2014年新湘教版数学八年级下期末检测模拟试卷

合集下载

湘教版八年级下册数学期末测试卷(参考答案)

湘教版八年级下册数学期末测试卷(参考答案)

湘教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.D.2、下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.3、已知一次函数y=kx+b的图象经过点(2,3),(-1,-3),那么这个一次函数的解析式为()A.y=-2x+7B.y=2x-1C.y=-2x-3D.y=2x+14、下列数字中既是轴对称图形又是中心对称图形的有几个()A.1个B.2个C.3个D.4个5、关于正比例函数,则下列结论正确的是()A.图象必经过点B.图象经过第一、三象限C. 随的增大而减小D.不论取何值,总有6、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为()A.5B.25C.6D.7、一个多边形的内角和等于外角和的两倍,那么这个多边形是()A.三边形B.四边形C.五边形D.六边形8、如图,小张与小王分别从相距300公里的甲、乙两地同时出发,相向而行.表示小张小张骑摩托车到达乙地后立即返回甲地,小王从乙地直接到达甲地.y1离甲地的距离,y表示小王离乙地的距离.则两人从出发到第一次相遇用时2()A. B. C. D.9、如图,矩形中,O为的中点,过点O作分别交于点若则的长为()A.2B.C.D.10、下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:2.11、点M(-5,y)向下平移5个单位的点关于x轴对称,则y的值是()A.-5B.5C.D.12、点经过某种图形变化后得到点,这种图形变化可以是()A.关于轴对称B.关于轴对称C.绕原点逆时针旋转D.绕原点顺时针旋转13、若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14、如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH= BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④15、如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)二、填空题(共10题,共计30分)16、如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是________.17、如图,矩形ABCD的周长是20,且,E是AD边上的中点,点P是AB边上的一个动点,将沿PE折叠得到,连接CE,CF,当是直角三角形时,BP的长是________.18、如图,菱形ABCD中,∠A=60°,BD=6,则菱形ABCD的周长为________.19、若函数,则当函数值y=12时,自变量x的值是________ 。

湘教版八年级下册数学期末测试卷【完整版】

湘教版八年级下册数学期末测试卷【完整版】

湘教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90º,∠A=30º,∠ABC的平分线BD交AC于点D,若BC=3 ,则点D到AB的距离为()A.2B.3C.4D.52、下列命题中,真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个3、小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中. 设小明出发第分钟的速度为米/分,离家的距离为米. 与之间的部分图象、与之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5B.8.25C.4.5 或8.25D.4.5 或 8.54、在下列四个函数中,y随x的增大而减小的函数是()A. B. C. D.5、下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形 D.圆的切线垂直于经过切点的半径6、如图,在4×4的正方形网格中,是相似三角形的是()A.①③B.①②C.②③D.②④7、下列关于一次函数的结论中,正确的是()A.图象经过点B.当时,C.y随x增大而增大 D.图象经过第二、三、四象限8、数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,2),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示.题中用“…”表示的缺失的条件应补为()A.边AB的长B.△ABC的周长C.点C的横坐标D.点C的纵坐标9、直角三角形的两直角边分别为5、12,则斜边上的高为 ( )A.6B.8C.D.10、如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A. B. C. D.11、在平面直角坐标系中,若轴,,点A的坐标为,则点B的坐标为()A. B. C. 或 D. 或12、如图是某地的长方形大理石广场示意图,如果小琴A角走到C角,至少走()A.90米B.100米C.120米D.140米13、在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为()A.(3,-1)B.(-3,1)C.(1,-3)D.(-1,3)14、如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC 的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6,AB=15则△ABD的面积为()A.45B.30C.15D.6015、一只小虫从点A(﹣2,1)出发,先向右跳4个单位,再向下跳3个单位,到达点B处,则点B的坐标是()A.(﹣5,5)B.(2,﹣2)C.(1,5)D.(2,2)二、填空题(共10题,共计30分)16、如图1,作∠ BPC平分线的反向延长线PA,以∠ APB,∠APC,∠BPC为内角可以分别作三个边长相等的正多边形.例如:若∠BPC=90°,则∠APB=∠APC=135°,图2就是一个符合要求的图形. 在所有符合要求的图形中,∠BPC的度数是________.(∠BPC=90°除外)17、如图,E为正方形ABCD内一点,∠AEB=135°,△AEB按顺时针方向旋转一个角度后成为△CFB,图中________是旋转中心,若BE=1,则EF=________.18、如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,点C在x轴上,且满足AO=AC,则△ABC的面积为________.19、在直角坐标系中,O为坐标原点,已知点A(1,2),在y轴的正半轴上确定点P,使△AOP为等腰三角形,则点P的坐标为________.20、在电影院中,若将电影票上”8排6号”记作(8,6),那么”5排4号”应记作________21、茂名市祥和中学办学特色好,“校园文化”建设,主题鲜明新颖:“国学引领,教老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示________ .22、如图所示,把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,则球的半径为________cm.23、如图,等腰直角三角形中,,D是上一点,连接,过点作于交于在是上一点,过点作于,延长到连接,使,若,则线段的长度为________.24、如图,在5×5的边长为1的小正方形组成的网格中,格点上有A、B、C、D四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接________。

湘教版八年级数学下册期末考试卷及答案【完整版】

湘教版八年级数学下册期末考试卷及答案【完整版】

湘教版八年级数学下册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25 B.28、28 C.25、28 D.28、313.已知:20n是整数,则满足条件的最小正整数n()A.2 B.3 C.4 D.54.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或55.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13207.下列四个图形中,线段BE是△ABC的高的是()A .B .C .D .8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .43 9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.3.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为____________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.6.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=12.3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD =13S△BOC,求点D的坐标.5.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、A6、B7、D8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、30°或150°.3、32或424、180°5、36、AB=BC(或AC⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、223x y-+,14-.3、(1)略;(2)△ABC的周长为5.4、(1)k=-1,b=4;(2)点D的坐标为(0,-4).5、(1)y=-6x,y=-2x-4(2)86、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。

