1]
5."互联网+教育"背景下高职"计算机应用基础"教学改革探究 [J], 吴娟
因版权原因,仅展示原文概要,查看原文内容请购买。
土壤分析
榆林学院毕业设计(论文)开题报告题目陕西省榆林市周边某农村土壤污染检测与分析学生姓名张鹏茹学号0709210103院 (系) 生命科学学院专业生物科学指导教师田丽报告日期年月日质随之进入土壤。
这是造成土壤污染的主要途径。
第三,土壤作为大气、水体、生物圈以外的又一个环境要素随时随地演变成大气或水体污染的富集中心,使土壤受到污染。
就土壤污染物质而言可将土壤污染类型仅仅分为三类:农业污染、工业污染和养殖业污染。
4.研究内容(1)在该农村不同区域进行土壤样品的采集(例如居民区、农田区、道路、学校等),并在每一区域内的不同土壤深度取样,进行土壤污染的检测。
(2)根据各区域、各土层土壤污染的对比,对该农村土壤污染的状况以及来源进行分析。
5.研究方法本研究区主要是在榆林某农村进行的,该地区位于榆林市市区周边,对于榆林市周边农村土壤污染的情况具有典型代表的作用。
按照《土壤环境监测技术规范》进行布点采样、样品制备、分析等。
6.发展前景土壤环境监督管理体系不健全,土壤污染防治投入不足,全社会防治意识不强。
由土壤污染引发的农产品质量安全问题和群体性事件逐年增多,成为影响群众身体健康和社会稳定的重要因素。
所以深入了解土壤污染对地区发展有很大的影响。
这是提高农牧民经济收入的需要;是地区产业结构调整和行业发展规划的需要;是发展地区经济、实现可持续发展的需要。
7.存在的问题土壤污染具有隐蔽性和滞后性。
它往往要通过土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。
因此,土壤污染从产生污染到出现问题通常会之后较长时间。
土壤污染的不可逆性。
重金属对土壤的污染基本上是一个不可逆的过程,许多有机化学物质的污染也需要较长的时间才能降解。
土壤污染的难以治理性。
如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物很难靠稀释作用和自净化作用来消除。
网络资源在地方高校遗传学教学中的作用初探
网络资源在地方高校遗传学教学中的作用初探
王建武;相微微
【期刊名称】《河南教育(高校版)》
【年(卷),期】2016(000)004
【摘要】遗传学一直是生物和农业类本科教学中重要的专业基础课程,其课程建设已经取得了一些显著的成就.但随着高等教育形势和人才培养目标的转变,各地方高校纷纷积极探索创新型与应用型人才培养的模式.目前,教科书上的内容已经远远不能满足这些要求,再加上一些地方高校师资的缺乏,使得地方高校遗传学教学面临着极大的困境.利用网络资源可有效提高地方高校遗传学的教学质量和效果.
【总页数】2页(P14-15)
【作者】王建武;相微微
【作者单位】榆林学院生命科学学院,陕西榆林 719000;榆林学院生命科学学院,陕西榆林 719000
【正文语种】中文
【相关文献】
1.初中政治教学中的网络资源利用的初探
2.初探网络资源在高中英语教学中的应用
3.地方高校如何在教学中加强学生科研素质的培养——谈遗传学教学的体会
4.遗传学史在遗传学教学中的作用
5.网络资源在高中英语阅读教学中的运用初探
因版权原因,仅展示原文概要,查看原文内容请购买。
《青年亚文化视域“凡尔赛文学”传播研究》范文
《青年亚文化视域“凡尔赛文学”传播研究》篇一摘要:本文以青年亚文化为背景,以“凡尔赛文学”为研究对象,深入探讨其传播现象、特点及影响。
通过对“凡尔赛文学”的传播路径、传播媒介、受众特征等方面进行详细分析,旨在揭示其背后的文化逻辑和社会意义,以期为青年亚文化研究提供新的视角和思路。
一、引言在当代社会,随着网络技术的飞速发展和社交媒体的普及,青年亚文化逐渐成为学界关注的焦点。
“凡尔赛文学”作为近年来在青年群体中流行的一种网络文化现象,以其独特的表达方式和传播方式引起了广泛关注。
本文旨在通过对“凡尔赛文学”的传播研究,揭示其背后的文化内涵和社会价值。
二、凡尔赛文学的概念与特点凡尔赛文学是一种以夸张、隐晦的方式展示自己生活状态和情感态度的网络文化现象。
其特点包括:用词精炼、情感真挚、隐晦含蓄等。
通过这种方式,人们可以在不直接表达自己情感和观点的情况下,达到传递信息、展示自我、互动交流的目的。
三、凡尔赛文学的传播路径与媒介凡尔赛文学的传播路径主要依赖于社交媒体平台,如微博、微信、知乎等。
这些平台为“凡尔赛文学”的传播提供了广阔的空间和丰富的媒介资源。
通过这些平台,青年人可以快速传播和分享自己的“凡尔赛式”表达,形成了一种独特的文化现象。
四、凡尔赛文学的受众特征凡尔赛文学的受众主要是年轻人,尤其是具有一定文化素养和审美情趣的青年群体。
他们善于接受新鲜事物,具有较高的网络素养和媒介素养。
在传播和接受“凡尔赛文学”的过程中,他们不仅展示了自我,也实现了与他人的交流和互动。
五、凡尔赛文学的传播机制与影响凡尔赛文学的传播机制主要体现在互动性和符号化两个方面。
互动性指的是在社交媒体平台上,人们通过评论、点赞、转发等方式进行互动交流,形成了“凡尔赛式”表达的传播链条。
符号化则是指“凡尔赛文学”所使用的语言和表达方式具有独特的文化符号意义,成为了一种新的文化现象。
