七年级数学上册期末模拟测试卷及答案

合集下载

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <02.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( )A .3B .4C .5D .63.以下问题,不适合抽样调查的是( )A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量 4.方程114x x --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4 C .4x-1+x=-4 D .4x-1+x=-15.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( )A .方案一B .方案二C .方案三D .不能确定6.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()n a b +的展开式的各项系数,此三角形数阵称为“杨辉三角”.第一行 ()0a b + 1第二行 ()1a b + 1 1第三行 ()2a b + 1 2 1第四行 ()3a b + 1 3 3 1第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( )A .190B .210C .231D .2537.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |8.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣89.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4 10.下列计算正确的是( ) A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b11.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个12.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .4二、填空题13.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________14.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.15.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm .16.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.17.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.18.如果单项式1b xy +-与23a x y -是同类项,那么()2019a b -=______.19.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.20.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______.21.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m n a a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.22.如图,用大小相等的小正方形拼成有规律的图形,第1个图中有1个正方形,第2个图中含有5个正方形,第3个图中含有14个正方形…,按此规律拼下去,第6个图中含正方形的个数是___________个.三、解答题23.发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表. 成绩x /分频数 百分比 5060x ≤<5 5% 6070x ≤<15 15% 7080x ≤<20 n 8090x ≤< m 35%90100x ≤≤25 25%请根据所给信息,解答下列问题:(1)m =______,n =______,并补全频数分布直方图;(2)若成绩在90分以上(包括90分)的为“优”等,则该校参与这次比赛的800名学生中成绩“优”等的约有多少人?24.计算:(1)11124834⎛⎫-⨯-+ ⎪⎝⎭ (2)()()()322132633-+⨯---÷⨯-25.如图,两条直线AB 、CD 相交于点O ,且∠AOC=∠AOD ,射线OM (与射线OB 重合)绕O 点逆时针方向旋转,速度为15°/s ,射线ON (与射线OD 重合)绕O 点顺时值方向旋转,速度为12°/s ,两射线,同时运动,运动时间为t 秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON 的度数为_____,∠BON 的度数为_____,∠MOC 的度数为_____;(2)当0<t <12时,若∠AOM=3∠AON -60°,试求出t 的值.(3)当0<t <6时,探究72COM BON MON∠+∠∠的值,在t 满足怎样的条件是定值,在t 满足怎样的条件不是定值.26.如图,点 A ,C 是数轴上的点,点 A 在原点上,AC=10.动点 P ,Q 网时分别从 A ,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度,点 M 是 AP 的中点,点 N 是 CQ 的中点.设运动时间为t 秒(t>0)(1) 点C 表示的数是______ ;点P 表示的数是______,点Q 表示的数是________(点P .点 Q 表示的数用含 t 的式子表示)(2) 求 MN 的长;(3) 求 t 为何值时,点P 与点Q 相距7个单位长度?27.(阅读材料)数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示.这样能够运用数形结合的方法解决一些问题,例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|31|2-=;在数轴上,有理数5与2-对应的两点之间的距离为|5(2)|7--=;在数轴上,有理数2-与3对应的两点之间的距离为|23|5--=;在数轴上,有理数8-与5-对应的两点之间的距离为|8(5)|3---=;……如图1,在数轴上有理数a 对应的点为点A ,有理数b 对应的点为点,,B A B 两点之间的距离表为||-a b 或||b a -,记为||||||AB a b b a =-=-.(解决问题)(1)数轴上有理数10-与5-对应的两点之间的距离等于______,数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为______,若数轴上有理数x 与5-对应的两点,A B 之间的距离||2AB =,则x 等于_______.(拓展探究)(2)如图2,点,,M N P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x .①若点P 在点,M N 两点之间,则||||PM PN +=______;②若||2||PM PN =,即点P 到点M 的距离等于点P 到点N 的距离的2倍,求x 的值.28.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 3.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .4.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C5.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m (1-20%)20%=0.36m ;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..6.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.7.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.8.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.9.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.11.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.12.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.二、填空题13.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x,根据圆心角度数的计算公式求解.【详解】设该组频数为x,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.14.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.15.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.16.100【解析】【分析】根据利润率(售价进价) 进价,先利用售价标价折数10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元按标价打8折后售价为:(元/件解析:100【解析】【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.17.3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=∠AOB =35°时,解析:3或4或6【解析】【分析】分三种情况下:①∠AOP =35°,②∠AOP =20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP =12∠AOB =35°时,∠BOP=35° ∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.18.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 19.-25.【解析】【分析】由x =1时,代数式ax+b+1的值是﹣3,求出a+b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax +b +1的值为﹣3,∴a +b +1=﹣3,∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.20.【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,==-2,,所以n 为奇数时,,n 为偶数时,,所以-=解析:1009-【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为10a =, 所以211a a =-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.21.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅=则23499100a a a a a a ⋅⋅⋅⋅⋅⋅10029939849749525051()()()()()()a a a a a a a a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101101101101101101a a a a a a =⋅⋅⋅⋅⋅⋅101101101101=a++++10150=a⨯5050=aa.故答案为:5050【点睛】本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.22.91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个解析:91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个图中共有3×3+5=14个正方形;第4个图形共有4×4+14=30个正方形;按照这种规律下去的第5个图形共有5×5+30=55个正方形.∴第6个图形共有6×6+55=91个正方形.故第6个图形共有91个正方形.故答案为:91.【点睛】此题主要考查了图形的变化类,此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题23.(1)35,20%,补全图见解析;(2)200(人)【解析】【分析】(1)根据第4组的频率是35%,求得m 的值,根据第3组频数是20,求得n 的值,然后补全频数直方图即可;(2)利用总数800乘以“优”等学生的所占的频率即可得出该校参加这次比赛的800名学生中成绩“优”等的人数.【详解】解:(1)由题可得,m=100×35%=35;n=20÷100=20%,补全频数直方图如下:故答案为:35,20%;(2)该校参加这次比赛的800名学生中成绩“优”等约有:800×25%=200(人).【点睛】本题考查频数(率)分布表,用样本估计总体,频数直方图.利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.24.(1) 1-;(2)7-【解析】【分析】(1)根据乘法分配律可以算得答案;(2)根据有理数的混合运算法则计算.【详解】解:(1)原式=()()1112424243861834⎛⎫-⨯+-⨯-+-⨯=-+-=- ⎪⎝⎭; (2)原式=()()138********-+⨯---⨯=--+=-.【点睛】本题考查有理数的运算,熟练掌握有理数的混合运算顺序、运算法则及运算律是解题关键.25.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON 与OA 重合时,t=90÷12=7.5(s ),当OM 与OA 重合时,t=180°÷15=12(s ),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t= 107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COM BONMON∠+∠∠=()()7901529012159012t tt t︒︒︒︒︒︒︒-++++=810812790tt︒︒︒-+(不是定值),②如图所示,当103<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°, ∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t ︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.26.(1)10,3,+10t t (2)10t - (3)32或172【解析】【分析】(1)根据动点P 、Q 的运动轨迹可得3AP t =,CQ t =,即可解答.(2)根据中点平分线段长度和线段的和差关系即可解答.(3)由(1)可得210PQ t =-+,代入求解即可.【详解】(1)∵点 A ,C 是数轴上的点,点 A 在原点上,AC=10∴点C 表示的数是10∵动点 P ,Q 网时分别从 A ,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度∴3AP t =,CQ t =∴点P 表示的数是3t ,点Q 表示的数是10t +故答案为:10,3,+10t t .(2)∵点 M 是 AP 的中点,点 N 是 CQ 的中点,3AP t =,CQ t =∴1311,2222MP AP t CN CQ t ====,103PC AC AP t =-=- ∴311031022MN MP PC CN t t t t =++=+-+=-. (3)∵点P 表示的数是3t ,点Q 表示的数是10t + ∴103210PQ AQ AP t t t =-=+-=-+∵点P 与点Q 相距7个单位长度 ∴2107t -+= 解得32t =或172t =. 【点睛】本题考查了线段的动点问题,掌握数轴的性质、中点平分线段长度、线段的和差关系、解一元一次方程的方法是解题的关键.27.(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【解析】【分析】(1)根据数轴上A 、B 两点之间的距离||||||AB a b b a =-=-,代入数值运用绝对值可求数轴上任意两点间的距离;由||2AB =可列出关于x 的方程,解方程即可得解; (2)点P 在点M 、N 两点之间时,||||PM PN +即为M 、N 两点之间的距离;由动点P 的位置不同分情况进行讨论求解.【详解】解:(1)由阅读材料可知:①数轴上有理数10-与5-对应的两点之间的距离为()1055---=②数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为()55x x --=+ ③∵||2AB = ∴52x +=∴52x +=,52x +=-∴3x =-或7x =-;(2)①∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x ,点P 在点M 、N 两点之间 ∴()||||426PM PN MN +==--=;②∵||2||PM PN = ∴422x x -=+I .当点P 在点N 左侧时,如图:∴()422x x -=--∴8x =-II .当点P 在点M 、N 之间时,如图:∴()422x x -=+∴0x =III .当点P 在点M 右侧时∴()422x x -=+∴8x =-(不合题意舍去)∴综上所述,8x =-或0x =.故答案是:(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【点睛】本题考查了数轴与绝对值的概念的应用,读懂题目信息,理解绝对值的几何意义是解题的关键.28.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8.【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1|x|×3=3,解得:x=±2.2当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8综上所述,d(P,Q)的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.以下问题,不适合抽样调查的是( )A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量 2.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .43.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .240 4.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >05.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A .()130%90%85x x +⋅=-B .()130%90%85x x +⋅=+C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+ 6.a 是不为1的有理数,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A .3B .23C .12-D .无法确定7.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()n a b +的展开式的各项系数,此三角形数阵称为“杨辉三角”.第一行 ()0a b + 1第二行 ()1a b + 1 1第三行 ()2a b + 1 2 1第四行 ()3a b + 1 3 3 1第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( )A .190B .210C .231D .2538.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A .8-或2-B .8±或2±C .8- 或2D .8或2 9.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >010.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个 11.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .2013 12.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是( )A .-50B .50C .-55D .55二、填空题13.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a ,b 的代数式表示) .14.若∠α=35°16′28″,则∠α的补角为____________.15.若|21(3)0x x y ++-=,则22x y +=_______. 16.一个角的余角比这个角的12少30°,则这个角的度数是_____. 17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为___________.18.计算811111248162++++⋅⋅⋅+=________. 19.若25m n a b 与569a b -是同类项,则m n +的值是____.20.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______.21.中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.同物几何? 