八年级下册数学湘教版期末数学试卷附答案

八年级下册数学湘教版期末数学试卷附答案

八年级(下)期末数学试卷满分:120分时间:120分钟姓名:分数:一、选择题(每小题3分,共24分)1.(3分)(若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是()A.(1,2)B.(﹣2,﹣1)C.(﹣1,2)D.(2,﹣4)2.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4) C.(3,﹣4) D.(﹣3,﹣4)4.(3分)已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.285.(3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°6.(3分)正六边形具备而菱形不具备的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.每条对角线平分一组对边7.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则C点到AB的距离为()A. B. C. D.8.(3分)一次函数y=ax+1与y=bx﹣2的图象交于x轴上同一个点,那么a:b等于()A.1:2 B.(﹣1):2 C.3:2 D.以上都不对二、填空题:(每小题3分,共24分)9.(3分)在Rt△ABC中,∠C=90°,斜边上的中线CD=3,则斜边AB的长是______.10.(3分)在Rt△ABC中,∠C=90°,∠B=30°,AB=16,则AC=______.11.(3分)已知菱形的周长为40,两对角线比为3:4,则两对角线的长分别为______.12.(3分)一次函数的图象过点(0,3)且与直线y=﹣x平行,那么函数解析式是______.13.(3分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为______.14.(3分)如图,一块矩形纸片的宽CD为2cm,点E在AB上,如果沿图中的EC对折,B 点刚好落在AD上,此时∠BCE=15°,则BC的长为______.第14题图第15题图第16题图15.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是______.16.(3分)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点A的坐标是______.三、解答题:(共72分)17.(6分)已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.18.(6分)已知一次函数y=(m+3)x+m﹣4,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值.19.(6分)如图,四边形ABCD四个顶点的坐标分别是A(1,2),B(3,1),C(5,2),D (3,4).将四边形ABCD先向下平移5个单位,再向左平移6个单位,它的像是四边形A′B′C′D′.(1)作出四边形A′B′C′D′.(2)写出四边形A′B′C′D′的顶点坐标.20.(6分)如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,且AP∥QC.求证:BP=DQ.21.(6分)如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.22.(6分)如图,△ABC中,AB=AC,AD⊥BC于点D,AE是∠BAC外角平分线,BE⊥AE,连接DE.(1)求证:DA⊥AE;(2)求证:四边形DCAE是平行四边形.23.(6分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?24.(10分)如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.(10分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时.设轿车行驶的时间为x(h),轿车到甲地的距离为y(km),轿车行驶过程中y与x 之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围.26.(10分)如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA 运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.八年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共24分1.(3分)(2014•崇左)若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是()A.(1,2)B.(﹣2,﹣1)C.(﹣1,2)D.(2,﹣4)【考点】一次函数图象上点的坐标特征.【分析】直接把点A(2,4)代入函数y=kx求出k的值,再把各点代入函数解析式进行检验即可.【解答】解:∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A、∵当x=1时,y=2,∴此点在函数图象上,故A选项正确;B、∵当x=﹣2时,y=﹣4≠﹣1,∴此点不在函数图象上,故B选项错误;C、∵当x=﹣1时,y=﹣2≠2,∴此点不在函数图象上,故C选项错误;D、∵当x=2时,y=4≠﹣4,∴此点不在函数图象上,故D选项错误.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.(3分)(2016•东台市二模)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.3.(3分)(2016春•桂阳县期末)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).故选B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2011•广州)已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.28【考点】平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.5.(3分)(2011•东莞)正八边形的每个内角为()A.120°B.135°C.140°D.144°【考点】多边形内角与外角.【专题】压轴题.【分析】根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.【解答】解:根据正八边形的内角公式得出:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°.故选:B.【点评】此题主要考查了正多边形的内角公式运用,正确的记忆正多边形的内角求法公式是解决问题的关键.6.(3分)(2016春•桂阳县期末)正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边【考点】正多边形和圆;菱形的性质.【分析】根据正方形的性质和菱形的性质对各个选项进行分析,从而得到答案.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选C.【点评】此题主要考查了正六边形和菱形的性质的应用,能熟记正六边形和菱形的性质是解此题的关键.7.(3分)(2013•建宁县质检)在Rt△ABC中,∠C=90°,AC=9,BC=12,则C点到AB的距离为()A.B.C.D.【考点】勾股定理;三角形的面积.【分析】根据题意作出图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又∵S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选B.【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.8.(3分)(2016春•桂阳县期末)一次函数y=ax+1与y=bx﹣2的图象交于x轴上同一个点,那么a:b等于()A.1:2 B.(﹣1):2 C.3:2 D.以上都不对【考点】两条直线相交或平行问题.【专题】常规题型.【分析】先根据x轴上的点的横坐标相等表示出x的值,再根据相交于同一个点,则x值相等,列式整理即可得解.【解答】解:∵两个函数图象相交于x轴上同一个点,∴y=ax+1=bx﹣2=0,解得x=﹣=,所以=﹣,即a:b=(﹣1):2.故选B.【点评】本题考查了两直线相交的问题,根据两直线相交于同一点表示出交点的横坐标是解题的关键.二、填空题:每小题3分,共24分9.(3分)(2016春•桂阳县期末)在Rt△ABC中,∠C=90°,斜边上的中线CD=3,则斜边AB的长是 6 .【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵CD是斜边AB上的中线,CD=3,∴AB=2CD=2×3=6.故答案为:6.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.10.(3分)(2016春•桂阳县期末)在Rt△ABC中,∠C=90°,∠B=30°,AB=16,则AC= 8 .【考点】勾股定理;含30度角的直角三角形.【分析】由“在直角三角形中,30度角所对的直角边等于斜边的一半”进行解答.【解答】解:Rt△ABC中,∵∠ACB=90°,∠B=30°,AB=16,∴AC=AB=8.故答案为:8.【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.比较简单.11.(3分)(2016春•桂阳县期末)已知菱形的周长为40,两对角线比为3:4,则两对角线的长分别为12,16 .【考点】菱形的性质.【分析】首先根据题意画出图形,然后设OA=3x,OB=4x,由菱形的性质,可得方程:102=(3x)2+(4x)2,继而求得答案.【解答】解:如图,∵菱形的周长为40,∴AB=10,OA=AC,OB=BD,AC⊥BD,∵两条对角线长度之比为3:4,∴OA:OB=3:4,设OA=3x,OB=4x,在Rt△AOB中,AB2=OA2+OB2,∴102=(3x)2+(4x)2,解得:x=2,∴OA=6,OB=8,∴AC=12,BD=16,∴对角线的长度分别为:12,16.故答案为:12,16.【点评】此题考查了菱形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.12.(3分)(2014•普陀区二模)一次函数的图象过点(0,3)且与直线y=﹣x平行,那么函数解析式是y=﹣x+3 .【考点】待定系数法求一次函数解析式.【分析】一次函数的解析式是:y=﹣x+b,把(0,3)代入解析式,求得b的值,即可求得函数的解析式.【解答】解:设一次函数的解析式是:y=﹣x+b,把(0,3)代入解析式,得:b=3,则函数的解析式是:y=﹣x+3.【点评】本题考查了待定系数法求函数的解析式,正确理解平行的两个一次函数的解析式之间的关系是关键.13.(3分)(2014•泸州)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.【考点】菱形的判定与性质;勾股定理的逆定理;平行四边形的性质.【专题】计算题.【分析】根据平行四边的性质,可得对角线互相平分,根据勾股定理的逆定理,可得对角线互相垂直,根据菱形的判定,可得菱形,根据菱形的面积公式,可得答案.【解答】解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.【点评】本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.14.(3分)(2016春•桂阳县期末)如图,一块矩形纸片的宽CD为2cm,点E在AB上,如果沿图中的EC对折,B点刚好落在AD上,此时∠BCE=15°,则BC的长为4cm .【考点】翻折变换(折叠问题);含30度角的直角三角形.【分析】根据题意证明BC=B′C,求出∠B′CD=60°;利用边角关系求出B′C=4,问题即可解决.【解答】解:由题意得:BC=B′C,∠B′CE=∠BCE=15°,∴∠BCB′=30°;∵四边形ABCD为矩形,∴∠BCD=90°,∠B′CD=90°﹣30°=60°;∵COS∠B′CD=,而CD=2,∴BC=B′C=4(cm),故答案为4cm.【点评】该题考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图中隐含的等量关系,灵活根据有关定理来分析、判断、推理或解答.15.(3分)(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【考点】菱形的性质;坐标与图形性质.【专题】几何图形问题.【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.(3分)(2016春•桂阳县期末)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点A的坐标是(3,).【考点】矩形的性质;坐标与图形性质.【分析】由矩形的性质得出∠AOC=90°,由平行线的性质得出,∠OAC=30°,由含30°角的直角三角形的性质得出OA,再求出OD、AD,即可得出结果.【解答】解:如图所示:∵四边形OABC是矩形,∴∠AOC=90°,∵AC∥x轴,∴∠OAC=30°,∠ODA=90°,∴OA=OC=2,∴OD=OA=,∴AD=OD=3,∴点A的坐标是(3,);故答案为:(3,).【点评】本题考查了矩形的性质、含30°角的直角三角形的性质、三角函数;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三、解答题:共82分17.(6分)(2011•湖州)已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据待定系数法求出一次函数解析式即可;(2)根据图象与函数坐标轴交点坐标求法得出a的值.【解答】解:(1)由题意得,解得.∴k,b的值分别是1和2;(2)将k=1,b=2代入y=kx+b中得y=x+2.∵点A(a,0)在 y=x+2的图象上,∴0=a+2,即a=﹣2.【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数与坐标轴交点求法,此题比较典型应熟练掌握.18.(6分)(2016春•桂阳县期末)已知一次函数y=(m+3)x+m﹣4,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值.【考点】一次函数图象与系数的关系;正比例函数的定义.【分析】(1)直接利用一次函数的增减性得出m的取值范围;(2)直接利用正比例函数的定义得出m的值.【解答】解:(1)∵一次函数y=(m+3)x+m﹣4,y随x的增大而增大,∴m+3>0,解得:m>﹣3;(2)∵y=(m+3)x+m﹣4是正比例函数,∴m﹣4=0,解得:m=4.【点评】此题主要考查了一次函数的增减性以及正比例函数的定义,正确记忆相关性质是解题关键.19.(6分)(2016春•桂阳县期末)如图,四边形ABCD四个顶点的坐标分别是A(1,2),B (3,1),C(5,2),D(3,4).将四边形ABCD先向下平移5个单位,再向左平移6个单位,它的像是四边形A′B′C′D′.(1)作出四边形A′B′C′D′.(2)写出四边形A′B′C′D′的顶点坐标.【考点】作图-平移变换.【分析】(1)直接利用平移的性质得出各对应点位置进而得出答案;(2)利用所画图形得出各点坐标即可.【解答】解:(1)如图所示:四边形A′B′C′D′,即为所求;(2)如图所示:A′(﹣5,﹣3),B′(﹣3,﹣4),C′(﹣1,﹣3),D′(﹣3,﹣1).【点评】此题主要考查了作图﹣﹣平移变换,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可.20.(8分)(2016春•桂阳县期末)如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,且AP∥QC.求证:BP=DQ.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行线的性质可得出∠APB=∠CQD,∠ABP=∠CDQ,继而根据平行四边形的对边相等的性质可得出AB=CD,进而可证明△ABP≌△CDQ,也即可得出结论.【解答】证明:∵AP∥CQ,∴∠APD=∠CQB,∴∠APB=∠CQD,∵四边形ABCD是平行四边形,∴AB=CD,∴AB∥CD,∴∠ABP=∠CDQ,在△ABP和△CDQ中,,∴△ABP≌△CDQ,∴BP=DQ.【点评】此题考查了平行四边形的性质、全等三角形的性质及判定,解答本题的关键是掌握平行四边形对边相等的性质,难度一般.21.(8分)(2007•温江区校级模拟)如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.【考点】菱形的判定;三角形中位线定理.【专题】证明题.【分析】首先利用三角形中位线定理证出ME∥AB,ME=AB,FH∥AB,FH=AB,可得到四边形MENF是平行四边形,再证明MF=ME,即可得到结论.【解答】证明:∵M、E、分别为AD、BD的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M、F分别是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形.【点评】此题主要考查了菱形的判定,熟练掌握菱形的判定定理是解决问题的关键.22.(8分)(2014•大石桥市校级模拟)如图,△ABC中,AB=AC,AD⊥BC于点D,AE是∠BAC 外角平分线,BE⊥AE,连接DE.(1)求证:DA⊥AE;(2)求证:四边形DCAE是平行四边形.【考点】平行四边形的判定.【专题】证明题.【分析】(1)根据三线合一定理证明AD平分∠BAC,然后根据AE是∠BAC外角平分线,即可证得∠DAE=90°,即可证得DA⊥AE;(2)根据平行四边形的定义即可证得.【解答】证明:(1)∵AB=AC,AD⊥BC于点D,∴∠CAD=∠BAD,即∠BAD=∠BAC,又∵AE是∠BAC外角平分线,即∠BAE=∠BAF,∴∠DAE=∠BAD+∠BAE=(∠BAC+∠BAF)=90°,∴DA⊥AE;(2)∵AD⊥BC,DA⊥AE,∴BD∥AE,即CD∥AE.∵BE⊥AE,DA⊥AE,∴BE∥AD,∴四边形BDAE是平行四边形.∴BD=AE,又∵AB=AC,AD⊥BC,∴BD=CD,又∵CD∥AE,∴四边形DCAE是平行四边形.【点评】本题考查了平行四边形的判定与等腰三角形的性质定理,等腰三角形的底边上的中线、高线以及顶角的平分线,三线合一.23.(8分)(2013•德州)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.【解答】解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.0 13 58.0<x≤9.5 合计2 50频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.【点评】本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016春•桂阳县期末)如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.【考点】一次函数综合题.【专题】综合题.【分析】(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.【解答】解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.【点评】本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.25.(10分)(2016春•桂阳县期末)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时.设轿车行驶的时间为x(h),轿车到甲地的距离为y(km),轿车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)直接利用=速度得出轿车从甲地到乙地的速度,进而得出从乙地返回甲地的速度;(2)利用待定系数法求出直线解析式,进而得出x的取值范围.【解答】解:(1)由函数图象知,轿车从甲地到乙地的速度为:==80(km/h),所以从乙地返回甲地的速度为1.5×80=120(km/h),t=3+=5(小时);(2)设轿车从乙地返回甲地时y与x之间的函数关系式为y=kx+b,∵(3,240)和(5,0)两点在y=kx+b的函数图象上,∴,解得,∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5).【点评】此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,正确得出t的值是解题关键.26.(12分)(2016春•桂阳县期末)如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.【考点】一次函数综合题.【专题】综合题.【分析】(1)设直线AB解析式为y=kx+b,将A与B坐标代入求出k与b的值,即可确定出解析式;(2)考虑三种情况,如图所示,四边形AOBE1为平行四边形时;四边形ABE2O为平行四边形时;四边形ABOE3为平行四边形时,分别求出E的坐标即可;(3)分两种情况考虑:当P在OB上时,连接PQ,根据PQ的长及三角形OPQ为等腰直角三角形,求出OP的长,确定出此时P坐标;当P′在AB上时,过P′作P′M⊥x轴,确定出此时P′坐标即可.【解答】解:(1)∵∠BAO=45°,∠AOB=90°,∴△AOB为等腰直角三角形,即OA=OB=8,∴B(0,8),设直线AB解析式为y=kx+b,将A(8,0)与B(0,8)代入得:,解得:k=﹣1,b=8,则直线AB解析式为y=﹣x+8;(2)如图所示:当四边形AOBE1为平行四边形时,E1坐标为(8,8);当四边形ABE2O为平行四边形时,E2坐标为(﹣8,8);当四边形ABOE3为平行四边形时,E3坐标为(8,﹣8);(3)当P在OB上时,连接PQ,由PQ=2,在Rt△POQ中,OP=OQ,可得:OP=OQ=×2=,此时P(0,);当P′在AB上时,过P′作P′M⊥x轴,∵P′Q′=2,△P′Q′M为等腰直角三角形,∴P′M=Q′M=,OM=OB﹣P′M=8﹣,此时P′(8﹣,).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,等腰直角三角形的性质,平行四边形的性质,坐标与图形性质,熟练掌握待定系数法是解本题第一问的关键.。

