16)何值时,1989m与1989n的最后三位数字相同
第36讲__同_余(习题导学案教案)(奥数实战演练习题)
第17 讲同余同余是数论中的重要概念,同余理论是研究整数问题的重要工具之一。
设m是一个给定的正整数,如果两个整数a与b用m除所得的余数相同,则称a与b对模同余,记作,否则,就说a与b对模m不同余,记作,显然,;1、同余是一种等价关系,即有自反性、对称性、传递性1).反身性:;2).对称性:;3). 传递性:若,则;2、加、减、乘、乘方运算若(mod m)(mod m)则(mod m),(mod m),(mod m)3、除法设(mod m)则(mod)。
A类例题例1.证明:一个数的各位数字的和被9除的余数等于这个数被9除的余数。
分析20≡2(mod9),500≡5(mod9),7000≡7(mod9),……,由于10n -1=9M,则10n≡1(mod9),故a n×10n≡a n (mod9)。
可以考虑把此数变为多项式表示a n×10n+ a n-1×10n-1+…+ a1×10+a0后处理。
证明设a==a n×10n+ a n-1×10n-1+…+ a1×10+a0,∵10≡1(mod9),∴10n≡1(mod9),∴a n×10n+ a n-1×10n-1+…+ a1×10+a0≡a n+ a n-1+…+ a1+a0。
说明要熟练记忆并应用常见的数据模的特征。
例2.A,B两人玩一种32张扑克牌的取牌游戏,A先取,以后轮流进行,每次只能从剩下的牌中取1张,或者质数张牌,谁取到最后一张牌获胜,问:谁有必胜策略?分析原有32张牌,如果A总取奇数张牌,B只要取1张牌,使A 面临偶数张牌就可以了,此时A总不能取完偶数张牌。
但2是质数,A可以取两张牌。
注意到32是4的倍数,A只能取奇数张牌或2张牌,B的应对方案稍作调整,可以有必胜的策略。
解B有必胜策略。
由于32≡0(mod 4),而A取的牌不能是4及其倍数,从而A取后,剩下的牌张数x≡3(mod 4),或x≡2(mod 4),或x≡1(mod 4),于是B可以通过取1,2或3张牌,使得剩下的牌的张数y≡0(mod 4),所以,B依次此策略,在A取后,剩下的牌张数不同余于0(mod 4),总是有牌,而B取后剩下的牌的张数y≡0(mod 4),从而B能取到最后一张牌。
人教版四年级数学下册。第三单元。运算定律能力题和奥数题(附答案)
人教版四年级数学下册。
第三单元。
运算定律能力题和奥数题(附答案)本文介绍了人教版四年级数学(下)同步奥数能力提升思维拓展潜能开发课程中的第三单元——运算定律能力题和奥数题。
其中,板块一介绍了凑整法,通过例题1和练1展示了如何解决复杂的计算问题。
板块二介绍了“交换两个加数相同数位上的数,和不变”的规律,通过例题2和练2展示了如何解决竖式谜问题。
板块三介绍了转化法,通过例题3和练3展示了如何解决加法简算问题。
板块四介绍了对应法,通过例题4和练4展示了如何解决等差数列求和的问题。
板块五介绍了分解凑整法,通过例题5和练5展示了如何解决乘法简算的问题。
板块六介绍了乘法交换律,通过例题6和练6展示了如何解决乘、除混合运算中的简算问题。
板块七介绍了5和2相乘积中的规律,通过例题7和练7展示了如何解决积末尾有几个连续的问题。
板块八介绍了转化法,通过例题8和练8展示了如何解决复杂的推算问题。
最后,板块九介绍了拆分法,通过例题9展示了如何解决简算问题。
人教版四年级数学(下)同步奥数能力提升思维拓展潜能开发练91) 计算:666×667+222×999.2) 计算:+9999×9999.板块十比较乘法算式积的大小的问题例题10不计算,比较下列两个乘法算式的积的大小。
1) 3636×422) 4242×36练10计算:×39-×61板块十一使用数的组成和乘法分配律解决简算问题例题11快速计算下列问题的结果。
1234+2341+3412+4123)÷(1+2+3+4)练11计算:++++期中、期末考试真题1.(2014·大兴) 与101×125相等的算式是()。
A。
100×125+1B。
100×125+125C。
125×100×1D。
100×125×1×1252.(2014·大兴) 如果☆×△=96,那么(☆×12)×△=()。
专题04一元二次方程(3知识点4大题型2易错点2种考法)(原卷版)-九年级数学上册学与练(北师大版)
专题04一元二次方程(3个知识点4大题型2个易错点中考2种考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1一元二次方程的定义(重点)知识点2一元二次方程的一般形式(重点)知识点3一元二次方程的解(重点)【方法二】实例探索法题型一:根据一元二次方程的定义求字母的值题型二:根据一元二次方程的根求字母或代数式的值题型三:一元二次方程新定义问题题型四:对含字母的一元二次方程的系数的讨论【方法三】差异对比法易错点1忽略一元二次方程的二次项系数不等于0这个隐含条件易错点2在求一元二次方程的相关项及系数时,没有先将其化为一般形式【方法四】仿真实战法考法1根据方程的根求字母(或代数式)的值考法2根据实际问题列一元二次方程【方法五】成果评定法【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1一元二次方程的定义(重点)(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.1.(2023春•文登区期中)下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.C.x2+2x=x2﹣1D.3(x+1)2=﹣3知识点2一元二次方程的一般形式(重点)(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.2.(2023春•鼓楼区校级期末)已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是()A.3x+1=0B.x2+3=0C.3x2+6x=1D.3x2+1=03.(2022秋•新会区期末)把方程x(x+1)=3(x﹣2)化成一般式ax2+bx+c=0(a>0)的形式,则a、b、c的值分别是()A.a=1,b=﹣2,c=﹣3B.a=1,b=﹣2,c=﹣6C.a=1,b=﹣2,c=3D.a=1,b=﹣2,c=64.(2023春•肇源县月考)将一元二次方程3x2=5x﹣1化成一般式后,二次项系数和一次项系数分别为()A.3,5B.3,1C.3x2,﹣5x D.3,﹣5知识点3一元二次方程的解(重点)(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).5.(2023春•巴东县期中)已知x=2是一元二次方程x2+bx﹣b=0的解,则b=()A.﹣2B.﹣4C.0D.4【方法二】实例探索法题型一:根据一元二次方程的定义求字母的值6.(2023•桐柏县一模)关于x的方程(m+1)x|m|+1﹣mx+6=0是一元二次方程,则m的值是()A.﹣1B.3C.1D.1或﹣17.(2022秋•连平县校级期末)若方程(a﹣2)x2+ax﹣3=0是关于x的一元二次方程,则a的取值范围是()A.a≥2且a≠2B.a≥0且a≠2C.a≥2D.a≠2题型二:根据一元二次方程的根求字母或代数式的值8.(2023•邗江区校级一模)已知m是方程x2﹣x﹣2=0的一个根,则2023﹣m2+m的值为()A.2023B.2022C.2021D.20209.(2023•邗江区一模)若关于x的方程x2﹣mx﹣2=0的一个根为3,则m的值为.10.(2023春•玄武区期中)若m是方程x2+x﹣1=0的一个根,则代数式2023﹣m2﹣m的值为.11.(2022秋•梁山县期末)已知m是方程x2+x﹣3=0的解,求式子m3+2m2﹣2m+2022的值.12.(2022秋•江阴市校级月考)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.13.(2023•鹤山市模拟)先化简,再求值:,其中a是方程x2+3x﹣4046=0的一根.题型三:一元二次方程新定义问题14.(2021秋•高港区期中)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“凤凰方程”.(1)判断一元二次方程3x2﹣4x﹣7=0是否为凤凰方程,说明理由.(2)已知2x2﹣mx﹣n=0是关于x的凤凰方程,若m是此凤凰方程的一个根,求m的值.15.(2022秋•江阴市校级月考)定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,求m的值.16.(2022秋•长汀县期中)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC 和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”,比如3x2+5x+4=0是“勾系一元二次方程”.请解决下列问题:(1)试判断方程x2+2x+1=0“勾系一元二次方程”(填“是”或“不是”);(2)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC面积.17.(2022秋•南昌期中)对于任意一个三位数k,如果k满足各个数位上的数字都不为零,且十位上的数字的平方等于百位上的数字与个位上的数字之积的4倍,那么称这个数为“喜鹊数”.例如:k =169,因为62=4×1×9,所以169是“喜鹊数”.(1)已知一个“喜鹊数”k =100a +10b +c (1≤a 、b 、c ≤9,其中a ,b ,c 为正整数),请直接写出a ,b ,c 所满足的关系式;判断241“喜鹊数”(填“是”或“不是”);(2)利用(1)中“喜鹊数”k 中的a ,b ,c 构造两个一元二次方程ax 2+bx +c =0①与cx 2+bx +a =0②,若x =m 是方程①的一个根,x =n 是方程②的一个根,求m 与n 满足的关系式;(3)在(2)中条件下,且m +n =﹣2,请直接写出满足条件的所有k 的值.题型四:对含字母的一元二次方程的系数的讨论18.(2022秋·河南开封·九年级校考阶段练习)已知关于x 的方程()221(1)20k x k x -++-=.(1)当k 取何值时,此方程是一元一次方程?并求出此方程的根;(2)当k 取何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项.19.(2022秋·九年级单元测试)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5.(1)为一元二次方程;(2)为一元一次方程.【方法三】差异对比法易错点1忽略一元二次方程的二次项系数不等于0这个隐含条件20.(2021秋•襄城县期中)若关于x的一元二次方程(m﹣2)x2﹣6x+m2﹣3m+2=0的常数项为0,则m的值为.易错点2在求一元二次方程的相关项及系数时,没有先将其化为一般形式21.(2022秋•沭阳县校级期末)一元二次方程2x2﹣1=4x化成一般形式后,常数项是﹣1,一次项系数是()A.2B.﹣2C.4D.﹣4【方法四】仿真实战法考法1根据方程的根求字母(或代数式)的值22.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个根是x=1,则m+n的值是.23.(2021•宿迁)若关于x的一元二次方程x2+ax﹣6=0的一个根是3,则a=.24.(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.25.(2022•遂宁)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为()A.﹣2022B.0C.2022D.404426.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是.考法2根据实际问题列一元二次方程27.