即:一个整数除以3余2,除以5余3,除以7余2,则这个整数为__________________.(写出符合题意且不超过300的3个正整数)22.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师博营运十批乘客里程如下:(单位:千米)+8,-6,+3,-7,+8,+4,-9,-4,+3,-3(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?24.已知 A=3x 2+3y 2﹣2xy ,B=xy ﹣2y 2﹣2x 2.求:(1)2A ﹣3B .(2)若|2x ﹣3|=1,y 2=9,|x ﹣y|=y ﹣x ,求 2A ﹣3B 的值.(3)若 x=2,y=﹣4 时,代数式 ax 31+2by+5=17,那么当 x=﹣4,y=﹣12时,求代 数式 3ax ﹣24by 3+6 的值.25.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面,如果我们要同时用两种不同的正多边形镶嵌平面.可能设计出几种不同的组合方案?猜想1:是否可以同时用正方形.正八边形两种正多边形组合进行平面镶嵌?验证l:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程: ()82180903608x y -⨯+=,整理得: 238,x y += 我们可以找到方程的正整数解为12x y =⎧⎨=⎩结论1:镶嵌平面时.在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.26.如图,直线l 有上三点M ,O ,N ,MO =3,ON =1;点P 为直线l 上任意一点,如图画数轴.(1)当以点O 为数轴的原点时,点P 表示的数为x ,且点P 到点M 、点N 的距离相等,那么x 的值是________;(2)当以点M 为数轴的原点时,点P 表示的数为y ,当y = 时,使点P 到点M 、点N 的距离之和是5;(3)若以点O 为数轴的原点,点P 以每秒2个单位长度的速度从点O 向左运动时,点E 从点M 以每秒1个单位长度速度向左运动,点F 从点N 每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P 、点E 、点F 表示的数之和为-20.27.如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.28.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.2.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.3.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.4.C解析:C【解析】【分析】先根据数轴判定a 、b 、a+b 、a-b 的正负,然后进行判定即可.【详解】解:由数轴可得,b <﹣2<0<a <2,∴a +b <0,故选项A 错误,|b |>|a |,故选项B 错误,a ﹣b >0,故选项C 正确,a •b <0,故选项D 错误,故答案为C .【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.5.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.6.B解析:B【解析】【分析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a =,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.7.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.8.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.9.B解析:B【解析】【分析】先确定出a 、b 、c 的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a <﹣1,0<b <1,1<c <2,∴c >b >a ,1b >1c,|a |>|b |,abc <0. 故选:B .【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键. 10.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x =12,共2个, 故选:B .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程. 11.D解析:D【解析】【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解.【详解】解:设中间数为x ,则另外两个数分别为11x x -+、,∴三个数之和为()()113x x x x -+++=.当32019x=时,解得:673x=,∵673=84×8+1,∴2019不合题意,故A不合题意;当32018x=时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.12.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.二、填空题13.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b , ∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b )= a+98b . 故答案为:a+98b .【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.14.144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠=35°16′28″,∴的补角;故答案是144°43′32″.【点睛】本题主要考查了度分秒的计算和补角的解析:144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠α=35°16′28″,∴α∠的补角18035162817959603516281444332''''''''''''=︒-︒=︒-︒=︒; 故答案是144°43′32″.本题主要考查了度分秒的计算和补角的计算,准确计算是解题的关键.15.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 16.80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =x ﹣30°,解得:x =80°.即【解析】【分析】设这个角为x,则它的余角是90°-x,列方程求解即可.【详解】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=12x﹣30°,解得:x=80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键.17.6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为1解析:6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为12,第3次输出的结果为6,第4次输出的结果为3,第5次输出的结果为6,第6次输出的结果为3,∵(2019-2)÷2=1008…1,∴第2019次输出的结果为6,故答案为:6.本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.18.【解析】【分析】设原式=S=,则,两式相减即可求出答案.【详解】解:设=①,则②,②-①,得.故答案为:.【点睛】本题考查了有理数的运算,明确方法、灵活应用整体思想是解题的关键. 解析:255256【解析】【分析】设原式=S =23481111122222++++⋅⋅⋅+,则2371111212222S =++++⋅⋅⋅+,两式相减即可求出答案.【详解】 解:设811111248162++++⋅⋅⋅+=23481111122222S =++++⋅⋅⋅+①, 则2371111212222S =++++⋅⋅⋅+②, ②-①,得237234881111111111255112222222222256S ⎛⎫⎛⎫=++++⋅⋅⋅+-++++⋅⋅⋅+=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:255256. 【点睛】 本题考查了有理数的运算,明确方法、灵活应用整体思想是解题的关键.19.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.20.【解析】【分析】根据题意,可以得出这一组数的规律,分为n为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,==-2,,所以n为奇数时,,n为偶数时,,所以-=解析:1009-【解析】【分析】根据题意,可以得出这一组数的规律,分为n为奇数和偶数二种情况讨论即可.【详解】因为10a=,所以211a a=-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.21.23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再解析:23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再将这三个数乘以被7、5、3除的余数再相加,据此进一步求解即可.【详解】根据题意,我们首先求出三个数:第一个数能同时被3、5整除,即15,第二个数能同时被3、7整除,即21,第三个数能同时被5、7整除,但除以3余1,即70,然后将这三个数分别乘以被7、5、3除的余数再相加,即:152213702233⨯+⨯+⨯=,最后再进一步减去3、5、7的最小公倍数的若干倍即可:233105223-⨯=, 综上所述,该数可用10523k +表示,当0k =时,1052323k +=,当1k =时,10523128k +=,当2k =时,10523233k +=,故答案为:23,128,233.【点睛】本题主要考查了有理数与代数式的综合运用,准确找出相应规律是解题关键.22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2B解析:【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证S△A2B2C2=7S△A1B1C1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.(1)将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)沈师傅在上午8:00~9:15一共收入130元.【解析】【分析】(1)根据题意,列出有理数数的加法算式,即可求解;(2)先求各个有理数的绝对值,再求和,最后除以行驶的时间,即可求解;(3)分别求出起步费以及超过3千米的收费总额,再求和,即可求解.【详解】(1)由题意得:(+8)+(−6)+(+3)+(−7)+(+8)+(+4)+(−9)+(−4)+(+3)+(-3)=-3(千米),答:将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)由题意得:|+8|+|−6|+|+3|+|−7|+|+8|+|+4|+|−9|+|−4|+|+3|+|-3|=55(千米),上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;55÷1.25=44(千米/小时),答:上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)一共有10位乘客,则起步费为:8×10=80(元),超过3千米的收费总额为:[(8−3)+(6−3)+(3−3)+(7−3)+(8−3)+(4−3)+(9−3)+(4−3)+(3−3)+(3−3)]×2=50(元),80+50=130(元),答:沈师傅在上午8:00~9:15一共收入130元.【点睛】本题主要考查有理数的绝对值与有理数的加法运算的实际应用,根据题意,列出算式,是解题的关键.24.(1)12x2+12y2-7xy;(2)当 x=2,y=3 时,2A﹣3B=114;当 x=1,y=3 时,2A﹣3B=99;(3)﹣12.【解析】【分析】(1)把A、B代入化简即可;(2)由|2x-3|=1,y2=9,|x-y|=y-x,确定x、y的值,然后代入(1)的结果中;(3)把x=2,y=-4代入ax3+12by+5=17中,得关于a、b的代数式,把x=-4,y=-12,代入代数式3ax-24by3+6中,然后把得到的关于a、b的代数式整体代入求值.【详解】解:(1)2A-3B,=2(3x2+3y2-2xy)-3(xy-2y2-2x2),=6x2+6y2-4xy-3xy+6y2+6x2,=12x2+12y2-7xy;(2)∵|2x-3|=1,y2=9,∴x1=2,x2=1,y1=3,y2=-3,又∵|x-y|=y-x,∴x1=2,x2=1,y=3.当x=2,y=3时,2A-3B,=12x2+12y2-7xy,=12×4+12×9-7×2×3,=114;当x=1,y=3时,2A-3B,=12x2+12y2-7xy,=12×1+12×9-7×1×3,=99.(3)∵x=2,y=﹣4时原式=ax31+2by+5=17 ,∴8a ﹣2b=12,即 4a ﹣b=6.当 x=﹣4,y=﹣12时,原式=3ax ﹣24by 3+6, =﹣12a+3b+6,=﹣3(4a ﹣b )+6,∵4a ﹣b=6,∴原式=﹣3×6+6,=﹣12.【点睛】本题考查了代数式的化简求值.题目(2)由条件确定x 、y 的值是关键,题目(3)掌握整体代入的方法是关键.25.可以,验证与方案见解析.【解析】【分析】在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,根据平面镶嵌的体积可得方程:60x+120y=360.整理得:x+2y=6,求出正整数解即可.【详解】解:可以;验证:在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,正三角形的每个内角的度数为60︒,正六边形的每个内角的度数为()621801206︒︒-•=根据题意,可得方程:60120360x y +=整理得26x y +=方程的正整数解为22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ 所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.【点睛】本题考查了平面镶嵌,正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.也考查了二元一次方程的应用.26.(1)-1;(2)-0.5或4.5;(3)t =3【解析】【分析】(1)根据已知条件先确定点M 表示的数为3-,点N 代表的数为1,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离相等列出关于x 的方程,解含绝对值的方程即可得解.(2)根据已知条件先确定点N 表示的数为3-,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离之和等于5列出关于y 的方程,解含绝对值的方程即可得解.(3)设运动时间为t 秒,根据已知条件找到等量关系式,列出含t 方程即可求解.【详解】(1)∵点O 为数轴的原点,3OM =,1ON =∴ 点M 表示的数为3-,点N 代表的数为1∵点P 表示的数为x ,且点P 到点M 、点N 的距离相等∴()31x x --=-∴1x =-故答案是:1-(2)∵点M 为数轴的原点,3OM =,1ON =∴ 点N 代表的数为4∵点P 表示的数为y ∴PM y =,4PN y =-∵点P 到点M 、点N 的距离之和是5 ∴45y y +-=∴0.5y =-或 4.5y =故答案是:0.5-或4.5(3)设运动时间为t 秒P 点表示的数为2t -,E 点表示的数为3t --,F 点表示的数为13t -()()231320t t t -+--+-=-618t -=-3t =答:求运动3秒时点P 、点E 、点F 表示的数之和为20-.【点睛】本题考查了数轴上的两点之间的距离、绝对值方程以及动点问题,难度稍大,需认真审题、准确计算方可正确求解.27.(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE平分∠AOC,OF平分∠BOC,∴∠1=12∠AOC,∠2=12∠BOC,∴∠EOF=∠1+∠2=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.∵∠AOB=160°,∴∠EOF=80°.(2)分四种情况讨论:①当OM在∠AOC内部时,如图1.∵∠AOC=100°,∠AOB=160°,∴∠MOB=∠AOB-∠AOM=160°-20t.∵∠AOM+∠MOC+∠MOB=∠AOC+∠MOB=200°,∴100°+160°-20t=200°,∴t=3.②当OM在∠BOC内部时,如图2.∵∠AOC=100°,∠AOB=160°,∴∠BOC=∠AOB-∠AOC=160°-100°=60°.∵∠AOM+∠MOC+∠MOB=∠AOM+∠COB=200°,∴2060200t+=,∴t=7.③当OM 在∠AOB 外部,靠近射线OB 时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8.∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去. 综上所述:t =3s 或t =7s .【点睛】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.28.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【解析】【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a b MN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论.【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ), 4BC cm =,N 是CB 的中点, ∴122CN CB ==(cm ), ∴325MN CM CN =+=+=(cm );(2)由AC a =,M 是AC 的中点,得1122CM AC a ==, 由BC b =,N 是CB 的中点,得1122CN CB b ==, 由线段的和差,得222a b a b MN CM CN +=+=+=;(3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a b MN +=, 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= ,同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .32.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1394.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .35.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=-6.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b - B .9b 9a - C .9a D .9a - 8.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣79.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

七年级数学上册期末考试模拟卷(附答案解析)

七年级数学上册期末考试模拟卷(附答案解析)