【湘教版】八年级数学下期末一模试卷(及答案)

【湘教版】八年级数学下期末一模试卷(及答案)

一、选择题1.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若5AB =,6BC =,则CE CF +的值为( )A .11311+ B.11311- C .11311+或11311- D .11311+或312+ 2.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( )A .1B .1.5C .2D .2.53.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =ODD .AB ∥CD ,AD =BC 4.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0 5.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( ) A .112m ≤< B .312m ≤< C .322m ≤< D .522m ≤< 6.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .3 7.812﹣81肯定能被( )整除.A .79B .80C .82D .83 8.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1) 9.若M=2-a a ,N=1a -,则M 、N 的大小关系是( )A .M>NB .M<NC .M ≥ND .M ≤ N 10.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=9,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则点O 到AD 1的距离为( )A .3B .35C .65D .5 11.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有四个整数解,则实数a 的取值范围是( )A .67a <≤B .1821a <≤C .1821a ≤<D .1821a ≤≤ 12.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .247二、填空题13.如图,在ABD △中,90A ∠=︒,1AB AD ==,将ABD △沿射线BD 平移,得到EGF △,再将ABD △沿射线BD 翻折,得到CBD ,连接EC 、GC ,则GC EC +的最小值为_____.14.七边形的外角和为________.15.计算22a b a b a b-=-- _________. 16.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-有下列命题: ①1(3)3⊗-=;②a b b a ⊗=⊗; ③方程1102x 的解为12x =; ④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)17.已知一个长方形的面积是2642a ab a -+,且它的一条边长为2a ,则长方形的周长为___.18.如图,△DEF 是由△ABC 沿BC 方向向右平移2cm 后得到,若△ABC 的周长为10cm ,则四边形ABFD 的周长等于________ cm .19.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________. 20.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.三、解答题21.如图,等边ABC ∆的边长为4,,D B 分别是,AB AC 的中点,延长BC 至点F ,使12CF BC =,连接,CD EF .(1)求证:四边形CDEF 是平行四边形;(2)求EF 的长.22.清江山水华府小区物业,将对小区内部非活动区域进行绿化.甲工程队用m 天完成这项工程的三分之一,为加快工程进度,乙工程队参与绿化建设,两队合作用5天完成这一项工程.(1)若10m =,求乙工程队单独完成这项工程所需的时间;(2)求m 的取值范围.23.分解因式(1)()()()()a b x y b a x y ----+(2)4+12(x -y )+9(x -y )2(3)22369xy x y y -- (4)()228a b ab -+24.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;25.如图,在平面直角坐标系中,一次函数y =﹣x +n 图象与正比例函数y =2x 的图象交于点A (m ,4).(1)求m ,n 的值;(2)设一次函数y =﹣x +n 的图象与x 轴交于点B ,与y 轴交于点C ,求点B ,点C 的坐标;(3)直接写出使函数y =﹣x +n 的值小于函数y =2x 的值的自变量x 的取值范围.(4)在x 轴上是否存在点P 使△PAB 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行四边形面积求出AE 和AF ,有两种情况,求出BE 、DF 的值,求出CE 和CF 的值,相加即可得出答案.【详解】 解:四边形ABCD 是平行四边形,5AB CD ∴==,6BC AD ==,①如图:由平行四边形面积公式得:15BC AE CD AF ⨯=⨯=, 求出52AE =,3AF =, 在Rt ABE ∆和Rt ADF ∆中,由勾股定理得:222AB AE BE =+, 把5AB =,52AE =代入求出532BE =, 同理335DF =>,即F 在DC 的延长线上(如上图),5632CE ∴=-,335CF =-, 即31CE CF +=+, ②如图:5AB =,52AE =,在ABE ∆中,由勾股定理得:532BE =, 同理33DF =①知:5632CE =,335CF =, 111132CE CF ∴+= 故选:D .【点睛】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.2.C解析:C【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解.∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==,∴AFB FBC ∠=∠,∴BF 平分ABC ∠,∴ABF FBC ∠=∠,∴AFB ABF ∠=∠,∴6AF AB ==,同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=.故选:C .【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.3.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A 、B 、C 均符合是平行四边形的条件,D 则不能判定是平行四边形.故选D .【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.4.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x≠0.【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 5.C解析:C【分析】 先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】 ∵211x x ++=22-12(1)-112111x x x x x ++==-+++, 又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C .【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键. 6.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.7.B解析:B【分析】原式提取公因式分解因式后,判断即可.【详解】解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B .【点睛】本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键. 8.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.第II卷(非选择题)请点击修改第II卷的文字说明9.C解析:C【分析】要比较M,N的大小,可作M与N的差.若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.【详解】M-N=a2-a-(a-1)=a2-a-a+1=a2-2a+1=(a-1)2≥0,∴M≥N.故选C.【点睛】本题考查了完全平方公式法分解因式,关键是作差后整理成完全平方公式的形式,然后利用因式分解,进行代数式的比较.10.C解析:C【分析】由旋转角为15°,和三角板中角求出∠ACD1=45°,又∠A=45°,推出△ACO是等腰直角三角形,AO=CO=3,AB⊥CO,由DC=9,求得D1O=6,利用勾股定理AD1=22135OA OD+=.再利用面积桥求即可.【详解】∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°-30°=60°,∴∠ACD=90°-60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=12AB=12×6=3,AB ⊥CO , ∵DC=9, ∴D 1C=DC=9,∴D 1O=9-3=6,在Rt △AOD 1中,根据勾股定理求得AD 1==设点O 到AD 1的距离为h , ∵111122AD h OA OD =⨯,∴11OA OD h AD ⨯=== 故选择:C .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB ⊥CO 是解题的关键,也是本题的难点.11.B解析:B【分析】此题可先根据一元一次不等式组解出x 的取值,再根据不等式组只有四个整数解,求出实数a 的取值范围.【详解】解:6234x x a x x +<+⎧⎪⎨+>⎪⎩①② 解①得x >2,解②得x <13a , ∴2<x <13a , ∵不等式组有且只有四个整数解,即3,4,5,6;∴6<13a≤7,即18<a≤21. 故选:B .【点睛】 此题考查的是一元一次不等式的解法和一元一次方程的解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了12.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=- ∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.二、填空题13.【分析】如图连接DE 作点D 关于直线AE 的对称点T 连接ATETCT 首先证明BAT 共线求出TC 证明四边形EGCD 是平行四边形推出DE =CG 推出EC +CG =EC +ED =EC +TE 根据TE +EC≥TC 即可解5【分析】如图,连接DE ,作点D 关于直线AE 的对称点T ,连接AT ,ET ,CT .首先证明B ,A ,T 共线,求出TC ,证明四边形EGCD 是平行四边形,推出DE =CG ,推出EC +CG =EC +ED =EC +TE ,根据TE +EC≥TC 即可解决问题.【详解】解:如图,连接DE ,AE ,作点D 关于直线AE 的对称点T ,连接AT ,ET ,CT .∵∠A=90°,AB=AD=1,将△ABD沿射线BD平移,得到△EGF,再将△ABD沿射线BD 翻折,得到△CBD,∴AB=BC═AD=1,∠ABC=90°,∠ABD=45°,∵AE//BD,∴∠EAD=∠ABD=45°,∵D,T关于AE对称,∴AD=AT=1,∠TAE=∠EAD=45°,∴∠TAD=90°,∵∠BAD=90°,∴B,A,T共线,∴CT2222+=+215BT BC∵EG=CD,EG//CD,∴四边形EGCD是平行四边形,∴CG=DE,∴EC+CG=EC+ED=EC+TE,∵TE+EC≥TC,∴GC+5∴GC+EC55【点睛】本题考查轴对称,等腰直角三角形的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会用转化的思想思考问题.14.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 15.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.16.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x x x ,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x ,然后根据一次函数的性质对④进行判断.【详解】 解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b,所以②不正确; 由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④;故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.17.【分析】先将分解因式得到长方形的另一条边长即可求解【详解】解:∵长方形的面积是它的一条边长为∴另一条边长是∴周长为:故答案为:【点睛】本题考查因式分解整式的加减运算掌握提公因式法是解题的关键 解析:1042a b -+【分析】先将2642a ab a -+分解因式,得到长方形的另一条边长,即可求解.【详解】解:∵长方形的面积是()26422321a ab a a a b -+=-+,它的一条边长为2a , ∴另一条边长是()321a b -+,∴周长为:()232121042a b a a b -++=-+,故答案为:1042a b -+.【点睛】本题考查因式分解、整式的加减运算,掌握提公因式法是解题的关键.18.14【分析】利用平移的性质可得到AC=DFAD=CF=2cm 由已知△ABC 的周长可得到AB+BC+DF 的值再将四边形ABFD 的周长转化为AB+BC+DF+CF+AD 代入计算可求解【详解】解:∵△DE解析:14【分析】利用平移的性质可得到AC=DF ,AD=CF=2cm ,由已知△ABC 的周长可得到AB+BC+DF 的值,再将四边形ABFD 的周长转化为AB+BC+DF+CF+AD ,代入计算可求解.【详解】解:∵△DEF 是由△ABC 沿BC 方向向右平移2cm 后得到,∴AC=DF ,AD=CF=2cm∵△ABC 的周长为10cm ,∴AB+BC+AC=AB+BC+DF=10cm ,∴四边形ABFD 的周长为:AB+BC+DF+CF+AD=10+2+2=14cm .故答案为:14.【点睛】本题考查图形的变换-平移,熟练掌握平移的性质是解答的关键.19.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.20.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得 解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C ,∵AE=AD ,∴∠ADE=∠AED ,∴∠B+∠α-∠EDC=∠C+∠EDC ,化简可得:∠α=2∠EDC ,∴∠EDC=12α,故答案为:12α.【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点.三、解答题21.(1)见解析;(2)【分析】(1)直接利用三角形中位线定理得出DE∥BC,DE=12BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【详解】解:(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=12BC,∵延长BC至点F,使CF=12BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形.(2)∵DE∥FC,DE=FC∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是4,∴AD=BD=2,CD⊥AB,BC=4,∴.【点睛】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理、勾股定理等知识,得出DE∥BC,DE=12BC是解题关键.22.(1)乙工程队单独完成这项工程需要10天;(2) 2.5m>【分析】(1)甲工程队用10天完成这项工程的三分之一,则每天完成130的工程量,设乙工程队单独完成这项工程需要x天,列分式方程求解即可;(1)甲工程队用m 天完成这项工程的三分之一,则每天完成13m的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程,结合x 和m 都是正数,即可求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天. 由题意,得11151330x ⎛⎫++⨯= ⎪⎝⎭, 解得10x =.经检验10x =是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要10天;(2)由题意,得1115133m x ⎛⎫++⨯= ⎪⎝⎭, 解得1525m x m =-. 0x ,0m >,250m ∴->,2.5m ∴>.即m 的取值范围是 2.5m >.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.23.(1)()2x a b -;(2)2(233)x y +- ;(3)()23y x y --;(4)()22a b + 【分析】(1)先将原式变形,然后提取公因式进行因式分解;(2)利用完全平方公式进行因式分解;(3)先提取公因式,然后利用完全平方公式进行因式分解;(4)先将原式进行整式的混合计算化简,然后利用完全平方公式进行因式分解.【详解】解:(1)()()()()a b x y b a x y ----+=()()+()()a b x y a b x y ---+=()()a b x y x y --++=()2x a b -(2)4+12(x -y )+9(x -y )2=22+2×2×3(x -y )+[3(x -y )]2=[2+3(x -y )]2=2(233)x y +-(3)22369xy x y y --=()2269y y xy x--+=()23y x y -- (4)()228a b ab -+=22448a ab b ab -++=224+4a ab b +=()22a b +【点睛】本题考查综合提公因式法和公式法进行因式分解,掌握提取公因式的技巧和乘法公式的公式结构正确计算是解题关键.24.(1)见解析;A 1(﹣4,1);(2)见解析,B 2(﹣1,5)【分析】(1)直接利用平移的性质,将A 、B 、C 三点往左平移5个单位,则A 、B 、C 各个顶点对应的横坐标分别减5即可得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)先把点A 、B 、C 向左平移5个单位,得到A 1、B 1、C 1,再顺次连结A 1B 1,B 1C 1,C 1A 1,如图所示:△A 1B 1C 1,即为所求,点A 1(﹣4,1)(2)连结OA ,OB ,OC ,先把点A 、B 、C 绕点O 逆时针方向旋转90,得到A 2、B 2、C 2,再顺次连结A 2B 2,B 2C 2,C 2A 2,如图所示:△A 2B 2C 2,点B 2(﹣1,5).【点睛】本题考查了平移、旋转图形的变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.(1)m=2,n=6;(2)点B 坐标为(6,0),点C 坐标为(0,6);(3)x >2;(4)存在,点P 坐标为(2,0)或(6﹣2,0)或(﹣2,0)或(2,0)【分析】(1)将点A的坐标代入正比例函数的解析式中即可求出m的值.将点A的坐标代入一次函数的解析式中即可求出n的值.(2)令x=0,可得y=6,令y=0,可得x=6,即可求解;(3)根据图象即可写出x的取值范围;(4)分三种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)正比例函数y=2x的图象过点A(m,4).∴4=2m,∴m=2.又∵一次函数y=﹣x+n的图象过点A(2,4).∴4=﹣2+n,∴n=6.(2)一次函数y=﹣x+n的图象与x轴交于点B,∴令y=0,则0=﹣x+6∴x=6,∴点B坐标为(6,0),令x=0,则y=6,∴点C坐标为(0,6);(3)由图象可知,在交点A的右侧,函数y=﹣x+n的值小于函数y=2x的值,此时自变量的取值范围是:x>2;(4)∵点A(2,4),点B坐标为(6,0),∴AB=2222+=+=,4442AE EB当AB=BP=42时,则点P(6+42,0)或(6﹣42,0);当AB=AP时,如图,过点A作AE⊥BO于E,则点E(2,0),∵AB=AP,AE⊥BO,∴PE=BE=4,∴点P(﹣2,0);当PA=PB时,∴∠PBA=∠PAB=45°,∴∠APB=90°,∴点P (2,0),综上所述:点P 坐标为(,0)或(6﹣,0)或(﹣2,0)或(2,0).【点睛】本题考查了求正比例函数图象上点的坐标,待定系数法求一次函数解析式,一次函数图象与坐标轴交点坐标,勾股定理,等腰三角形存在性问题,解题关键是对等腰三角形的已知边AB 进行分类讨论,根据腰相等这一性质,求点的坐标.26.(1)见解析;(2)90°;(3【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE ,则∠DAE=∠DEA ,∵∠DAC=∠DEC ,∴∠CAE=∠CEA ,∴AC=EC ,∵AC≠EC ,∴DA≠DE ;若DA=AE ,∵∠EBA=90°,∴AE >BE ,∵△ACD ≌△BCE ,∴AD=BE ,∴AE≠AD ;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225BE DB+=;综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。

