数学公式大全

合集下载

数学公式大全

数学公式大全

一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g=s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

关于数学公式大全

关于数学公式大全

三角函数公式 1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注释:xx tan 1cot =5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtan tan 1tan tan )tan(∙-+=+④βαβαβαtan tan 1tan -tan )tan(∙+=-6.二倍角公式:(含万能公式)①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-==θθ22tan 1tan 1+- ③θθθ2tan 1tan 22tan -=④ 22cos 1sin 2θθ-= ⑤ 22cos 1cos 2θθ+=⑥ Sin 2x+cos 2x=1 ⑦ 1+tan 2x=sec 2x ⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=-高等数学必备公式1、指数函数(4个): 幂函数5-8(1)nm nmaa a +=⋅ (2)nm n m a aa -=(3)nmn ma a= (4)m m aa 1=- (5) nm n m xx x +=⋅2、对数函数(4个):(1)b a ab ln ln ln += (2)b a b a ln ln ln -=(3)a b a bln ln = (4)N N e e N ln ln ==3、三角函数(10个):(1)1cos sin 22=+x x (2)x x x cos sin 22sin =(3)x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= (4)21cos 2sin 2x x -= (5)21cos 2cos 2xx +=(6)x x 22sec tan 1=+ (7) xx 22csc cot 1=+(8)x x csc 1sin =(9)x x sec 1cos = (10)xx cot 1tan =4、等价无穷小(11个):(等价无穷小量只能用于乘、除法)23330sin ~ arcsin ~ tan ~ arctan ~1~ln(1)~ 1cos ~11~20tan sin ~ tan ~ sin ~236n e nx x x x x x x x x x →-+-+-→---当时: 当时:幂函数:(1))('c =0 (2)1)(-='μμμx x(3)211x x '⎛⎫=-⎪⎝⎭(4)'=指数对数:(5)a a a xx ln )(=' (6)x x e e =')((7)a x x a ln 1)(log =' (8)x x 1)(ln ='三角函数:(9)x x cos )(sin =' (10)x x sin )(cos -='(11)x x 2sec )(tan =' (12)x x 2csc )(cot -=' (13)x x x tan sec )(sec =' (14)x x x cot csc )(csc -='反三角函数:(15)211)(arcsin x x -=' (16)211)(arccos x x --=' (17)211)(arctan x x +=' (18)211)cot (x x arc +-='求导法则: 设u=u(x),v=v(x)1. (u —+v )’=u ’—+v ’ 2. (cu)’=cu ’(c 为常数) 3. (uv)’=u ’v+uv ’ 4. (vu )’=2''u v uv v -幂函数:(1)⎰+=C kx kdx (2)⎰-≠++=+)1(11μμμμC x dx x(3)211dx C x x=-+⎰ (4)C =(5)C x dx x +=⎰ln 1指数函数:(6)C a a dx a xx+=⎰ln (7)⎰+=C e dx e x x三角函数:(8) ⎰+-=C x xdx cos sin (9) ⎰+=C x xdx sin cos (10) tan ln cos xdx x C =-+⎰ (11)cot ln sin xdx x C =+⎰ (12)⎰+=C x xdx x sec tan sec (13)⎰+-=C x xdx x csc cot csc (14)⎰⎰+==Cx xdx xdxtan sec cos22(15)⎰⎰+-==Cx xdx dx x cot csc sin 122(16)sec ln sec tan xdx x x C =++⎰ (17)csc ln csc cot xdx x x C =-+⎰(18)Cx dx x +=-⎰arcsin 112(19)arcsinx C a=+(20)Cx dx x +=+⎰arctan 112 (21)2211arctan xdx C a x a a =++⎰(22)Ca x x dx a x +++=+⎰2222ln 1 (23)Ca x x dx ax +-+=-⎰2222ln 1 (24)2211ln 2x a dx C xa a x a -=+-+⎰补充:完全平方差:222)(b ab a b a +-=- 完全平方和:222)(b ab a b a ++=+ 平方差:))((22b a b a b a +-=- 立方差:))((2233b ab a b a b a ++-=- 立方和:))((2233b ab a b a b a +-+=+常见的三角函数值奇/偶函的班别方法:偶函数:f(-x )= f(x) 奇函数:f(-x)= -f(x)常见的奇函数:Sinx , arcsinx , tanx , arctanx , cotx , x2n+1常见的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法则:若lim f(x)=A,lim g(x)=B,则有:1. lim [f(x)—+g(x)]=lim f(x)—+lim g(x)=A —+B 2. lim [f(x).g(x)]=lim f(x).—+lim g(x)=A .B3. 又B 不等于0,则BAx g x f x f ==)(lim )(lim g(x))(lim两个重要极限:11sin lim 0=→x x x 1)()(s i n l i m 0)(=−−→−→x g x g x g 推广 2.e x g e x e xx g x xx x x =+−−→−=+=+∞→∞→∞→)(11))(1(lim )1(lim )11(lim 推广;;.无穷小的比较: 设:lim α=0,lim β=01. 若lim αβ=0,则称β是比α较高价的无穷小量2. 若lim αβ=c ,(c 不等于0),则称β是比α是同阶的无穷小量3. 若lim αβ=1,则称β是比α是等价的无穷小量4. 若lim αβ=∞,则称β是比α较低价的无穷小量抓大头公式:mm m mn n n n b x b a x a a xx xx +⋯⋯++++⋯⋯++----11101110b b a lim={mn mn mn b >∞<=,,0,a 0积分:1.直接积分(带公式)2.换元法:① 简单根式代换a. 方程中含nb ax +,令nb ax +=t b.方程中含ndcx b ax ++,令ndcx b ax ++=tc. 方程中含nb ax +和mb ax +,令pb ax +(其中p 为n,m 的最小公倍数)② 三角代换: a. 方程中含22a x -,令X=asint; t ⊂(-2π,2π)b. 方程中含22a x +,令X=atant; t ⊂(-2π,2π)c. 方程中含22x a -,令X=asect; t ⊂(0,2π)③ 分部积分∫uv ’ dx=uv-∫u ’v dx反(反三角函数)对幂指三,谁在后面,谁为v ’,根据v ’求出v.无穷级数:1. 等比级数:∑∞=1n n aq ,{发散收敛,1q ,1q ≥<2. P 级数:∑∞=11n pn,{发散收敛,1p ,1p ≤>3. 正项级数:nn n u u 1lim+→=ρ,{判别法,无法判断,改用比较发散收敛1,1,1=><ρρρ4. 比较判别法:重找一个V n (一般为p 级数),敛散性一致与,∑∑∞=∞=∞→=1n 1n n lim n n v u A nnv u5. 交错级数:)0()1(1>-∑∞=n n n n u u ,莱布尼茨判别法:{0lim 1=∞→+≥u n n n u u ,则级数收敛。