七年级数学上册期末考试模拟卷(附答案解析)一.选择题(共8小题,满分24分,每小题3分)1.﹣3的相反数是()A.3B.﹣3C.D.﹣2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1034.下列说法正确的是()A.绝对值最小的数是0B.若|a|=﹣a,则a<0C.﹣a一定是负数D.多项式3xy2﹣4x3y+12的次数为75.根据如图所示的流程图中的程序,当输入数据x=﹣2,y=1时,m值为()A.5B.3C.﹣2D.46.如图所示,点M,N是线段AB上的两个点,且M是AB的中点,N是MB的中点,若AB =a,NB=b,下列结论:①AM=a②AN=a﹣b③MN=a﹣b④MN=a.其中正确的有()A.1个B.2个C.3个D.4个7.超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.88.若a,b在数轴上的位置如图所示,则下列选项不正确的是()A.ab<0B.|a|>|b|C.a+b>0D.a<﹣b<b<﹣a二.填空题(共8小题,满分24分,每小题3分)9.﹣﹣(用>,<,=填空).10.关于m、n的单项式﹣2m a n b与3m2(a﹣1)n的和仍为单项式,则这两个单项式的和为.11.如图是一、二两组同学将本组最近5次数学平均成绩分别绘制成的折线统计图,由统计图可知组进步较大(填“一”或“二”).12.某校下午第一节2:30下课,这时钟面上时针与分针的夹角是度.13.如图,已知O是直线AB上一点,OC平分∠BOD,OE平分∠AOD,则与∠DOE互余的角有个.14.在一个边长为a的正方形地块上,辟出一部分作为花坛,小明设计一种方案,请你写出花坛(图中阴影部分,其中中间阴影部分为一小正方形)面积S的表达式.15.如图所示的图形都是由大小相同的黑点按照一定规律所组成的,其中第①个图形中一共有1个黑点,第②个图形中共有5个黑点,第③个图形中一共有13个黑点,…,按此规律排列下去,第n个图形中黑点的个数为.(用含n的代数式表示)16.数轴上点M表示﹣1,将它先向右移动5个单位长度,再向左移动3个单位长度到达点N,则点N表示的数是,点M,N的距离是.三.解答题(共8小题,满分72分)17.如图,从正面、左面、上面观察此几何体,分别画出你所看到的几何体的形状.18.(18分)计算:(1)[1﹣(+﹣)×24]÷(﹣5);(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣);(3)先化简,再求值.①5(a2b﹣ab2)﹣(ab2+3a2b),其中|a+1|+(b﹣)2=0;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)],其中x=﹣2.19.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).20.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.21.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是;位置关系是;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.22.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?23.观察下列等式:=1﹣,=﹣,=将以上三个等式两边分别相加得:++=1﹣+=1﹣=.(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②+++…+=;(3)探究并计算:.24.(12分)【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a ﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).参考答案与解析一.选择题1.【解答】解:﹣3的相反数是3.故选:A.2.【解答】解:由题意得:只有D选项符合题意.故选:D.3.【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.4.【解答】解:A、绝对值最小的数是0,原说法正确,故此选项符合题意;B、若|a|=﹣a,则a≤0,原说法错误,故此选项不符合题意;C、﹣a不一定是负数,原说法错误,故此选项不符合题意;D、多项式3xy2﹣4x3y+12的次数为4,原说法错误,故此选项不符合题意;故选:A.5.【解答】解:∵当x=﹣2,y=1时;xy=﹣2×1=﹣2<0;∴m=x2﹣y2=(﹣2)2﹣12=3;故选:B.6.【解答】解:∵M是线段AB的中点;∴AM=MB=AB=a,故①正确;AN=AB﹣BN=a﹣b,故②正确;MN=MB﹣NB=AB﹣BN=a﹣b,故③正确;∵M是线段AB的中点,N是AM的中点;∴AM=BM=AB=a,MN=MB=×a=a,故④正确;故选:D.7.【解答】解:设该商品每件的进价为x元;依题意,得:125×0.8﹣x=15.故选:A.8.【解答】解:根据图示,可得a<0<b,且|a|>|b|;∴ab<0,a+b<0,a<﹣b<b<﹣a;∴选项A、B、D不符合题意;选项C符合题意.故选:C.二.填空题9.【解答】解:|﹣|=,|﹣|=;∵>;∴﹣<﹣.故答案为:<.10.【解答】解:∵﹣2m a n b与3m2(a﹣1)n的和仍为单项式;∴﹣2m a n b与3m2(a﹣1)n是同类项;∴a=2(a﹣1),b=1;∴a=2a﹣2,b=1;∴a=2,b=1;∴﹣2m a n b+3m2(a﹣1)n=﹣2m2n+3m2n=m2n.故答案为:m2n.11.【解答】解:一组的成绩变化从70到85,二组的成绩变化是从70到90,所以二组进步更大.故答案为:二.12.【解答】解:2点30分相距3+=份;2点30分,此时钟面上的时针与分针的夹角是30×=105°;故答案为:105.13.【解答】解:∵∠AOD+∠BOD=180°,OC、OE分别平分∠BOD和∠AOD;∴∠AOE=∠DOE=∠AOD,∠BOC=∠DOC=∠BOD;∴∠DOC+∠DOE=90°,∠BOC+∠DOE=90°;∴与∠DOE互余的角有∠DOC和∠BOC;故答案为:2.14.【解答】解:S阴影=(a﹣)(a﹣)﹣(﹣)()=(a﹣)2﹣(﹣)2=a2﹣+﹣(﹣+)=a2﹣+﹣+﹣=;故答案为:.15.【解答】解:∵①1=1;②5=2+1+2;③13=3+2+3+2+3;④25=4+3+4+3+4+3+4;…;∴第n个图的黑点的个数为:n+n﹣1+n+n﹣1+…+n﹣1+n,其中有n个n,(n﹣1)个(n﹣1).即第n个图的黑点的个数为n2+(n﹣1)2=2n2﹣2n+1.故答案为:2n2﹣2n+1.16.【解答】解:由题意得:点N表示的数是﹣1+5﹣3=1,点M,N的距离是1﹣(﹣1)=2.故答案为:1,2.三.解答题17.【解答】解:如图所示:18.(18分)计算:(1)[1﹣(+﹣)×24]÷(﹣5);(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣);(3)先化简,再求值.①5(a2b﹣ab2)﹣(ab2+3a2b),其中|a+1|+(b﹣)2=0;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)],其中x=﹣2.【解答】解:(1)[1﹣(+﹣)×24]÷(﹣5)=(1﹣×24﹣×24+×24)×(﹣)=(1﹣9﹣4+18)×(﹣)=(+5)×(﹣)=×(﹣)+5×(﹣)=﹣﹣1=﹣;(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣)=﹣1+(﹣5)×(﹣1+2)﹣9×(﹣2)=﹣1+(﹣5)+18=12;(3)①5(a2b﹣ab2)﹣(ab2+3a2b)=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2;∵|a+1|+(b﹣)2=0;∴a+1=0,b﹣=0;解得:a=﹣1,b=;当a=﹣1,b=时,原式=2×(﹣1)2×﹣6×(﹣1)×()2=1+=;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)]=﹣3x2+4xy﹣x2+4x﹣4xy=﹣x2+4x;当x=﹣2时,原式=﹣×(﹣2)2+4×(﹣2)=﹣14﹣8=﹣22.19.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10;移项得:2x+5x=2﹣10+2;合并得:7x=﹣6;解得:x=﹣;(2)去分母得:2(5x+1)﹣(7x+2)=4;去括号得:10x+2﹣7x﹣2=4;移项得:10x﹣7x=4﹣2+2;合并得:3x=4;解得:x=.20.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%;则“玩游戏”对应的圆心角度数是360°×35%=126°;故答案为:35%,126;(2)根据题意得:40÷40%=100(人);∴3小时以上的人数为100﹣(2+16+18+32)=32(人);补全图形如下:;(3)根据题意得:2100×=1344(人);则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.21.【解答】解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形;∴AE=AG,AB=AD,∠BAD=∠EAG=90°;∴∠BAE=∠DAG;∴△ABE≌△ADG(SAS);∴BE=DG;如图2,延长BE交AD于Q,交DG于H;∵△ABE≌△DAG;∴∠ABE=∠ADG;∵∠AQB+∠ABE=90°;∴∠AQB+∠ADG=90°;∵∠AQB=∠DQH;∴∠DQH+∠ADG=90°;∴∠DHB=90°;∴BE⊥DG;故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H;∵四边形ABCD与四边形AEFG都为矩形;∴∠BAD=∠EAG;∴∠BAE=∠DAG;∵AD=2AB,AG=2AE;∴==;∴△ABE∽△ADG;∴==,∠ABE=∠ADG;∴DG=2BE;∵∠AKB+∠ABE=90°;∴∠AKB+∠ADG=90°;∵∠AKB=∠DKH;∴∠DKH+∠ADG=90°;∴∠DHB=90°;∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M;∵EG∥AB;∴∠DME=∠DAB=90°;在Rt△AEG中,AE=1;∴AG=2AE=2;根据勾股定理得:EG==;∵AB=;∴EG=AB;∵EG∥AB;∴四边形ABEG是平行四边形;∴AG∥BE;∵AG∥EF;∴点B,E,F在同一条直线上,如图5;∴∠AEB=90°;在Rt△ABE中,根据勾股定理得,BE===2;由(2)知,△ABE∽△ADG;∴==;即=;∴DG=4.22.【解答】解:(1)设该班购买乒乓球x盒,则甲:100×5+(x﹣5)×25=25x+375;乙:0.9×100×5+0.9x×25=22.5x+450;当甲=乙,25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时:甲25×20+375=875元,乙22.5×20+450=900元,选甲;买40盒时:甲25×40+375=1375元,乙22.5×40+450=1350元,选乙.23.观察下列等式:=1﹣,=﹣,=将以上三个等式两边分别相加得:++=1﹣+=1﹣=.(1)猜想并写出:=﹣;(2)直接写出下列各式的计算结果:①=;②+++…+=;(3)探究并计算:.【解答】解:(1)=﹣;故答案为:﹣;(2)①=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;(3)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.24.【解答】解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度;当点A在点B左侧时;依题意列式,得3t+2t=18﹣4;解得t=2.8;当点A在点B右侧时;3t+2t=18+4;解得t=4.4;答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合;根据题意列方程,可得=0;解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点;由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n ( )A.9 B.11 C.13 D.152.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为()A.94 B.85 C.84 D.763.按照如图所示的运算程序,若输入的x的值为4,则输出的结果是()A.21 B.89 C.261 D.3614.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形5.如图,点O在直线AB上且OC⊥OD,若∠COA=36°则∠DOB的大小为()A .36°B .54°C .64°D .72°6.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .327.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 8.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .79.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6C .7D .810.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >011.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm12.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >013.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =14.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2- 15.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BD B .AB>2BD C .BD>AD D .BC>AD 16.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <017.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-201918.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强19.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块 20.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=21.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-24.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .4 25.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -26.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快27.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a28.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=29.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2230.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .253【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n =1,n =2和n =3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可. 【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况, 当盘子数量n =1时,游戏结束需要移动的最少次数为1;当盘子数量n =2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n =3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n =2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n =2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.2.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.3.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.4.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.5.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.6.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=. 故选C .【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.7.B解析:B 【解析】 【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简. 【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误; B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B . 【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.8.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】 ∵296234.655-==,∴分成的组数是5组.故答案选B.【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.9.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.10.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.11.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm ); ②点C 在线段BC 的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm ), 由线段中点的定义,得AM=12AC=12×12=6(cm ); 故选C . 【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.12.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.13.C解析:C 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0). 【详解】解:A 、含有两个未知数,不是一元一次方程,选项错误; B 、不是方程是不等式,选项错误;C 、符合一元一次方程定义,是一元一次方程,正确;D 、未知项的最高次数为2,不是一元一次方程,选项错误. 故选:C . 【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.16.A【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数.详解:∵ab >0,∴a 与b 同号,又a+b <0,则a <0,b <0.故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.18.B解析:B【解析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.20.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.解析:B 【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.23.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.25.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.26.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 27.A解析:A【解析】【分析】根据周长的计算公式,列式子计算解答.【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-,∵ 四边形ABCD 是长方形,∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-,同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -,∴C 1 -C 2=0.故选A .【点睛】本题考查周长的计算,“数形结合”是关键.28.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .本题考查了整式的加减,熟练掌握运算法则是解本题的关键.29.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.30.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+2.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形3.计算22221111 (11223320152015)++++++++的结果为( ) A .1 B .20142015C .20152016D .201620154.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 5.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定6. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A.8B.10C.16D.32 8.下列方程为一元一次方程的是()A.x+2y=3 B.y+3=0 C.x2﹣2x=0 D.1y+y=09.下列计算正确的是()A.b﹣3b=﹣2 B.3m+n=4mnC.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b 10.下列解方程的步骤正确的是()A.由2x+4=3x+1,得2x+3x=1+4B.由3(x﹣2)=2(x+3),得3x﹣6=2x+6C.由0.5x﹣0.7x=5﹣1.3x,得5x﹣7=5﹣13xD.由1226x x-+-=2,得3x﹣3﹣x+2=1211.如图,已知矩形的长宽分别为m,n,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为()A.3mn B.5mn C.7mn D.9mn12.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家()A.