黑龙江省伊春市高中数学 第三章 概率 3.3.1 几何概型导学案新人教A版3 精

合集下载

高中数学 第三章 概率 331 几何概型学案 新人教A版必修3 学案

高中数学 第三章 概率 331 几何概型学案 新人教A版必修3 学案

3.3.1几何概型授课日期: 姓名: 班级:一、学习目标1、知识与技能:1、通过具体实例正确理解几何概型的定义及与古典概型的区别;2、掌握几何概型的概率计算公式并能进行简单的计算与应用.2、过程与方法:让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、学习重难点重点:理解几何概型的定义,会用公式计算概率;难点1、等可能性的判断及对几何概率模型中基本事件的构成分析;2、将实际问题转化为几何概型.三、学法指导1.通过对本节知识的探究与学习,感知用图形解决概率问题的方法;阅读教材135—136页完成导学案 2.小班完成100%,重点班完成90%,平行班完成80%。

四、知识链接1.古典概型的两个基本特征?2、计算古典概型的公式:五、学习过程(一).主动探索A问题1:在转盘游戏中,当指针停止时,为什么指针指向红色区域的可能性大?A问题2:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?(二).领悟归纳A问题3:什么是几何概率模型A问题4:几何概率模型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.A问题5:在几何概型中,事件A的概率的计算公式:A问题6:古典概型与几何概型的关系:联系:两种模型的基本事件发生的可能性都相等;区别:古典概型要求基本事件是有限个,而几何概型则要求基本事件有无限多个。

(三).几何概型的计算B例1 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.红红红红红红红问题1 图问题2 图几何概型公式(1):B 例2. 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能100元、50元、20元的购物券(转盘等分成20份).几何概型公式(2):B 例3. 有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.几何概型公式(3):领悟:对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解. 六、达标训练A1. 判断以下各题的是何种概率模型,并求相应概率(1)在集合 A= {0,1,2,3,4,5,6,7,8,9} 中任取一个元素 ,则 的概率为(2)已知点O (0,0),点M (60,0),在线段OM 上任取一点P ,则的概率为A2、一个质地均匀的陀螺的圆周上均匀地刻有上诸数字,在桌面上旋转它,求当它停下来时,圆周与桌面接触处的刻度位于区间 [2 , 3] 上的概率。

高中数学第三章概率331几何概型课件新人教A版必修3(00001)

高中数学第三章概率331几何概型课件新人教A版必修3(00001)

1 6
.又S底面ABCD=1,所以只要h≤
1 2
即可.所有满足h≤
1 2
的点
组成以正方形ABCD为底面,12为高的长方体,其体积为12.又正方体
的体积为1,所以使四棱锥M-ABCD的体积不超过 16 (事件A)的概率
1
为P(A)=21=12.
先要确定使四棱锥M-ABCD体积不超过
1 6
的M点构成的几何
2,又圆的面积是π,所以P(A)=2π.故选D. 答案:D
类型三 体积类几何概型
例3 已知正方体ABCD-A1B1C1D1的棱长为1,在正方体内随
机取一点M,求使四棱锥M-ABCD的体积不超过
1 6
(事件A)的概
率.
【解析】
设M到平面ABCD的距离为h,则VM-ABCD=
1 3
S底面
ABCD·h≤
状元随笔 几何概型与古典概型的异同
名称
古典概型
几何概型
相同点
基本事件发生的可能性相等
①基本事件有有限个; ①基本事件有无限
不同点
②P(A)=0⇔A为不可 个;②P(A)=0⇐A为不
能事件;③P(B)=1⇔ 可能事件;③P(B)=1⇐
B为必然事件
B为必然事件
知识点二 几何概型的概率计算 1.几何概型的概率计算公式
心,1为半径作圆,在矩形ABCD内的部分(半圆)的面积为
π 2
,因此
取到的点到点O的距离大于1的概率P=2-2 2π=1-π4.
【答案】 B
取到的点到点O的距离大于1表示取到的点在以O为圆心,1为
半径的圆外.
方法归纳 此类几何概型问题,关键是要构造出随机事件对应的几何图 形,利用图形的几何特征找出两个“面积”,套用几何概型公 式,从而求得随机事件的概率.

人教A版高中数学必修三3.3.1 几何概型 导学案

人教A版高中数学必修三3.3.1 几何概型 导学案

几何概型(导学案)一、【学习目标】1.了解几何概型的概念及基本特点;2. 掌握几何概型中概率的计算公式;3. 会进行简单的几何概率计算.二、【重点难点】重点 理解几何概型的概念及基本特点,掌握其概率的计算公式 难点理解几何概型的概念及基本特点三、【学习新知】【A 级】问题1:取一根长度为3m 的绳子,拉直后在任意位置剪断.剪得两段的长都不小于1m 的概率有多大?【A 级】问题2:.射箭比赛的箭靶涂有五个彩色得分环。

从外向内为白色,黑色,蓝色,红色,靶心是金色.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm .运动员在70m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.射中黄心的概率为多少?【B 级】问题3:那么, 怎么求解?① 第一个问题中,记事件A =“剪得两段的长都不小于1m ”.把绳子 三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳的,于是事件A 发生的概率()P A =.②第二个问题中,记事件B =“射中黄心”为,由于中靶心随机地落在面2211224cm π⨯⨯的大圆内,而当中靶点落在面积为22112.24cm π⨯⨯的黄心内时,事件B 发生,于是事件B 发生的概率()P B ==阅读书135页至136页完成下列问题1.几何概型的概念:2.几何概型的基本特点:3.几何概型的概率公式:在区域D 中随机地取一点, 记事件A ="该点落在其内部一个区域d 内",则事件A 发生的概率()P A =四、【合作探究】【B 级】问题4:某人午觉醒来,发现表停了,他打开收音机,想听电台时,求他等待的时间不多于10分钟的概率。

【B 级】问题5:在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少:五、【达标自测】1. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是. A.21 B.31 C.41 D.不确定 2. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是 A.101 B.91 C.111 D.81 3. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是. A.2511 B.2491 C.2501 D.25214. 如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.5. 如下图,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为31a 与21a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________.6.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.7. 如下图,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA,则射线落在∠xOT内的概率是________.1的正方形ABCD,8. 如下图,在半径为1的半圆内,放置一个边长为2向半圆内任投一点,该点落在正方形内的概率为_________.9在等腰Rt△ABC中,在斜边AB上任取一点M,求AM的长小于AC 的长的概率.六、【归纳总结】1.知识:概念及基本特点;掌握几何概型中概率的计算公式2.数学思想方法:数形结合3.能力:学生通过动手操作,进行模拟活动,使学生相信结果的随机性和规律性几何概型(导学案)(参考答案)问题1:13问题2:0.01五、【达标自测】1.B2.C3.C4.495.5126.137.168.12。