(完整版)小学数学公式大全

(完整版)小学数学公式大全

小学数学公式大全1、长方形的周长=(长 +宽)×2 C=(a+b) ×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积 =(上底 +下底)×高÷2 S=(a+ b) h÷28、直径 =半径×2 d=2r 半径 =直径÷2 r= d÷29、圆的周长 =圆周率×直径 =圆周率×半径× 2 c=π d =2πr10、圆的面积 =圆周率×半径×半径 ?=πr·11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高 V =abh·13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a·15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积 +侧面积·S=2π r +2π rh=2 π (d ÷+22)π (d ÷ 2)h=2 π (C ÷+Ch2÷π )17、圆柱的体积 =底面积×高 V=Sh·V=π r h=π (d ÷ 2)h=π (C ÷ 2÷πh )18、圆锥的体积 =底面积×高÷3V=Sh÷ 3=π rh ÷ 3=π (d ÷h2)÷ 3=π (C ÷ 2÷πh÷3)19、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1 倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=行程行程÷速度=时间行程÷时间=速度4、单价×数目=总价总价÷单价=数目总价÷数目=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C 周长S 面积 a 边长周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体 V: 体积 a:棱长表面积 =棱长×棱长×6 S 表 =a×a×6 体积 =棱长×棱长×棱长 V=a×a×a3、长方形C 周长S 面积 a 边长周长 =(长 +宽 ) ×2C=2(a+b)面积 =长×宽S=ab4、长方体V: 体积s:面积a:长 b: 宽 h:高(1)表面积 =(长×宽 +长×高 +宽×高 ) ×2 S=2(ab+ah+bh)(2)体积 =长×宽×高V=abh5三角形s 面积 a 底 h 高面积 =底×高÷2s=ah ÷2三角形高 =面积×2÷底三角形底 =面积×2÷高6平行四边形s 面积 a 底 h 高面积 =底×高s=ah7梯形s 面积 a 上底 b 下底h 高面积 =(上底 +下底 ) ×高÷2s=(a+b) ×h÷28圆形S 面积 C 周长∏ d=直径r=半径(1)周长 =直径×∏ =2×∏×半径C=∏ d=2∏r(2)面积 =半径×半径×∏9圆柱体v:体积h:高 s;底面积r:底面半径c:底面周长(1)侧面积 =底面周长×高(2)表面积 =侧面积 +底面积×2(3)体积 =底面积×高(4)体积=侧面积÷2×半径10圆锥体v:体积h:高 s;底面积r:底面半径体积 =底面积×高÷3总数÷总份数=均匀数和差问题(和+差 ) ÷2=大数(和-差 ) ÷2=小数和倍问题和÷(倍数- 1)=小数小数×倍数=大数(或许和-小数=大数)差倍问题差÷(倍数- 1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非关闭线路上的植树问题主要可分为以下三种情况:⑴假如在非关闭线路的两头都要植树,那么 :株数=段数+ 1=全长÷株距- 1全长=株距×(株数- 1)株距=全长÷(株数- 1)⑵假如在非关闭线路的一端要植树,另一端不要植树,那么 :株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶假如在非关闭线路的两头都不要植树,那么 :株数=段数- 1=全长÷株距- 1全长=株距×(株数+ 1)株距=全长÷(株数+ 1)2关闭线路上的植树问题的数目关系以下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数相遇问题相遇行程=速度和×相遇时间相遇时间=相遇行程÷速度和速度和=相遇行程÷相遇时间追及问题追及距离=速度差×追实时间追实时间=追及距离÷速度差速度差=追及距离÷追实时间收益与折扣问题收益=售出价-成本1) ×100%收益率=收益÷成本×100%= (售出价÷成本-涨跌金额=本金×涨跌百分比折扣=实质售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1 世纪=100 年 1 年=12 月大月 (31 天 )有 :1\3\5\7\8\10\12 月小月 (30天 )的有 :4\6\9\11月平年2 月28 天,闰年2 月29 天平年整年365 天,闰年整年366 天1 日=24小时 1 时=60分1 分=60秒 1 时=3600秒积=底面积×高V=Sh第一部分:观点1、加法互换律:两数相加互换加数的地点,和不变。