亏损8元B.赚了12元C.亏损了12元D.不亏不损13.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是()A.1B.2C.3D.414.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是()A.500个B.501个C.602个D.603个15.已知线段AB,C是直线AB上的一点,AB=8,BC=4,点M是线段AC的中点,则线段AM的长为()A.2cm B.4cm C.2cm或6cm D.4cm或6cm 16.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 17.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1 B.52020-1 C.2020514-D.2019514-18.在上午八点半钟的时候,时针和分针所夹的角度是()A.85°B.75°C.65°D.55°19.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a>﹣b C.a>b D.|a|>|b|20.点C、D在线段AB上,若点C是线段AD的中点,2BD>AD,则下列结论正确的是( ). A.CD<AD- BD B.AB>2BD C.BD>AD D.BC>AD21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.622.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-24.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7025.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 26.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-127.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2728.下列各式中运算正确的是( ) A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=29.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-30.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .5【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.C解析:C 【解析】 【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.3.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.4.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.5.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.6.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.8.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键. 9.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确. 故选D . 【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.10.B解析:B 【解析】 【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简. 【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误; B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B . 【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.11.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=,又矩形ABCD 的面积为mn , 所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.12.C解析:C 【解析】试题分析:设第一件衣服的进价为x 元, 依题意得:x (1+25%)=90,解得:x =72, 所以盈利了90﹣72=18(元). 设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120, 所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元). 故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.13.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.14.B解析:B【解析】【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,…∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=.故选:B .【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.15.C解析:C【解析】【分析】分类讨论:点C 在线段AB 上,点C 在线段BC 的延长线上,根据线段的和差,可得AC 的长,根据线段中点的性质,可得AM 的长.【详解】解:①当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-4=4(cm ),由线段中点的定义,得AM=12AC=12×4=2(cm ); ②点C 在线段BC 的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm ), 由线段中点的定义,得AM=12AC=12×12=6(cm ); 故选C .【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.16.A解析:A【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数.详解:∵ab >0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.18.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.19.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.20.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C .【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.23.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得. 【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94, 故选:B .【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式. 24.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.25.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项.【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 26.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C27.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.28.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.29.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】 解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.30.C解析:C【解析】【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案.设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 4.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2 B .2 C 2 D 325.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+66.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .347.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -8.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .09.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-10.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°11.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查 12.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 15.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.16.=38A ∠︒,则A ∠的补角的度数为______. 17.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 18.若523m xy +与2n x y 的和仍为单项式,则n m =__________.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.已知二元一次方程2x-3y=5的一组解为x ay b =⎧⎨=⎩,则2a-3b+3=______.22.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .23.单项式()26a bc -的系数为______,次数为______.24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.先化简, 再求值. 已知222213,222A x xy yB x y =-+=- ()1求2A B - ()2当3,1x y时,求2A B -的值27.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x 2+(P+q)x+pq 得 x 2+(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子x 2+3+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2所以 x 2+3x+2=x 2+(1+2)x+1×2,x 2+3x+2=(x+1)(x+2) 请仿照上面的方法,解答下列问题 (1)分解因式:x 2+6x-27(2)若x 2+px+8可分解为两个一次因式的积,则整数p 的所有可能值是____ (3)利用因式分解法解方程:x 2-4x-12=028.小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元) 股票 每股净赚(元) 股票 招商银行 +23 500 浙江医药 ﹣(﹣2.8) 1000 晨光文具﹣1.51500金龙汽车 ﹣1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元? 29.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 30.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇? (2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车? (3)快车先开30min ,两车相向而行,慢车行驶多少小时两车相遇?四、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .206 2.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+=C .6352x x -+=D .6352x x --= 3.已知线段AB a ,,,C DE 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a π D .94a π 4.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73 D .5或735.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯ 6.下列因式分解正确的是() A .21(1)(1)x x x +=+- B .()am an a m n +=- C .2244(2)m m m +-=- D .22(2)(1)a a a a --=-+7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C.1004006 2x x+=D.1004006 x2x+=8.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣29.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°10.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.711.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠2 12.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a-b>0 D.b-c<0二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14.把53°30′用度表示为_____.159________16.已知线段AB=8 cm,在直线AB上画线段BC,使得BC=6 cm,则线段AC=________cm.17.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.18.如图,若12l l //,1x ∠=︒,则2∠=______.19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.21.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.22.A 学校有m 个学生,其中女生占45%,则男生人数为________.23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?27.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?30.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?31.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【参考答案】***试卷处理标记,请不要删除1.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解.【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x ,去括号得:6-3x+5=2x ,故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.3.D解析:D【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.4.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.5.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.D解析:D【解析】【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案.【详解】解:A 、21x +无法分解因式,故此选项错误;B 、()am an a m n +=+,故此选项错误;C 、244m m +-无法分解因式,故此选项错误;D 、22(2)(1)a a a a --=-+,正确;故选:D .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.7.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D .【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 8.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.9.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.10.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.二、填空题13.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.17.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键. 18.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.19.-2【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.20.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.21.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.22.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】-,乘以总人数就是男生的人数.将男生占的比例:145%【详解】-=,则男生人数为55%m,男生占的比例是145%55%故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、压轴题25.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.26.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.27.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii )当AC=13AB 时,满足条件. 【详解】 (1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠=01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.29.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.30.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.31.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度,此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小,。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <02.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个3.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=4.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >05.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 6.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米 C .32千米 D .36千米 7.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( )A .30B .35︒C .40D .458.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人9.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .36110.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .411.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .100912.