黑龙江省伊市高中数学 第三章 概率 3.1.3 概率的基本性质导学案(无答案)新人教A版必修3

黑龙江省伊市高中数学 第三章 概率 3.1.3 概率的基本性质导学案(无答案)新人教A版必修3

探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;
情感态度与价值观
,培养学生的类化与归纳
概率的加法公式及其应用,事件的关系与运算。

概率的加法公式及其应用,事件的关系与运算。

事件的关系:
事件的运算:
3.事件的并 (或和)
4.事件的交 (或积)
5.事件的互斥
6.对立事件
二、概率的几个基本性质
(1)、对于任何事件的概率的范围是:_____________________________
其中不可能事件的概率是:__________________________
必然事件的概率是:___________________________
不可能事件与必然事件是一般事件的特殊情况
(2)、当事件A与事件B互斥时,A∪B的频率:___________________________ 由此得到概率的加法公式:如果事件A与事件B互斥,则_________________________ (3)、特别地,当事件A与事件B是对立事件时,有P(A)=_____________________________ 三、当堂检测:1.教材121页例题。

2.教材121页练习。

我的(反思、收获、问题)。

2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3

2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3

2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X 落到[0,1]区间内任何一点是等可能的,则称X 为[0,1]区间上的均匀随机数. 三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=1/4.两次出现相同面的概率为.(2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的, 于是事件A发生的概率P(A)=.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为×π×1222 cm2的大圆内,而当中靶点落在面积为×π×12.22 cm2的黄心内时,事件B发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g)=.点评:通过实例初步体会几何概型的意义.思路2例 1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P(A)=(60-40)/60=1/3.即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g就表示“晚报在晚餐开始之前被送到”.容易求得g的面积为,G的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=.变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min一班,在车站停1 min,求乘客到达站台立即乘上车的概率.解:由几何概型知,所求事件A的概率为P(A)=.2.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)==.3.在500 mL的水中有一个草履虫,现从中随机取出2 mL水样放到显微镜下观察,则发现草履虫的概率是()A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A:“在取出2 mL的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004.答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=.拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g :x≤sinφ(见下图右).所求概率是P= ππφφπa l a d l 22/sin )2/(0=••=⎰.注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N次,(或一次投针若干枚,总计N枚),统计与平行线相交的次数n,则P≈n/N.又因a 与l都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位. 设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业课本习题3.3A组1、2、3.设计感想本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从求概率不能问题引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过思路1和思路2两种不同的例题类型和层次,加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容高考是新内容,因此同学们要高度重视,全面把握,争取好成绩.。