数学所有的公式大全

数学所有的公式大全

数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。

2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。

3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。

4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。

6. 三角形面积公式:面积S=底×高÷2。

7. 圆柱体体积公式:体积V=底面积S×高h。

8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。

9. 圆周长公式:周长C=2πr(其中r是半径)。

10. 圆面积公式:面积S=πr^2(其中r是半径)。

11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。

12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。

13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。

14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。

15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。

以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。

常见数学公式大全

常见数学公式大全

常见数学公式大全一、代数公式1. 二次方程求根公式对于一元二次方程$ax^2+bx+c=0$,求解公式为:$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$2. 双曲函数公式对于双曲正弦函数$\sinh(x)$和双曲余弦函数$\cosh(x)$,它们之间的关系为:$$\cosh^2(x)-\sinh^2(x)=1$$3. 指数函数公式对于指数函数$e^x$,其级数展开式为:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots =\sum_{n=0}^{\infty}\frac{x^n}{n!}$$二、几何公式1. 三角函数公式对于角度为$\theta$的直角三角形,其三角函数关系如下:- 正弦函数:$\sin(\theta) = \frac{\text{对边}}{\text{斜边}}$ - 余弦函数:$\cos(\theta) = \frac{\text{邻边}}{\text{斜边}}$ - 正切函数:$\tan(\theta) = \frac{\text{对边}}{\text{邻边}}$2. 球体体积公式对于半径为$r$的球体,其体积公式为:$$V = \frac{4}{3}\pi r^3$$三、微积分公式1. 导数定义函数$f(x)$在点$x=a$处的导数定义为:$$f'(a) = \lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$2. 积分基本公式对于函数$f(x)$,其在区间$[a,b]$上的定积分为:$$\int_{a}^{b}f(x)dx$$四、概率统计公式1. 期望值公式随机变量$X$的期望值计算公式为:$$E(X) = \sum{X \cdot P(X)}$$2. 方差公式随机变量$X$的方差计算公式为:$$Var(X) = E(X^2) - [E(X)]^2$$以上是常见数学公式的一部分,仅供参考。

小学数学公式大全(完全版)

小学数学公式大全(完全版)

小学数学公式大全(完全版)第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法与计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

世界上所有的数学公式大全

世界上所有的数学公式大全

世界上所有的数学公式大全01工作效率×工作时间=工作总量工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作效率=工作效率02单价×数量=总价通过单价×数量=总价,我们可以将数学中的计算公式应用到实际问题中。

03速度×时间=路程速度×时间=路程÷速度=时间路程÷时间=速度04被减数-减数=差被减数-减数=差,即被减数和减数分别相减,得到差。

05被除数÷除数=商被除数÷除数=商06一元一次方程式一元一次方程式是指含有一个未知数,并且未知数的次数是一次的等式。

例如,ax+by+cz=d,其中a、b、c为已知数,x、y、z为未知数,且满足a+bx=d。

07V=ShV=Sh是圆柱的体积的计算公式,其中底面面积和体积是圆柱的侧面积和底面高。

通过将底面面积乘以高,可以得到圆柱的总体积。

这个公式可以用来计算圆柱的体积。

08S=a×a长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr209S=ch=πdh=2πrh圆柱的表面积等于底面的周长乘以高再加上两头的圆的面积。

表面积等于底面的周长乘以高,再加上两头的圆的面积。

10带分数带分数是指将假分数写成整数和真分数的形式。

通过将分数的分母化为相同的数位,然后对分子进行约分,可以得到带分数。

11V=abh长方体的体积=长×宽×高。

在这个公式中,长方体的长度和宽度分别表示长和宽的长度,高度表示长的高度。

长方体的体积可以通过将底面积乘以高来计算。

12V=aaaV=aaa是长方体的体积公式,其中a表示长方体的长度,b表示宽,高表示长方体的宽度和高度。

数学公式大全

数学公式大全

数学公式大全数学公式是数学领域中用来表达数学关系的符号和语言。

它们被广泛应用于科学、工程、经济和其他领域的解决问题中。

下面将为你介绍一些基本的数学公式。

一、代数公式1. 一元二次方程的根公式:设一元二次方程为ax²+bx+c=0,其根公式为:\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]2. 二项式定理:二项式定理用来展开二项式的幂,它表示为:\[ (a+b)^n = C_0 a^n b^0 + C_1 a^{n-1} b^1 + \cdots + C_n a^0 b^n \]其中,各个系数Cn可以通过组合数表达。

二、几何公式1. 三角形面积公式:对于已知三角形的底和高,可以使用以下公式计算其面积:\[ A = \frac{1}{2} \times \text{底} \times \text{高} \]2. 圆的周长和面积:圆的周长(C)和面积(A)可以通过半径(r)或直径(d)计算,公式如下:\[ C = 2\pi r = \pi d \]\[ A = \pi r^2 \]三、微积分公式1. 导数公式:导数用于描述函数在某个点的变化率,以下是一些常见函数的导数公式:- 常数函数的导数为0- 幂函数的导数为该函数的指数乘以常数- 指数函数的导数等于该函数自身乘以常数ln(x)- 对数函数的导数等于1/x- 三角函数的导数可以根据具体函数类型进行计算2. 积分公式:积分是导数的逆运算,以下是一些基本的积分公式:- 幂函数的积分等于该函数的幂次加1再除以新的幂次- 指数函数的积分等于该函数除以常数ln(x)- 对数函数的积分等于该函数自身乘以常数- 三角函数的积分可以根据具体函数类型进行计算四、概率与统计公式1. 期望值公式:期望值是一个随机变量的平均值,对于离散型随机变量X,其期望值计算公式为:\[ E(X) = \sum x P(X=x) \]其中,x表示随机变量的可能取值,P(X=x)表示该取值的概率。