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个二、填空题13.若()221x y -++=0,则x+y=_____.14.若25m n a b 与569a b -是同类项,则m n +的值是____.15.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.16.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______.17.如图,已知圆柱体底面圆的半径为2π,高为2,AB ,CD 分别是两底面的直径.若一只小虫从A 点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是________(结果保留根号).18.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.19.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于1A ,2A ,3A ,…,若从点O 到点1A 的回形线为第1圈(长为7),从点1A 到点2A 的回形线为第2圈,…,依此类推,则第13圈的长为_______.20.如图所示,把一根绳子对折后得到的图形为线段AB ,从点P 处把绳子剪断,已知AP :BP =4:5,若剪断后的各段绳子中最长的一段为80cm ,则绳子的原长为________ cm .21.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.下表是某年篮球世界杯小组赛C 组积分表: 排名 国家 比赛场数 胜场 负场 总积分 1 美国 5 5 0 10 2 土耳其 5 3 2 8 3 乌克兰52 3 7 4 多米尼加 5 2 3 7 5 新西兰 5 2 3 7 6芬兰51mn(2)m = ;n = ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求? (4)能否出现某队的胜场积分与负场积分相同的情况,为什么? 24.计算:(1)(12)(7)(5)(30)+--+--+ (2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 25.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B 生产线建成投产.同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A 生产线暂停生产,升级后,产能提高20%.下图反映了每条..A ,B 生产线的口罩总产量y (万个)与时间x (天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条..A 生产线每天生产口罩_______万个; (2)每条..B 生产线每天生产口罩A 万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A 生产线,则B 生产线有________条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m 小时(m 为正整数),同时新增k 条B 生产线,此时公司口罩日总产量达到260万个,求正整数k 的值.26.如图,数轴上有,A B 两个点,O 为原点,16OA =,点B 所表示的数为20,6AC AB =.⑴AB = ; ⑵求点C 所表示的数;⑶动点,P Q 分别自,A B 两点同时出发,均以每秒2个单位长度的速度沿数轴向左运动,点E 为线段CP 的中点,点F 为线段CQ 的中点,在运动过程中,线段EF 的长度是否为定值?若是,请求出线段EF 的长度;若不是,请说明理由.27.如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,圆O 的半径为1.5㎝,P 点在圆周上,且∠POB =30°.点C 从A 出发以m cm/s 的速度向B 运动,点D 从B 出发以n cm/s 的速度向A 运动,点E 从P 点出发绕O 逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C 、D 、E 三点同时开始运动.(1)若m =2,n =3,则经过多少时间点C 、D 相遇;(2)在(1)的条件下,求OE 与AB 垂直时,点C 、D 之间的距离;(3)能否出现C 、D 、E 三点重合的情形?若能,求出m 、n 的值;若不能,说明理由.28.如图,点P 是定长线段AB 上一点,C 、D 两点分别从点P 、B 出发以1厘米/秒,2厘米/秒的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上). (1)若点C 、D 运动到任一时刻时,总有2PD AC =,请说明点P 在线段AB 上的位置;(2)在(1)的条件下,点Q 是直线AB 上一点,且AQ BQ PQ -=,求PQAB的值; (3)在(1)的条件下,若点C 、D 运动5秒后,恰好有12CD AB =,此时点C 停止运动,点D 继续运动(点D 在线段PB 上),点M 、N 分别是CD 、PD 的中点,下列结论:①PM PN -的值不变;②MNAB的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数. 详解:∵ab >0, ∴a 与b 同号, 又a+b <0, 则a <0,b <0. 故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.2.B解析:B 【解析】 【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案. 【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确; ③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误; 故选B . 【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.A解析:A 【解析】 【分析】各项计算得到结果,即可作出判断. 【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意, 故选:A . 【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.A解析:A 【解析】 【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解. 【详解】由图可知,b <0,a >0,且|b|>|a|, A 、a -b >0,故本选项符合题意; B 、a +b <0,故本选项不合题意; C 、ba<0,故本选项不合题意; D 、ab <0,故本选项不合题意. 故选:A . 【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.5.A解析:A 【解析】 【分析】根据等式的性质,可得答案. 【详解】A.两边都除以-2,故A 正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.6.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.7.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.8.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.10.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析, ∵8=2+2+2×2, ∴8是好数; ∵9=1+4+1×4, ∴9是好数;∵10+1=11,11是一个质数, ∴10不是好数; ∵11=2+3+2×3, ∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11. 故选C . 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.11.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.12.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,…∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=.故选:B .【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.二、填空题13.1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.15.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.16.【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,==-2,,所以n 为奇数时,,n 为偶数时,,所以-=解析:1009-【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为10a =, 所以211a a =-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.17.【解析】【分析】将圆柱体的侧面沿AD 展开是长方形,并找到长方形长的中点C ,连接AC ,线段AC 的长度即为所求路径的长度.【详解】将圆柱体的侧面沿剪开并铺平,得长方形,取的中点C ,连接,根据两 解析:22【解析】 【分析】将圆柱体的侧面沿AD 展开是长方形''AA D D ,并找到长方形长'D D 的中点C ,连接AC ,线段AC 的长度即为所求路径的长度.【详解】将圆柱体的侧面沿AD 剪开并铺平,得长方形''AA D D ,取'D D 的中点C ,连接AC ,根据两点之间线段最短可得线段AC 就是小虫爬行的最短路线,如图:根据题意得212π2π2AB =⨯⨯=. 在Rt ABC ∆中,由勾股定理得22222228AC AB BC =+=+=,∴822AC故答案为:2【点睛】考查最短路径的问题,学生要掌握圆柱体的侧面张开图是长方形,并且理解两点之间线段最短这一基本事实是本道题解题的关键.18.4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC 的度数,OD 是角平分线,可以求得∠AOD 的度数,∠COD=∠AOD -∠AOC.【详解】解解析:4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解:若OC在∠AOB内部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴2x+3x=40°,得x=8°,∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.若OC在∠AOB外部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴3x﹣2x=40°,得x=40°,∴∠AOC=2x=2×40°=80°,∠COB=3x=3×40°=120°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOC+∠AOD=80°+20°=100°.∴OC与∠AOB的平分线所成的角的度数为4°或100°.【点睛】本题考查角的计算,结合角平分线的性质分析,当涉及到角的倍分关系时,一般通过设未知数,建立方程进行解决.19.103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,解析:103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,∴第13圈:13+25+26+26+13=103,故答案为:103.【点睛】此题考查图形类规律的探究,正确观察图形得到图形的变化规律是解题的关键.20.绳子的原长为144cm或180cm.【解析】【分析】解:分两种情形讨论:(1)当点A是绳子的对折点时,(2)当点B是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A解析:绳子的原长为144cm或180cm.【解析】【分析】解:分两种情形讨论:(1)当点A是绳子的对折点时,(2)当点B是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2AP=80cm ,∴AP=40cm ,∴PB=50cm ,∴绳子的原长=2AB=2(AP+PB )=2×(40+50)=180(cm );(2)当点B 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2BP=80cm ,∴BP=40cm ,∴AP=32cm .∴绳子的原长=2AB=2(AP+BP )=2×(32+40)=144(cm ).综上,绳子的原长为144cm 或180cm .【点睛】本题主要考查了线段相关计算,和分类讨论的思想,懂得分类讨论,防止漏解是解决本题的关键.21.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =.故填125. 【点睛】 本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2,解析:23【解析】【分析】连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.(1)胜一场积2分,理由见解析;(2)m =4,n =6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【解析】【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m 、n 的值;(3)由题意,设胜一场积x 分,然后列出方程组,即可求出胜一场、负一场的积分; (4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则∵美国5场全胜积10分,∴1052÷=,∴胜一场积2分;(2)由题意,514m =-=;设负一场得x 分,则3228x ⨯+=;∴1x =;∴12416n =⨯+⨯=;故答案为:6;4;(3)设胜一场积x 分,由土耳其队积分可知负一场积分832x -, 根据乌克兰队积分可列方程:8323()72x x -+=, 解得:2x =, 此时8312x -=; 即胜一场积2分,负一场积1分;(4)设某球队胜y 场,则21(5)y y =⨯-, 解得:53y =; ∴不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.24.(1)16-;(2)14-【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)()()()()127530+--+--+()()127530=++-+-1935=-16=-;(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 13(8)421184=-⨯-÷-⨯-⨯+ 13(8)42184=-⨯-÷-⨯-+ 14142=-⨯ 14=-. 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.(1)4.8;(2)8;(3)8;(4)9【解析】【分析】(1)根据图象,先求得升级前A 生产线的日产量,结合升级后,日产能提高了20%,即可求得升级后的A 生产线的日产能;(2)根据(1)结论,结合图像,可知A 生产线升级后,生产了5天,B 生产线从第8天开始生产到第15天的产能为56万个,从而求得B 生产线的日产能;(3)设B 生产线有x 条,依据题意列一元一次方程即可求解;(4)先求出A ,B 生产线的每小时产能,根据“两生产线在原每日工作时长8小时的基础上,增加m 小时(m 为正整数),同时新增k 条B 生产线,此时公司口罩日总产量达到260万个,”列出关于m ,k 的二元不定方程,根据m ,k 为正整数,8+m 为大于8的正整数,17+k 为大于17的正整数,将260分解为10×26,即可求解;【详解】解:(1)由图可知,A 生产线技术升级前的日生产口罩量为32÷8=4(万个),依题意,升级后,产能提高20%,故升级后的日生产口罩量为4×(1+20%)=4.8(万个); 故答案为:4.8(2)A 生产线升级后,A 的产量由32万到56万,所用的时间为(56-32)÷4.8=5(天),故B 生产线从第8天到第15天的产量为56,其每天生产的口罩量为56÷(15-8)=8(万个);故答案为:8(3)设公司有B 生产线x 条,依题意有:15×4.8+8x=136解得:x=8,故答案为:8(4)A 生产线升级后每小时的产量为4.8÷8=0.6万个/小时,B 生产线每小时的产量为8÷8=1万个/小时,依题意:0.6×(8+m )×15+(8+m )(8+k )=260整理得:(8+m )(17+k )=260∵m ,k 为正整数,∴8+m 为大于8的正整数,17+k 为大于17的正整数,∴(8+m )(17+k )=260=10×26,∴8+m=10,17+k=26,∴m=2,k=9,故每日工作时长增加2小时,B 生产线增加9条即可使公司口罩日总产量达到260万个, 故正整数k 的值为9.【点睛】本题主要考查了一元一次方程,二元不定方程的实际应用,解答本题的关键是理解题意,数形结合,从图像中提取关键信息.26.(1) 4;(2)-8;(3)EF 长度不变,EF=2,证明见解析【解析】【分析】(1)根据线段的和差得到AB=4,(2)由AB=4得到AC=24,即可得出:OC=24-16=8.于是得到点C 所表示的数为-8;(3)分五种情况:设运动时间为t ,用含t 的式子表示出AP 、BQ 、PC 、 CQ ,根据线段中点的定义得到11CE PC CF CQ 22==, 画出图形,计算EF ,于是得到结论. 【详解】解: (1)∵ OA=16,点B 所表示的数为20,∴OB=20,∴AB=OB-OA=20-16=4,故答案为:4(2)∵AB=4,AC=6AB .∴AC=24,∴OC=24- 16=8,∴点C 所表示的数为-8;(3)EF 长度不变,EF=2,理由如下:设运动时间为t ,当012t ≤< 时,点P ,Q 在点C 的右侧,则AP=BQ=2t,∵AC=24,BC=28,∴PC=24-2t, CQ=28- 2t.∵点E为线段CP的中点,点F为线段CQ的中点,∴11CE PC12t CF CQ14t, 22==-==-,∴EF=CF-CE=2:当t=12时,C、P重合,此时PC=0, CQ=28-24=4.∵点F为线段CQ的中点,∴1CF CQ22==∴EF CF2==当12<t<14时,点P,Q在点C的左右,PC=2t-24, CQ=28-2t,∵点E为线段CP的中点,点F为线段CQ的中点,∴11CE PC t-12CF CQ14t, 22====-,∴EF=CE+CF=2,当t=14时,C、Q重合,此时PC=4, CQ=0∵点E为线段CP的中点,∴1CE CP22==∴EF CE2==当t> 14时,点P、Q在点C的左侧,PC=2t-24, CQ=2t-28,∴11CE PC t-12CF CQ=t-14, 22===,∴EF=CE-CF=2.综上所述,EF长度不变,EF=2.【点睛】本题考查两点间的距离,数轴,线段中点的定义线段和差,正确的理解题意是解题的关键.27.(1)145;(2)9cm 或6cm ;(3)能出现三点重合的情形,95m =,195n =或1511m =,1311n = 【解析】【分析】(1)设经过x 秒C 、D 相遇,根据14AC BD AO BO +=+=列方程求解即可; (2)分OE 在线段AB 上方且垂直于AB 时和OE 在线段AB 下方且垂直于AB 时两种情况,分别运动了1秒和4秒,分别计算即可;(3)能出现三点重合的现象,分点E 运动到AB 上且在点O 左侧和点E 运动到AB 上且在点O 右侧两种情况讨论计算即可.【详解】解:(1)设经过x 秒C 、D 相遇,则有,23=14x x +, 解得:14=5x ; 答:经过145秒C 、D 相遇; (2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,1421319CD cm =-⨯-⨯=,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,1424346CD cm =-⨯-⨯=;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间18030 2.560t -==, ∴6 1.592.55m -==,8 1.5192.55n +==; ②当点E 运动到AB 上且在点O 右侧时, 点E 运动时间36030 5.560t -==, ∴6 1.5155.511m +==,8 1.5135.511n -==. 【点睛】本题考查的知识点是一元一次方程的应用,读懂题意,找出题目中的已知量和未知量,明确各数量间的关系是解此题的关键.28.(1)点P 在线段AB 的13处;(2)13或1;(3)结论②MN AB的值不变正确,112MN AB =. 【解析】【分析】(1)设运动时间为t 秒,用含t 的代数式可表示出线段PD 、AC 长,根据2PD AC =,可知点P 在线段AB 上的位置;(2)由AQ BQ PQ -=可知AQ PQ BQ =+,当点Q 在线段AB 上时,等量代换可得AP BQ =,再结合13AP AB =可得PQ AB的值;当点Q 在线段AB 的延长线上时,可得AQ BQ AB PQ -==,易得PQ AB 的值. (3)点C 停止运动时,12CD AB =,可求得CM 与AB 的数量关系,则PM 与PN 的值可以含AB 的式子来表示,可得MN 与AB 的数量关系,易知MN AB 的值. 