(2022•衢州)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:(不必化简).【方法五】成果评定法一、单选题1.(2023·江西抚州模拟预测)下列方程是一元二次方程的是()A .210x -=B .21x y +=C .13x x+=D .456x x+=2.(2023·广东东莞模拟预测)将方程24825x x +=化成20ax bx c ++=的形式,则a ,b ,c 的值分别为()A .4,8,25B .4,2,25-C .4,8,25-D .1,2,253.(2022春·甘肃兰州阶段练习)若210(5)12m x m x +--+=是关于x 的一元二次方程,则m 的值是()A .1±B .1C .1-D .不能确定4.(2023秋·广东湛江期末)若关于x 的一元二次方程()221210m x x m -++-=的常数项为0,则m 的值是()A .1-B .1C .1+或1-D .05.(2023·广东惠州·统考一模)关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为()A .1B .1或1-C .1-D .0.56.(2023春·广东广州开学考试)若a 是方程2250x x --=的一个解,则242a a -的值是()A .10B .5C .5-D .10-二、填空题7.(2022秋·福建泉州期末)一元二次方程22310x x -+=的一次项系数为______.8.(2022秋·江西赣州期末)用公式法解一元二次方程()428x x x -=-时,应先将其化成“一般形式”为________.9.(2022秋·河南南阳期末)若关于x 的一元二次方程()22110a x ax a +-+-=的一个根是0,则a 的值为_____.10.(2022秋·四川乐山期末)若()11350m m xx +--+=关于x 的一元二次方程,则m =__________.11.(2023·山东东营·统考一模)已知x m =是一元二次方程210x x -+=的一个根,则代数式2222021m m -+的值为______.12.(2023春·江西吉安阶段练习)若a 是方程210x x +-=的一个解,则代数式2aa 1-的值是___________.三、解答题13.(2022秋·山东青岛阶段练习)若关于x 的方程||(2)220m m x x m -+-=是一元二次方程,求不等式:(1)1m x m +->的解集.14.(2022秋·河南开封阶段练习)已知关于x 的方程()221(1)20k x k x -++-=.(1)当k 取何值时,此方程是一元一次方程?并求出此方程的根;(2)当k 取何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项.15.(2023秋·山东济宁期末)已知m 是方程230x x +-=的解,求式子32222022m m m +-+的值.16.(2023秋·重庆永川期末)先化简,再求值:22122()121a a a a a a a a ----÷+++,其中a 是一元二次方程210x x --=的根.17.(2023•佛冈县二模)先化简,再求值:,若x 是方程x 2﹣2x =0的正整数解.18.(2023•广陵区一模)先化简再求值:,其中x 是方程x 2﹣2x =0的一个根.19.(2023•越秀区一模)已知.(1)化简P ;(2)若a 为方程的一个解,求P 的值.20.(2023·北京西城一模)已知a 是方程2210x x +-=的一个根,求代数式2(1)(2)a a a +++的值.1121.(2021秋·江苏·九年级专题练习)设p ,q 是整数,方程20x px q -+=有一个根为52-,求p ﹣q 的值.22.(2022秋·九年级单元测试)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5.(1)为一元二次方程;(2)为一元一次方程.23.(2022秋·河北唐山期末)我们定义:如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请判断方程2680x x -+=是不是倍根方程,并说明理由;(2)若是()()80x x n --=倍根方程,则n =___________.。
最新信息学竞赛基础训练题单100题的题目
信息学竞赛基础训练题******一. 数值计算******1、找出100到999之间的整数中所有等于它每位数字立方和的数.2、求所有满足条件的四位数: (1)这四位数是11的倍数; (2)a,b,c,d均是小于10 的互不相等的自然数; (3)b+c=a; (4)bc是完全平方数.3、已知四位数3025有一个特殊性质: 它的前两位数字30和后两位数字25的和是 55, 而55的平方刚好等于该数(55*55=3025). 试编一程序打印所有具有这种性质的四位数.4、编程找出四个互不相等的自然数, 它们之中任意两数之和为偶数, 任意三数之和可以被3整除, 而且这四个数的和越小越好(已知它们的和不大于50).5、输入两城市之间的距离(单位为千米)及旅行的速度(单位为千米/小时)和从某一城市出发的时间,计算出到达另一城市的时间。
其中输入的时间用1805表示18点05分,而输出的时间用18-5这种形式表示。
******二. 数字游戏******6、以不同的字母代表0--9之间的数字, 现有如下等式成立: a+bc+def=ghij,编程求出满足上述条件等式的个数并将所有等式打印输出.7、下面的竖式表示, 图中的"*"号只能用素数2,3,5,7代替, 因此称为素数乘法竖式.(难度较大,放后)* * *× * *---------------* * * ** * * *----------------* * * * *编程找出此乘法竖式的所有可能方案.8、出售金鱼: 出售金鱼者决定将缸里的金鱼分五次全部卖出:第一次卖出全部金鱼的一半加二分之一条;第二次卖出剩余金鱼的三分之一加三分之一条;第三次卖出剩余金鱼的四分之一加四分之一条;第四次卖出剩余金鱼的五分之一加五分之一条;现在还剩下11条金鱼一次卖出. 问缸里原来有多少条金鱼.9、一个四位数是一个完全平方数,减去一个每位数字都相同的四位数( 如 1111, 5555)后, 仍是一个完全平方数. 请编程打印出所有这样的四位数.10、将1,2,3,4,5,6,7,8,9这九个数字组成三个三位数, 使每个数都是完全平方数.11、如果一个数从左边读和从右边读都是同一个数, 就称为回文数. 例如: 686就是一个回文数. 编程找出所有既是回文数又是素数的三位数.12、有一个八位数12345679, 若它乘以9, 则得九位数111111111, 试求:(1)当这个数乘以什么数时, 才能得到全部由5所组成的九位数?(2)当这个数乘以什么数时, 才能得到全部由9所组成的九位数?13、把N个同学排成一排, 由前向后按1,2,1,2......报数, 报单数的走出队伍, 报双数的向前靠拢重新组成一排, 然后再1,2,1,2......报数, 报单数的走出队伍, 问剩下最后一个人时, 这个人原来在哪个位置.(N由键盘输入)14、李先生和他的孙子同出生于20世纪, 他的孙子与他的年龄之差为60岁, 李先生和他的孙子出生年份被3,4,5,6除, 余数分别为1,2,3,4. 编程求出李先生和他的孙子各出生在哪一年.15、有N个人围坐在圆桌周围,座号依次为1……N,从1号开始报数,数到M的人便退出,从下一个人起重新报数,数到M的人也退出,不断进行下去直到最后一个人退出,编程打印出依次退出的人的座号。
贵阳市2024学年数学高三第一学期期末质量检测试题含解析
贵阳市2024学年数学高三第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( ) A .1 B .2 C .3D .42.双曲线2212y x -=的渐近线方程为( )A .32y x =±B .y x =±C .2y x =±D .3y x =±3.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 4.已知等式2324214012141(1(2))x x x a a x a x a x -+⋅-=++++成立,则2414a a a +++=( )A .0B .5C .7D .135.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .26.执行如图所示的程序框图,若输出的结果为3,则可输入的实数x 值的个数为( )A .1B .2C .3D .47.已知直线y =k (x +1)(k >0)与抛物线C 2:4y x =相交于A ,B 两点,F 为C 的焦点,若|FA |=2|FB |,则|FA | =( ) A .1B .2C .3D .48.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF 为等腰三角形,则椭圆Г的离心率e = A .13B .33C .12D .229.复数2iz i=-(i 是虚数单位)在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限10.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A .3B .2(51)-C .45D .411.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B 2C 3D .2212.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A B .32C .53D 二、填空题:本题共4小题,每小题5分,共20分。
2024年小学四年级数学下册期中考试(及答案)
2024年小学四年级数学下册期中考试(及答案)(时间:60分钟分数:100分)班级:姓名:分数:一、填空题。
(每题2分,共20分)1、同一平面内的两条直线的位置关系有两种情况:()和().2、一个两位数乘三位数,积可能是()位数,还可能是()位数。
3、用1、3、5、6、7、9组成一个六位数,这个六位数的近似数是57万,这个数最大是(),最小是().4、625-127-73与625-127+73的得数相差()。
5、三角形按角可分为()三角形、()三角形、()三角形。
6、常用的复式条形统计图有()和()两种.7、260000000平方米=()公顷=()平方千米80平方千米=()公顷=()平方米8、小明给客人沏茶,接水1分钟,烧水6分钟,洗茶杯2分钟,拿茶叶1分钟,沏茶1分钟.小明合理安排以上事情,最少要()分钟使客人尽快喝茶.9、丽丽每天晚上睡觉前要背诵成语6分钟,烧开水10分钟,泡好不烫的牛奶2分钟,喝牛奶5分钟,那丽丽在()同时可以(),做完这些事情最少用()分钟.10、自行车的三角架之所以做成三角形,是利用了三角形具有()的特性。
二、判断题(对的打“√”,错的打“×”。
每题2分,共10分)1、近似数一定比准确数大。
()2、小英语文、数学、英语三科的期考平均分是93.5分,数学肯定是93.5分。
()3、小数都比整数小。
()4、用竖式计算小数加、减法时,要把小数点对齐。
()5、三位数乘两位数的积可能是三位数,也可能是四位数。
()三、选择题。
(每题1分,共5分)1、当a=5,b=4时,ab+3的值是()A.12 B.23 C.572、一百万一百万地数,数十次是().A.一百万B.一千万C.一亿3、不改变计算结果,下面各算式中的小括号可以去掉的是()A.680+(5×4) B.790﹣(120﹣75) C.(305﹣101)÷4 4、下面的小数中,最接近1的是()。
A.1.001 B.0.98 C.1.01 D.0.995、正方形的边长扩大到原来的2倍,面积扩大到原来的()倍。
新北师大版下册四年级数学期中考题
新北师大版下册四年级数学期中考题
一、选择题
1. 一个三位数的十位和百位数字相同,且都不为零,个位数字是这个三位数的平均数,则这个三位数可能是()
A. 255
B. 333
C. 424
D. 525
2. 下列哪个数既是3的倍数,又是4的倍数?