凡尔赛文学的影响主要体现在以下几个方面:一是推动了青年亚文化的发展,丰富了网络文化的内涵;二是提高了青年的媒介素养和网络素养,促进了他们的自我表达和交流;三是反映了当代青年的生活态度和情感状态,为研究青年文化提供了新的视角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类号O172.2 单位代码11395密级学号1104230119学生毕业论文题目留数法在有理函数积分中的应用作者王利娜院(系) 数学系专业数学与应用数学指导教师贺永春答辩日期2013年 5 月26 日榆林学院毕业论文诚信责任书本人郑重声明:所呈交的毕业设计(论文),是本人在导师的指导下独立进行研究所取得的成果。
毕业设计(论文)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。
尽我所知,除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经公开发表或撰写过的研究成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人毕业设计(论文)与资料若有不实,愿意承担一切相关的法律责任。
论文作者签名:年月日摘要本文对数学分析中有理函数积分计算的一些简洁公式出发,讨论了有理函数积分的一种改进方法即留数法。
留数定理为某些类型积分的计算,提供了极为有效的方法。
留数的思想可在有理函数积分是用于确定待定系数,相对于比较系数法而言,这种确定待定系数的留数法适用于一切有理函数的积分,又进一步讨论应用留数定理计算数学分析中一类定积分,这里所指定积分主要是被积函数的原函数不能用初等函数表示出来的积分。
数学分析中通常采用含参变量的积分方法,一般说来,这种方法较为复杂、不易掌握,而用复变函数留数理论来求这类积分,只须计算某些解析函数在孤立奇点的留数这样就把问题大大简化了,以便学者在学习过程中对有理函数积分的计算技巧有一个总体的认识与理解。
本文主要介绍留数定义、留数定理定义、留数计算方法、利用留数定理计算积分的方法。
关键字:有理函数;留数法;待定系数ABSTRACTThis paper calculation of rational function in the mathematical analysis of some simple integral formula, discussed the rational function integral method for improving the method of residues. The residue theorem for certain types of integral calculation provides a very effective method. Residue thought in integral of rational function is used to determine the undetermined coefficient, relative to the comparative coefficient, to determine the integral residue method of undetermined coefficients applies to all rational functions, and further discusses the application of the residue theorem for a class of integral calculation in mathematical analysis, here are specified integral is not the original integrand function representation the integral by elementary function. Integral method with variable is usually used in mathematical analysis, generally speaking, this method is more complex, not easy to grasp, and the use of complex variable function theory to solve this kind of integral residue, residue by calculating some analytic functions in the isolated singularity of the problem greatly simplifies the calculation skills, so that scholars in the learning process on the integrals of rational functions have a general knowledge and understanding. This article mainly introduces