高中数学 第三章 概率 3.3.1几何概型学案 新人教A版必修3-新人教A版高一必修3数学学案

高中数学 第三章 概率 3.3.1几何概型学案 新人教A版必修3-新人教A版高一必修3数学学案

3.3 几何概型3.3.1 几何概型1.问题导航(1)当试验的所有可能结果是无穷多的情况,还能用古典概型来计算事件发生的概率吗?(2)什么叫几何概率模型?其求解方法是什么?(3)几何概型有几种模型?2.例题导读通过例1的学习,学会如何求解长度型的几何概型的概率.1.几何概型的定义与特点(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点:①可能出现的结果有无限多个;②每个结果发生的可能性相等.2.几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).1.下列概率模型都是几何概型吗?(对的打“√”,错的打“×”)(1)从区间[-10,10]中任取出一个数,求取到1的概率;( )(2)从区间[-10,10]中任取出一个数,求取到绝对值不大于1的数的概率;( )(3)从区间[-10,10]中任取出一个数,求取到大于1且小于2的数的概率;( )(4)向一个边长为4 cm的正方形ABCD内投一点P,求点P离正方形的中心不超过1 cm的概率.( )解析:(1)不是几何概型;(2)(3)(4)是几何概型,满足无限性,且等可能性. 答案:(1)× (2)√ (3)√ (4)√2.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为( ) A.13 B.12 C.14D.23解析:选D.由|x |≤1,得-1≤x ≤1,所以|x |≤1的概率为P (|x |≤1)=23.3.如图,假设你在如图所示的图形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:设圆的半径为R ,则圆的面积为S =πR 2,阴影的面积S 阴=12·2R ·R =R 2,故所求概率P =S 阴S =R 2πR 2=1π. 答案:1π4.古典概型与几何概型有何区别?解:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.1.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.3.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,对应随机事件及试验结果的几何量可以是长度、面积或体积.与长度有关的几何概型(2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25D.15[解析] 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.[答案] B[互动探究] 本例中,若将“X ≤1”改为“|X |≤1”,则概率为多少?解:由|X |≤1,得-1≤X ≤1,由几何概型概率计算公式可得,|X |≤1的概率为P =1-(-1)3-(-2)=25.方法归纳(1)本题的关键是判断事件发生的概率是只与长度有关的几何概型.(2)将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.1.(1)某人从甲地去乙地共走了500米,途经一条宽为x 米的河流,他不小心把一件物品丢到途中,如果物品掉到河里就找不到,若物品不掉到河里,则能找到,已知该物品被找到的概率是45,则河宽为( )A .80米B .100米C .40米D .50米解析:选B.该物品能够被找到的路径长为500-x 米,由几何概型知,45=500-x500,解得x =100米,故选B.(2)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.(链接教材P 136例1)解:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的概率公式得P (A )=60-5060=16.即“等待报时的时间不多于10分钟”的概率为16.与面积有关的几何概型(2014·高考辽宁卷)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8[解析] 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.[答案] B方法归纳(1)与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.(2)解与面积相关的几何概型问题的三个关键点 ①根据题意确认是否是与面积有关的几何概型问题;②找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; ③套用公式,从而求得随机事件的概率.2.一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求海豚嘴尖离岸边不超过2 m 的概率.解:如图所示,区域Ω是长30 m 、宽20 m 的长方形,图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375.即海豚嘴尖离岸边不超过2 m 的概率约为2375.与体积有关的几何概型一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,则称其为“安全飞行”,求蜜蜂“安全飞行”的概率.[解] 满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P =1333=127.方法归纳“体积比”求几何概型的概率是常见题型,通常利用图形的几何特征度量来求随机事件的概率.3.(1)如图所示,有一瓶2升的水,其中含有1个细菌.用一小杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小瓶中有0.1升水,原瓶中有2升水, ∴由几何概型求概率的公式得P (A )=0.12=0.05.(2)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机抽取10毫升,则其含有麦锈病种子的概率是多少?解:1升=1 000毫升,记事件A =“取10毫升种子含有这粒带麦锈病的种子”,则P (A )=101 000=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率是0.01.数学思想数形结合思想在求解几何概型中的应用(2014·高考重庆卷)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)[解析] 设小王到校时间为x ,小张到校时间为y ,则小张比小王至少早到5分钟时满足x -y ≥5.如图,原点O 表示7:30,在平面直角坐标系中画出小王和小张到校的时间构成的平面区域(图中正方形区域),该正方形区域的面积为400,小张比小王至少早到5分钟对应的图形(图中阴影部分)的面积为12×15×15=2252,故所求概率为P =2252400=932.[答案]932[感悟提高]数形结合思想的实质就是把抽象的数学语言、数量关系和直观的图形结合起来.包含“以形助数”和“以数辅形”两个方面.在本节中把几何概型问题利用坐标系转化成图形问题(或符合条件的点集问题)去解决.本题的难点是把两个时间分别用x 、y 两个坐标轴表示,构成平面内的点(x ,y ),从而把时间这一个一维长度问题转化为平面图形的二维面积问题,转化成面积型几何概型问题,这种方法是解决这类问题的常用手法,不失为一种好方法.1.如图,在边长为25 cm 的正方形中挖去边长为23 cm 的两个等腰直角三角形,现有均匀的粒子散落在正方形中,则粒子落在中间带形区域的概率为( )A.529625B.433625C.192625D.96625解析:选D.因为均匀的粒子落在正方形内任何一点是等可能的,所以符合几何概型的条件.设A =“粒子落在中间带形区域”,则依题意得正方形面积为25×25=625,两个等腰直角三角形的面积为2×12×23×23=529,带形区域的面积为625-529=96,故所求概率为P (A )=96625. 2.如图所示,四边形ABCD 为矩形, AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( )A.13B.23C.25D.35解析:选A.连结AC ,交弧DE 于P (图略).由题意知,∠BAC =π6.弧PE 的长度为π6,弧DE 的长度为π2,则直线AP 与线段BC 有公共点的概率是P =π6÷π2=13.3.已知方程x 2+3x +p4+1=0,若p 在[0,10]中随机取值,则方程有实数根的概率为( )A.12B.13C.25D.23解析:选A.因为总的基本事件是[0,10]内的全部实数,所以基本事件总数为无限个,符合几何概型的条件,事件对应的测度为区间的长度,总的基本事件对应区间[0,10],长度为10,而事件“方程有实数根”应满足Δ≥0,即9-4×1×⎝ ⎛⎭⎪⎫p4+1≥0,得p ≤5,所以对应区间[0,5],长度为5,所以所求概率为510=12.4.一个球型容器的半径为3 cm ,里面装有纯净水,因为实验人员不小心混入了一个H7N9病毒,从中任取1 mL 水,含有H7N9病毒的概率是________.解析:水的体积为43πR 3=43×π×33=36π(cm 3)=36π(mL).故含有病毒的概率为P =136π. 答案:136π[A.基础达标]1.下列关于几何概型的说法中,错误的是( ) A .几何概型是古典概型的一种,基本事件都具有等可能性 B .几何概型中事件发生的概率与它的位置或形状无关 C .几何概型在一次试验中可能出现的结果有无限多个 D .几何概型中每个结果的发生都具有等可能性解析:选A.几何概型和古典概型是两种不同的概率模型,故选A.2.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率为( )A.13B.23C.14D.34解析:选A.记M =“射线OC 使得∠AOC 和∠BOC 都不小于30°”.如图所示,作射线OD ,OE 使∠AOD =30°,∠AOE =60°.当OC 在∠DOE 内时,使得∠AOC 和∠BOC 都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P (M )=3090=13.3.在2015年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.910解析:选A.记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110.4.已知在一个边长为2的正方形中有一个圆,随机向正方形内丢一粒豆子,若落入圆内的概率为0.3,则该圆的面积为( )A .0.6B .0.8C .1.2D .1.6解析:选C.记“豆子落入圆内”为事件A ,豆子落入正方形内任一点的机会都是等可能的,这是一个几何概型,P (A )=S 圆S 正,所以S 圆=P (A )×S 正=0.3×22=1.2.因此,圆的面积为1.2.5.(2013·高考湖南卷)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12 B.14 C.32D.74解析:选D.由于满足条件的点P 发生的概率为12,且点P 在边CD 上运动,根据图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB =AB (当点P 超过点E 向点D 运动时,PB >AB ).设AB =x ,过点E 作EF ⊥AB 交AB 于点F ,则BF =34x .在Rt △FBE 中,EF 2=BE2-FB 2=AB 2-FB 2=716x 2,即EF =74x ,∴AD AB =74.6.(2015·西安质检)在正方体ABCD ­A 1B 1C 1D 1内随机取点,则该点落在三棱锥A 1­ABC 内的概率是______.解析:设正方体的棱长为a ,则所求概率P =VA 1­ABC VABCD ­A 1B 1C 1D 1=13×12a 2·a a 3=16.答案:167.如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16. 答案:168.(2014·高考福建卷)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.解析:由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18. 答案:0.189.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,取线段MP 的中点D ,则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分时,△SAB 的面积才能大于82,而S 阴影=S 扇形MOP -S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π. 10.射箭比赛的箭靶涂有五个彩色得分环.从外向内分为白色、黑色、蓝色、红色、靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中“黄心”的概率为多少?解:因为射中靶面内任一点都是等可能的, 所以基本事件总数为无限个.此问题属于几何概型,事件对应的测度为面积, 总的基本事件为整个箭靶的面积,它的面积为π⎝ ⎛⎭⎪⎫12222cm 2;记事件A ={射中“黄心”},它的测度为“黄心”的面积,它的面积为π⎝ ⎛⎭⎪⎫12.222cm 2,P (A )=“黄心”的面积箭靶的面积=π⎝ ⎛⎭⎪⎫12.222π⎝ ⎛⎭⎪⎫12222=1100, 所以射中“黄心”的概率为1100. [B.能力提升]1.有四个游戏盘,如果撒一粒黄豆落在阴影部分,即可中奖,小明希望中奖,则他应当选择的游戏盘为( )解析:选A.根据几何概型的面积比,A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.2.(2015·郑州六校联考)如图,扇形AOB 的半径为1,圆心角为90°,点C ,D ,E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有扇形中随机取出一个,面积恰为π8的概率是( )A.310B.15C.25D.12解析:选A.题图中共有10个不同的扇形,分别为扇形AOB 、AOC 、AOD 、AOE 、EOB 、EOC 、EOD 、DOC 、DOB 、COB ,其中面积恰为π8的扇形(即相应圆心角恰为π4的扇形)共有3个(即扇形AOD 、EOC 、BOD ),因此所求的概率等于310.3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,则两人能会面的概率为________.解析:以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的条件是|x -y |≤15.如图,平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图中的阴影部分表示,由几何概型的概率公式得P (A )=S A S =602-452602=716. 答案:7164.如图,正方形OABC 的边长为2.(1)在其四边或内部取点P (x ,y ),且x ,y ∈Z ,则事件“|OP |>1”的概率为________.(2)在其内部取点P (x ,y ),且x ,y ∈R ,则事件“△POA ,△PAB ,△PBC ,△PCO 的面积均大于23”的概率是________.解析:(1)在正方形的四边和内部取点P (x ,y ),且x ,y ∈Z ,则所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共有n =9个,其中满足|OP |>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共有m =6个,所以满足|OP |>1的概率为P =69=23.(2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA ,△PAB ,△PBC ,△PCO 的面积均大于23,应该三角形的高大于23,所以这个区域为每个边长从两端各去掉23后剩余的正方形,其面积为23×23=49,所以满足条件的概率为494=19.答案:(1)23 (2)195.2013年度世界新闻人物——斯诺登,他揭露了美国的监听丑闻.国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上在开始录音的1 min 内从第30 s 后的某一时刻开始,有10 s 长的一段内容包含间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了,那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?解:记A ={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 发生就是在0到23 min时间段内按错键.P (A )=2330=145.6.(选做题)一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF ­BCE 内自由飞行,求它飞入几何体F ­AMCD 内的概率. 解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC . 因为V F ­AMCD =13S 四边形AMCD ×DF =13×12(12a +a )·a ·a =14a 3,V ADF ­BCE =12a 2·a =12a 3,所以苍蝇飞入几何体F ­AMCD 内的概率为14a 312a 3=12.。