数学公式大全

数学公式大全

数学公式大全数学公式是数学中重要的概念和工具,用于描述和解决各种数学问题。

下面是数学公式的大全,包括代数、几何、概率与统计、微积分等方面的公式。

一、代数公式1. 二次方程的求根公式:对于一般的二次方程ax²+bx+c=0,其解可以通过求根公式计算:x=(-b±√(b²-4ac))/(2a)2. 四则运算法则:加法:a+b=b+a乘法:a*b=b*a减法:a-b=-(b-a)除法:a/b=1/(b/a)3. 指数与对数的关系:指数和对数是互为反函数的,即:a^loga(x)=xloga(a^x)=x二、几何公式1. 三角形的面积:对于已知底和高的三角形,其面积可以计算为:A=1/2 * 底 * 高2. 圆的面积和周长:圆的面积可以计算为:A=πr²圆的周长可以计算为:C=2πr3. 直角三角形的勾股定理:直角三角形的三边满足勾股定理:a²+b²=c²三、概率与统计公式1. 期望值的计算公式:对于一个离散型随机变量X,其期望值可以计算为:E(X)=∑(xP(X=x)),即各个取值x乘以相应的概率的加和2. 标准差的计算公式:标准差是描述变量离散程度的指标,可以计算为:σ=√(∑((x-μ)²P(X=x))),其中μ为随机变量X的期望值四、微积分公式1. 导数的定义:导数是函数在某一点处切线的斜率,可以定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h2. 求导法则:常见函数的求导法则包括:常数函数导数为0幂函数求导为幂次减1乘以导数指数函数求导为指数乘以导数对数函数求导为倒数乘以导数三角函数求导可以利用导数的定义累加求导数公式等以上是数学公式的部分内容,其中涵盖了代数、几何、概率与统计、微积分等方面的公式。