【湘教版】八年级数学下期末一模试卷带答案

【湘教版】八年级数学下期末一模试卷带答案

一、选择题1.如图,在ABCD 中,4CD =,60B ︒∠=,:2:1BE EC =,依据尺规作图的痕迹,则ABCD 的面积为( )A .12B .122C .123D .1252.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( ) A .625+B .613+C .34251++D .34131++3.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .对角线互相平分的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .两组对角分别相等的四边形是平行四边形 4.下列事件中,属于随机事件的是( )A .用长度分别是4cm ,4cm ,9cm 的细木条首尾顺次相连可组成一个等腰三角形B .以长度分别是5cm ,4cm ,3cm 的线段为三角形三边,能构成直角三角形C .分式的分子、分母同乘一个不等于零的整式,分式的值不变D .任意画一个三角形,恰好是同一条边上的高线与中线重合 5.若ab ,则下列分式化简中,正确的是( )A .22a ab b +=+ B .22a ab b -=- C .33a a b b = D .22a a b b=6.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( ) A .420420200.5x x-=-B .420420200.5x x -=+C .420420200.5x x -=+D .420200.5x =- 7.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 8.多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),则m 的值是( ) A .4B .﹣4C .10D .﹣109.下列各式从左边到右边的变形属于因式分解的是( )A .6ab =2a •3bB .a (x +y )=ax +ayC .x 2+4x +4=x (x +4)+4D .a 2﹣6a +9=(a ﹣3)210.如图所示图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .11.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a≤2C .1<a≤2D .1≤a≤212.如图AD 是ABC 的角平分线,DE AB ⊥于E ,点F ,G 分别是AB ,AC 上的点,且DF DG =,ADG 与DEF 的面积分别是10和3,则ADF 的面积是( )A .4B .5C .6D .7二、填空题13.如图,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,ABCD 的周长为40,则S ABCD 四边形为______.14.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.15.函数332x y x -=-中自变量x 的取值范围是_________. 16.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________. 17.分解因式:22416m n -=________.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.点()3,1m m --在第四象限,则m 的取值范围是_______.20.如图,已知∠MON=30°,点123,,A A A ...在射线ON 上,点123,,B B B ...在射线OM 上,112233334,,A B A A B A A B A ∆∆∆..均为等边三角形,若11OA =,则202020202021A B A ∆的边长为_______.三、解答题21.如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .22.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m天,乙队做完其中一部分工程用了n天,m,n都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m的式子表示n,并求出该工程款总共为多少万元?23.先阅读下题的解答过程,然后解答后面的问题,已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值解法一:设2x3﹣x2+m=x+m=(2x+1)(x2+ax+b)则2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得21120aa bb m+=-⎧⎪+=⎨⎪=⎩,解得11212abm⎧⎪=-⎪⎪=⎨⎪⎪=⎪⎩∴m=12.解法二:设2x3﹣x2+m=A(2x+1)(A为整式)由于上式为恒等式,为方便计算取x=12-,3112022m⎛⎫⎛⎫⋅---+=⎪ ⎪⎝⎭⎝⎭,故m=12选择恰当的方法解答下列各题(1)已知关于的多项式x2+mx﹣15有一个因式是x﹣3,m=.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值:(3)已知x2+2x+1是多项式x3﹣x2+ax+b的一个因式,求a,b的值,并将该多项式分解因式.24.如图,在平面直角坐标系中,ABC的顶点坐标分别为(1,3)A,(3,6)B,(0,5)C.(正方形网格的每个小正方形的边长都是1个单位长度)(1)ABC平移后,点A的对应点1A的坐标为(5,3),画出平移后的111A B C△;(2)画出111A B C △绕点1A 旋转180︒得到的22A B C 1△;(3)ABC 绕点P ( )旋转180︒也可以得到22A B C 1△,连接CP ,2C P ,并求CP 在旋转过程中所扫过的面积.25.(1)计算:6224348⨯+÷-(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩26.(1)猜想:如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3)解决问题:如图3,F 是角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点D 、E 、A 互不重合,在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由作图痕迹可得EF 为AB 的中垂线,结合60B ∠=︒判断出△ABE 为等边三角形,从而结合边长求出ABCD 在BC 边上的高为23BC 的长度,最终计算面积即可.【详解】设尺规作图所得直线与AB 交于F 点,根据题意可得EF 为AB 的中垂线, ∴AE=BE , 又∵60B ∠=︒,∴△ABE 为等边三角形,边长AB=CD=4, ∴BF=2,BE=4,2223EF BE BF =-=,∴ABCD 在BC 边上的高为23,又∵:2:1BE EC =,BE=4, ∴EC=2,BC=2+4=6, ∴ABCDS=23×6=123,故选:C .【点睛】本题考查平行四边形的性质,中垂线的识别与性质,以及等边三角形的判定与性质,准确根据作图痕迹总结出等边三角形是解题关键.2.A解析:A 【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:()()22022225AB =-+--=,()()22262125A B =-+--=,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=, 由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,,()()22022225AB ∴=-+--=,()()22262125A B =-+--=,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++ 251525 6.=++=+故选:.A 【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.3.A解析:A 【分析】根据平行四边形的判定定理解答即可. 【详解】由已知可得AO=CO ,BO=DO , ∴四边形ABCD 是平行四边形,依据是:对角线互相平分的四边形是平行四边形, 故选:A. 【点睛】此题考查平行四边形的判定定理,熟练掌握平行四边形的五种判定定理并运用解决问题是解题的关键.4.D解析:D【分析】根据随机事件的定义、三角形的三边关系、勾股定理、分式的性质、等腰三角形的性质对各选项逐一进行判断即可.【详解】解:A、用长度分别是4cm,4cm,9cm的细木条首尾顺次相连不可能组成一个等腰三角形,是不可能事件,故此选项不符合题意;B、∵32+42=52,∴以长度分别是5cm,4cm,3cm的线段为三角形三边,能构成直角三角形是必然事件,故此选项不符合题意;C、分式的分子、分母同乘一个不等于零的整式,分式的值不变是必然事件,故此选项不符合题意;D、任意画一个三角形,恰好是同一条边上的高线与中线重合是随机事件,故此选项符合题意,故选:D.【点睛】本题考查随机事件、必然事件、不可能事件的定义,还涉及三角形的三边关系、勾股定理的逆定理、分式的性质、等腰三角形的性质等知识,理解随机事件的定义是解答的关键.5.C解析:C【分析】根据a b,可以判断各个选项中的式子是否正确,从而可以解答本题;【详解】∵a bA、22a ab b+≠+,故该选项错误;B、22a ab b-≠-,故该选项错误;C、33a ab b=,故该选项正确;D、22a ab b≠,故该选项错误;故选:C.【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;6.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可. 【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x -=-. 故选:A . 【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.7.D解析:D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算. 【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解; 所以①是乘法运算,②因式分解. 故选:D . 【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.8.B解析:B 【分析】直接利用因式分解法得出m 与3,-7的关系. 【详解】解:∵多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7), ∴m =﹣7+3=﹣4. 故选:B . 【点睛】此题主要考查了因式分解法分解因式,正确掌握常数项与一次项系数的关系是解题关键.9.D解析:D 【分析】根据因式分解的定义逐个判断即可. 【详解】解:A、从左到右的变形,不属于因式分解,故本选项不符合题意;B、从左到右的变形,是整式的乘法,不属于因式分解,故本选项不符合题意;C、从左到右的变形,不属于因式分解,故本选项不符合题意;D、从左到右的变形,属于因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义:将一个多项式写成整式的积的性质,叫做将多项式因式分解也叫做分解因式,掌握多项式的因式分解与整式乘法之间的区别是解题的关键.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.12.A解析:A【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,然后根据S△ADF=S△ADH列出方程求解即可.【详解】解:如图,过点D作DH⊥AC于H,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC∴DF=DH ,在Rt △DEF 和Rt △DGH 中,DE DG DF DH ⎧⎨⎩== , ∴Rt △DEF ≌Rt △DGH (HL ),∴S △EDF =S △GDH =3,同理Rt △ADF ≌Rt △ADH ,∴S △ADF =S △ADH =ADG GDH △△S -S =10-3=7∴S △AED = =7-3=4ADF EDF SS -,故选:A .