【详解】解:(1)设运动时间为t 秒,则2,PD PB t PC AP t =-=-,由2PD AC =得22()PB t AP t -=-,即2PB AP =AP PB AB +=,2AP AP AB ∴+=,3AP AB ∴=,即13AP AB = 所以点P 在线段AB 的13处; (2)①如图,当点Q 在线段AB 上时,由AQ BQ PQ -=可知AQ PQ BQ =+,AQ AP PQ =+13PQ AP AB ∴==13PQ AB ∴= ②如图,当点Q 在线段AB 的延长线上时,AQ BQ AB -=,AQ BQ PQ -=AB PQ ∴=1PQ AB ∴= 综合上述,PQ AB 的值为13或1; (3)②MN AB 的值不变. 由点C 、D 运动5秒可得5,5210CP BD ==⨯=,如图,当点M 、N 在点P 同侧时,点C 停止运动时,12CD AB =, 点M 、N 分别是CD 、PD 的中点,11,22CM CD PN PD ∴== 14CM AB ∴= 154PM CM CP AB ∴=-=- 2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=- 112MN PN PM AB ∴=-= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 如图,当点M 、N 在点P 异侧时,点C 停止运动时,12CD AB =, 点M 、N 分别是CD 、PD 的中点,11,22CM CD PN PD ∴== 14CM AB ∴= 154PM CP CM AB ∴=-=-2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=- 112MN PN PM AB ∴=+= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 所以②MN AB 的值不变正确,112MN AB =. 【点睛】本题考查了线段的相关计算,利用线段中点性质转化线段之间的和差倍分关系是解题的关键.。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.下列方程中,属于一元一次方程的是( ). A .23x y += B .21x >C .720222020x +=D .241x =2.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .553.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+14.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3615.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式6.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形7.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620158.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b9.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 10.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .411.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=- D .532x x -=12.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .313.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .914.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020 15.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣816.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2217.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米 C .32千米 D .36千米 18.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD19.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-201920.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .621.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=22.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么nm的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,623.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >024.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .425.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 26.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-127.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2728.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1 B.52020-1 C.2020514-D.2019514-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.3.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.5.C解析:C【解析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.6.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.7.C解析:C【解析】【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解.解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.8.D解析:D 【解析】 【分析】根据合并同类项的法则即可求出答案. 【详解】A. b ﹣3b =﹣2b ,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确. 故选D . 【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.9.B解析:B 【解析】 【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简. 【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误; B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B . 【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.10.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.11.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.12.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.13.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键.. 14.C解析:C【解析】【分析】依次计算1a、2a、3a、4a、…,得到规律性答案,即可得到2020a的值.【详解】11a=-,212a a=-+=-1,323a a=-+=-2,434a a=-+=-2,5453a a=-+=-,6563a a=-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.15.B解析:B【解析】【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5,解得:m =﹣2,故选:B .【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.18.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a1=a4,a2=a5,a3=a6,从而得到每三个数为一个循环组依次循环,再求出a100=a1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.20.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48, 即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B .考点:频数(率)分布直方图.21.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=0,故本选项正确;C 、a 3与3a 2不是同类项,不能合并,故本选项错误;D 、原式=a 2,故本选项错误.故选B .此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.22.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.23.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.24.D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.25.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.26.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C27.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27.故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键. 28.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .29.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.。

数学(完整版)人教版七年级数学上册期末模拟试卷及答案

数学(完整版)人教版七年级数学上册期末模拟试卷及答案

数学(完整版)人教版七年级数学上册期末模拟试卷及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b4.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短5.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-6.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+=8.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm9.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 10.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .811.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =1312.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y 13.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°14.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠115.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.18.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 19.|-3|=_________;20.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.21.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 22.如果一个数的平方根等于这个数本身,那么这个数是_____.23.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.24.计算7a 2b ﹣5ba 2=_____. 25.4是_____的算术平方根. 26.已知代数式235x -与233x -互为相反数,则x 的值是_______. 27.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.28.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 29.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题31.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.32.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?33.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?34.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库一、选择题1.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .8 2.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式: 第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50 B .50 C .-55 D .553.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+14.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1115.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10096.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式7.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620158.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <9.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b >< 10.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y - 11.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒ C .40 D .45 12.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .713.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .7615.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=16.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .617.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .518.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .19.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9420.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 21.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣822.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |23.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =24.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块25.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种26.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-27.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a28.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2729.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力 D .调查某池塘中草鱼的数量30.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4【参考答案】***试卷处理标记,请不要删除1.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.2.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.3.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数. 【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.5.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=,【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.6.C解析:C 【解析】 【分析】根据单项式与多项式的概念即可求出答案. 【详解】解:(A )0是单项式,故A 错误; (B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误; 故选C . 【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.7.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.8.B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.9.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.10.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n +(-1)n+1y 2n-1=x 10-y 19. 故选:A . 【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.B解析:B 【解析】 【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x )°,余角的度数为(90-x )°,代入等量关系即可求解. 【详解】设:这个角的度数是x ,则补角的度数为180-x ,余角的度数为90-x ,由题意得:()()39018020x x ---=解得35x = 故选B . 【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.12.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.13.C解析:C 【解析】试题分析:设第一件衣服的进价为x 元, 依题意得:x (1+25%)=90,解得:x =72, 所以盈利了90﹣72=18(元).设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120, 所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元). 故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.14.A解析:A 【解析】 【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可. 【详解】第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5..., 所以第n 个图形中小圆的个数为4+n (n+1) 所以第9个图形有: 4 +9×10=94个小圆, 故选: A 【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n 个图形的代数表达式将所求的代入.15.