数学公式在数学领域中具有重要的应用价值和意义,可以帮助我们描述、分析和解决各种数学问题。

(完整版)数学公式大全

(完整版)数学公式大全

三角函数公式 1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin=AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注释:xx tan 1cot =5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtan tan 1tan tan )tan(•-+=+④βαβαβαtan tan 1tan -tan )tan(•+=-6.二倍角公式:(含万能公式)①θθθcos sin 22sin =公式七:②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-==θθ22tan 1tan 1+- ③θθθ2tan 1tan 22tan -=④ 22cos 1sin 2θθ-= ⑤ 22cos 1cos 2θθ+=⑥ Sin 2x+cos 2x=1 ⑦ 1+tan 2x=sec 2x ⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=-高等数学必备公式1、指数函数(4个): 幂函数5-8(1)nm n m aa a +=⋅ (2)nm n m a aa -=(3)nmn ma a= (4)m m aa 1=- (5) nm n m xx x +=⋅2、对数函数(4个):(1)b a ab ln ln ln += (2)b a b a ln ln ln -=(3)a b a bln ln = (4)N N e e N ln ln ==3、三角函数(10个):(1)1cos sin 22=+x x (2)x x x cos sin 22sin = (3)x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= (4)21cos 2sin 2x x -= (5)21cos 2cos 2xx +=(6)x x 22sec tan 1=+ (7) xx 22csc cot 1=+(8)x x csc 1sin = (9)x x sec 1cos =(10)xx cot 1tan =4、等价无穷小(11个):(等价无穷小量只能用于乘、除法)23330sin ~ arcsin ~ tan ~ arctan ~1~ln(1)~ 1cos ~11~20tan sin ~ tan ~ sin ~236n e nx x x x x x x x x x →-+-+-→---当时: 当时:幂函数:(1))('c =0 (2)1)(-='μμμx x(3)211x x '⎛⎫=-⎪⎝⎭(4)'指数对数:(5)a a a xx ln )(=' (6)x x e e =')((7)a x x a ln 1)(log =' (8)x x 1)(ln ='三角函数:(9)x x cos )(sin =' (10)x x sin )(cos -='(11)x x 2sec )(tan =' (12)x x 2csc )(cot -='(13)x x x tan sec )(sec =' (14)x x x cot csc )(csc -='反三角函数:(15)211)(arcsin x x -=' (16)211)(arccos x x --=' (17)211)(arctan x x +=' (18)211)cot (x x arc +-='求导法则: 设u=u(x),v=v(x)1. (u —+v )’=u ’—+v ’ 2. (cu)’=cu ’(c 为常数) 3. (uv)’=u ’v+uv ’ 4. (vu )’=2''u v uv v -幂函数:(1)⎰+=C kx kdx (2)⎰-≠++=+)1(11μμμμC x dx x(3)211dx C x x=-+⎰ (4)C =(5)C x dx x +=⎰ln 1指数函数:(6)C a a dx a xx+=⎰ln (7)⎰+=C e dx e x x三角函数:(8) ⎰+-=C x xdx cos sin (9) ⎰+=C x xdx sin cos (10) tan ln cos xdx x C =-+⎰ (11)cot ln sin xdx x C =+⎰ (12)⎰+=C x xdx x sec tan sec (13)⎰+-=C x xdx x csc cot csc (14)⎰⎰+==Cx xdx xdxtan sec cos22(15)⎰⎰+-==Cx xdx dx x cot csc sin 122(16)sec ln sec tan xdx x x C =++⎰ (17)csc ln csc cot xdx x x C =-+⎰(18)Cx dx x +=-⎰arcsin 112(19)arcsinx C a=+(20)Cx dx x +=+⎰arctan 112 (21)2211arctan xdx C ax a a =++⎰(22)Ca x x dx a x +++=+⎰2222ln 1 (23)Ca x x dx ax +-+=-⎰2222ln 1 (24)2211ln 2x a dx C xa a x a-=+-+⎰补充:完全平方差:222)(b ab a b a +-=- 完全平方和:222)(b ab a b a ++=+ 平方差:))((22b a b a b a +-=- 立方差:))((2233b ab a b a b a ++-=- 立方和:))((2233b ab a b a b a +-+=+常见的三角函数值奇/偶函的班别方法:偶函数:f(-x )= f(x) 奇函数:f(-x)= -f(x)常见的奇函数:Sinx , arcsinx , tanx , arctanx , cotx , x2n+1常见的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法则:若lim f(x)=A,lim g(x)=B,则有:1. lim [f(x)—+g(x)]=lim f(x)—+lim g(x)=A —+B 2. lim [f(x).g(x)]=lim f(x).—+lim g(x)=A .B3. 又B 不等于0,则BAx g x f x f ==)(lim )(lim g(x))(lim两个重要极限:11sin lim 0=→x x x 1)()(sin lim 0)(=−−→−→x g x g x g 推广 2.e x g e x e xx g x xx x x =+−−→−=+=+∞→∞→∞→)(11))(1(lim )1(lim )11(lim 推广;;.无穷小的比较: 设:lim α=0,lim β=01. 若lim αβ=0,则称β是比α较高价的无穷小量2. 若lim αβ=c ,(c 不等于0),则称β是比α是同阶的无穷小量3. 若lim αβ=1,则称β是比α是等价的无穷小量4. 若lim αβ=∞,则称β是比α较低价的无穷小量抓大头公式:mm m mn n n n b x b a x a a xx xx +⋯⋯++++⋯⋯++----11101110b b a lim={mn m n mn b >∞<=,,0,a 0积分:1.直接积分(带公式)2.换元法:① 简单根式代换a. 方程中含nb ax +,令nb ax +=t b.方程中含ndcx b ax ++,令ndcx b ax ++=tc. 方程中含nb ax +和mb ax +,令pb ax +(其中p 为n,m 的最小公倍数)② 三角代换: a. 方程中含22a x -,令X=asint; t ⊂(-2π,2π)b. 方程中含22a x +,令X=atant; t ⊂(-2π,2π)c. 方程中含22x a -,令X=asect; t ⊂(0,2π)③ 分部积分∫uv ’ dx=uv-∫u ’v dx反(反三角函数)对幂指三,谁在后面,谁为v ’,根据v ’求出v.无穷级数:1. 等比级数:∑∞=1n n aq ,{发散收敛,1q ,1q ≥<2. P 级数:∑∞=11n pn,{发散收敛,1p ,1p ≤>3. 正项级数:nn n uu 10lim +→=ρ,{判别法,无法判断,改用比较发散收敛1,1,1=><ρρρ4.比较判别法:重找一个V n (一般为p 级数),敛散性一致与,∑∑∞=∞=∞→=1n 1n n lim n n v u A nnv u5. 交错级数:)0()1(1>-∑∞=n n n n u u ,莱布尼茨判别法:{0lim 1=∞→+≥u n n n u u ,则级数收敛。

很好用的数学公式大全

很好用的数学公式大全

很好用的数学公式大全1.代数- 一次方程:ax + b = 0,解为x = -b/a。

- 二次方程:ax^2 + bx + c = 0,解为x = (-b ± √(b^2 - 4ac)) / (2a)。

- 二次根式:√a x √b = √(ab)。

-二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,n)b^n。

-欧拉公式:e^(iπ)+1=0。

2.几何-勾股定理:a^2+b^2=c^2,其中a、b为直角边,c为斜边。

-面积公式:-三角形:S=1/2*底边长*高。

-矩形:S=长*宽。

-圆:S=πr^23.微积分- 导数定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h。

-常用导数:-常数函数:(c)'=0。

- 幂函数:(x^n)' = nx^(n-1)。

-指数函数:(e^x)'=e^x。

- 对数函数:(ln(x))' = 1/x。

- 积分定义:∫f(x)dx = F(x) + C,其中F'(x) = f(x),C为常数。

-常用积分:- 幂函数:∫x^n dx = (1/(n+1))x^(n+1) + C,其中n≠-1- 指数函数:∫e^x dx = e^x + C。

- 对数函数:∫(1/x) dx = ln,x, + C。

4.统计学-均值:平均数为数据值的和除以数据个数。

-方差:平均离差平方和除以数据个数。

-标准差:方差的平方根。

-正态分布概率密度函数:f(x)=(1/√(2πσ^2))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。