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键. 二、填空题13.48【分析】首先根据平行四边形的性质可得AB =CDAD =BC 可得AB +BC =20再利用其面积的求法S =BC×AE =CD×AF 可得4AE =6CD 列出方程组求出平行四边形的各边长再求其面积【详解】解:设解析:48【分析】首先根据平行四边形的性质可得AB =CD ,AD =BC ,可得AB +BC =20,再利用其面积的求法S =BC×AE =CD×AF ,可得4AE =6CD ,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC =x ,CD =y ,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∵▱ABCD 的周长为40,∴x +y =20,∵AE =4,AF =6,S ABCD 四边形=BC×AE =CD×AF ,∴4x =6y ,得方程组:2046x y x y+⎧⎨⎩==, 解得:128x y =⎧⎨=⎩ ∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.14.140°【分析】先根据多边形内角和定理:求出该多边形的内角和再求出每一个内角的度数【详解】解:该正九边形内角和=180°×(9-2)=1260°则每个内角的度数=故答案为:140°【点睛】本题主要考解析:140°【分析】先根据多边形内角和定理:180(2)n ︒•-求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,则每个内角的度数=12601409︒=︒. 故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和. 15.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式3x-2≠0即可解得x 的取值范围;【详解】根据题意有3x-2≠0解得故自变量x 的取值范围是故答案为:【点睛】本题考查了分式有意义的条件 解析:23x ≠【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式3x-2≠0,即可解得x 的取值范围;【详解】根据题意,有3x-2≠0, 解得23x ≠,故自变量x的取值范围是23x≠,故答案为:23x≠.【点睛】本题考查了分式有意义的条件,正确理解分式分母不为0时有意义是解题的关键.16.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.4(m+2n)(m-2n)【分析】原式提取4后利用平方差公式分解即可【详解】解:原式=4(m²-4n²)=4(m+2n)(m-2n)故答案为:4(m+2n)(m-2n)【点睛】本题考查了提公因式法与解析:4(m+2n)(m-2n)【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(m²-4n²)=4(m+2n)(m-2n).故答案为:4(m+2n)(m-2n)【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.8cm2【分析】根据圆和长方形的轴对称性质可知阴影部分的面积和正好等于长方形面积的四分之一【详解】如图所示:根据题意可知扇形1的面积等于扇形2的面积所以1和3的面积和为矩形面积的八分之一4和5的面积解析:8cm2【分析】根据圆和长方形的轴对称性质可知,阴影部分的面积和正好等于长方形面积的四分之一.【详解】如图所示:根据题意可知,扇形1的面积等于扇形2的面积,所以1和3的面积和为矩形面积的八分之一,4和5的面积和同理为矩形面积的八分之一, 故阴影部分的面积为长方形面积的14, 所以阴影部分的面积=14×8×4=8. 故答案是:8.【点睛】考查了运用割补的办法把不规则的阴影部分拼接成规则图形来求算面积的方法.解决本题的关键是要知道阴影部分的面积和正好等于长方形面积的四分之一. 19.【分析】根据点()在第四象限列出关于m 的不等式组解之可得【详解】∵点()在第四象限∴解得故答案为:【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集正确求出每一个不等式解是基础熟知 解析:1m <【分析】根据点(3m -,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点(3m -,1m -)在第四象限,∴3010m m ->⎧⎨-<⎩, 解得1m <,故答案为:1m <.【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集,正确求出每一个不等式解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【分析】根据等边三角形的性质等腰三角形的性质以及含角的直角三角形得出得出以此类推进而得到答案【详解】∵是等边三角形∴∴∵∴∴∵∴∴∵是等边三角形同理可得:∴∴以此类推∴的边长故答案为:【点睛】本题考 解析:20192【分析】根据等边三角形的性质、等腰三角形的性质以及含30角的直角三角形得出22122A B B A =,得出331244A B B A ==,441288A B B A ==,551216A B B A =,以此类推,进而得到答案.【详解】∵112A B A ∆是等边三角形,∴1121A B A B =,11211212160A B A B A A A A B ∠=∠=∠=︒,∴11120OA B ∠=︒,∵30MON ∠=︒,∴11111801801203030OB A OA B MON ∠=︒-∠-∠=︒-︒-︒=︒,∴1211112306090OB A OB A A B A ∠=∠+∠=︒+︒=︒,∵1130MON OB A ∠=∠=︒,∴1111OA A B ==,∴211A B =,∵233A B A ∆、334A B A ∆是等边三角形,同理可得:∴22122A B B A =,33232A B B A =,∴3123312242A B B A -===,4134412282A B B A -===,51455122162A B B A -===,以此类推,∴202020202021A B A ∆的边长20192=,故答案为:20192.【点睛】本题考查了规律性-图形的变化类,等边三角形的性质、等腰三角形的性质,30角的锐角三角函数,解答本题的关键是通过观察图形的变化寻找出规律.三、解答题21.证明见详解【分析】根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC 内角和计算出∠EFC 的度数即可证明.【详解】解:解:∵五边形ABCDE 的内角都相等,∴∠C=∠D=∠AED=180°×(5-2)÷5=108°, 又 EF 平分∠AED∴°1542FED AED ∠=∠= ∴在四边形DFBC 中°=360-D-C-FED EFC ∠∠∠∠=90°∴EF ⊥BC【点睛】此题主要考查了多边形内角和,关键是掌握多边形内角和定理:(n-2)•180° (n≥3且n 为整数).22.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】(1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可; (2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;23.(1)2;(2)m =﹣5,n =20;(3)a =﹣5,b =﹣3,该多项式分解因式为:x 3﹣x 2﹣5x ﹣3=(x ﹣3)(x +1)2(1)根据多项式乘法将等式右边展开有:x 2+mx ﹣15=(x ﹣3)(x +n )=x 2+(n ﹣1)x ﹣n ,所以,根据等式两边对应项的系数相等可以求得m 的值;(2)设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),分别取x =1和x =2得关于m 和n 的二元一次方程组,求解即可;(3)设x 3﹣x 2+ax +b =(x +p )(x 2+2x +1),将等式右边展开,比较系数,得关于p ,a ,b 的三元一次方程组,解方程组,再进行因式分解即可.【详解】解:(1)由题设知:x 2+mx ﹣15=(x ﹣3)(x +n )=x 2+(n ﹣3)x ﹣3n ,故m =n ﹣3,﹣3n =﹣15,解得n =5,m =2.故答案为2;(2)设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),分别令x =1和x =2得:150820m n m n +-=⎧⎨+=⎩, 解得:520m n =-⎧⎨=⎩, ∴m =﹣5,n =20;(3)设x 3﹣x 2+ax +b =(x +p )(x 2+2x +1),∵(x +p )(x 2+2x +1)=x 3+(2+p )x 2+(1+2p )x +p ,∴2112p p a p b +=-⎧⎪+=⎨⎪=⎩,解得:353p a b =-⎧⎪=-⎨⎪=-⎩,∴多项式x 3﹣x 2+ax +b =x 3﹣x 2﹣5x ﹣3,∴x 3﹣x 2﹣5x ﹣3=(x ﹣3)(x 2+2x +1)=(x ﹣3)(x +1)2,∴a =﹣5,b =﹣3,该多项式分解因式为:x 3﹣x 2﹣5x ﹣3=(x ﹣3)(x +1)2.【点睛】本题考查了待定系数法在因式分解中的应用,读懂阅读材料中的分解方法,是解题的关键.24.(1)见解析;(2)见解析;(3)()133,3,2π(1)根据点A 的对应点1A 的坐标为(5,3),画出点1A ,1B ,1C ,再顺次连接起来即可; (2)画出1B ,1C 的对应点2B ,2C ,顺次连接起来,即可;(3)先得到点P 的坐标,再根据圆的面积公式,即可求解.【详解】解:(1)(1,3)A 平移后得到点1(5,3)AABC ∴的平移方式是向右平移4个单位长度,(3,6)B ,(0,5)C1(7,6)B ∴,1(4,5)C如图,先在平面直角坐标系中,描出点1A ,1B ,1C ,再顺次连接即可得到111A B C △; (2)画图如下:(3)由网格图,可知:点P 的坐标为(3,3)P ,∵CP 扫过的面积是以CP 为半径的半圆的面积,222313CP =+=211322S CP ππ∴=⋅=. 【点睛】本题主要考查平移,旋转变换以及圆的面积公式和勾股定理,根据题意,画出变换后的对应点,是解题的关键.25.(1)23222)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=2326343232243=,2232=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.26.(1)DE BD CE =+;(2)成立,见解析;(3)等边三角形,见解析【分析】(1)根据垂直的定义得到90BAD CAE ∠+∠=︒,根据等角的余角相等得到ABD CAE ∠=∠,再证明()ADB CEA AAS ≌△△,根据全等三角形的性质即可得解; (2)根据条件证明()BAD ACE AAS ≌即可得解;(3)根据等边三角形的判定证明即可;【详解】解:(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()ADB CEA AAS ≌△△, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+,故答案为DE BD CE =+;(2)结论DE BD CE =+成立;理由如下:∵BAD CAE 180BAC ∠∠∠+=︒-,BAD ABD 180ADB ∠∠∠+=︒-,90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()BAD ACE AAS ≌, ∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+;(3)DFE △为等边三角形,理由:由(2)得,BAD ACE ≌△△, ∴BD AE =,ABD CAE ∠=∠,∴ABD FBA CAE FAC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴()FBD FAE SAS ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒, ∴DFE 为等边三角形.【点睛】 本题主要考查了三角形综合,结合三角形全等证明、等边三角形的判定是解题的关键.。