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.16.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 17.C解析:C【解析】【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a 个,摆出的六边形有b 个,依题意有3a +1+5b +1-1=60,3a +5b =59,当a =3时,b =10,t =13;当a =8时,b =7,t =15;当a =13时,b =4,t =17;当a =18时,b =1,t =19.故t 可以取4个不同的值.故选:C .【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.18.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.20.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.21.B解析:B【解析】【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5,解得:m =﹣2,故选:B .【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.22.D解析:D【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2,∴|a|>|b|,a <﹣b ,b >a ,a <﹣2,故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.23.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0).【详解】解:A 、含有两个未知数,不是一元一次方程,选项错误;B 、不是方程是不等式,选项错误;C 、符合一元一次方程定义,是一元一次方程,正确;D 、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C .本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.24.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.25.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.26.B解析:B【解析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得. 【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94, 故选:B .【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式. 27.A解析:A【解析】【分析】根据周长的计算公式,列式子计算解答.【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-,∵ 四边形ABCD 是长方形,∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-,同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -,∴C 1 -C 2=0.故选A .【点睛】本题考查周长的计算,“数形结合”是关键.28.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27. 故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.29.B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.30.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案一、选择题1.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .42.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 4.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x+= B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4 B .﹣5C .﹣6D .﹣77.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个8.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③ D .④9.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 10.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限11.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查12.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10 C .2.5 D .2 13.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=114.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( )①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________ 18.﹣30×(1223-+45)=_____. 19.分解因式: 22xy xy +=_ ___________20.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___21.如果向东走60m 记为60m +,那么向西走80m 应记为______m.22.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.23.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.24.﹣225ab π是_____次单项式,系数是_____.25.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 26.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.27.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 28.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 29.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.﹣3的相反数是( ) A .13-B .13C .3-D .34.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0B .1-C . 2.5-D .35.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④6.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 9.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m =,则x y = D .若x y =,则x y m m=12.如图的几何体,从上向下看,看到的是()A.B.C.D.二、填空题13.在数轴上,点A,B表示的数分别是8-,10.点P以每秒2个单位长度从A出发沿数轴向右运动,同时点Q以每秒3个单位长度从点B出发沿数轴在B,A之间往返运动,设运动时间为t秒.当点P,Q之间的距离为6个单位长度时,t的值为__________.14.如图,点B在线段AC上,且AB=5,BC=3,点D,E分别是AC,AB的中点,则线段ED的长度为_____.15.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.16.若单项式3a3 b n与-5a m+1 b4所得的和仍是单项式,则m - n 的值为_____.17.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.18.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x人,依题意列方程得_____.19.五边形从某一个顶点出发可以引_____条对角线.20.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=______cm.21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C等级所在扇形的圆心角是____度.22.如果A、B、C在同一直线上,线段AB=6厘米,BC=2厘米,则A、C两点间的距离是______.23.材料:一般地,n个相同因数a相乘na a a a⋅⋅⋅个:记为na. 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 27.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.28.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.29.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.以下选项中比-2小的是()A.0 B.1 C.-1.5 D.-2.52.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106 3.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a–4ab)的值为()A.49 B.59C.77 D.1394.在220.23,3,2,7-四个数中,属于无理数的是()A.0.23B.3C.2-D.22 75.将图中的叶子平移后,可以得到的图案是()A.B.C.D.6.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B .1005006x 2x +=C .10040062x x += D .1004006x 2x+= 8.方程3x +2=8的解是( ) A .3 B .103 C .2 D .12 9.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 10.3的倒数是( )A .3B .3-C .13D .13- 11.下列各组数中,互为相反数的是( ) A .2与12 B .2(1)-与1 C .2与-2 D .-1与21-12.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .2二、填空题13.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 14.5535______.15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案

七年级数学上册期末模拟测试卷及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.一个角是这个角的余角的2倍,则这个角的度数是()A.30B.45︒C.60︒D.75︒3.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或734.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣25.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y6.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×27.如图,能判定直线a∥b的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 8.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-49.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 10.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >011.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.15.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………16.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________ 17.化简:2xy xy +=__________.18.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____.21.若α与β互为补角,且α=50°,则β的度数是_____.22.|﹣12|=_____. 23.A 学校有m 个学生,其中女生占45%,则男生人数为________. 24.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC= ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q两点间的距离为1个单位长度.26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.27.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.28.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.29.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?30.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.31.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.4.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.7.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.8.B解析:B【解析】【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.9.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.10.C解析:C【解析】【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |,∴a +b <0,ab <0,a ﹣b <0,a ÷b <0.故选:C .11.D解析:D【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x =3代入方程得1+1+mx(31)4-=23, 解得:m =﹣83. 故答案为:﹣83. 【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,解析:83n -【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.16.-5【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x 取值解析:-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.17..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.18.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.19.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.21.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.22.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 解析:12【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m,故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.24.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527;故答案为t=1或3或487或527.【点睛】本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.27.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.29.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.30.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,。

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案

数学七年级数学上册期末模拟测试卷及答案一、选择题1.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=2.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1123.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .04.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-5.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣37.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 9.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,2 10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102511.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m =,则x y = D .若x y =,则x y m m= 12.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.一个角的余角等于这个角的13,这个角的度数为________. 15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 16.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.17.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 18.已知23,9n mn aa -==,则m a =___________.19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 20.若a a -=,则a 应满足的条件为______.21.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.22.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.单项式()26a bc -的系数为______,次数为______.三、解答题25.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣2,y =1. 26.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|; (2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 27.解方程:(1)()()32324y y -=-; (2)13124x x +--=. 28.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 29.如图,将一副直角三角尺的直角顶点C 叠放在一起.(1)若∠DCE =35°,∠ACB = ;若∠ACB =140°,则∠DCE = ; (2)猜想∠ACB 与∠DCE 的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE 不动,三角尺ACD 的CD 边与CB 边重合,然后将三角尺ACD 绕点C 按逆时针方向任意转动一个角度∠BCD .设∠BCD =α(0°<α<90°) ①∠ACB 能否是∠DCE 的4倍?若能求出α的值;若不能说明理由. ②三角尺ACD 转动中,∠BCD 每秒转动3°,当∠DCE =21°时,转动了多少秒?30.