A. 36
B. 40
C. 42
D. 45
3. 小华有一些贴纸,如果他每天用6张,可以连续用10天;如果他每天用8张,可以用6天。
小华一共有多少张贴纸?
4. 下列哪个数列的前三项符合“每相邻两项的差是2”的条件?
A. 2, 4, 6
B. 3, 6, 9
C. 1, 3, 5
D. 5, 3, 1
二、填空题
5. 母鸡和公鸡一共有30只,公鸡的数量是母鸡的1/3,求公鸡和母鸡各有多少只。
6. 1千米等于_____米,1米等于______分米。
7. 0.36的平方是_______,2的3次方是_______。
8. 小明的成绩提高了15%,他提高后的成绩是原成绩的
_______%。
三、解答题
9. 某商店举行打折活动,原价100元的商品打8折,小明买了3件这样的商品,他一共花费了多少钱?
10. 有一列数:2, 4, 8, 16, 32, ...,请找出这个数列的下一项。
11. 一个长方形的长是12厘米,宽是5厘米,求这个长方形的面积和周长。
12. 小华有一些贴纸,如果他每天用4张,可以用15天;如果他每天用6张,可以用10天。
小华一共有多少张贴纸?
请根据以上题目进行解答。
《初等数论》习题集及答案
《初等数论》习题集及答案《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
第36讲 同 余
第 17 讲 同 余同余是数论中的重要概念,同余理论是研究整数问题的重要工具之一。
设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不 同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -⇔∈+=⇔≡;1、 同余是一种等价关系,即有自反性、对称性、传递性1).反身性:)(mod m a a ≡;2).对称性:)(mod )(mod m a b m b a ≡⇔≡;3). 传递性:若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡;2、加、减、乘、乘方运算若 a b ≡(mod m ) c d ≡(mod m )则 a c b d ±≡±(mod m ),ac bd ≡(mod m ),n na b ≡(mod m ) 3、除法 设 ac bd ≡(mod m )则 a b ≡(mod (,)m c m )。
A 类例题例1.证明: 一个数的各位数字的和被9除的余数等于这个数被9除的余数。
分析 20≡2(mod9),500≡5(mod9),7000≡7(mod9),……,由于10n-1=9M ,则10n ≡1(mod9),故a n ×10n ≡a n (mod9)。
可以考虑把此数变为多项式表示a n ×10n + a n-1×10n-1+…+ a 1×10+a 0后处理。
证明 设a=110n n a a a a =a n ×10n + a n-1×10n-1+…+ a 1×10+a 0,∵10≡1(mod9),∴10n ≡1(mod9),∴a n ×10n + a n-1×10n-1+…+ a 1×10+a 0≡a n + a n-1+…+ a 1+a 0。
初等数论试题库
初等数论试题库初等数论练习一、单项选择题1. 如果n是一个自然数,那么n(n+1)是()。
A. 奇数 B. 偶数 C. 奇数或偶数 D. 由n奇偶性而定32. 1998除以9后的余数是()。
A. 1B. 2C. 3D. 03. 模10的绝对值最小的完全剩余系是()。
A. 0,1,2,3,…8,9 B. 1,2,3,…9,10 C. -5,-4,-3,-2,-1,0,1,2,3,4 D. 11,12,13,…19,204. 1500的标准分解式是()。
A. 2×2×5×5×5×3B. 3×532×223C. 2×3×5 D. 2×2×3×5×5×5 5. 有一批同样砖块,宽30cm,长45cm,至少需要这样的砖多少块,才能铺成一个正方形地面?()A. 4B. 6C. 9D. 246. 边长为自然数,面积为30的长方形有多少个?() A. 2 B. 3C. 4D. 无数 7. 一堆排球,3个3个数余2个,4个4个数余3个,问这堆排球至少有多少个?()A. 23B. 35C. 24D. 118. 下列不定方程中是三元二次不定方程的有()。
A. xyz=9 B.5x+6y+7z=5C. xy+5z=8D. 2x+3y=69. 若ac?bc(mod m),则下列正确的是( )A. a?b(mod m)B. m|(a-b)cC. m|cD. m|(a+b)c10. 若a、b两数的和与积均为偶数,则a,b的奇偶性为( ) A. a奇b偶 B. a偶b奇C. 均为偶数D. 均为奇数11. 已知五位数能被11整除,则A是( ) 123A5A. 0B. 7C. 9D. 1812. 下列算式肯定错误的是( )A. 4569×91=415779B. 4569×92=420348C. 2376×156=370646D. 4569×29=13250113. 下列数中能表示成20和12的倍数之和的是( ) A. 2 B. 6C. 10D. 3614. 已知甲数除以11的余数是4,乙数除以11的余数是7,则甲、乙两数之和除以11的余数是( )A. 4B. 7C. 0D. 615. 下列答案中正确的是( )A. 〔x〕+〔y〕?〔x+y〕B. 〔x+y〕=〔x〕+〔y〕C. 〔x〕+〔y〕<〔x+y〕D. 〔x〕+〔y〕>〔x+y〕16.m,n为整数,下列式子一定不可能成立的是( ) 1 D.m+n=0 A.m-n=3B.m+2n=5 217.若a,b,c均为整数,且a+b被c整除,则下列一定成立的是( ) C.2m+n=A.c|aB.c|b22 C.c|a-b D.c|a-b 18.相邻两个整数之和与相邻两个整数之积分别是( )A.奇数奇数B.奇数偶数C.偶数奇数D.偶数偶数 19.m为奇数时,模m的绝对最小完全剩余系是( )A.1,2,3,…,m-1,mB.-m,-(m-1),…,-2,-1m,1mm1,m C.,1,,...,-1,0,1,... D.,,...,-1,0,1, (2222)20.下列不属于二元二次不定方程的是( )22 A.xy=5 B.x+y=161y22 C.2x4x,,+y=8 D. 3421.11与-10以下列( )数为模时同余?A.2B.7C.10D.522.已知(a,b,c)=1,则一定有( )A.(a,b)=1B.(b,c)=1C.(a,c)=1D.((a,b),c)=123.所有不超过152的自然数中,5的倍数有( )个。
初等数论习题集参考答案
习题参考答案第一章习题一1. (ⅰ) 由a∣b知b = aq,于是b = (-a)(-q),-b = a(-q)及-b = (-a)q,即-a∣b,a∣-b及-a∣-b。
反之,由-a∣b,a∣-b及-a∣-b也可得a∣b;(ⅱ) 由a∣b,b∣c知b = aq1,c = bq2,于是c = a(q1q2),即a∣c;(ⅲ) 由b∣a i知a i= bq i,于是a1x1+a2x2+ +a k x k = b(q1x1+q2x2+ +q k x k),即b∣a1x1+a2x2+ +a k x k;(ⅳ) 由b∣a知a = bq,于是ac = bcq,即bc∣ac;(ⅴ) 由b∣a知a = bq,于是|a| = |b||q|,再由a ≠ 0得|q| ≥ 1,从而|a| ≥ |b|,后半结论由前半结论可得。
2. 由恒等式mq+np = (mn+pq) - (m-p)(n-q)及条件m-p∣mn+pq可知m-p∣mq+np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a+ 1, , a+ 9, a+ 19的数字和为s, s+ 1, , s+ 9, s+ 10,其中必有一个能被11整除。
4. 设不然,n1 = n2n3,n2≥p,n3≥p,于是n = pn2n3≥p3,即p≤3n,矛盾。
5. 存在无穷多个正整数k,使得2k+ 1是合数,对于这样的k,(k+ 1)2不能表示为a2+p的形式,事实上,若(k+ 1)2 = a2+p,则(k+ 1 -a)( k+ 1 +a) = p,得k+ 1 -a = 1,k+ 1 +a = p,即p = 2k+ 1,此与p 为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1+r1,b = 3q2+r2,r1, r2 = 0, 1或2,由3∣a2+b2 = 3Q+r12+r22知r1 = r2 = 0,即3∣a且3∣b。
浙教版七年级上册数学第一章有理数之聚焦绝对值--培优提高篇PPT
||
| |= (b≠0)
||
例1 已知y=|x-b|+|x-20|+|x-b-20|,其中0<b<20,b≤x≤20,那么y的最小值为______.