湘教版数学八年级下册期末检测卷及答案.docx

湘教版数学八年级下册期末检测卷及答案.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】期末检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°3.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD =8,OP=10,则PE的长为()A.5 B.6C.7 D.8第3题图第5题图第6题图4.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.添加的条件不能是()A.AB∥DC B.∠A=90°C.∠B=90°D.AC=BD5.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量是()A.20kg B.25kgC.28kg D.30kg6.如图,在Rt△ABC中,∠BAC=90°,点D,E分别是AB,BC的中点,点F在CA 的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为() A.16 B.20 C.18 D.227.某次数学测验,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数直方图,根据图示信息描述不正确的是()A.抽样的学生共50人B.估计这次测试的及格率(60分为及格)在92%左右C.估计优秀率(80分以上为优秀)在36%左右D.60.5~70.5这一分数段的频数为12第7题图第8题图8.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A.3 B.4 C.5 D.69.如图,直线y=kx+b与y轴交于点(0,3),与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3第9题图第10题图10.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为() A.4S1 B.4S2C.4S2+S3 D.3S1+4S3二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,点E是斜边AB的中点.若AB=10,则CE=________.第11题图第12题图12.如图,AB⊥CF,垂足为B,AB∥DE,点E在CF上,CE=FB,AC=DF,依据以上条件可以判定△ABC≌△DEF,这种判定三角形全等的方法,可以简写为“________”.13.如图,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是________.第13题图第14题图14.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC的周长为10,则△DEF的周长为________.15.一次函数y=kx那么,一元一次方程kx+b=0在这里的解为________.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).第16题图第17题图17.在正方形ABCD中,O是对角线AC,BD的交点,过O作OE⊥OF,分别交AB,BC于E,F,若AE=4,CF=3,则EF的长为________.18.如图,依次连接第1个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第2个矩形,按照此方法继续下去.已知第1个矩形的面积为1,则第n个矩形的面积为________.三、解答题(共66分)19.(8分)如图所示的网格中,△ABC的顶点A的坐标为(0,5).(1)根据A点的坐标在网格中建立平面直角坐标系,并写出点B,C两点的坐标;(2)求△ABC的面积.20.(10分)如图,在矩形ABCD中,过对角线AC的中点O作垂线EF交边BC,AD分别为点E,F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AD=8,AB=4,求CF的长.21.(12分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为________;(2)求直线MN的表达式;(3)若点A的横坐标为-1,求矩形ABOC的面积.22.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数直方图,如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?23.(12分)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若点M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.24.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠,优惠期间,设某游客的草莓采摘量为x (千克),在甲采摘园所需总费用为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________; (2)求y 1,y 2与x 的函数表达式;(3)在图中画出y 1与x 的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x 的范围.参考答案与解析1.A 2.C 3.B 4.A 5.A 6.A 7.D 8.B9.C 解析:把点(0,3),(a ,0)代入y =kx +b ,得b =3.则a =-3k .∵-3≤a <0,∴-3≤-3k<0.解得k ≥1.故选C.10.A 解析:设等腰直角三角形纸片的直角边长为a, 中间一张正方形纸片的边长为m ,则S 1=12a 2,S 3=m 2,∴S 2=12(a -m )(a +m )=12(a 2-m 2)=12(2S 1-S 3),即S 3=2S 1-2S 2,∴这个平行四边形的面积为2S 1+2S 2+S 3=2S 1+2S 2+(2S 1-2S 2)=4S 1.故选A. 11.5 12.HL 13.(1,2) 14.5 15.x =116.①②④ 17.5 18.⎝⎛⎭⎫122n -219.解:(1)如图所示,(2分)B (-2,2),C (2,3).(4分)(2)S △ABC =4×3-12×4×1-12×2×2-12×2×3=5.(8分)20.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠AFO =∠CEO .∵点O 为AC 的中点,∴AO =OC .(2分)在△AFO 和△CEO 中,⎩⎪⎨⎪⎧∠AFO =∠CEO ,∠AOF =∠COE ,AO =CO ,∴△AFO ≌△CEO (AAS),∴OE =OF ,∴四边形AECF 是平行四边形.∵EF ⊥AC ,∴平行四边形AECF 是菱形.(5分)(2)解:∵四边形ABCD 是矩形,∴∠B =90°.由(1)知四边形AECF 是菱形,∴设AE =CE =CF =x .则BE =8-x .在Rt △ABE 中,AB 2+BE 2=AE 2,即42+(8-x )2=x 2,解得x =5,∴CF =5.(10分)21.解:(1)(-2,0)(3分)(2)该直线MN 的表达式为y =kx +b ,分别把M (-2,0),N (0,6)代入,得⎩⎪⎨⎪⎧-2k +b =0,b =6,解得⎩⎪⎨⎪⎧k =3,b =6,∴直线MN 的表达式为y =3x +6.(8分)(3)在y =3x +6中,当x =-1时,y =3,∴OB =1,AB =3,∴S 矩形ABOC =1×3=3.(12分)22.解:(1)a =50-4-6-14-10=16.(4分) (2)补图略.(8分)(3)本次测试的优秀率是16+1050×100%=52%.(11分)答:本次测试的优秀率为52%.(12分)23.(1)证明:∵点D ,G 分别是AB ,AC 的中点,∴DG ∥BC ,DG =12BC .(2分)∵点E ,F 分别是OB ,OC 的中点,∴EF ∥BC ,EF =12BC ,∴DG =EF ,DG ∥EF ,∴四边形DEFG是平行四边形.(6分)(2)解:∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =90°.(8分)∵点M 为EF 的中点,OM =3,∴EF =2OM =6.由(1)知DG =EF ,∴DG =6.(12分)24.解:(1)30元(3分)(2)因为甲需要购买60元的门票,采摘的草莓六折优惠 ∴y 1=0.6×30x +60=18x +60.(5分)图中OA 段:y 2=30x .图中AB 段:设y 2与x 的函数表达式为y 2=kx +b ,∴⎩⎪⎨⎪⎧10k +b =300,20k +b =450,解得⎩⎪⎨⎪⎧k =15,b =150,∴y 2=15x +150.∴y 1与x 的函数表达式为y 1=18x +60,y 2与x 的函数表达式为y 2=⎩⎪⎨⎪⎧30x (0≤x ≤10),15x +150(x >10).(8分)(3)当y 1与y 2交于OA 段时,18x +60=30x, 解得x =5;当y 1与y 2交于AB 段时,18x +60=15x +150.解得x =30,y 1与x 的函数图象如图所示.(10分)故当5<x <30时,选择甲采摘园所需总费用较少初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0B .a ,b 之一是0C .a ,b 互为相反数D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。

【湘教版】八年级数学下期末模拟试题(含答案)

【湘教版】八年级数学下期末模拟试题(含答案)