高中数学 第三章《概率》《3.3几何概型》教案 新人教A版必修3

高中数学 第三章《概率》《3.3几何概型》教案 新人教A版必修3

黑龙江省大庆外国语学校高中数学 第三章《概率》《3.3几何概型》教案 新人教A 版必修3一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; (4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法:通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法; 四、教学过程:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。

例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。

2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析: 课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

高中数学《3.3 几何概型》导学案 新人教A版必修3

高中数学《3.3 几何概型》导学案 新人教A版必修3

§3.3 几何概型授课时间第周星期第节课型新授课主备课人学习目标1初步体会模拟方法在概率方面的应用;2.理解几何概型的定义及其特点,会用公式计算简单的几何概型问题。

重点难点重点:借助模拟方法来估计某些事件发生的概率;几何概型的概念及应用,体会随机模拟中的统计思想:用样本估计总体难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;应用随机数解决各种实际问题。

学习过程与方法自主学习1.模拟方法:通常借助____________来估计某些随机事件发生的概率。

用模拟方法可以在短时间内完成大量的重复试验,对于某些无法确切知道概率的问题,模拟方法能帮助我们得到其概率的近似值。

2.几何概型:(1)向平面上有限区域(集合)G内随机地投掷点M,若点M落在的概率与G1的成正比,而与G的、无关,即P(点M落在G1) =,则称这种模型为几何概型。

(2)几何概型中G也可以是或的有限区域,相应的概率是或。

探索新知:1.几何概型中事件A的概率是否与构成事件A的区域形状有关?2.在几何概型中,如果A为随机事件,若P(A) = 0,则A一定为不可能事件吗?3.阅读p156 “问题提出”,你的结论是什么?精讲互动例1.在相距3m的两杆之间扯上一铁丝,小明洗完衣服后,将衣服挂在铁丝上晾晒,则所挂衣服与两杆的距离都不小于1m的概率有多大?例2.(选讲)在区间[-1,1]上任取两个数,则(1)求这两个数的平方和不大于1的概率;(2)求这两个数的差的绝对值不大于1的概率。

达标训练1. 课本p157 练习1 22. 教辅资料作业习题3-3 1,2布置学习小结/教学反思。

高中数学 (3.3.1 几何概型)教案 新人教A版必修3

高中数学 (3.3.1 几何概型)教案 新人教A版必修3

课 题:3.3.1 几何概型教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A .(6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、例题讲解:例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:见教材136页解:(略)变式训练1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.2、 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.四、课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.五、课后作业:课本习题3.3A组1、2、3.板书设计课后反思:。

第三章概率3.3.1几何概型教案新人教A版必修3

第三章概率3.3.1几何概型教案新人教A版必修3

331 几何概型、教学内容解析本节课是人教A版《普通高目中课程标准实验教科书•数学》必修3中的第三章第三节第一课时的内容。

本课主要学习几何概型的相关内容,包括几何概型的概念及概率计算公式。

本节内容紧接古典概型之后,是第二类概率模型,也是对古典概型内容的进一步拓展。

因而本课的重点把握在几何概型的判断,古典概型及几何概型的区别,以及如何利用几何概型的概率公式解题。

因此本课开始以回顾古典概型的概念及特点作为课前导入,结合一个概型判断的选择题,引导学生发现几何概型及古典概型的区别,进而对比引出几何概型的概念。

紧接着结合生活中的几个案例加深学生对几何概型的理解。

接着对比案例,引导学生通过古典概型的概率计算公式推出几何概型概率计算公式,然后通过例题分别从长度、面积、体积三个方面解决对应的生活中的几何概型问题。

(一)知识与技能:(1)体会几何概型的意义。

(2)了解几何概型的基本特点与古典概型的异同点、会进行简单的几何概型计算。

(二)过程与方法:学生通过自主探究,讨论交流,经历概念产生与发展的过程,进一步培养学生观察、分析、类比等逻辑推理能力,通过对本节知识的探究与学习,感知用图形解决概率问题的方法,渗透化归、数形结合等思想方法。

(三)情感、态度与价值观:本节课选材取例均来源于生活,学生积极参与探究,进一步树立数学是来源于生活而又服务于生活的意识,让学生感受生活中处处有数学,体会数学对自然与社会所产生的作用,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的问题。

为了达到上面的教学目标和根据课程标准的要求,因此把学生能够正确区分几何概型及古典概型两者的区别和学生初步掌握并运用几何概型解决有关概率的基本问题作为教学重点。

教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

2.学情分析:从学生的思维特点看,很容易把本节内容与古典概型的特点,计算方法等方面进行类比因此两者有联系这是积极因素,应因势利导,但是几何概型的计算方法与古典概型有本质的区别,这对学生的思维是一个突破。