20
y=x-b+[-(x-20)]+[-(x-b-20)]
=x-b-x+20-x+b+20=40-x,
当x=20时,y的值最小为20.
例2 式子
a1,a2,a3,a4,a5,a6,a7,a8对应的数分别为0,-1, -1,-2,-2,-3,-3,-4.
5.如图,有理数-3,x,3,y在数轴上的对应点分别为M,N, P,Q.这四个数中绝对值最小的
数对应的是( B ).
A.点M
B.点N
C.点P
D.点Q
M
ห้องสมุดไป่ตู้-3
N
P Q
3
第5题
6.若m是有理数,则|m|-m一定是( B ).
(2)设a,b,c为整数,且|a-b|+|c-a|=1,求|c-a|+|a-b|+|b-c|的值.
(1)由ab-2=0,a-2=0,得a=2,b=1.
1
1
1
1
原式 = 1×2 + 2×3 + 3×4 +…+ 2007×2008
=1
=1
1
2
1
1
1
− + 2 − 3 +…+ 2007
1
2007
−
.
2008 = 2008
1
−
2008
(2)因a,b,c为整数,且|a-b|+|c-a|=1,故|a-b|与|c-a|一个为0,一个为1,
根与系数的关系(压轴题专项讲练)(原卷版)—2024-2025学年九年级数学上册压轴题专项(人教版)
根与系数的关系分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。
分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。
一、一元二次方程的根与系数的关系如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根是,那么,.注意:它的使用条件为a≠0,Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.【典例1】已知:关于x的一元二次方程kx2+2x+1―2k=0有两个实数根x1,x2.(1)若|x1|+|x2|=k的值;(2)当k取哪些整数时,x1,x2均为整数;(3)当k取哪些有理数时,x1,x2均为整数.(1)分两种情况:①若两根同号,②若两根异号;根据根与系数的关系结合根的判别式解答即可;(2)根据根与系数的关系可得若x1+x2=―2k为整数,可得整数k=±1,±2,然后结合两根之积、解方程分别验证即可;(3)显然,当k=―1时,符合题意;由两根之积可得k应该是整数的倒数,不妨设k=1m,则方程可变形21xx,abxx-=+21acxx=21为x 2+2mx +m ―2=0,即为(x +m )2=m 2―m +2,再结合整数的意义即可解答.解:(1)∵Δ=22―4k (1―2k )=4―4k +8k 2=8k 2―12k =8k+72>0,∴不论k 为何值,关于x 的一元二次方程kx 2+2x +1―2k =0都有两个实数根x 1,x 2,∵关于x 的一元二次方程kx 2+2x +1―2k =0有两个实数根x 1,x 2,∴x 1+x 2=―2k ,x 1x 2=1―2kk,分两种情况:①若两根同号,由|x 1|+|x 2|=x 1+x 2=x 1+x 2=―当x 1+x 2=―2k =k =―当x 1+x 2=――2k =―k =②若两根异号,由|x 1|+|x 2|=(x 1―x 2)2=8,即(x 1+x 2)2―4x 1x 2=8,∴――4×1―2kk=8,解得:k =1,综上,k 的值为1或 ±(2)∵关于x 的一元二次方程kx 2+2x +1―2k =0有两个实数根x 1,x 2,∴x 1+x 2=―2k ,x 1x 2=1―2k k,若x 1,x 2均为整数,则x 1+x 2=―2k 为整数,∴整数k =±1,±2,当k =±2时,x 1x 2=1―2kk不是整数,故应该舍去;当k =1时,此时方程为x 2+2x ―1=0,方程的两个根不是整数,故舍去;当k =―1时,此时方程为―x 2+2x +3=0,方程的两个根为x 1=―1,x 2=3,都是整数,符合题意;综上,当k 取―1时,x 1,x 2均为整数;(3)显然,当k =―1时,符合题意;当k 为有理数时,由于x 1x 2=1―2kk=1k ―2为整数,∴k 应该是整数的倒数,不妨设k =1m (m ≠0),m 为整数,则方程kx 2+2x +1―2k =0即为x 2+2mx +m ―2=0,配方得:(x +m )2=m 2―m +2,即x =―m±当m =2即k =12时,方程的两根为x 1=0,x 2=―4,都是整数,符合题意;当m ≠2时,m 2―m +2=(m ―12)2+74不是完全平方数,故不存在其它整数m 的值使上式成立;综上,k =―1或12.1.(22-23九年级上·湖北襄阳·自主招生)设方程ax 2+bx +c =0(a ≠0)有两个根x 1和x 2,且1<x 1<2<x 2<4,那么方程cx 2―bx +a =0的较小根x 3的范围为( )A .12<x 3<1B .―4<x 3<―2C .―12<x 3<―14D .―1<x 3<―122.(22-23九年级下·安徽安庆·阶段练习)若方程x 2+2px ―3p ―2=0的两个不相等的实数根x 1、x 2满足x 12+x 13=4―(x 22+x 23),则实数p 的所有值之和为( )A .0B .―34C .―1D .―543.(22-23八年级下·安徽合肥·期末)若关于x 的一元二次方程x 2―2x +a 2+b 2+ab =0的两个根为x 1=m ,x 2=n ,且a +b =1.下列说法正确的个数为( )①m·n >0;②m >0,n >0;③a 2≥a ;④关于x 的一元二次方程(x +1)2+a 2―a =0的两个根为x 1=m ―2,x 2=n ―2.A .1B .2C .3D .44.(22-23九年级上·浙江·自主招生)设a 、b 、c 、d 是4个两两不同的实数,若a 、b 是方程x 2―8cx ―9d =0的解,c 、d 是方程x 2―8ax ―9b =0的解,则a +b +c +d 的值为.5.(23-24九年级上·江苏南通·阶段练习)已知实数a,b,c 满足:a +b +c =2,abc =4.求|a |+|b |+|c |的最小值.6.(22-23九年级上·四川成都·期末)将两个关于x 的一元二次方程整理成a (x +ℎ)2+k =0(a ≠0,a 、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”.已知关于x的一元二次方程ax2+bx+c=0(a≠0)与方程(x+1)2―2=0是“同源二次方程”,且方程ax2+bx+c=0(a≠0)有两个根为x1、x2,则b-2c=,ax1+x1x2+ax2的最大值是.7.(23-24九年级上·山东济南·期末)已知xy+x+y=44,x2y+xy2=484,求x3+y3.8.(2024九年级·全国·竞赛)记一元二次方程x2+3x―5=0的两根分别为x1、x2.(1)求1x1―1+1x2―1的值;(2)求3x21+6x1+x22的值.9.(23-24九年级下·北京·开学考试)已知关于x的方程x2―2mx+m2―n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的3倍,求m的值.10.(23-24九年级上·安徽淮南·阶段练习)若关于x的一元二次方程x2+2x―m2―m=0.(1)若α和β分别是该方程的两个根,且αβ=―2,求m的值;(2)当m=1,2,3,⋅⋅⋅,2024时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,⋅⋅⋅,α2024、β2024,求1α1+1β1+1α2+1β2+⋯+1α2024+1β2024的值.11.(22-23九年级上·湖北武汉·期中)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根(1)直接写出m的取值范围(2)若满足1α+1β=―1,求m的值.(3)若α>2,求证:β>2;12.(22-23九年级·浙江·自主招生)已知方程x2+4x+1=0的两根是α、β.(1)求|α―β|的值;(2(3)求作一个新的一元二次方程,使其两根分别等于α、β的倒数的立方.(参考公式:x3+y3=(x+y) x2+y2―xy.13.(22-23九年级上·福建泉州·期末)已知关于x的方程mx2―(m―1)x+2=0有实数根.(1)若方程的两根之和为整数,求m的值;(2)若方程的根为有理根,求整数m的值.14.(22-23九年级下·浙江·自主招生)设m为整数,关于x的方程(m2+m―2)x2―(7m+2)x+12=0有两个整数实根.(1)求m的值.(2)设△ABC的三边长a,b,c满足c=2+a2m―12a=0,m2+b2m―12b=0.求△ABC的面积.15.(22-23九年级上·湖南常德·材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2―x―1=0的两个实数根分别为m,n,∴m+n=1,mn=―1,则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2―3x―1=0的两个根为x1,x2,则x1+x2=___________,x1x2= ___________.(2)类比应用:已知一元二次方程x2―3x―1=0的两根分别为m、n,求nm +mn的值.(3)思维拓展:已知实数s、t满足s2―3s―1=0,t2―3t―1=0,且s≠t,求1s ―1t的值.16.(23-24八年级上·北京海淀·期中)小聪学习多项式研究了多项式值为0的问题,发现当mx+n=0或px+q=0时,多项式A=(mx+n)(px+q)=mpx2+(mq+np)x+nq的值为0,把此时x的值称为多项式A的零点.(1)已知多项式(3x+1)(x―2),则此多项式的零点为__________;有一个零点为1,求多项式B的另一个零点;(2)已知多项式B=(x―1)(bx+c)=ax2―(a―1)x―a2(3)小聪继续研究(x―3)(x―1),x(x―4)及x――x轴上表示这些多项式零点的两个点关于直线x=2对称,他把这些多项式称为“2系多项式”.若多项式M=(2ax+b)(cx―5c)=bx2―4cx―2a―4是“2系多项式”,求a与c的值.17.(22-23九年级上·湖北黄石·期末)(1)x1,x2是关于x的一元二次方程x2―2(k+1)x+k2+2=0的两实根,且(x1+1)⋅(x2+1)=8,求k的值.(2)已知:α,β(α>β)是一元二次方程x2―x―1=0的两个实数根,设s1=α+β,s2=α2+β2,…,s n=αn+βn.根据根的定义,有α2―α―1=0,β2―β―1=0,将两式相加,得α2+β2―(α+β)―2=0,于是,得s2―s1―2=0.根据以上信息,解答下列问题:①直接写出s1,s2的值.②经计算可得:s3=4,s4=7,s5=11,当n≥3时,请猜想s n,s n―1,s n―2之间满足的数量关系,并给出证明.18.(23-24九年级上·福建宁德·期中)已知关于x的方程x2―(m+2)x+4m=0有两个实数根x1,x2,其中x1<x2.(1)若m=―1,求x12+x22的值;(2)一次函数y=3x+1的图像上有两点A(x1,y1),B(x2,y2),若AB=m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为x1和x2,求该直角三角形的面积.19.(22-23九年级上·全国·单元测试)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=―p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a,b是方程x2+15x+5=0的二根,则ab +ba=?(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知x=x1y=y1和x=x2y=y2是关于x,y的方程组x2―y+k=0x―y=1的两个不相等的实数解.问:是否存在实数k,使得y1y2―x1x2―x2x1=2若存在,求出的k值,若不存在,请说明理由.20.(22-23九年级上·四川资阳·期末)定义:已知x,x是关于x的一元二次方程ax2+bx+c=0(a≠0)<4,则称这个方程为“限根方程”.如:一元二次方程x2的两个实数根,若x1<x2<0,且3<x1x2<4,所以一元二次方程x2+13x+30=0的两根为x1=―10,x2=―3,因―10<―3<0,3<―10―3+13x+30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程x2+9x+14=0是否为“限根方程”,并说明理由;(2)若关于x的一元二次方程2x2+(k+7)x+k2+3=0是“限根方程”,且两根x1、x2满足x1+x2+x1x2 =―1,求k的值;(3)若关于x的一元二次方程x2+(1―m)x―m=0是“限根方程”,求m的取值范围.。
2024年数学九年级下册排列组合基础练习题(含答案)