the method definition of residue, residue theorem, definition of residue calculation, integral using the residue theorem.Key words: rational function; residues method; required value目录目录摘要 ...................................................................................................................................................... I ABSTRACT ............................................................................................................................................. II 目录 .................................................................................................................................................... I II 前言 (1)绪论 (2)§1.留数 (6)1.1留数的定义及留数定理 (6)1.2留数的求法 (7)§2.留数法计算几类有理函数积分 (10)§3.留数在实积分计算中的应用 (16)3.1预备知识 (16)3.2用留数定理计算实积分 (16)结论 (20)参考文献 (21)致谢 (22)前言留数,也称为残数是复变函数的一个重要概念,它有着广泛的应用。
1825年,柯西在其《关于积分为虚数的定积分报告》中,基于与计算实积分问题的类比,处理了复积分的相关问题,他开始考虑当f(z)在矩形的内部或边界上不连续时,将会发生什么事情时,这时沿着两条不同路径积分的只可能不同,经过一系列探索他于1826年建立了留数概念随后发表了一系列有关留数的文章,1831年他证明了柯西积分公式,1846年给出了留数定理。
柯西所给的这一定义一直沿用到现在,推广到微分方程、级数理论及其他一些学科,留数定理作为柯西积分理论的继续与发展,时计算复变函数沿封闭曲线积分的重要工具。
柯西古萨定理、柯西积分公式、高阶导数公式都可以看成是留数定理的特殊情况本文先介绍留数的一般理论,然后讲述它对计算积分的应用,尤其在数学分析以及实际问题中,有些有理函数积分可以通过直接或间接运算来求解,而另一些需要特殊的方法来求解,结合留数与积分之间的联系根据其特点以及实际解题过程中计算对常见求解方法进行分析,归纳总结,从中找出富有规律性的技巧,从而对本只是熟练的掌握以便应用自如,在以后的计算中更加简洁直观。
绪论设()()P x Q x 都是x 的多项式,并且()()P x Q x 为有理真分式(以下涉及到的分数函数均为有利真分式),计算形如()()P x dx Q x ⎰的有理函数的积分,由代数学理论可知,当分母Q(x)可分解时,即则有 ()()()()()()1212k k P x A A A B Q x x a x b x a x a =+++++---- ()()()211222222tt B B p x q p x q x px q x b x b x px q +++++++++--++ ()()()112222222m mn n m n p x q r x s r x s r x s x rx s x px q x rx s x rx s +++++++++++++++++++ 其中1,,1,,1,1,,,1,1,,...............k t m m n n A A B B p q p q r s r s 均为待定系数任何一有理真分式又可进一步分解为以下四部分分式和形式: (1) A x a - (2) ()n A x a -(3) 2Ax B x px q +++ (4) ()2n Ax B x px q +++ 以上四式中q p a B A ,,,,为实数, 1n ≥且24p q -<0下面以实例说明应用待定系数法的具体过程例1.432533313454x x x dx x x x+-+-+⎰ 解 第一步将分母进行因式分解得()()()()53541122x x x x x x x x -+=-+-+ 第二步设351241122A A A A A x x x x x ++++-+-+=432533313454x x x x x x+-+-+ ① 第三步计算①式右端分子中的1,2,5A A A 值先对①式去分母合并同系数项留数法在有理函数积分中的应用()()()()()4343243243212344325432544444222233134A x x A x x x x A x x x x A x x x x A x x x x x x x -+++--+--+++--+--+=+-+需使上式成立,必须使两端各次幂的系数相等,即12345234512345234513223544134422044A