一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55 B .众数是60C .平均数是54D .方差是292.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或63.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁4.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩6.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <7.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .538.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时9.下列二次根式的运算:263=1882=2555=,()222-=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个10.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125311.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º12.如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .2220202D .2,20192二、填空题13.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.14.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________. 15.正方形111A B C O 、2221A B C C 、3332A B C C ……按如图的方式放置,点1A ,2A ,3A …和点1C ,2C ,3C …分别在直线()0y kx b k =+>和x 轴上,已知点1(1,1)B ,2(3,2)B ,按此规律,则点4B 的坐标是______.16.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.17.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.18.如图,将长方形纸片ABCD 沿着对角线BD 翻折,点C 落在点C '处,BC '与AD 交于点E .若20AD cm =,5AB cm =,则DE =_______cm .19.当2<a <3时,化简:22(3)a a ---=______. 20.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.三、解答题21.某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48. (1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.22.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分)中位数(分)众数(分)A队8385B队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.23.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.甲种客车乙种客车载客量(人/辆)3045租金(元/辆)200280y x(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?24.如图,在ABCD中,对角线AC与BD相交于点O,点M,N分别为OB,OD的中,连接CE,CN.点,连接AM并延长至点E,使EM AM≌;(1)求证:ABM CDN(2)当AB与AC满足什么数量关系时,四边形MECN是矩形?请说明理由;(3)连接AN,EN.当ANE满足什么条件时,四边形MECN是正方形?请说明理由.25.按要求解答下列试题:(1)计算:()2310.12523322⎛⎫-+---+- ⎪⎝⎭(2)计算:22232()()x x y xy y x x y x y ⎡⎤---÷⎣⎦ (3)解方程:4(x +3)2-81=0.26.已知:在ABC ∆中,点E 在直线AC 上,点,,B D E 在同一条直线上,且BA BD =,.BAE D ∠=∠(问题初探)(1)如图1,若BE 平分ABC ∠,求证:180AEB BCE ∠+∠=︒.请依据以下的简易思维框图,写出完整的证明过程.(变式再探)(2)如图2,若BE 平分ABC ∆的外角ABF ∠,交CA 的延长线于点E ,问:AEB ∠和BCE ∠的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由.(拓展运用)(3)如图3,在()2的条件下.若,1AB BC CD ⊥=,求EC 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否. 【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .2.C解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.3.B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.4.C解析:C 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛. 【详解】 ∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定, ∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙. 故选C . 【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.B解析:B 【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题. 【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0). 将(-1,1)、(1,0)两点坐标代入解析式中,解得212b ⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0). 将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0. 因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.6.D解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x >0,∴211+2y x =>12,此选项正确;C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.7.D解析:D 【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1,3即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1,∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83, ∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D . 【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.8.D解析:D 【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题; 【详解】 解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确; 乙车休息的时间为2.520.5h -=,故D 错误. 故选:D . 【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;9.C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】解:2623⨯=,故①正确;18832222-=-=,故②正确;2555=,故③正确;()222-=,故④错误;∴正确的3个;故选:C.【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.10.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.11.C【分析】由翻折可知:△BDF ≌△BCD ,所以∠EBD=∠CBD ,∠E=∠C=90°,由于△EDF 是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°. 【详解】解:由翻折的性质得,∠DBC=∠EBD ,∵矩形的对边AD ∥BC ,∠E=∠C=90°,∴∠DBC=∠ADB ,∴∠EBD=∠ADB ,∵△EDF 是等腰三角形,∠E=90°,∴△EDF 是等腰直角三角形,∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE ,∴∠DBF=12∠DFE=22.5°, ∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.12.A解析:A【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可.【详解】由题意可得:11OA AB AB ===,12OB =,∵11OA B 为等腰直角三角形,且“直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系”,∴根据题意可得:111OA A B ==∴212OB OA ==∴22222OA A B ===, ,∴总结出n n OA =,∵111122△OAB S =⨯⨯=,11112△OA B S ==,2212222△OA B S =⨯⨯=,∴归纳得出一般规律:1122n n n n n OA B S-=⨯⨯=, ∴2021202120202OA B S =,故选:A .【点睛】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键.二、填空题13.42【分析】根据所有数据均减去40后平均数也减去40从而得出答案【详解】解:一组数据中的每一个数减去40后的平均数是2则原数据的平均数是42;故答案为:42【点睛】本题考查了算术平均数解决本题的关键解析:42【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【详解】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42; 故答案为:42.【点睛】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.14.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差.【详解】根据题意得:3+3+x+5+5=4×5,解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8.【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 15.【分析】首先求得直线的解析式分别求得的坐标可以得到一定的规律再分别求得的坐标可以得到一定的规律据此即可求解【详解】解:∵的坐标为(11)点的坐标为(32)∴正方形边长为1正方形边长为2∴的坐标是(0 解析:(15,8)【分析】首先求得直线的解析式,分别求得123,,?··A A A 的坐标,可以得到一定的规律,再分别求得123,,?··B B B 的坐标,可以得到一定的规律,据此即可求解.【详解】解:∵1B 的坐标为(1,1),点2B 的坐标为(3,2),∴正方形111A B C O 边长为1,正方形2221A B C C 边长为2,∴1A 的坐标是(0,1),2A 的坐标是(1,2),代入y=kx+b 得:12b k b ⎧⎨+⎩==, 解得:11b k ⎧⎨⎩==, ∴直线的解析式是:y=x+1.∵111A B =,点2B 的坐标为(3,2),∴1A 的纵坐标是: 012=,1A 的横坐标是: 0021=-,∴2A 的纵坐标是:1+1=12,A2的横坐标是:1121=-,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=221-,∴A4的纵坐标是:4+4=8=32,A4的横坐标是:1+2+4=7=321-,据此可以得到n A 的纵坐标是:12n -,横坐标是: 121n --.∵点1B 的坐标为(1,1),点2B 的坐标为(3,2),∴点3B 的坐标为(7,4),∴n B 的横坐标是:2n -1,纵坐标是:12n -,即n B 的坐标是(121,2n n --).∴4B 的坐标是(15,8).故答案是:(15,8).【点睛】本题主要考查了待定系数法求函数解析式和坐标的变化规律,正确得到点的坐标的规律是解题的关键.16.3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次 解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键. 17.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB 再以E 为圆心EA 为半径作圆与正方形的交点即为满足条件的P 点分类讨论即可【详解】如图所示在正方形ABCD 中∠AEB=105°∵点P 在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB ,再以E 为圆心,EA 为半径作圆,与正方形的交点即为满足条件的P 点,分类讨论即可.【详解】如图所示,在正方形ABCD 中,∠AEB=105°,∵点P 在正方形的边上,且AE=EP ,∴可以E 为圆心,EA 为半径作圆,与正方形的交点即为满足条件的P 点,①当P 在AD 上时,如图,AE=EP 1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP 1=60°,△EAP 1为等边三角形,∴此时∠AEP 1=60°;②当P 在CD 上时,如图,AE=EP 2,AE=EP 3,由①可知∠DEP 1=180°-105°-60°=15°,∴此时∠DEP 1=∠DEP 2=15°,∠CEP 2=∠AEP 1=60°,∴此时∠AEP 2=60°+15°+15°=90°;∠AEP 3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.18.【分析】根据题意得到BE=DE然后根据勾股定理得到关于线段ABAEBE的方程解方程即可【详解】解:设ED=x则AE=20﹣x∵四边形ABCD为矩形∴AD∥BC∴∠EDB=∠DBC;由题意得:∠EBD解析:858【分析】根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可.【详解】解:设ED=x,则AE=20﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=52+(20﹣x)2,解得:x=858,∴ED=858.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.19.2a-5【分析】直接利用绝对值的性质二次根式的性质化简求出答案【详解】∵2<a <3∴a-2>0a-3<0∴|原式=a−2-(3−a )=a-2-3+a=2a-5故答案为:2a-5【点睛】此题主要考查了解析:2a -5【分析】直接利用绝对值的性质,二次根式的性质化简求出答案.【详解】∵2<a <3,∴a-2>0,a-3<0,∴|原式=a−2-(3−a )=a-2-3+a=2a-5.故答案为:2a-5.【点睛】此题主要考查了二次根式的性质与化简,正确利用a 的取值范围化简是解题关键. 20.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.三、解答题21.(1)第10场比赛的得分为51分;(2)这10场比赛得分的中位数为47分,众数为51分,方差18.2.【分析】(1)根据平均数的定义先求出总数,再分别减去前9个数即可;(2)根据中位数、众数的定义分别求出最中间两个数的平均数和出现次数最多数,再根据方差的计算公式代入计算即可.【详解】(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10-57-51-45-51-44-46-45-42-48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、46、48、51、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51出现了3次,出现次数最多,所以众数为51分,方差22222221(4248)(4448)2(4548)(4648)(4848)3(5148)(5748)18.210⎡⎤=-+-+⨯-+-+-+⨯-+-=⎣⎦. 【点睛】此题考查了平均数、众数与中位数和方差.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数;方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,牢记方差的公式是求解方差的关键.22.(1)A 众数85,B 平均数83,中位数80;(2)A 队;(3)226A S =,2106B S =,A 队选手成绩较为稳定.【分析】(1)根据条形统计图即可求出A 队的众数,将B 队的分数从小到大排列即可求出B 队的中位数,然后根据平均数公式即可求出B 队的平均分;(2)结合两队成绩的平均数和中位数即可得出结论;(3)根据方差公式:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦计算出A 、B 两队的方差,从而得出结论.【详解】解:()1由条形统计图可知:A 队的众数为85,将B 队的分数从小到大排列为70,75,80,95,95∴B 队的中位数为80,B 队的平均分为(70+75+80+95+95)÷5=83补全图表如下:()2两队成绩的平均分一样,但A 队成绩的中位数高,故A 队成绩较好()3()()()()()222222175838083858385839083265A S =⎡-+-+-+-+⎤⎦=⎣-,()()()()()222222170839583958375838083106,5B S =-+-+-+-+-=⎡⎤⎣⎦ ∵26106<,因此A 队选手成绩较为稳定.【点睛】此题考查的是平均数、众数、中位数和方差的意义和求法,掌握平均数、众数、中位数和方差的定义和公式是解决此题的关键.23.(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x +1680,即y (元)与x (辆)之间函数关系式是y =﹣80x +1680;(2)由题意可得,30x +45(6﹣x )≥240,解得,x ≤2,又∵x ≥0,∴自变量的取值范围是0≤x ≤2且x 为整数;(3)由(1)知y =﹣80x +1680,故y 随x 的增大而减小,∵0≤x ≤2且x 为整数,∴当x =2时,y 取得最小值,此时y =1520,6﹣x =4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.24.(1)见解析;(2)AC=2AB ,理由见解析;(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形.【分析】(1)根据SAS 证明三角形全等即可.(2)先根据等腰三角形的性质可得∠NMA=90°,再根据有一个角是直角的平行四边形是矩形证明即可.(3)先根据直角三角形斜边上的中线等于斜边的一半得出MN=EM ,再根据有一个角是直角的菱形是正方形证明即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABM=∠CDN ,∵点M ,N 分别为OB ,OD 的中点, ∴11,22==BM OB DN OD ∴BM=DN ,在△ABM 和△CDN 中, AB CD ABM CDN BM DN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN .(2)当AC=2AB 时,四边形MECN 是矩形,理由如下:∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵四边形ABCD 是平行四边形,∴AC=2OA ,∵AC=2AB ,∴AB=OA ,∵M 是OB 的中点,∴AM ⊥OB ,∴∠NMA=90°,∴∠NME=90°,∴平行四边形MECN 是矩形.(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形; 理由如下:连接AN 、EN∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵EM AM =,∠ENA=90°∴MN=EM ,∴平行四边形EMNC 是菱形,∵AN=EN ,AM=EM∴∠NME=90°,∴四边形EMNC 是正方形.【点睛】本题考查了正方形的判定、平行四边形的性质和判定、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)14-;(2)21+xy x x y --;(3)1152x =-,232x = 【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(3)利用平方根的概念解方程.【详解】解:(1)(2310.12523322⎛⎫--+ ⎪⎝⎭ =10.523234--+- =14- (2)22232()()x x y xy y x x y x y ⎡⎤---÷⎣⎦=222322(+)x x y xy x y x y x y --÷=3223422(+)x y x y x y x y x y --÷=21+xy x x y --(3)4(x +3)2-81=04(x+3)2=81(x+3)2=81 4x+3=92±1152x=-,232x=【点睛】本题考查实数的混合运算,二次根式的混合运算,整式的混合运算及利用平方根的概念解方程,掌握相关计算法则和运算顺序正确计算是解题关键.26.(1)见解析(2)BEC BCE∠=∠;理由见解析(3)12+【分析】(1)根据ASA证明ABE DBC∆≅∆得BE=BC,得BEC BCE∠=∠,进一步可得结论;(2)根据ASA证明ABE DBC∆≅∆得BE=BC,得ABE BCE∠=∠;(3)连结AD,分别求出∠AEB=∠ADE=∠ACB=22.5°,再证明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得结论.【详解】解:(1)证明BE平分ABC∠,,ABE DBC∴∠=∠在ABE∆和DBC∆中,BAE DBA BDABE DBC∠=∠⎧⎪=⎨⎪∠=∠⎩()ABE DBC ASA∴∆≅∆,,BE BC∴=,BEC BCE∴∠=∠180AEB BCE AEB BEC∴∠+∠=∠+∠=︒;()2BEC BCE=∠∠.理由:BE平分ABF∠,,ABE EBF CBD∴∠=∠=∠在ABE ∆和DBC ∆中,BAE D BA BDABE DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABE DBC ASA ∴∆≅∆,,BE BC ∴=BEC BCE ∴∠=∠.()3连结AD ,AB BC ⊥,45ABE EBF CBD ∴∠=∠=∠=︒,ABE DBC ∆≅∆,,BAE BDC ∴∠=∠且E E ∠=∠,45,ABE ACD ∴∠=∠=︒由()2得BE BC =,22.5BCD BCE BEC ∴∠=∠=∠=︒,,AB BD =22.5,BAD BDA ∴∠=∠=︒,BEC BDA ∴∠=∠,45,AE AD DAC ACD ∴=∠=︒=∠1,CD =221,112AD AE AC ∴===+=12EC ∴=+【点睛】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD 是解答此题的关键.。

【湘教版】八年级数学下期末模拟试卷(带答案)

【湘教版】八年级数学下期末模拟试卷(带答案)