2024年数学九年级下册排列组合基础练习题(含答案)试题部分一、选择题:1. 在排列问题中,从5个不同的元素中取出3个元素进行排列,共有多少种不同的排列方法?A. 10种B. 20种C. 60种D. 120种2. 从数字1、2、3、4、5中任取三个数字组成三位数,其中百位数字为3的排列方法有几种?A. 6种B. 8种C. 12种D. 24种3. 有4名同学站成一排拍照,其中甲、乙两名同学必须站在一起,共有多少种不同的站法?A. 6种B. 12种C. 18种D. 24种4. 从6名运动员中选出4名参加比赛,其中甲、乙两名运动员必须入选,共有多少种不同的选法?A. 15种B. 20种C. 30种D. 60种5. 从数字0、1、2、3、4、5中任取三个数字组成三位数,这个三位数能被3整除的排列方法有几种?A. 20种B. 30种C. 40种D. 50种6. 有5个男生和3个女生站成一排,要求男生和女生交替站立,共有多少种不同的站法?A. 36种B. 48种C. 60种D. 120种7. 从数字1、2、3、4、5、6中任取四个数字组成四位数,其中千位数字为偶数的排列方法有几种?A. 60种B. 75种C. 90种D. 120种8. 有6名同学分成两组进行篮球比赛,每组3人,共有多少种不同的分组方法?A. 20种B. 30种C. 40种D. 60种9. 从数字0、1、2、3、4、5、6、7、8、9中任取三个数字组成三位数,这个三位数的数字之和为9的排列方法有几种?A. 20种B. 25种C. 30种D. 35种10. 有8名同学站成一排,其中甲、乙、丙三名同学不能站在一起,共有多少种不同的站法?A. 3600种B. 4200种C. 4800种D. 5400种二、判断题:1. 从n个不同元素中取出m个元素进行排列,共有n^m种不同的排列方法。
()2. 从数字1、2、3、4中任取三个数字组成三位数,若百位数字为1,则共有6种不同的排列方法。
人教版九年级数学下册 相似 测试题 含答案【新】
初三数学人教版九年级下册(新)第二十七章相似测试题(时间:45分钟总分:100分)班级______________姓名_______________学号__________________一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知:线段a=5cm,b=2cm,则ab=()A.14B.4 C.52D.252.把mn=pq(mn≠0)写成比例式,写错的是()A.m qp n=B.p nm q=C.q nm p=D.m pn q=3.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗村的高度是()A.12m B.11m C.10m D.9m4.下列说法正确的是()A.矩形都是相似图形;B.菱形都是相似图形C.各边对应成比例的多边形是相似多边形;D.等边三角形都是相似三角形5.要做甲、乙两个形状相同(相似)的三角形框架,•已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()种A.1 B.2 C.3 D.46.如图(1),△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A.1:2B.1:4C.1:5D.1:67.如图(2),△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是()A.83B.23C.43D.538.如图(3),若∠1=∠2=∠3,则图中相似的三角形有()A.1对B.2对C.3对D.4对图(1)图(3)图(2)二、填空题(本大题共6小题,每小题5分,共30分)9.若235a b c ==(abc ≠0),则a b c a b c++-+=_________. 10.把长为20cm 的线段进行黄金分割,则较短线段长约是________cm .(精确到0.01 cm )11.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为63cm ,则这两个三角形的周长分别是________.12.如图(4),点D 是Rt △ABC 的斜边AB 上一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=•15,BE=10,则四边形DECF 的面积是__________.(4) (5)13.如图(5),BD 平分∠ABC ,且AB=4,BC=6,则当BD=_______时,△ABD ∽△DBC .14.在梯形ABCD 中,AB ∥CD ,AB=60,CD=15,E 、F 分别为AD 、BC 上一点,且EF ∥AB ,•若梯形DEFC ∽梯形EABF ,那么EF=_________.三、解答题(本大题共30分,每题10分.解答题应写出文字说明、证明过程或演算步骤)15.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点. △ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .16.如图,梯形ABCD中,AB CD∥,点F在BC上,连DF与AB的延长线交于点G.(1)求证:CDF BGF△∽△;(2)当点F是BC的中点时,过F作EF CD∥交AD于点E,若6cm4cmAB EF==,,求CD的长.17.如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).D CFEAB G答案:一、选择题1.C 2.D 3.A 4.D 5.C 6.C 7.D 8. D二、填空题9.5210.7.64 11.252cm ,315cm 12.150 13.6 14.30 三、解答题15.证明:(1)∵ 3,2AC DC = 63,42BC CE ==∴ .AC BC DC CE =又 ∠ACB =∠DCE =90°,∴ △ACB ∽△DCE .(2)∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC .又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°.∴ ∠EFA =90°. ∴ EF ⊥AB .16.(1)证明:∵梯形ABCD ,AB CD ∥,∴CDF FGB DCF GBF ∠=∠∠=∠,,∴CDF BGF △∽△.(2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC =∴CDF BGF △≌△,∴DF FG CD BG ==,又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+.∴22462BG EF AB =-=⨯-=,∴2cm CD BG ==.17.(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90° ∴ ∠BAF = ∠ADE∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知, AE = BF ,∴ EF = BF = 2 FG(3) 如图DE + BF = EF。
2020-2021学年人教版九年级数学下册《第27章 相似数》单元测试题(有答案)
人教版九年级数学下册《第27章相似数》单元测试题一.选择题(共10小题,每小题3分,满分30分)1.若=,则的值为()A.5 B.C.3 D.2.已知=,则代数式的值为()A.B.C.D.3.以下各图放置的小正方形的边长都相同,分别以小正方形的顶点为顶点画三角形,则与△ABC相似的三角形图形为()A.B.C.D.4.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A.1个B.2个C.3个D.4个5.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是()A.=B.=C.=D.=6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A.2 B.4 C.6 D.87.两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2 B.1:4 C.1:8 D.1:168.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°9.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米10.如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为()A.B.C.D.二.填空题(共6小题,每小题3分,满分18分)11.如图,用长3m、4m、5m的三根木棒正好搭成一个Rt△ABC,AC=3,∠C=90°,用一束垂直于AB的平行光线照上去,AC、BC在AB的影长分别为AD、DB,则AD=,BD=.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.已知两个相似三角形△ABC与△DEF的相似比为3.则△ABC与△DEF的面积之比为.14.如图,三角形ABC和三角形A'B'C'是以点O为位似中心的位似图形,若OA:OA'=3:4,三角形ABC的面积为9,则三角形A'B'C'的面积为.15.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.16.如图,在△ABC中,AB=9,AC=6,BC=12,点M在边AB上,AM=3,过点M作直线MN 与边AC交于点N,使截得的三角形与原三角形ABC相似,则MN的长为.三.解答题(共8小题,满分72分)17.(8分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.18.(8分)已知如图,E为平行四边形ABCD的边AB的延长线上的一点,DE分别交AC、BC 于G、F,试说明:DG是GE、GF的比例中项.19.(8分)如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;(1)证明:△ABC∽△ADE.(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:.20.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2)、B(﹣3,1)、C(﹣1,0).(1)将△ABC先向右平移2个单位长度,向下平移7个单位长度,得到△DEF,画出△DEF;(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC中的任意一点,其对应点P1的坐标为.21.(8分)如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连接EG,EF.(1)求证:BG=CF.(2)请你猜想BE+CF与EF的大小关系,并说明理由.22.(10分)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.23.(10分)如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.24.(12分)在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.求:(1)用含t的代数式表示Rt△CPQ的面积S;(2)当t=3时,P、Q两点之间的距离是多少?(3)当t为多少时,以点C、P、Q为顶点的三角形与△ABC相似?参考答案与试题解析一.选择题1.解:由=,得4b=a﹣b.,解得a=5b,==5,故选:A.2.解:由=得到:a=b,则==.故选:B.3.解:设每个小正方形的边长为1,则△ABC的各边长分别为:2,,,同理求得:A中三角形的各边长为:,1,,与△ABC的各边对应成比例,所以两三角形相似;故选:A.4.解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①正确;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△AGE≌△ECF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有3个.故选:C.5.解:当=或=时,DE∥BD,即=或=.故选:D.6.解:∵DE∥BC,∴,即,解得:EC=2,∴AC=AE+EC=4+2=6;故选:C.7.解:∵两个相似多边形的面积之比是1:4,∴这两个相似多边形的相似比是1:2,则这两个相似多边形的周长之比是1:2,故选:A.8.解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.9.解:∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴=,即=,∴MN=32(m),答:楼房MN的高度为32m.故选:A.10.解:根据射影定理得:AB2=BD×BC,∴BC==.故选:D.二.填空题11.解:依题意知,AC=3cm,AB=5cm,BC=4cm,∠C=90°.∵CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,则9=5AD,16=5BD,所以AD=,BD=.故答案是:;.12.解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.13.解:∵△ABC与△DEF的相似比为3,∴△ABC与△DEF的面积之比为9.故答案为9.14.解:∵三角形ABC和三角形A'B'C'是以点O为位似中心的位似图形,OA:OA'=3:4,∴AC:A′C′=OA:OA′=3:4,∵三角形ABC的面积为9,∴三角形A'B'C'的面积为:16.故答案为:16.15.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.16.解:∵△AMN和△ABC相似,∴①如图1,△AMN∽△ABC,∴,∵AM=3,AC=6,BC=12,AB=9,∴,MN=4.②如图2,△AMN∽△ACB,∴,∵AM=3,AC=6,BC=12,∴,MN=6,综上MN为4或6.故答案为:4或6.三.解答题17.