高中数学 第三章 概率 3.3.1 几何概型学案 新人教A版必修3

高中数学 第三章 概率 3.3.1 几何概型学案 新人教A版必修3

3.3.1 几何概型1.理解几何概型的定义及特点.(重点)2.掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点)3.与长度、角度有关的几何概型问题.(易混点)[基础·初探]教材整理1 几何概型阅读教材P 135~P 136例1以上的部分,完成下列问题. 1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的可能性相等. 3.几何概型的概率公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.判断(正确的打“√”,错误的打“×”)(1)几何概型的概率与构成事件的区域形状无关.( ) (2)在射击中,运动员击中靶心的概率在(0,1)内.( ) (3)几何概型的基本事件有无数多个.( ) 【答案】 (1)√ (2)× (3)√2.如图所示,有四个游戏盘,将它们水平放稳后,向上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解析】 A 中奖概率为38,B 中奖概率为14,C 中奖概率为13,D 中奖概率为13,故选A.【答案】 A3.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.【解析】 ∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.【答案】 23教材整理2 均匀分布阅读教材P 136例1及以下的部分,完成下列问题.当X 为区间[a ,b ]上的任意实数,并且是等可能的,我们称X 服从[a ,b ]上的均匀分布,X 为[a ,b ]上的均匀随机数.X 服从[3,40]上的均匀分布,则X 的值不能等于( )A .15B .25C .35D .45【解析】 由于X ∈[3,40],则3≤X ≤40,则X ≠45.故选D. 【答案】 D[小组合作型]位乘客到达车站后等车时间超过10 min 的概率.【精彩点拨】 乘客在上一辆车发车后的5 min 之内到达车站,等车时间会超过10 min. 【尝试解答】 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.[再练一题]1.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.【解】 在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm ,现用直径等于2 cm 的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.【精彩点拨】 当且仅当硬币中心与格线的距离都大于半径1,硬币落下后与格线没有公共点,在等边三角形内作与正三角形三边距离为1的直线,构成小等边三角形,当硬币中心在小等边三角形内时,硬币与三边都没有公共点,所以硬币与格线没有公共点就转化为硬币中心落在小等边三角形内的问题.【尝试解答】 设A ={硬币落下后与格线没有公共点},如图所示,在等边三角形内作小等边三角形,使其三边与原等边三角形三边距离都为1,则等边三角形的边长为43-23=23,由几何概率公式得:P (A )=34323432=14.几何概型的特点是基本事件有无限多个,但应用数形结合的方法即可巧妙解决,即要构造出随机事件对应的几何图形,利用图形的几何量度来求随机事件的概率.[再练一题]2.如图3­3­1,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为________.图3­3­1【解析】 由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.【答案】 1-π4持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率.【精彩点拨】 利用体积之比求概率.【尝试解答】 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P =1333=127.与体积有关的几何概型问题的解决:如果试验的全部结果所构成的区域可用体积来度量,则其概率的计算公式为:P A =构成事件A 的体积试验的全部结果构成的体积解决此类问题一定要注意几何概型的条件,并且要特别注意所求的概率是与体积有关还是与长度有关,不要将二者混淆.[再练一题]3.本例条件不变,求这个蜜蜂飞到正方体某一顶点A 的距离小于13的概率.【解】 到A 点的距离小于13的点,在以A 为球心,半径为13的球内部,而点又必须在已知正方体内,则满足题意的A 点的区域体积为43π×⎝ ⎛⎭⎪⎫133×18.所以P =43π×⎝ ⎛⎭⎪⎫133×1833=π2×37.[探究共研型]探究1 【提示】 相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的. 不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.探究2 P (A )=0⇔A 是不可能事件,P (A )=1⇔A 是必然事件是否成立?【提示】 (1)无论是古典概型还是几何概型,若A 是不可能事件,则P (A )=0肯定成立;若A 是必然事件,则P (A )=1肯定成立.(2)在古典概型中,若事件A 的概率P (A )=0,则A 为不可能事件;若事件A 的概率P (A )=1,则A 为必然事件.(3)在几何概型中,若事件A 的概率P (A )=0,则A 不一定是不可能事件,如:事件A 对应数轴上的一个点,则其长度为0,该点出现的概率为0,但A 并不是不可能事件;同样地,若事件A 的概率P (A )=1,则A 也不一定是必然事件.(1)在区间[-2,2]上任取两个整数x ,y 组成有序数对(x ,y ),求满足x 2+y 2≤4的概率;(2)在区间[-2,2]上任取两个实数x ,y 组成有序数对(x ,y ),求满足x 2+y 2≤4的概率. 【精彩点拨】 (1)在区间[-2,2]上任取两个整数x ,y ,组成有序数对(x ,y )是有限的,应用古典概型求解;(2)在区间[-2,2]上任取两个实数x ,y ,组成有序数对(x ,y )是无限的,应用几何概型求解.【尝试解答】 (1)在区间[-2,2]上任取两个整数x ,y 组成有序数对(x ,y ),共计25个,其中满足x 2+y 2≤4的在圆上或圆内共计13个(如图所示),∴P =1325.(2)在区间[-2,2]上任取两个实数x ,y 组成有序数对(x ,y ),充满的区域是边长为4的正方形区域,其中满足x 2+y 2≤4的是图中阴影区域(如图所示),S 阴=π×22=4π,∴P =4π16=π4.古典概型与几何概型的不同之处是古典概型的基本事件总数是有限的,而几何概型的基本事件总数是无限的,解题时要仔细审题,注意区分.[再练一题]4.下列概率模型中,几何概型的个数为( )①从区间[-10,10]上任取一个数,求取到1的概率;②从区间[-10,10]上任取一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]上任取一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm的正方形内投一点,求点离中心不超过1 cm的概率.A.1 B.2C.3 D.4【解析】①中的概率模型不是几何概型,虽然区间[-10,10]上有无数个数,但取到“1”只是一个数字,不能构成区间长度;②中的概率模型是几何概型,因为区间[-10,10]和区间[-1,1]上都有无数个数,且在这两个区间上的每个数被取到的可能性相等;③中的概率模型不是几何概型,因为区间[-10,10]上的整数只有21个,是有限的;④中的概率模型是几何概型,因为在边长为4 cm的正方形和半径为1 cm的圆内均有无数个点,且这两个区域内的任何一个点被投到的可能性相同.【答案】 B1.转动图中各转盘,指针指向红色区域的概率最大的是( )【解析】D中红色区域面积是圆面积的一半,其面积比A、B、C中要大,故指针指到的概率最大.【答案】 D2.一只蚂蚁在如图3­3­2所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后停留在黑色地板砖(阴影部分)上的概率是( )图3­3­2A.13 B.23 C.14D.18【解】 从题图中可以得到地板砖总数为12,其中黑色地板砖有4个,由此可知最后停留在黑色地板砖上的概率是412=13.【答案】 A3.在半径为1的圆中随机地投一个点,则点落在圆内接正方形中的概率是( ) A.1π B.2π C.2πD.3π【解析】 点落在圆内的任意位置是等可能的,而落在圆内接正方形中只与面积有关,与位置无关,符合几何概型特征,圆内接正方形的对角线长等于2,则正方形的边长为 2.∵圆面积为π,正方形面积为2,∴P =2π.【答案】 B4.函数f (x )=-x 2+2x ,x ∈[-1,3],则任取一点x 0∈[-1,3],使得f (x 0)≥0的概率为________.【解析】 依题意得,⎩⎪⎨⎪⎧-x 20+2x 0≥0,-1≤x 0≤3,解得0≤x 0≤2,所以任取一点x 0∈[-1,3],使得f (x 0)≥0的概率P =23--=12. 【答案】 125.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边长作一个正方形,求作出的正方形面积介于36 cm 2与81 cm 2之间的概率.【解】 如图所示,点M 落在线段AB 上的任一点上是等可能的,并且这样的点有无限多个.设事件A 为“所作正方形面积介于36 cm 2与81 cm 2之间”,它等价于“所作正方形边长介于6 cm 与9 cm 之间”.取AC =6 cm ,CD =3 cm ,则当M 点落在线段CD 上时,事件A 发生. 所以P (A )=|CD ||AB |=312=14.。