A A A A A A A A A A A A A A A A A A ++++=⎧⎪-+-=⎪⎪-----=-⎨⎪-+-+=⎪⎪=⎩ 解五元线性方程组得123451123211A A A A A =⎧⎪⎪=⎪⎪⎪=⎨⎪=⎪⎪=-⎪⎪⎩于是原不定积分可化为4325333134111311154212122x x x dx dx x x x x x x x x +-+⎛⎫=+⋅+⋅+- ⎪-+-+-+⎝⎭⎰⎰C =+例2. ()()322214xdx x x ++⎰解 设()()322214xx x ++()()()33221122113222222214114A x B A x B A x B C x D C x D x x x x x +++++=+++++++++榆林学院本科毕业论文去分母合并同系数项()()()()()()()()()()98761111121212125412312123123212312123121231212312107107339153339153402481334024813316161641616164A C x B D x A A C C x B B D D x A A A C C x B B B D D x A A A C C x B B B D D x A A A C C x B B B D D x+++++++++++++++++++++++++++++++++++++++++= 要使上式成立,必须使其两端各次幂的系数相等,即1111121212121231212312123121231212312123120010701070339153033915304024813304024813301616164116161640A CB D A AC C B BD D A A A C C B B B D D A A A C C B B B D D A A A C C B B B D D +=⎧⎪+=⎪⎪+++=⎪+++=⎪⎪++++=⎪⎨++++=⎪⎪++++=⎪++++=⎪⎪++++=⎪++++=⎩⎪ 解线性方程组得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=-==-====-===02710271027102720911122112233D C D C B A B A B A于是不定积分可化为()()()()()dx x x x x x x x x x x dx x x x⎰⎰⎪⎪⎭⎫ ⎝⎛+⋅-+⋅-+⋅++⋅-+⋅=++427142711271127219141222222322232 =()()()C x x x x x ++++++-⎪⎪⎭⎫ ⎝⎛++45411271136141ln 541222222 通过上例可知,有理函数真分式的积分可先将其分解为部分分式,然后再对部分分式进行积分加以解决,通常确定待定系数的常用方法有:比较系数法、赋值法及这两种方法的综合使用,但任意使用这些方法时总要划归为解线性方组.当分式越多时,部分分式会越复杂,方程就越困难,计算量大且易出错,能否有更为简洁的方法呢?本文突破上述几种方法的局限性,以下介绍一种确定待定系数的新方法——留数法,这种方法简单明了.§1.留数1.1留数的定义及留数定理如果函数()f z 在点a 是解析的,周线C 全在点a 的某领域内,并包围点a ,则根据柯西积分定理()0Cf z dz =⎰,但是,如果a 是a 的一个孤立奇点,且周线C全在a 的某领域内,并包围点a ,则积分()Cf z d z⎰ 的值,一般说来,不再为零,并且利用洛朗系数公式很容易计算出它的值,概括起来,我们有定义1.1 设函数()f z 以有限点a 为孤立奇点,即()f z 在点a 的某去心领域0z a R <-<内解析,则称积分()12f z d z i πΓ⎰():,0z a R ρρΓ-=<<为()f z 在点a 的留数,记为()z f s az =Re由柯西积分定理知,当,留0R ρ<<数的值与ρ无关,利用洛朗系数公式有()112Cf z dz C i π-=⎰ (1-1) 即()z f s az =Re 1C -=这里1C -是()f z 在z a =处的洛朗展式中1z a-这一项的系数. 由此可知,函数在有线可取奇点处的留数为零.定理1.1(柯西留数定理)()f z 在周线或复周线C 所范围的区域D 内,除1,2,,...n a a a 外解析,则在闭域D D C =+上除1,2,,...n a a a 外连续,则()2Cf z d z i π=⎰()z f s nk az ∑==1Re (1-2)1.2留数的求法⑴.不知奇点类型求函数在其孤立奇点0z 处的留数只需求出它在以为0z 中心的圆环域内的洛朗级数中项的系数1-C ⑵.