5.概率-事件概率:P(A)=(A的可能数)/(总的可能数)。

- 互斥事件概率:P(A or B) = P(A) + P(B)。

- 独立事件概率:P(A and B) = P(A) * P(B)。

- 条件概率:P(A,B) = P(A and B) / P(B)。

数学公式大全

数学公式大全

数学公式概述数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。

是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

一些基本公式(1)抛物线:y = ax^2 + bx + c (a≠0)就是y等于a乘以x 的平方加上 b乘以x再加上 c置于平面直角坐标系中a > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)还有顶点式y = a(x+h)* 2+ k (h,k)=(-b/2a,(4ac-b^2)/4a)就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2pxx^2=2py x^2=-2py(2)圆:体积=4/3π(r^3)面积=π(r^2)周长=2πr =πd圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭球物体体积计算公式椭圆的长半径*短半径*π*高(3)三角函数:和差角公式sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;cot(A+B)=(cotAcotB-1)/(cotB+cotA) ;cot(A-B)=(cotAcotB+1)/(cotB-cotA) ;倍角公式tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;sin2A=2sinAcosA=2/(tanA+cotA);另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*( n-1)/n]=0 ;cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7* tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28 *tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126 *tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA ^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)²万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ;2cosAcosB=cos(A+B)-cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ;cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ;降幂公式sin&sup2;(A)=(1-cos(2A))/2=versin(2A)/2;cos&sup2;(α)=(1+cos(2A))/2=covers(2A)/2;tan&sup2;(α)=(1-cos(2A))/(1+cos(2A));某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n^22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角乘法与因式分解 a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)三角不等式 -|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|一元二次方程的解x1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a根与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a判别式△= b^2-4ac=0 则方程有相等的两实根△>0 则方程有两个不相等的个实根△<0 则方程有两共轭复数根公式分类公式表达式圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:△=D^2+E^2-4F>0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c' *h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4π*r2圆柱侧面积 S=c*h=2π*h 圆锥侧面积 S=1/2*c*l=π*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=π*r2h图形周长面积体积公式长方形的周长=(长+宽)³2正方形的周长=边长³4长方形的面积=长³宽正方形的面积=边长³边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦秦九韶公式)(p= (a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)注:秦九韶公式与海伦公式等价| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1|| c d 1| 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里| e f 1 |ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=2 r圆的周长=πd= 2πr圆的面积= πr^2长方体的表面积=(长³宽+长³高+宽³高)³2长方体的体积 =长³宽³高正方体的表面积=棱长³棱长³6正方体的体积=棱长³棱长³棱长圆柱的侧面积=底面圆的周长³高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积³高圆锥的体积=底面积³高÷3柱体体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4a S=a2长方形 a和b-边长 C=2(a+b) S=ab三角形 a,b,c-三边长其中s=(a+b+c)/2 S=ah/2h-a边上的高=ab/2³sin Cs-周长的一半=[s(s-a)(s-b)(s-c)]1/2A,B,C-内角=a^2sinBsinC/(2sinA)几何公理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

数学计算公式大全

数学计算公式大全

For personal use only in study and research; not for commercial use一、数学计算公式大全:1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形:C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间有预算的公式没。

数学公式大全

数学公式大全

数学公式大全一、代数公式1. 一次方程的解:对于方程ax + b = 0,其解为x = -b/a。

2. 二次方程的解:对于方程ax² + bx + c = 0,其解为x = (-b ± √(b² - 4ac)) / (2a)。

3.二次根式的求和与差:a) √a ± √b = (√2 ± 1) * √(a ± √ab + b)b)√a±√b=(√a+√b)*(√a-√b)二、几何公式1.周长和面积:a) 矩形:周长P = 2(l + w),面积A = lwb)正方形:周长P=4s,面积A=s²c)圆:周长C=2πr,面积A=πr²d)三角形:周长P=a+b+c,海伦公式:A=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长e)梯形:面积A=(a+b)h/2,其中a和b为上下底边长,h为高f) 平行四边形:面积A = bh,其中b为底边长,h为高2.三角函数:a) 正弦定理:a/sinA = b/sinB = c/sinCb) 余弦定理:c² = a² + b² - 2ab*cosCc) 正弦、余弦和正切值:sin²θ+ cos²θ = 1,tanθ =sinθ/cosθ三、微积分公式1.导数与微分:a)基本导数:-常数函数:(c)'=0- 幂函数:(x^n)' = nx^(n-1)-指数函数:(e^x)'=e^x- 对数函数:(lnx)' = 1/xb)基本微分:- 常数函数积分:∫c dx = cx + C- 幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1- e^x函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln,x, + C2.积分法则:a) 线性法则:∫(cf(x) + dg(x)) dx = c∫f(x) dx + d∫g(x) dxb) 乘法法则:∫(f(x)*g'(x)) dx = f(x)*g(x) - ∫(f'(x)*g(x)) dxc) 代换法则:∫f(g(x))g'(x) dx = ∫f(u) du,其中u = g(x)四、概率与统计公式1.排列组合:a)排列公式:An=n!b)组合公式:C(n,r)=n!/[(n-r)!r!]2.期望与方差:a)期望:E(X)=∑(xP(x)),其中x为随机变量的取值,P(x)为该取值发生的概率b) 方差:Var(X) = ∑((x-E(X))²P(x))以上是一些常见的数学公式,在数学的各个领域中都有广泛的应用。