解:(1)∵AD∥BE∥CF,∴===;(2)过D点作DM∥AC交CF于M,交BE于N,如图,∵AD∥BN∥CM,AC∥DM,∴四边形ABND和四边形ACMD都是平行四边形,∴BN=AD=5,CM=AD=5,∴MF=CF﹣CM=19﹣5=14,∵NF∥MF,∴==,∴NE=MF=×14=6,∴BE=BN+NE=5+6=11.18.解:∵四边形ABCD是平行四边形,∴DC∥AE,∴=,∵AD ∥BC , ∴=, ∴=,∴DG 2=GE •GF ,∴DG 是GE 、GF 的比例中项.19.(1)证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE .∵∠C =∠E ,∴△ABC ∽△ADE .(2)补充的条件为:AB =AD (答案不唯一);理由如下: 由(1)得:∠BAC =∠DAE ,在△ABC 和△ADE 中,,∴△ABC ≌△ADE ;故答案为:AB =AD (答案不唯一).20.解:(1)如图所示:△DEF 即为所求;(2)如图所示:△A 1B 1C 1即为所求,若P (x ,y )为△ABC 中的任意一点, 其对应点P 1的坐标为:(﹣2x ,﹣2y ).21.(1)证明:∵BG∥AC,∴∠C=∠GBD,∵D是BC的中点,∴BD=DC,在△CFD和△BGD中,∴△CFD≌△BGD,∴BG=CF.(2)BE+CF>EF,理由如下:∵△CFD≌△BGD,∴CF=BG,在△BGE中,BG+BE>EG,∵△CFD≌△BGD,∴GD=DF,ED⊥GF,∴EF=EG,∴BG+CF>EF.22.(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵∠ABE=30°,AE=2,∴BE=2,BC=4,∴EC=2,∵AE∥BC,∴△AEF∽△BCF,∴==,∴EF=EC=.23.解:(1)①当△BPQ∽△BAC时,∵,BP=3t,QC=2t,AB=10cm,BC=8cm,∴,∴,②当△BPQ∽△BCA时,∵,∴,∴;∴或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=3t,,,,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴,∴解得:;24.解:(1)由题意得AP=4t,CQ=2t,则CP=20﹣4t,因此Rt△CPQ的面积为S=cm2;(2)当t=3时,CP=20﹣4t=8cm,CQ=2t=6cm,由勾股定理得PQ=;(3)分两种情况:①当Rt△CPQ∽Rt△CAB时,,即,解得t=3;②当Rt△CPQ∽Rt△CBA时,,即,解得t=.因此t=3或t=时,以点C、P、Q为顶点的三角形与△ABC相似.。
【5套打包】内江市初三九年级数学下(人教版)第二十七章《相似》单元综合练习卷(含答案解析)
人教版九年级下第27章相似质量评估试卷(含答案)一、选择题(每小题3分,共30分)1.如果x∶(x+y)=3∶5,那么xy=()A.32 B.38C.23 D.852.如图1,AD∥BE∥CF,直线l1,l2与三条平行线分别交于点A,B,C 和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()图1A.4 B.5C.6 D.83.如图2,点D,E分别为△ABC的边AB,AC上的中点,则△ADE的面积与四边形BCED的面积的比为()图2A.1∶2 B.1∶3C.1∶4 D.1∶14.两相似三角形的最短边长分别是5 cm和3 cm,它们的面积之差为32 cm2,那么小三角形的面积为()A.10 cm2B.14 cm2C.16 cm2D.18 cm25.如图3,在平行四边形ABCD中,EF∥AB交AD于点E,交BD于点F,DE∶EA=3∶4,EF=3,则CD的长为(B)图3A.4 B.7C.3 D.126.如图4,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C和D的坐标分别为()图4A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)【解析】∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C和D的坐标分别为(2,2),(3,1).7.如图5,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()图5A.ABAP=ACAB B.ACAB=BCBPC.∠ABP=∠C D.∠APB=∠ABC8.如图6,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论中错误的是(C)图6A.∠ADE=∠CDEB.DE⊥ECC.AD·BC=BE·DED.CD=AD+BC9.如图7所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()图7A.5对B.4对C.3对D.2对10.如图8,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C 的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x 的函数大致图象是()图8A BC D二、填空题(每小题4分,共24分)11.如图9,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=3,DB=2,BC=6,则DE的长为.图912.如图10,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形_________________________________________.图1013.如图11,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC 相似时,线段CE的长为.图1114.如图12,铁道口的栏杆短臂长为1 m,长臂长为16 m,当短臂端点下降0.5 m时,长臂端点升高m(杆的宽度忽略不计).图1215.如图13,矩形ABCD中,AB=3,BC=6,点E在对角线BD上,且B 人教版九年级数学下第二十七章《相似》单元练习题(含答案)一、选择题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方2.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为()A.1∶3B.1∶4C.1∶8D.1∶93.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是()A.5 cmB.10 cmC.15 cmD.30 cm4.若矩形ABCD∽矩形EFGH,相似比为2∶3,已知AB=3 cm,BC=5 cm,则矩形EFGH的周长是()A.16 cmB.12 cmD.36 cm5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于()A.B.C.D.6.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点AB.点BC.点CD.点D7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()B.57.5尺C.6.25尺D.56.5尺8.已知A、B两地的实际距离AB=5 km,画在图上的距离A′B′=2 cm,则图上的距离与实际距离的比是()A.2∶5B.1∶2 500C.250 000∶1D.1∶250 000二、填空题9.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2 cm,则线段BC=________ cm.10.已知:如图,A′B′∥AB,A′C′∥AC,AA′的延长线交于BC于点D,△ABC与△A′B′C′是__________图形,其中____________点是位似中心.11.已知△ABC∽△A′B′C′,且S△ABC∶S△A′B′C′=16∶9,若AB=4,则A′B′=__________.12.已知△ABC∽△DEF,=,且AD为BC边上的中线,DG为EF边上的中线,则AD∶DG =__________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.14.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.15.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.16.如图,用放大镜将图形放大,应属于哪一种变换:______________(请选填:对称变换、平移变换、旋转变换、相似变换).三、解答题17.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.(1)设CE=x(厘米),EF=a(厘米),求出由x和a表示y的计算公式;(2)现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学弹跳时站的位置为x =150厘米,且a=205厘米.若规定y≥50,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格,那么该生弹跳成绩处于什么水平?18.已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b,AE∶ED=m∶n;(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)图1图2图3②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB 与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.20.如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问:(1)∠PDC与∠HDC是否相等,为什么?(2)图中有哪几组相等的线段?(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?21.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.第二十七章《相似》单元练习题答案解析1.【答案】C【解析】∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.【答案】D【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A′B′C′与△ABC的相似比为1∶3,∴△A′B′C′与△ABC的面积的比1∶9,故选D.3.【答案】C【解析】∵△ABC和△DEF相似,∴△DEF的三边之比为3∶4∶5,∴△DEF的最短边和最长边的比为3∶5,设最长边为x,则3∶5=9∶x,解得x=15,∴△DEF的最长边为15 cm,故选C.4.【答案】C【解析】∵AB=3 cm,BC=5 cm,∴矩形ABCD的周长=2×(3+5)=16 cm,∵矩形ABCD∽矩形EFGH,相似比为2∶3,∴矩形ABCD与矩形EFGH的周长比2∶3,∴矩形EFGH的周长为24 cm,故选C.5.【答案】A【解析】假设△ABC∽△CAD,∴=,即CD==,∴要使△ABC∽△CAD,只要CD等于,故选A.6.【答案】A【解析】如图,位似中心为点A.故选A.7.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.8.【答案】D【解析】∵5千米=500 000厘米,∴比例尺=2∶500 000=1∶250 000;故选D.9.【答案】6【解析】如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴BC=6 cm.10.【答案】位似O【解析】∵A′B′∥AB,A′C′∥AC,∴∠A′B′C′=∠B,∠A′C′B′=∠C,∴△A′B′C′∽△ABC,∵AA′的延长线交于BC于点D,∴△ABC与△A′B′C′是位似图形,其中O点是位似中心.11.【答案】3【解析】∵△ABC∽△A′B′C′,且S△ABC∶S△A′B″C′=16∶9,∴AB∶A′B′=4∶3,∵AB=4,∴A′B′=3.12.【答案】【解析】∵△ABC∽△DEF,∴BC∶EF=AD∶DG,∵=,∴BC∶EF=3∶2,∴AD∶DG=3∶2.13.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.14.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.15.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.16.【答案】相似变换【解析】由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.17.【答案】解(1)过A作AM⊥BD于点M,交GE于N.∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形,∴NE=AC,又∵AC=200,EF=a,FG=y,∴GN=GE-NE=a+y-200,∵DM=AC=200,∴BM=BD-DM=300-200=100,又∵GN∥BD,∴△ANG∽△AMB,∴=,即=,∴y=x-a+200;(2)当x=150 cm,a=205 cm时,y=×150-205+200=45( cm),y=45>40.故该生弹跳成绩处于良好水平.【解析】(1)利用相似三角形的判定与性质得出△ANG∽△AMB,进而得出=,即可得出答案;(2)当x=150 cm,a=205 cm时,直接代入(1)中所求得出即可.18.