新人教A版必修32022-2021学年高中数学第3章概率3_3_1几何概型学案

新人教A版必修32022-2021学年高中数学第3章概率3_3_1几何概型学案

3.3.1 几何概型1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.1.几何概型的定义与特点(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点:①可能出现的结果有无限多个;②每个结果发生的可能性相等.2.几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).1.几何概型有何特点?[提示]①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.2.古典概型与几何概型有何区别?[提示]古典概型的试验结果是有限的,而几何概型的试验结果是无限的.3.判断正误.(正确的打“√”,错误的打“×”)(1)几何概型的概率与构成事件的区域形状无关.( )(2)在射击中,运动员击中靶心的概率在(0,1)内.( ) (3)几何概型的基本事件有无数多个.( )(4)从区间[-1,1]上取一个数,求取到1的概率属于几何概型.( ) [答案] (1)√ (2)× (3)√ (4)×题型一与长度、角度有关的几何概型【典例1】 (1)如图所示,A 、B 两盏路灯之间长度是30 m ,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10 m 的概率是多少?(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条直线CM ,与线段AB 交于点M .求AM <AC 的概率.[思路导引] (1)在A 、B 之间每一位置处安装路灯C ,D 都是一个基本事件,基本事件有无限多个,且每一个基本事件的发生都是等可能的,因此事件发生的概率只与长度有关;(2)过直角顶点C 在∠ACB 内部作一条直线CM ,与线段AB 交于点M . 基本事件有无限多个,且每一个基本事件的发生都是等可能的,因此事件发生的概率只与角度有关.[解] (1)记E :“A 与C 、B 与D 之间的距离都不小于10 m”,把AB 三等分,由于中间长度为30×13=10 (m),∴P (E )=1030=13.(2)在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°.设事件A ={在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,AM <AC }, 则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°, ∴P (A )=67.5°90°=34.(1)与长度有关的几何概型问题综述①如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为:P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.②将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.(2)与角度有关的几何概型的求法①当涉及射线的转动,扇形中有关落点区域问题时,常以角度的大小作为区域度量来计算概率.②与角度有关的几何概型的概率计算公式为P (A )=构成事件A 的区域角度试验的全部结果所构成的区域角度.③解决此类问题的关键是事件A 在区域角度内是均匀的,进而判定事件的发生是等可能的.④对于一个具体问题,能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的每一点,使得全体结果构成一个可度量的区域.⑤如果试验结果涉及的区域可用角表示,则可以判定需利用与角度有关的几何概型概率的计算公式解决.对于此类题,往往角的始边是固定的,只要考虑终边位置的情况即可.[针对训练1] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________. (2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解析] (1)∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.(2)设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.[答案] (1)23 (2)13题型二与面积有关的几何概型问题【典例2】 (1)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4(2) 如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14C.38D.12[解析] (1)不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由于正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积为π2,故此点取自黑色部分的概率为π24=π8,故选B.(2)易知点C 的坐标为(1,2),点D 的坐标为(-2,2),所以矩形ABCD 的面积为6,阴影部分的面积为32,故所求概率为14.[答案] (1)B (2)B(1)与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.(2)解与面积相关的几何概型问题的三个关键点 ①根据题意确认是否是与面积有关的几何概型问题;②找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; ③套用公式,从而求得随机事件的概率.[针对训练2] 如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4B.π2-1 C .2-π2D.π4[解析] 由几何概型知所求的概率P =S 图形DEBF S 矩形ABCD =2×1-14×π×12×22×1=1-π4.[答案] A题型三与体积有关的几何概型的问题【典例3】 一个多面体的直观图和三视图如下图所示,M 是AB 的中点,一只蜻蜓在几何体ADF —BCE 内自由飞翔,则它飞入几何体F —AMCD 内的概率为( )A.34B.23C.12D.13[解析] 由三视图可知DA ,DC ,DF 两两垂直,且DA =DC =DF =a , ∴V F —AMCD =13S 梯形AMCD ·DF =14a 3.又V ADF —BCE =12a 3,∴蜻蜓飞入几何体F —AMCD 内的概率为P =V F —AMCD V ADF -BCE =12. [答案] C体积型几何概型问题解法探秘(1)如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的体积及事件A占的体积.其概率的计算公式为:P(A)=构成事件A的体积试验的全部结果构成的体积.(2)解决此类问题一定要注意几何概型的条件,并且要特别注意所求的概率是与体积有关还是与长度有关,不要将二者混淆.[针对训练3] (1)一只蝴蝶(体积忽略不计)在一个长、宽、高分别为5,4,3的长方体内自由飞行,若蝴蝶在飞行过程中始终保持与长方体的6个面的距离均大于1,则称其为“安全飞行”,那么蝴蝶“安全飞行”的概率为( )A.110B.25C.π45D.45-π45(2)一个靶子如图所示,随机地掷一个飞镖扎在靶子上,假设飞镖既不会落在靶心,也不会落在阴影部分与空白的交线上,现随机向靶掷飞镖30次,则飞镖落在阴影部分的次数约为( )A.5 B.10C.15 D.20[解析](1)长方体的体积为5×4×3=60,蝴蝶“安全飞行”区域的体积为3×2×1=6.根据几何概型的概率计算公式,可得蝴蝶“安全飞行”的概率为160=110.(2)阴影部分对应的圆心角度数和为60°,所以飞镖落在阴影内的概率为60°360°=16,飞镖落在阴影内的次数约为30×16=5.[答案] (1)A (2)A课堂归纳小结1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的题目. 3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).1.将一条5米长的绳子随机地切断为两段,则两段绳子都不短于1米的概率为( ) A.15 B.25 C.35 D.45[解析] 由题意,只要在距离两端分别至少为1米处剪断,满足题意的位置有3米,由几何概型公式得到所求概率为5-25=35,故选C.[答案] C2.如图,正方形ABCD 的内切圆中黑色部分和白色部分关于正方形对边中点的连线对称,在正方形内随机取一点,则此点取自灰色部分的概率是( )A.