数学公式-数学公式表

数学公式-数学公式表

数学公式-数学公式表一、基本运算符
- 加法:a + b
- 减法:a - b
- 乘法:a * b
- 除法:a / b
- 次方:a^b
二、代数运算
- 开方:√a
- 绝对值:|a|
- 立方:a^3
- 平方:a^2
- 取余:a % b
三、三角函数
- 正弦:sinθ
- 余弦:cosθ
- 正切:tanθ
- 正割:secθ
- 余割:cscθ
- 余切:cotθ
四、微积分
1. 导数
- 函数导数:f'(x)
- 高阶导数:f^(n)(x)
- 一阶偏导数:∂f/∂x
- 二阶偏导数:∂^2f/∂x^2 2. 积分
- 不定积分:∫f(x) dx
- 定积分:∫[a,b] f(x) dx
- 累积积分:∫∫f(x, y) dA
- 弧长积分:∫√(1 + (f'(x))^2) dx 五、向量运算
- 向量加法:a + b
- 向量减法:a - b
- 向量点乘:a · b
- 向量叉乘:a × b
- 向量模长:|a|
- 向量投影:proj_a b
六、矩阵运算
- 矩阵加法:A + B
- 矩阵减法:A - B
- 矩阵乘法:A * B
- 矩阵转置:A^T
- 矩阵行列式:|A|
- 逆矩阵:A^(-1)
七、概率统计
- 期望:E(X)
- 方差:Var(X)
- 标准差:Std(X)
- 协方差:cov(X, Y)
- 相关系数:corr(X, Y)
以上是一些常见的数学公式,可以帮助你学习和应用数学知识。