知道奇点类型①0z 是()z f 的可去奇点()[]0,Re 0=z z f s②0z 是()z f 的本性奇点用把()z f 在0z 处展开成洛朗级数的方法来求1-C③0z 是()z f 的极点法则I 如果0z 为的简()z f 单极点,则)()(l i m]),([Re 000z f z z z z f s z z -=→ 法则II 设,)()()(z Q z P z f =其中()()z Q z P ,在0z 处解析,如果00,0)(z z P ≠为()z Q 的一阶零点,则0z 为()z f 的一阶极点,且 )()(]),([Re 000z Q z P z z f s '=法则III 如果0z 为()z f 的m 阶极点,则)]()[(lim )!1(1]),([Re 01100)z f z z dzd m z z f s m m m z z --=--→为了应用留数定理求周线积分,首先应该掌握求留数的方法.而计算在孤立奇点a 的留数时,我们只关心其洛朗展式中az -1这一项的系数,所以应用洛朗展式求留数是一般方法,下面的定理是求n 阶极点处留数的公式,免得没求一个极点处的留数,都要去求一次洛朗展式,不过这个公式对阶数过高(例如超过三阶)的极点,计算起来也未必简单定理1.2设a 为()z f 的n 阶极点,()z f ()()na z z -=ϕ其中()z ϕ在点a 解析,()0≠a ϕ则()()()()1Re 1!n z aa s f z n φ-==-()1.3这里符号()()a 0ϕ代表()a ϕ,且有()()()()11lim n n z aa z φφ--→= 推论1.3设a 为()z f 的一阶极点()()()z f a z a -=ϕ则()()a z f s az ϕ==Re ()4.1推论1.4设a 为()z f 二阶极点()()()z f a z a 2-=ϕ则 ()()Re z as f z a φ='=()5.1定理1.5设a 为()()()z z z f φϕ=的一阶极点,(只要()a ϕ及()a φ在点a 解析,且()a ϕ0≠,()()0,0≠'=a a φφ)则()()()a a z f s az φϕ'==Re例1.1计算积分()22521z z dz z z =--⎰解 被积函数()()2125--=z z z z f 在圆周2=z 的内部只有一阶极点 0=z 及二阶极点1=z()()2125Re 020-==--===z z z z z f s()2225Re 121,1==⎪⎭⎫⎝⎛-====z z z z z z z f s故由留数定理得()22521z z dz z z =--⎰2=π()022=+-i例1.2计算积分31cos z zdz z =⎰ 解 ()3cos zzz f =只以0=z 三阶极点 ()()21cos 21Re 00-="===z z z z f s 故由留数定理得31cos z z dz z =⎰122i i ππ⎛⎫=-=- ⎪⎝⎭§2.留数法计算几类有理函数积分一.()()()()n a x a x a x x Q ---= 21()()n n a x A a x A a x A x Q x P -++-+-= 2211(其中n a 互不相同,()x P 为x 的多项式 上式两边同乘以()1a x -得()()()()⎪⎪⎭⎫⎝⎛-++--+=-n n a x A a x A a x A x Q x P a x 22111 但()()()()()()n ax a x a x a P x Q x P a x --=-→ 211lim ()()()n a a a a a P A --=∴12111 同理()()()()()()n i i i i i i i i i a a a a a a a a a a a P A -----=+- 1121()n i ,,2,1 =这种方法和复变函数中求留数的方法类似,即分式函数在一级极点i a 的留数就是i A ,故称之为“留数法”.二. ()()n Q x x b =-()()()()b x B b x B b x B x Q x P n n n n -++-+-=--111 上式两边同乘以最高次幂()nx b -()()()()()111---++-+=-n n n n b x B b x B B x Q x P b x()()()n nbx B x Q x P b x =-∴→lim 但()()()()b P x Q x P b x nbx =-→lim ()b P B n =∴再将n B 代入上式,由多项式理论可知()()()()1P x P b x b P x -=-并加以整理得:()()()()()()11111n nn n P x P b P x B B x bx b x b x b ----==++---- 同理得()11n B P b -=以此类推,从高到低直至算出1B 为止,值得注意的是当1,2B B 时若用比较系数法将更简捷三.