π8B.12C.8-π8D .4[解析] 设正方形的边长为2,根据几何概型概率计算公式,此点取自灰色部分的概率P =12π×122×2=π8.故选A.[答案] A3.在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6π B.32π C.3π D.233π[解析] 由题意可得正方体的体积为V 1=1.又球的直径是正方体的体对角线,故球的半径R =32.球的体积V 2= 43πR 3=32π.则此点落在正方体内的概率为P =V 1V 2=132π=233π. [答案] D4.函数f (x )=2x(x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( )A.12B.13C.14D.23[解析] 函数f (x )=2x(x <0)的值域为D =(0,1),长度为1,区间(-1,2)的长度为3,所以概率为13.[答案] B5.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为( )A.12B.32C.13D.14[解析] 如图,当AA ′的长度等于半径长度时∠AOA ′=π3,由圆的对称性及几何概型得P =2π32π=13.故选C.[答案] C课后作业(二十一)(时间45分钟)学业水平合格练(时间25分钟)1.已知函数f (x )=2x,若从区间[-2,2]上任取一个实数x ,则使不等式f (x )>2成立的概率为( )A.14B.13C.12D.23[解析] 这是一个几何概型,其中基本事件的总数构成的区域对应的长度是2-(-2)=4,由f (x )>2可得x >1,所以满足题设的基本事件构成的区域对应的长度是2-1=1,则使不等式f (x )>2成立的概率为14.[答案] A2.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40 s .若一名行人来到该路口遇到红灯,则至少需要等待15 s 才出现绿灯的概率为( )A.710 B.58 C.38 D.310[解析] 记“至少需要等待15 s 才出现绿灯”为事件A ,则P (A )=40-1540=58.[答案] B3.已知ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点P ,则取到的点P 到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8 D .1-π8[解析] 如图所示,设取到的点P 到O 的距离大于1为事件M ,则点P 应在阴影部分内,阴影部分的面积为2×1-12×π×12=2-π2,所以P (M )=2-π22=1-π4.[答案] B4.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为( )A.310 B.15 C.25 D.45[解析] 在线段AB 上任取一点P ,事件“正方形的面积介于25 cm 2与49 cm 2之间”等价于事件“5<|AP |<7”,则所求概率为7-510=15.[答案] B5.如图所示,有四个游戏盘,将它们水平放稳后,向上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )[解析] A 中奖概率为38,B 中奖概率为14,C 中奖概率为13,D 中奖概率为13.[答案] A6.记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.[解析] 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59.[答案] 597.水池的容积是20 m 3,水池里的水龙头A 和B 的水流速度都是1 m 3/h ,它们一昼夜(0~24 h)内随机开启,则水池不溢水的概率为________.[解析] 如图所示,横坐标和纵坐标分别表示A ,B 两水龙头开启的时间,则阴影部分是满足不溢水的对应区域,因为正方形区域的面积为24×24,阴影部分的面积是12×20×20,所以所求的概率P =12×20×2024×24=2572.[答案]25728.已知方程x 2+3x +p4+1=0,若p 在[0,10]中随机取值,则方程有实数根的概率为________.[解析] 因为总的基本事件是[0,10]内的全部实数,所以基本事件总数为无限个,符合几何概型的条件,事件对应的测度为区间的长度,总的基本事件对应区间[0,10],长度为10,而事件“方程有实数根”应满足Δ≥0,即9-4×1×⎝ ⎛⎭⎪⎫p4+1≥0,得p ≤5,所以对应区间[0,5],长度为5,所以所求概率为510=12.[答案] 129.已知点M (x ,y )满足|x |≤1,|y |≤1.求点M 落在圆(x -1)2+(y -1)2=1的内部的概率.[解] 如图所示,区域Ω为图中的正方形,正方形的面积为4,且阴影部分是四分之一圆,其面积为14π,则点M 落在圆(x -1)2+(y -1)2=1的内部的概率为14π4=π16.10.在街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?[解] (1)如图(1)所示,因为O 落在正方形ABCD 内任何位置是等可能的,小圆板与正方形塑料板ABCD 的边相交接是在圆板的中心O 到与它靠近的边的距离不超过1 cm 时,所以O 落在图中阴影部分时,小圆板就能与塑料板ABCD 的边相交接,这个范围的面积等于92-72=32(cm 2),因此所求的概率是3292=3281.(2)小圆板与正方形的顶点相交接是在圆心O 与正方形的顶点的距离不超过小圆板的半径1 cm 时,如图(2)阴影部分,四块合起来面积为π cm 2,故所求概率是π81.应试能力等级练(时间20分钟)11.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x-y |≤12”的概率,p 3为事件“xy ≤12”的概率,则( )A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 3<p 1<p 2D .p 3<p 2<p 1[解析] x ,y ∈[0,1],事件“x +y ≥12”表示的区域如图(1)中阴影部分S 1,事件“|x-y |≤12”表示的区域如图(2)中阴影部分S 2,事件“xy ≤12”表示的区域如图(3)中阴影部分S 3.由图知,阴影部分的面积S 2<S 3<S 1,正方形的面积为1×1=1.根据几何概型的概率计算公式,可得p 2<p 3<p 1.[答案] B12.在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.A.34B.23C.35D.15[解析] 若直线y =kx 与圆(x -5)2+y 2=9相交,则有圆心到直线的距离d =|5k |k 2+1<3,即-34<k <34,所以所求概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.[答案] A13.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是________.[解析] 如图,设点C 到边AB 的距离为h ,则S △ABC =12|AB |·h ,S △PBC =12|PB |·h .又因为S △PBC >14S △ABC ,所以|PB |>14|AB |,故△PBC 的面积大于S 4的概率是34.[答案] 3414.已知0<a <1,分别在区间(0,a )和(0,4-a )内任取一个数,而取出的两数之和小于1的概率为316,则a 的值为________.[解析] 设所取的两个数分别为x ,y ,由题知所有基本事件构成的集合为Ω={(x ,y )|0<x <a,0<y <4-a,0<a <1},其对应区域为矩形,面积为S (Ω)=a (4-a ),而事件A ={(x ,y )∈Ω|x +y <1},其对应区域面积为S (A )=12(1+1-a )a ,由几何概型的概率计算公式知316=12(1+1-a )a a (4-a ),即a (5a -4)=0,解得a =45.[答案] 4515.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个等分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.[解] (1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,ON ,OM ,OP ,取线段MP 的中点D ,则OD ⊥MP , 易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分(不在MP 上)时,△SAB 的面积才能大于82,而S 阴影=S扇形MOP-S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π.。