如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x +7|=1的两个解(a < b ),且(c -12)2 与| d -16 |互为相反数.(1)填空: a = 、b = 、 c = 、 d = ;(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD =2AC ,求t 的值;(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC =3AD ?若存在,求t 的值;若不存在,说明理由.四、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.2.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可. 【详解】摆成第一个“H”字需要2×3+1=7个棋子, 第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.3.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.4.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A5.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∴ab2<0.∵-1<b<0,∴0<b2<1,∴ab2>a,∴a<ab2<ab.故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.6.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.7.B解析:B 【解析】 【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现. 【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意; D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B . 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.9.D解析:D 【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.D解析:D 【解析】 【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.11.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x ym m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误;故选:D . 【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数. 故选:B 【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题 13.-2. 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】解:∵单项式2xmy3与﹣5ynx 是同类项, ∴m =1,n =3, ∴m ﹣n =1﹣3=﹣2. 故答案解析:-2. 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】解:∵单项式2x m y 3与﹣5y n x 是同类项, ∴m =1,n =3, ∴m ﹣n =1﹣3=﹣2. 故答案为:﹣2. 【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.【解析】 【分析】设这个角度的度数为x 度,根据题意列出方程即可求解. 【详解】设这个角度的度数为x 度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.15.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.16.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x +a =3(x +3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.17.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 18.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.19.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).4x xy当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入20.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.21.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.22.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n 个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此解析:16-【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc-的系数为16-;次数为2+1+1=4;故答案为16 -;4.【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.三、解答题25.﹣x2y,﹣4.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy=2x2y+2xy﹣3x2y+3xy﹣5xy=﹣x2y,当x=﹣2,y=1时,原式=﹣(-2)2×1=﹣4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.(1)﹣2;(2)19°10′;(3)x=47.【解析】【分析】(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.解:(1)原式=﹣9+9﹣6+4,=﹣2;(2)原式=48°96′68″﹣30°27′8″,=18°69′60″,=19°10′;(3)3(4﹣x)﹣2(2x+1)=6,12﹣3x﹣4x﹣2=6,﹣7x=﹣4,x=47.【点睛】本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键.27.(1)14y=;(2)1x=-.【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y-3)=2(y-4);6928y y-=-.6298y y-=-.41y=.14y=.(2)131 24x x+--=.2(1)(3)4x x+--=.2234x x+-+=.-1x=.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.28.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.解:原式1 2199=-+⨯11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.29.(1)∠ACB=145°;∠DCE=40°;(2)∠ACB+∠DCE=180°或互补,理由见解析;(3)①能;理由见解析,α=54°;②23秒【解析】【分析】(1)由题意可得,重叠的部分就比90°+90°减少的部分,即当∠DCE=35°时,∠ACB=180°﹣35°=145°,当∠ACB=140时°,∠DCE=180°﹣140°=40°(2)由于∠ACD=∠ECB=90°,则重叠的度数就是∠ECD的度数,所以∠ACB+∠DCE=180°.(3)①当∠ACB是∠DCE的4倍,设∠ACB=4x,∠DCE=x,利用∠ACB与∠DCE互补列方程解答即可;②设当∠DCE=21°时,转动了t秒,根据∠BCD+∠DCE=90°,列方程解答即可.【详解】解:(1)∵∠ACD=∠ECB=90°,∠DCE=35°,∴∠ACB=180°﹣35°=145°.∵∠ACD=∠ECB=90°,∠ACB=140°,∴∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)①当∠ACB是∠DCE的4倍,∴设∠ACB=4x,∠DCE=x,∵∠ACB+∠DCE=180°,∴4x+x=180°解得:x=36°,∴α=90°﹣36°=54°;②设当∠DCE=21°时,转动了t秒,∵∠BCD+∠DCE=90°,∴3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.本题考查了互补、互余的定义以及角的重叠等知识点,解决本题的关键是确定重叠部分的大小.30.(1)a = -8 , b = -6,c = 12 , d = 16;(2)316t =;(3)t =274 或t = 458时, BC = 3AD【解析】【分析】(1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.【详解】(1) | x + 7 |= 1,∴ x = -8 或-6∴ a = -8 , b = -6,(c -12)2 + | d -16 |= 0 ,∴ c = 12 , d = 16(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |BD = 2 AC ,∴ 22 - 4t = ±2(20 - 4t )解得: 92t =或316t = 当92t =时,此时点 B 对应的数为152,点C 对应的数为152,此时不满足题意, 故316t = (3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t 112t ∴>,BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,BC = 3AD ,∴|18 - 4t |= 3 | 24 - 4t | ,解得: t =274 或t = 458经验证,t =274 或t = 458, BC = 3AD 【点睛】 本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.四、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有-=+,t(21)72t=;解得:9综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.33.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册期末模拟测试卷及答案一、选择题1.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-2.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .43.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20204.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .765.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个6.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .557.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10098.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式9.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .2016201510.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3211.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 12.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 13.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .714.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+16.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个17.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2-B .8±或2±C .8- 或2D .8或218.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米19.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定20.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >021.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-201922.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一 B .方案二 C .方案三 D .不能确定 23.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=24.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-25.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .426.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 27.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-128.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .629.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<30.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.2.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.3.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.4.A解析:A 【解析】 【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可. 【详解】第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5..., 所以第n 个图形中小圆的个数为4+n (n+1) 所以第9个图形有: 4 +9×10=94个小圆, 故选: A 【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n 个图形的代数表达式将所求的代入.5.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.6.A解析:A 【解析】 【分析】分析可得,第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数. 【详解】解:第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负. 所以第10行第5个数的绝对值为:1095502⨯+=, 50为偶数,故这个数为:-50. 故选:A . 【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.7.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.8.C解析:C 【解析】 【分析】根据单项式与多项式的概念即可求出答案. 【详解】解:(A )0是单项式,故A 错误; (B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误; 故选C . 【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.9.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】 解:22221111 (11223320152015)++++++++=21111261220152015+++++ =111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.10.C解析:C 【解析】 【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可. 【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=. 故选C .【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.11.B解析:B 【解析】 【分析】根据一元一次方程的定义即可求出答案. 【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y =3,两个未知数;B. y+3=0,符合;C. x 2﹣2x =0,指数是2;D. 1y+y =0,不是整式方程. 故选:B .【点睛】考核知识点:一元一次方程.理解定义是关键.12.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简.【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B .【点睛】 本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.13.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ∵29623 4.655-==, ∴分成的组数是5组.故答案选B .【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,则a 1=a 5=a 9=…=,利用同样的方法可得到a 1=a 5=a 9=…=x -1,a 2=a 6=a 10=…-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12=…=0,所以已知a 999=a 3=-2x ,a 25=a 1=x-1,由此联立方程求得x 即可.【详解】∵a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,∴a 1=a 5=a 9=…=x -1,同理可得a 2=a 6=a 10=…=-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12= 0∵a 1+a 2+a 3+a 4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.16.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.18.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.19.B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.20.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.21.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.22.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m (1-20%)20%=0.36m ;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较.. 23.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.24.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.25.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y =4,故选D .【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.26.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项.【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 27.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C28.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 29.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.30.C解析:C【解析】试题分析:设第一件衣服的进价为x 元,依题意得:x (1+25%)=90,解得:x =72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.。

相关文档
最新文档