【答案】解(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∵=,∴=,又BC=b,∴=,∴EF=;(2)①如图2,连接BD,与EF交于点H,由(1)知,HF=,EH=,∵EF=EH+HF,∴EF=;②猜想:EF=,证明:连接DE,并延长DE交BC于G,由已知,得BG=,EF=,∵GC=BC-BG,∴EF=(BC-BG)==.【解析】(1)由EF∥BC,即可证得△AEF∽△ABC,根据相似三角形的对应边成比例,即可证得=,根据比例变形,即可求得EF的值;(2)①连接BD,与EF交于点H,由(1)知,HF=,EH=,又由EF=EH+HF,即可求得EF的值;②连接DE,并延长DE交BC于G,根据平行线分线段成比例定理,即可求得BG的长,又由EF=与GC=BC-BG,即可求得EF的值.19.【答案】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵==2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要=,即=,即=,即2AB-2(b+d)=2AB-(a+c),∴a+c=2(b+d),即=2.【解析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由,所以应设矩形蔬菜种植区域的宽为x m,则长为2x m,然后由题意得==2,矩形蔬菜种植区域的长与宽之比为2∶1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得=,即=,然后利用比例的性质,即可求得答案.20.【答案】解(1)相等.理由如下:∵CD为∠ACF的角平分线(已知),∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.∴∠DPC=∠DHC=90°.∴∠PDC=∠HDC.(2)PC=HC,DP=DH,AP=BH,AD=BD.(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.∵∠CPD=90°,∴∠ABC=90°.∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,∴∠ACB=60°.∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.【解析】(1)根据角平分线与垂线的性质证明角相等;(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.21.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.人教版九年级下册第二十七章相似单元练习题(含答案)一、选择题1.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A.=B.=C.∠A=∠ED.∠B=∠D2.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是()A.6B.8C.9D.124.如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移C.轴对称D.旋转5.下列各组图形相似的是()A.B.C.D.6.在△ABC与△A′B′C′中,有下列条件:(1)=,(2)=;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为()A.1B.C.D.28.下列说法中正确的是()①在两个边数相同的多边形中,如果各对应边成比例,那么这两个多边形相似;②两个矩形有一组邻边对应成比例,这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为()A.1∶2B.1∶4C.2∶1D.4∶110.若△ABC~△A′B′C′,面积比为1∶4,则△ABC与△A′B′C′的相似比为()A.16∶1B.1∶16C.2∶1D.1∶2二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.12.如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E的坐标为(-1,2),则点P的坐标为________.13.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN 的长为__________.14.两个相似多边形,如果它们对应顶点所在的直线______________________,那么这样的两个图形叫做位似图形.15.在△ABC中,AB=6 cm,AC=5 cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE∶S四边形BCED=1∶8,则AD=__________ cm.16.如果两个相似三角形周长的比是2∶3,那么它们的相似比是____________.17.如图,AD为△ABC的中线,AE=AD,BE交AC于点F,DH∥BF,则=__________.18.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为______________尺.19.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上,以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.20.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.三、解答题21.如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连接BC、D C.(1)求证:△ABC≌△ADC;(2)延长AB、DC交于点E,若EC=5 cm,BC=3 cm,求四边形ABCD的面积.22.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm的竹竿的影长为60 cm;如图2:乙组:测得学校旗杆的影长为900 cm;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm,影长为300 cm.解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE·CD=AD·CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,连接AF.求证:DF=AF.24.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.25.如图,已知:D,E分别是△ABC的AB,AC边上的点,且△ABC∽△ADE,AD∶DB=1∶3,DE=2,求BC的长.26.将一张长、宽之比为的矩形纸ABCD依次不断对折,可得到的矩形纸BCFE,AEML,GMFH,LGPN.(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比变了吗?(2)在这些矩形中,有成比例的线段吗?(3)你认为这些大小不同的矩形相似吗?27.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP 还相似吗?为什么?28.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.答案解析1.【答案】B【解析】在△ABC和△DEF中,∵==,∴△ABC∽△DEF,故选B.2.【答案】B【解析】作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab-b2=0,∴+-1=0,∴=或(舍弃),∴==,故选B.3.【答案】D【解析】∵l1∥l2∥l3,∴=,即=,∴BC=8,∴AC=AB+BC=12,故选D.4.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.5.【答案】B【解析】A.形状不同,大小不同,不符合相似定义,故错误;B.形状相同,但大小不同,符合相似定义,故正确;C.形状不同,不符合相似定义,故错误;D.形状不同,不符合相似定义,故错误.故选B.6.【答案】C【解析】共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选C.7.【答案】C【解析】∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴=,∵AF∶FG∶GD=3∶2∶1,∴AF=3,DG=1,∴AB2=AF·DG=3,∴AB=.故选C.8.【答案】D【解析】①虽然各对应边成比例,但是各对应角不一定相等,所以不相似,比如:所有菱形的对应边都成比例,但是它们不一定相似;②两个矩形有一组邻边对应成比例,就可以得出四条边对应成比例,并且它们的角都是90°,所以这两个矩形相似;③有一个角对应相等的平行四边形的对应边不一定成比例,所以不一定相似;④有一个角对应相等就可以得出菱形的其他角对应相等,并且菱形的对应边是成比例的,所以相似.故选D.9.【答案】A【解析】∵△ABC∽△DEF,∴△ABC的面积:△DEF的面积=△ABC与△DEF的周长之比的平方,而△ABC的面积为1,△DEF的面积为4,∴△ABC与△DEF的周长之比=1∶2.故选A.10.【答案】D【解析】∵△ABC相似△A′B′C′,面积比为1∶4,∴△ABC与△A′B′C′的相似比为1∶2.故选D.11.【答案】20【解析】∵AC∶BC=2∶3,∴设AC=2x,则BC=3x,AB=5x,∵D为AB的中点,∴AD=2.5x,∴CD=0.5x,∵CD=2 cm,∴x=4,∴AB=5x=5×4=20 cm;12.【答案】(-2,0)【解析】∵四边形OABC是矩形,点B的坐标为(2,4),∴OC=AB=4,OA=2,∴点C的坐标为(0,4),∵矩形OABC与矩形ODEF是位似图形,P是位似中心,点E的坐标为(-1,2),∴位似比为1∶2,∴OP∶AP=OD∶AB=1∶2,设OP=x,则=,解得:x=2,∴OP=2,即点P的坐标为(-2,0).13.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴=,即=,∴MN=1,故答案为1.14.【答案】相交于一点【解析】两个相似多边形,如果它们对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.15.【答案】2或【解析】∵S△ADE∶S四边形BCED=1∶8,∴S△ADE∶S△ABC=1∶9,∴△ADE与△ABC相似比为∶1∶3,①若∠AED对应∠B时,则=,∵AC=5 cm,∴AD=cm;②当∠ADE对应∠B时,则=,∵AB=6 cm,∴AD=2 cm;16.【答案】2∶3【解析】∵两个相似三角形周长的比是2∶3,∴两个相似三角形相似比是2∶3.17.【答案】【解析】∵DH∥BF,AD为△ABC的中线,∴CH=FH,∵DH∥BF,AE=AD,∴AF=FH.∴=,18.【答案】45【解析】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴=,解得x=45.19.【答案】(4,2)或(-4,-2)【解析】位似图形如图所示,B1(4,2),B2(-4,-2),故答案为(4,2)或(-4,2).20.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.21.【答案】(1)证明∵AC是圆O的直径,∴∠ABC=∠D=90°,在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC;(2)解由(1)知Rt△ABC≌Rt△ADC,∴CD=BC=3,AD=AB,∴DE=5+3=8,∵∠EAD=∠ECB,∠D=∠EBC=90°,∴△EAD∽△ECB,∴=,∵BE==4,∴=,∴AD=6,∴四边形ABCD的面积=S△ABC+S△ACD=2××3×6=18 cm2【解析】22.【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.【解析】(1)根据同一时刻物高与影长成正比即可求出旗杆的高度;(2)先根据同一时刻物高与影长成正比求出NG的长,再连接OM,由切线的性质可知OM⊥NH,进而可得出△NMO∽△NGH,再根据其对应边成比例列出比例式,然后用半径表示出ON,进行计算即可求出OM的长.23.【答案】证明(1)∵AE·CD=AD·CE,∴=,∵∠DAB=∠B,∴AD=BD,∴=,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF·AB,∵AD=BD,∴AD2=DF·AB,∴==1,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴=,∴DF=AF.【解析】24.【答案】证明(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=∠BAC=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠EAF=∠ABE,∴△AEF∽△ABE.【解析】(1)由△ABC是等边三角形,根据等边三角形的性质可得:AB=BC,∠ABD=∠C=60°,继而根据SAS即可证得△ABD≌△BCE;(2)由△ABD≌△BCE,可证得∠BAD=∠CBE,进一步得到∠EAF=∠ABE,然后根据有两角对应相等的三角形相似,即可得△AEF∽△ABE.25.