高中数学 第三章 概率 3.3.1 几何概型学案 新人教A版必修3

高中数学 第三章 概率 3.3.1 几何概型学案 新人教A版必修3

3.3.1 几何概型[学习目标] 1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.知识点一几何概型的含义1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.思考几何概型与古典概型有何区别?答几何概型与古典概型的异同点P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.思考计算几何概型的概率时,首先考虑的应该是什么?答首先考虑取点的区域,即要计算的区域的几何度量.题型一与长度有关的几何概型例1 取一根长为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?解如图,记“剪得两段的长都不小于1m”为事件A.把绳子三等分,于是当剪断位置处在中间一段时,事件A发生,因为中间一段的长度为1m,所以事件A 发生的概率为P (A )=13.反思与感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练1 某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34 答案 B解析 如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.题型二 与面积有关的几何概型例2 射箭比赛的箭靶中有五个涂有不同颜色的圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运动员在一定距离外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为多少? 解 如图,记“射中黄心”为事件B.因为中靶点随机地落在面积为⎝ ⎛⎭⎪⎫14×π×1222cm 2的大圆内,而当中靶点落在面积为⎝ ⎛⎭⎪⎫14×π×12.22cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14×π×12.2214×π×1222=0.01.反思与感悟 解此类几何概型问题的关键:(1)根据题意确定是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.跟踪训练2 一只海豚在水池中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.解 如图所示,区域Ω是长30m 、宽20m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2m”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2m 的概率约为0.31. 题型三 与体积有关的几何概型例3 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率为P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练3 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率. 解 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.题型四 与角度有关的几何概型例4 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.解 以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件. 于是,记事件B ={射线OA 落在∠xOT 内}. 因为∠xOT =60°,所以P (B )=60°360°=16.反思与感悟 当涉及射线的运动、扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.跟踪训练4 如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 因为CM 是∠ACB 内部的任意一条射线,而总的基本事件是∠ACB 的大小,即为90°, 所以作AC ′=AC ,且∠ACC ′=180°-45°2=67.5°.如图,当CM 在∠ACC ′内部的任意一个位置时,皆有AM <AC ′=AC ,即P (AM <AC )=67.5°90°=34.转化与化归思想例5 把长度为a 的木棒任意折成三段,求它们可以构成一个三角形的概率.分析 将长度为a 的木棒任意折成三段,要能够构成三角形必须满足“两边之和大于第三边”这个条件,进而求解即可.解 设将长度为a 的木棒任意折成三段的长分别为x ,y ,a -x -y ,则(x ,y )满足的条件为⎩⎪⎨⎪⎧0≤x ≤a ,0≤y ≤a ,0≤x +y ≤a ,它所构成的区域为图中的△AOB .设事件M ={能构成一个三角形},则当(x ,y )满足下列条件时,事件M 发生.⎩⎪⎨⎪⎧x +y >a -x -y ,x +a -x -y >y ,y +a -x -y >x ,即⎩⎪⎨⎪⎧x +y >a2,y <a2,x <a 2,它所构成的区域为图中的阴影部分, 故P (M )=S 阴影S △AOB =12×⎝ ⎛⎭⎪⎫a 2212×a 2=14.故满足条件的概率为14.解后反思 解决本题的关键是将之转化为与面积有关的几何概型问题.一般地,有一个变量可以转化为与长度有关的几何概型,有两个变量可以转化为与面积有关的几何概型,有三个变量可以转化为与体积有关的几何概型.1.在区间[0,3]上任取一个数,则此数不大于2的概率是( ) A.13B.12C.23D.79 答案 C解析 此数不大于2的概率P =区间[0,2]的长度区间[0,3]的长度=23.2.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( ) A.78B.56C.34D.12 答案 A解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是()A.13B.23C.43 D .无法计算答案 C解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.4.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( )A.112B.38C.116D.56 答案 C解析 由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件.事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,据几何概型概率计算公式,得看到黄灯的概率为P =580=116.5.在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341--=34.1.几何概型适用于试验结果是无限多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的题目. 3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.。

黑龙江省伊市高中数学 第三章 概率 3.3.1 几何概型导

黑龙江省伊市高中数学 第三章 概率 3.3.1 几何概型导

3.3.1几何概型【学法指导】1.认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;3.课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己!学习目标知识与技能过程与方法情感态度与价值观(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题,使学生能掌握几何概型概率计算公式的应用。

(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

学习重点1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

学习难点正确判断几何概型并求出概率。

【学习过程】复习提问:1、古典概型的两个特点:(1)试验中所有可能出现的基本事件只有____________.(2)每个基本事件出现的_____________________________.2、计算古典概型的公式:探究(一)1.一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;2.往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是有限的还是无限的。

那么对于有无限多个试验结果的情况相应的概率应如果求呢?进行下面的探究问题1:下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并随意停留在某块方砖上,问在哪个房间里,甲壳虫停留在黑砖上的概率大?书房问题2:图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜。

高中数学新人教版A版精品教案《3.3.1 几何概型》

高中数学新人教版A版精品教案《3.3.1 几何概型》

几何概型【教材分析】本节课是高中数学人教A版必修三第三章第三节第一课时几何概型,是新课程改革后新增的内容,是在学习了随机事件的概率及古典概型之后,引入的另一类等可能模型,在概率论中占有相当重要的地位学好几何概型有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些现象【学情分析】学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题【教学目标】知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率.过程与方法:通过试验与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界【重点难点】教学重点: 几何概型的基本特征及如何求几何概型的概率教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量【教法学法】本节课教师采用层层设疑、启发引导学生自主探究的教学模式;使用多媒体来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识【教学情景设计】习回顾古典概型概率公式:in ……[50,60min 合计实验次数发生频率思考:实验结果的频率呈现怎样的规律?你能用学过的知识解释这一规律吗?这是不是古典概型?问题1:一根长为3米的绳子,从中随机选一个位置剪断,则事件A:“两段长度都不小于1米”的概率是多少?问题2:某海域面积约为17万平方公里,如果在此海域里有面积达万平方公里的大陆架蕴藏着石油,假设在这个海域里任意选定一点钻探,则事件A:“钻出石油”的概率是多少?问题3:一杯1升的水,其中含有1个草履虫,用一个小杯从这杯水中取出升,求小杯水中含有这个草履虫的概率引导学生分析实际问题,通过实验积累经验并理解“等可能”的含义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;
过程与方法
对几何概型的教学,)通过学生玩转盘游戏,
1、几何概型概率计算公式及应用。

、如何利用几
、古典概型的两个特点
2、计算古典概型的公式:
探究(一)
1.一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;
2.往一个方格中投一个石子,石子可能落在方格中的任何一点……
这些试验可能出现的结果都是有限的还是无限的。

那么对于有无限多个试验结果的情况相应的概率应如果求呢?进行下面的探究
问题1:下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并随意停留在某块方砖上,问在哪个房间里,甲壳虫停留在黑砖上的概率大?
问题2:图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜。

在两种情况下分别求甲获胜的概率是多少?(图见教材135页图3.3-1)
问题3:甲获胜概率与区域的位置有关吗?与图形的大小有关吗?甲获胜可能性是由什么决定的?
几何概型:
定义:如果每个事件发生的概率只与构成该事件区域的_________________________成比例,则称这书房
样的概率模型为______________概率模型(geometric models of probability),简称几何概型。

几何概型的公式:
几何概型的特点
a) 试验中所有可能出现的基本事件有______________
b) 每个基本事件出现的__________________________
古典概型与几何概型的区别
相同:两者基本事件发生的可能性都是___________的;
不同:__________概型要求基本事件有有限个,______________概型要求基本事件有无限多个。

例1 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。

当堂检测
见教材142页习题3.3 A组
我的(反思、收获、问题):。

相关文档
最新文档