(完整版)数学公式大全

(完整版)数学公式大全

三角函数公式1.正弦定理a=b=c= 2R (R 为三角形外接圆半径):sin A sin B sin C2.余弦定理 :a 2 =b 2 +c 2 -2bc cos Ab 2 =a 2 +c 2 -2ac cosB c 2 =a 2 +b 2 -2ab cosCcos A b 2c 2 a 22bc3. ⊿ = 1 a h a = 1 ab sinC = 1 bc sin A = 1 ac sin B = abc=2R 2 sin A sin B sinCS2224R2= a 2 sin Bsin C = b 2 sin Asin C = c 2 sin Asin B =pr= p( p a)( p b)( p c)2sin A2 sin B 2sin C( 此中 p1(a bc) , r为三角形内切圆半径 )24.引诱公试公式七:三角函数值等于的同名三角函数值,前方加上一个把看作锐角时,原三角函数值的符号;即:函数名1不变,符号看象限说明:cot xtan x5.和差角公式① sin()sin cos cos sin② cos()cos cos sin sin③ tan()tan tan1tan? tan④ tan()tan- tantan? tan16.二倍角公式:( 含全能公式 )① sin 2 2 sin cos② cos 2cos2sin22 cos21 12 sin2=1tan1 tan③ tan 22tan1 tan222④ sin 21 cos 22 ⑤ cos 21 cos 22⑥ Sin 2x+cos 2x=1⑦ 1+tan 2x=sec 2x⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2所在的象限确立)① sin1 cos② s in 21 cos ③ cos1 cos222 222 ④ cos 21 cos⑤1cos2 sin 2⑥1 cos2 cos 22222⑦1 sin(cossin ) 2cos 2 sin2228.积化和差公式:sin cos1 sin() sin() cos sin1 sin( ) sin()22cos cos1 cos( ) cos() sin sin1 cos( ) cos229.和差化积公式:① sinsin 2 sincos② sin sin 2 cossin2222③ coscos2 coscos④ coscos2 sinsin2222高等数学必备公式1、指数函数( 4 个):幂函数 5-8( 1)a m a n a m n(2) a m a m na nnm mm1( 3)n(4)aa a a m( 5)x m x n x m n( 6)x mx m n nx( 7)n x mm( 8)x m1 x nx m2、对数函数( 4 个):( 1)ln ab ln a ln b( 2)ln aln a ln bb( 3)ln a b b ln a( 4)N ln e N e ln N3、三角函数( 10 个):( 1)sin2x cos2 x1( 2)sin 2x2sin x cosx ( 3)cos2x cos2 x sin 2 x 2 cos2 x 1 1 2sin 2 x2x 1cos2x21cos 2x( 4)sin2( 5)cos x2(6)1tan2 x sec2 x(7)1cot 2 x csc2 x( 8)sin x1( 9)cos x1 csc x secx( 10)tan x1 cot x4、等价无量小( 11 个 ) :(等价无量小量只好用于乘、除法)当W时:sinW~W arcsinW~W tanW~W arctanW~W 021 ~We W 1 ~ln(1) ~ 1 cos ~ W n 1WW W W Wn2当x时:x3tan x x3x x3tan x sin x ~ ~sin x ~236幂函数:( 1)( c) =0(2)( x ) x1(3)11( 4)x1 x x2 2 x 指数对数:(5) ( a x )a x ln a(7) (log a x)1 x ln a三角函数:(6) (e x )e x (8) (ln x)1x(9) (sin x)cos x(11) (tan x)sec2 x(13) (sec x)secx tan x 反三角函数:(10) (cos x)(12) (cot x)(14) (csc x)sin xcsc2 xcsc x cot x(arcsin x)1(arccos x)1( 15) 1 x 2( 16) 1 x 2(17) (arctan x)1(18) (arc cot x)1 1 x2 1 x2求导法例:设 u=u(x),v=v(x)1.(u —v)’=u’— v’2.(cu)’=cu’(c 为常数 )3.(uv) ’=u’v+uv’4.( u)’=u' v2uv' v v幂函数:(1)(3)(5)kdx kx C11x 2 dx x C1dx ln x C(2)(4)1x dx x1)C (11dx 2 x Cxx ax(7) e x dx e x指数函数:( 6)a dx ln a C C 三角函数:(8)(10)(12)(14)(16)(18)(20)(22)(23)sin xdx cos x C( 9)cosxdx sin x Ctan xdx ln cos x C(11) cot xdx ln sin x Csec x tan xdx sec x C(13) csc x cot xdx csc x C dx212cos2x sec xdx tan x C( 15)sin2x dx csc xdx cot x C secxdx ln secx tan x C(17) cscxdx ln cscx cot x C 1dx arcsin x C1dx arcsinxC( 19)1 x 2a2x 2a11x2dx1x1x2dxarctan x C( 21)a2a arctan a C1dx ln x x2a2Cx2a21dx ln x x2a2C1a2dx1lnx aCx2a2(24) x22a x a增补:完整平方差:完整平方和:(a b) a 2 2ab b 2 (a b)a 2 2ab b 2平方差:立方差:a 2b 2( a b)(a b)a 3b 3( a )( 2ab b 2 )b a立方和 : a 3b 3 ( a b)( a 2 ab b 2 )常有的三角函数值奇 /偶函的班别方法:偶函数: f(-x)= f(x)奇函数: f(-x)= -f(x)常有的奇函数:2n+1 Sinx , arcsinx , tanx , arctanx , cotx , x常有的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法例:若 lim f(x)=A, lim g(x)=B, 则有:1. lim [f(x)—g(x)]= lim f(x)—lim g(x)=A—B2. lim [f(x). g(x)]= lim f(x).—lim g(x)=A.Bf ( x) lim f ( x)A3. 又 B 不等于 0,则limg(x) lim g (x)B两个重要极限:sinx推行lim sin g(x)11lim x01g(x)x g( x)01x;1;1lim (1x)x推行lim (1g(x))g ( x)e.2.) e lim (1exx x x无量小的比较:设: lim=0,lim =01. 若lim=0,则称是比 较高价的无量小量2. 若lim=c ,(c 不等于 0) ,则称是比 是同阶的无量小量3. 若lim=1,则称是比 是等价的无量小量4. 若lim=,则称是比 较廉价的无量小量抓大头公式:a0 ,nmnn 1={b 0lim a 0x ma 1x m 1a n 1 x a n0, nmb 0x b1xb m 1x b m, nm积分:1.直接积分(带公式)2.换元法:① 简单根式代换a.b.方程中含 naxb ,令 naxb=tnax b,n axb方程中含cxd令cxd =tc. 方程中含 nax b 和 maxb ,令 paxb (此中p 为 n,m 的最小公倍数)② 三角代换:a. 方程中含 a 2x 2 b. 方程中含 a 2x 2 c. 方程中含 x 2a2,令 X=asint; t(- 2,2),令 X=atant;t (-2,2),令 X=asect;t(0, )2③ 分部积分∫ uv ’dx=uv-∫u ’v dx反(反三角函数)对幂指三, 谁在后边,谁为 v ’,依据 v ’求出 v.无量级数:1.等比级数 :aqnq 1,收敛,{1, 发散n 1q2.P 级数:1p ,{p1, 收敛n 1 np 1,发散3.limun 11,收敛正项级数:,{1,发散n 0u n1,没法判断,改用比较 鉴别法4.比较鉴别法:重找一个 V n (一般为 p 级数),limu nA , u n 与v n 敛散性一致v nn 1n 1n5. 交织级数:( 1) nu n (u n0),莱布尼茨鉴别法:{u nu n 1,n1lim n u则级数收敛。

数学公式大全 全套

数学公式大全 全套

数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。

掌握数学公式是理解和应用数学的关键。

本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。

一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1x8+1=9
12x8+2=98
123x8+3=987
1234x8+4=9876
12345x8+5=98765
123456x8+6=987654
1234567x8+7=9876543
12345678x8+8=98765432
123456789x8+9=987654321
1x9+2=11
12x9+3=111
123x9+4=1111
1234x9+5=11111
12345x9+6=111111
123456x9+7=1111111
1234567x9+8=11111111
12345678x9+9=111111111
123456789x9+10=1111111111
9x9+7=88
98x9+6=888
987x9+5=8888
9876x9+4=88888
98765x9+3=888888
987654x9+2=8888888
9876543x9+1=88888888
98765432x9+0=888888888
很炫,是不是?
再看看这个对称式
1x1=1
11x11=121
111x111=12321
1111x1111=1234321
11111x11111=123454321
111111x111111=12345654321
1111111x1111111=1234567654321
11111111x11111111=
123456787654321
111111111x111111111=
12345678987654321只有转走才不会丢,留着教孩子小学到初三的全部概念!连这个都有人整理啦!!
三角形的面积=底×高÷2。

公式S= a×h÷2
正方形的面积=边长×边长公式S= a×a
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高公式S= a×h
梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2
内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh
圆锥的体积=1/3底面×积高。

公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和一个加数=和+另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数×因数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米。

相关文档
最新文档