()()()n Q x x a x b =--当()()()()nP x f x x a x b =--时这是前两种情况的混合型可令()()()()()111n n nn n P x B B B Ax a x bx a x b x b x b --=++++------ 用留数法先求出A 和n BA ()()()()n nx aP x P a x b a b ===-- ()()()()n x b P x P b B x a b a ===--再将A 及n B 代入加以整理后为()()()11111n n n P b B B x bx b x b ---=++--- (()P x τ是低于1n -次的多项式),用留数法求出()11n B P b -=以下算法同情形二 例2.1求不定积分()()⎰++++-dx x x x x 32124解 设()()()()11121241223332+++++++=++++-x B x B x B x A x x x x ()214232=+++-=-=x x x x A 224123=+++-=-=x x x x B 将A ,3B 的值代入含有待定系数的等式并整理得:()()()()21212221111112+++=+++=+--x x B B x B x B x x 比较系数可得2,112-==B B()()()()121112221242332+-+++++=++++-x x x x x x x x 所以()()()C x x x x dx x x x x ++-+-++=++++-⎰111112ln 2124232 四.()()()22Q x x px q x rx s =++++当()()()()22P x f x xpx q x rx s =++++ (()P x 为x 的多项式,,,p q r s 均为常数24p q-<0,24r s - <0)时可令()()()11112222P x p x q r x s x px q x rx sxpx q x rx s ++=++++++++++其中1,1,1,1p q r s 均为待定系数在上式两边同乘以()2x px q ++当xx →时取极限,按复数相等比较等式两端可得1,1p q 以同样的计算方法算出其余的待定系数例2.2求不定积分()()22116xdx x x ++⎰解 设()()2222116116x Ax B Cx Dx x x x ++=+++++ 等式两边同乘以21x +令x i →得21615x i x iAi B x =+==+从而有1,015A B == 等式两边同乘以216x +令4x i →得2444115x i x iCi D x =+==-+从而0,151=-=D C 所以()()22116xdx x x ++⎰⎰⎰+-+=dx x x dx x x 16151115122C x x +++=161ln 30122 五.()()22pQ x x a =+或()()()2222pqQ x x a x b =++对于()()()()()222222,ppqP x P x dx xaxaxb+++⎰⎰dx 的积分,可用留数法,首先确定最高负次幂系数,然后通过代入整理,可求出次高负次幂系数,直至求出所有部分分式的系数例2.求不定积分()()322214xdx xx ++⎰解 这里介绍该例题另一种简便方法读者可与前边解法自行对比 设()()322214xxx ++()()()33221122113222222214114A x B A x B A x B C x D C x D x x xxx +++++=+++++++++ 等式两边同乘以()321x +令x i →得()332294x ixiA iB x=+==+故331,09A B ==等式两边同乘以()224x +令2x i →得()2721223222ixxD iC ix -=+=+=故0,27122=-=D C将求出2233,,,D C B A 代入含有待定系数的等式并加以整理得()()()()4114127521121122222222++++++++=++-x D x C x B x A xB x A x x x x 同理可以解得0,271,0,2721122=-==-=D C B A 将其代入上式并加以整理得()11272112++=+x B x A x x利用比较系数法可得0,27111==B A 于是不定积分可化为 ()()()()()dx x x x x x x x x x x dx x x x ⎰⎰⎪⎪⎭⎫ ⎝⎛+⋅-+⋅-+⋅++⋅-+⋅=++427142711271127219141222222322232 =()()()C x x x x x ++++++-⎪⎪⎭⎫ ⎝⎛++45411271136141ln 541222222§3.留数在实积分计算中的应用3.1预备知识定理3.1 设()z f 沿圆弧R S :θi z Re =(21θθθ≤≤,R 充分大)上连续,且()λ=+∞→z zf R lim 于R S 上一致成立(即与21θθθ≤≤中的θ无关)则()()21lim R R S f z dz i θθλ→+∞=-⎰定理3.2设≤≤θ0沿圆弧r S :θi re a z =-(21θθθ≤≤,r 充分小)上连续,且()()λ=-→z f a z r 0lim 于r S 上一致成立,则有()()210lim rr S f z dz i θθλ→=-⎰ 定理3.3(若尔当引理)设函数()z g 沿圆周R Γ:θi z Re =(0θπ≤≤,R 充分大)上连续且()0lim =+∞→z g R 在R Γ上一致成立,则()lim 0R imz R g z e dz →+∞Γ=⎰(m >0)3.2用留数定理计算实积分一.计算()20cos ,sin R d πθθθ⎰型积分 思想方法:把定积分化为一个复变函数沿某封闭路线的积分。