【答案】解∵AD∶DB=1∶3,∴AD∶AB=1∶4,∵△ABC∽△ADE,∴AD∶AB=DE∶BC,∵DE=2,∴BC=8.【解析】先根据AD∶DB=1∶3,变形得到AD∶AB的值,再根据相似三角形对应边成比例求解即可.26.【答案】解(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比不变;(2)在这些矩形中,有成比例的线段.(3)这些大小不同的矩形相似.【解析】(1)所有矩形的长、宽之比为;(2)第一个矩形的宽为对折后矩形的长,则得到成比例的线段;(3)根据相似多边形的定义回答.27.【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∵∠BGP=∠C+∠CPG=45°+∠CAG,∠CPF=∠FPG+∠CAG=45°+∠CAG,∴∠AGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP.【解析】(1)如图1,先根据等腰直角三角形的性质,得∠B=∠C=∠DPE=45°,再利用平角定义得到∠BPG+∠CPF=135°,利用三角形内角和定理得到∠BPG+∠BGP=135°,根据等量代换得∠BGP=∠CPF,加上∠B=∠C,于是根据有两组角对应相等的两个三角形相似即可得到结论;(2)如图2,由于∠B=∠C=∠DPE=45°,利用三角形外角性质,得∠BGP=∠C+∠CPG=45°+∠CAG,而∠CPF=45°+∠CAG,所以∠AGP=∠CPF,加上∠B=∠C,于是可判断△PBG∽△FCP.28.【答案】证明如图所示:∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°-∠B=135°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.【解析】先判断△ABC为等腰直角三角形得到∠B=∠C=45°,再利用三角形内角和得到∠1+∠2=135°,利用平角定义得到∠2+∠3=135°,则∠1=∠3,于是可根据有两角对应相等的两个三角形相似得到结论.人教版九的级数学下册第二十七章相似单元练习题(含答案)一、选择题1.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE,EF⊥BE,AF交BE于点D,C在BD上,有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A、B间距离的有()A.4组B.3组C.2组D.1组2.如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10B.12C.D.3.如图,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24 m,BD=12 m,DE=40 m,则河的宽度AB约为()A.20 mB.18 mC.28 mD.30 m4.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1∶2,那么S△AOD∶S△BOC是()A.1∶3B.1∶4C.1∶5D.1∶65.如图,在平面直角坐标系中,已知点A(-4,8),B(-10,-3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(-2,4)B.(-8,16)C.(-2,4)或(2,-4)D.(-8,16)或(8,-16)6.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.=B.=C.=D.=7.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是()A.6B.8C.9D.128.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个9.在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A.(3,)B.(,6)C.(3,)或(-3,)D.(,6)或(,-6)10.下列各组图形相似的是()A.B.C.D.二、填空题11.两三角形的相似比为1∶4,它们的周长之差为27 cm,则较小三角形的周长为__________.12.如图,在△ABC与△ADE中,=,要使△ABC与△ADE相似,还需要添加一个条件,这个条件是__________.13.已知△ABC∽△DEF,△ABC的周长为1,△DEF的周长为3,则△ABC与△DEF的面积之比为________.14.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,要使△ABE∽△ACD,则需要添加的一个条件是:________________.15.已知△ABC∽△DEF,且S△ABC=4,S△DEF=25,则=________.16.如图,根据所给信息,可知的值为______________.17.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.18.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.19.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分. ①,②,③这三块的面积比依次为1∶4∶41,那么④,⑤这两块的面积比是____________.20.将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见.如,我们常见的A4纸就是一个“白银矩形”.请根据上述信息求A4纸的较长边与较短边的比值.这个比值是__________.三、解答题21.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF·DA.22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和直线l,按要求画图.(1)作出四边形ABCD关于直线l成轴对称的四边形A′B′C′D′;(2)以B为位似中心,在点B的下方将四边形ABCD放大2倍得到四边形A1B1C1D1,画出四边形A1B1C1D1.23.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)求证:PC2=PA·PB;(3)若PA=2,PC=2,求阴影部分的面积(结果保留π).24.△ABC∽△A′B′C,顶点A、B、C分别与A′、B′、C′对应,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC、AC、A′B′、A′C′的长度.25.如图,在△ABC中,DE∥BC.(1)与有什么关系?过E点作EF∥AB,与有什么关系?(2)由(1)可知与有什么关系?根据三角形相似的定义可知△ABC与△ADE相似吗?(3)你能根据上面的结论证明三组对应边的比相等的两个三角形相似吗?26.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.27.如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.图1。
人教版七年级初一数学第二学期第八章 二元一次方程组单元 易错题难题质量专项训练试题
人教版七年级初一数学第二学期第八章 二元一次方程组单元 易错题难题质量专项训练试题一、选择题1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==-D .14,33m n =-=2.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( )A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x y x y +=⎧⎨-=⎩D .6374y x y x =+⎧⎨+=⎩3.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩ B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩4.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .255.已知方程组221x y kx y +=⎧⎨+=⎩的解满足3x y -=,则k 的值为( )A .2B .2-C .1D .1-6.小明要用40元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买....,40元钱全部用尽,A 型每个6元,B 型口罩每个4元,则小明的购买方案有( )种. A .2种B .3种C .4种D .5种 7.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=48.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .2039.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.()()45126456x yx y⎧+=⎪⎨-=⎪⎩B.()312646x yx y⎧+=⎪⎨⎪-=⎩C.()()31264456x yx y⎧+=⎪⎨⎪-=⎩D.()()31264364x yx y⎧+=⎪⎪⎨⎪-=⎪⎩10.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A、B、C、D表示的数分别是整数a、b、c、d,且满足2319a d,则b c+的值为()A.3-B.2-C.1-D.0二、填空题11.已知关于x,y的二元一次方程()()12120m x m y m+++=﹣﹣,无论实数m取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.12.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.13.小明今年五一节去三峡广场逛水果超市,他分两次购进了A、B两种不同单价的水果.第一次购买A种水果的数量比B种水果的数量多50%,第二次购买A种水果的数量比第一次购买A种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A、B水果的总费用比第一次购买A、B水果的总费用少10%(两次购买中A、B两种水果的单价不变),则B种水果的单价与A种水果的单价的比值是______.14.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.15.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x斤,燕每只重y斤,则可列方程组为________________16.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .17.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___.18.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.19.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.22.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.23.阅读下列材料,然后解答后面的问题. 已知方程组372041027x y z x y z ++=⎧⎨++=⎩,求x+y+z 的值.解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③, 把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值.24.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.25.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
program e;
var
m,n,i,j:integer;
x,y,a,b:longint;
begin
writeln;
for m:=2 to 60 do
for n:=1 to m-1 do
begin
x:=1; y:=1;
if a=b then writeln('m=',m,' n=',n);
end;
end.
for i:=1 to m do begin x:=x mod 10000; x:=x*1989; a:=x mod 1000; end;
for j:=1 to n do begin y:=y mod 10000; y:=y*1989; b:=y mod 1000; end;
编写程序求最小正整数m、n(0<n<m)为何值时,1989m与1989n的最后三位数字相同?
(★★★★)
(算法:这类数字很大且有效数字位数很多(超出最多有效位数extended数据类型有效数字18位)的数字问题,一定要另辟蹊径寻找突破口,注意到此题只要求最后三位数字相同,则我最多保留最后四位有效数字即可进行判断。还请记住这样一个事实,如1989×1989=3956121,3956121×1989=7868724669,最后四位数字是“与1989相乘即6121×1989=12174669,最后四位数字也是“4669”,没有破坏最后四位有效数字的值,因此可以通过这种方法来编写此程序。)