一、选择题1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )A .10,12B .12,11C .11,12D .12,12 2.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定 3.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A .8.5,9B .8.5,8C .8,8D .8,94.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( )A .3B .4C .5D .85.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .6.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C .D . 7.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x <D .图象经过第一、二、三象限8.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量C .2是常量,r 是变量D .2是常量,C 、r 是变量 9.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 10.x y 300 )A .1B .2C .3D .411.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .4312.如图,四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,8AB =,13BD =,12BC =,则四边形ABCD 的面积为( )A .50B .56C .60D .72二、填空题13.一组数2、a 、4、6、8的平均数是5,这组数的中位数是______.14.设甲组数据:6,6,6,6,的方差为2s 甲,乙组数据:1,1,2的方差为2s 乙,则2s 甲与2s 乙的大小关系是________. 15.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号) 16.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.17.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.18.计算:273-=_____19.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.20.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y随x的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.24.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长;(2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数.25.已知31,31x y =+=-,求下列代数式的值:(1)22xy +; (2)y x x y+. 26.在四边形ABCD 中,90A B ∠=∠=︒,E 为AB 边上的点.(1)连接CE ,DE ,CE DE ⊥;①如图1,若AE BC =,求证:AD BE =;②如图2,若AE BE =,求证:CE 平分BCD ∠;(2)如图3,F 是BCD ∠的平分线CE 上的点,连接BF ,DF ,若4BC =,6CD =,362BF DF ==CF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.2.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.4.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.5.B解析:B【分析】=+图像在坐标平面的位置,可先确定,k b的取值范围,在根据,k b的根据一次函数y kx b=+图像在坐标平面的位置,即可求解.取值范围确定一次函数y bx k【详解】=+经过一、二、四象限,则函数值y随x的增大而减小,可得根据一次函数y kx b=+的一次项系数0k<;图像与y轴的正半轴相交则0b>,因而一次函数y bx kk<,则函数与y轴的负半轴,因而b>,y随x的增大而增大,经过一三象限,常数0一定经过一、三、四象限,故选:B.【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b 的取值范围.6.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.【详解】∵A表示-2,B表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q的速度是2个单位/s,∴Q运动到原点的时间为4÷2=2(s),∴当0<x≤2时,点P表示的数为-2-x,点Q表示的数为4-2x,∴PQ=4-2x-(-2-x )=6-x ,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q 从返回运动,点P 表示的数为-2-x,点Q 表示的数为2x-4,∴PQ=2x-4-(-2-x )=3x-2,∴当x=4时,y=12-2=10,只有B 图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ 的长度是解题的关键.7.D解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键. 8.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.9.D解析:D【分析】由于C 、D 是定点,则CD 是定值,如果△CDE 的周长最小,即DE +CE 有最小值.为此,作点D 关于x 轴的对称点D′,当点E 在线段CD′上时,△CDE 的周长最小.【详解】如图,作点D 关于x 轴的对称点D′,连接CD′与x 轴交于点E ,连接DE .若在边OA 上任取点E′与点E 不重合,连接CE′、DE′、D′E′由DE′+C E′=D′E′+CE′>CD′=D′E +CE =DE +CE ,∴△CDE 的周长最小.∵OB =4,D 为边OB 的中点,∴OD =2,∴D (0,2),∵在长方形OACB 中,OA =3,OB =4,D 为OB 的中点,∴BC =3,D′O =DO =2,D′B =6,∵OE ∥BC ,∴Rt △D′OE ∽Rt △D′BC , ∴OE D O BC D B='', 即:623OE =,即:OE =1, ∴点E 的坐标为(1,0)故选:D .【点睛】此题主要考查轴对称−−最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是:两点之间线段最短.10.C解析:C【分析】先把300化为最简二次根式,由x +3y=300可知x ,y 化为最简根式应与3为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵300=103,x ,y 为正整数, ∴x ,y 化为最简根式应与3为同类根式,只能有以下三种情况:339343637333103x y +=+=+=+=.∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.11.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.12.A解析:A【分析】据勾股定理求出DC ,根据角平分线的性质得出DE=DC=5,根据勾股定理求出BE ,求出AE ,再根据三角形的面积公式求出即可.【详解】过D 作DE AB ⊥,交BA 的延长线于E ,则90∠=∠=︒E C ,90BCD ∠=︒,BD 平分ABC ∠,DE DC ∴=,在Rt BCD ∆中,由勾股定理得:222213125CD BD BC --=,5DE ∴=,在Rt BED ∆中,由勾股定理得:222213512BE BD DE =--,8AB =,1284AE BE AB ∴=-=-=,∴四边形ABCD 的面积BCD BED AED S S S S ∆∆∆=+-111222BC CD BE DE AE DE =⨯⨯+⨯⨯-⨯⨯ 11112512545222=⨯⨯+⨯⨯-⨯⨯ 50=,故选:A .【点睛】本题考查了勾股定理,三角形面积,角平分线的性质等知识点,能求出DE=DC 是解题的关键.二、填空题13.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a 的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.14.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平 解析:2s 甲与2s <乙【分析】根据方差的意义进行判断.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 15.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 16.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y =﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB 2268+=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM=3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.17.【分析】由ASA可证△ABQ≌△DAP可得AP=BQ列出方程可求t的值【详解】∵四边形ABCD是正方形∴AD=AB∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°且∠DAQ+∠BAQ=解析:8 3【分析】由“ASA”可证△ABQ≌△DAP,可得AP=BQ,列出方程可求t的值.【详解】∵四边形ABCD是正方形∴AD=AB,∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°,且∠DAQ+∠BAQ=90°,∴∠BAQ=∠ADP,且∠B=∠BAD=90°,AD=AB∴△ABQ≌△DAP(ASA)∴AP=BQ∴2t=8−t∴t=83,故答案为:83.【点睛】本题考查了全等三角形判定和性质,正方形的性质,一元一次方程的应用,证明△ABQ≌△DAP是本题的关键.18.【分析】先将化为再合并同类二次根式即可【详解】解:=故答案为【点睛】此题考查了二次根式的加减法把化为是解答此题的关键解析:【分析】化为【详解】==.故答案为23.【点睛】此题考查了二次根式的加减法,把27化为33是解答此题的关键.19.【分析】如详解图:作垂足为F的延长线垂足为G可证可得四边形AFOG 为正方形BF=CGAF=AG=进而可求得答案【详解】如图所示:作垂足为F的延长线垂足为G则四边形AFOG为矩形四边形BCDE是正方形解析:623-【分析】如详解图:作OF AB⊥垂足为F,OG AG⊥的延长线,垂足为G,可证OFB OGC△≌△,可得四边形AFOG为正方形,BF=CG ,AF=AG=32,进而可求得答案.【详解】如图所示:作OF AB⊥垂足为F,OG AG⊥的延长线,垂足为G,则四边形AFOG为矩形,四边形BCDE是正方形,∴OB=OC,90BOC∠=°,9090COG COFBOF COFBOF COG∠+∠=︒∠+∠=︒∴∠=∠,,OFB OGC OB OCOFB OGCOF OG∠=∠=∴∴=△≌△ S∴四边形AFDG为正方形63233233233223AOAF AGACCG AG ACBF CGAB AF BF AG CG=∴===∴=-==∴=+=+=+=故答案为:623.【点睛】本题考查了正方形的性质和判定,全等三角形的性质,关键是构造全等三角形证明. 20.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m 的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果. 【详解】 解:(1)样本容量是:10÷20%=50.70≤a <80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数. (3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人). 【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是 620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.(1)3600,20;(2)休息前65米/分,休息后55米/分(3)1100米【分析】根据图象获取信息:(1)甜甜到达山顶用时80分钟,中途休息了20分钟,行程为3600米;(2)休息前30分钟行走1950米,休息后30分钟行走(3600﹣1950)米.(3)求慧慧到达缆车终点的时间,计算甜甜行走路程,求离缆车终点的路程.【详解】解:(1)根据图象知:甜甜行走的总路程是3600米,她途中休息了20分钟.故答案为 3600,20;(2)甜甜休息前的速度为:1950=6530(米/分),甜甜休息后的速度为:360019501650=553030-=(米/分);(3)慧慧所用时间:360018002=10 180180=(分),甜甜比慧慧迟到80﹣50﹣10=20(分),∴慧慧到达终点时,甜甜离缆车终点的路程为20551100⨯=米【点睛】此题考查函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大.24.(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD的长;(2)在BD上截取DF=EN,可证出AEN ADF△≌△,由全等三角形的性质得AN=AF,,EAN DAF ANE AFD∠=∠∠=∠,可得出,MAN BAF ANM AFB∠=∠∠=∠,则AMN ABF△≌△,可得12BF MN BC==,即F是BC的中点,可得出AN=AF=FC=DF+CD=EN+CD;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒,∴BC=2AB=4,60B ∠=︒,∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒,∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE ,∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∵90EAD ∠=︒,EAN DAF ∠=∠,∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠,∴,MAN BAF ANM AFB ∠=∠∠=∠,∵AN=AF ,∴AMN ABF △≌△,∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+;(3)解:由题意可得AD=AE ,90EAD ∠=︒,∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.25.(1)8;(2)4.【分析】(1)先计算出x y +和xy 的值,再利用完全平方公式求解即可;(2)通分后利用(1)的结论求解即可.【详解】(1)∵11x y ==,,∴1)2x y xy +===,∴22x y +2()2x y xy =+-222=-⨯124=-8=;(2)∵22118x y x y ==+=,,,2xy =, ∴y x x y+ 22x y xy+= 82= 4=.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.注意整体代入的方法的运用.26.(1)①见解析;②见解析;(2)FC =【分析】(1)①根据条件得出EDA CEB △≌△,即可求证;②延长DE 交CB 的延长线于点G ,得出EDA EGB △≌△再证明GCE DCE △≌△即可;(2)解法1:过点F 分别作FM CD ⊥,FN CB ⊥,得到FCM FCN △≌△,由222BN BF FN =-,222DM DF FM =-,得到DM BN =,设DM BN x ==,求得5CN =,在Rt FBN △和Rt FCN △中,由勾股定理即可求得CF 的长.解法2:在CD 上截取CF BC '=,得出2FF FD '==,过F 作FG CD ⊥,根据22222FC CG FG F F F G ''-==-,即可求得CF 的长.【详解】(1)①证明:90A B DEC ∠=∠=∠=︒,90ADE AED ∴∠+∠=︒,1809090DEA BEC ∠+∠=︒-︒=︒,ADE BEC ∴∠=∠,在DEA △和ECB 中ADE BEC ∠=∠,A B ∠=∠,AE BC =,EDA CEB ∴△≌△,AD BE ∴=.②证明:延长DE 交CB 的延长线于点G ,AED BEG ∴∠=∠,E 90A BG ∠=∠=︒,AE BE =,EDA EGB ∴△≌△,EG ED ∴=,90DEC =︒∠,18090GEC DEC ∴∠=︒-∠=︒,GEC DEC ∴∠=∠,CE CE =,GCE DCE ∴△≌△,GCE DCE ∴∠=∠,CE ∴平分BCD ∠.(2)解法1:如图,过点F 分别作FM CD ⊥,FN CB ⊥,分别交CD 及CB 的延长线于点M ,N .CE 平分BCD ∠,BCF FCD ∴∠=∠,又FM CD ⊥,FN CB ⊥,90CNF FMC ∴∠=∠=︒,在FCM △和FCN △中BCF FCD ∠=∠,CNF FMC ∠=∠,CF CF =,FCM FCN ∴△≌△,FM FN ∴=,CM CN =,在Rt FDM △和Rt FBN △中MF FN =,FB DF =,222BN BF FN =-,222DM DF FM =-DM BN ∴=,设DM BN x ==,6CD =,4CB =,4CN x ∴=+,6CM x =-,CN CM =,46x x ∴+=-,1x ∴=,415CN CB BN ∴=+=+=,在Rt FBN △和Rt FCN △中222FN FB BN =-,222FC FN CN =+,362BF =, 222223625122FN FB BN ⎛∴=-=-= ⎝⎭ 222255(41)622FC FN CN =+=++= 解法2:如图,在CD 上截取CF BC '=,4BC =,6CD =,642DF CD CF ''∴=-=-=,在FCB 和FCF '△中BCF FCD ∠=∠,CF CF =,CB CF '=,FCB FCF '∴△≌△,FF FB '∴=,FB FD =,362FF FD '∴==, 过F 作FG CD ⊥,垂足为G ,112GF GD DF ''∴===, 145CG GF CF ''∴=+=+=, 在Rt FCG △和Rt FF G '△中22222FC CG FG F F F G ''-==-222236512FC ⎛∴-=- ⎝⎭ 56FC ∴=. 【点睛】 本题主要考查了全等三角形的判定和性质,角平分线的判定,以及勾股定理的应用,解题的关键是熟练掌握全等三角形的判定和性质,正确作出辅助线以及利用方程解决问题.。

湘教版八年级下册数学期末测试卷

湘教版八年级下册数学期末测试卷

湘教版八年级下册数学期末测试卷(含答案)一、选择题使代数式21x -有意义的 取值范围是( ) >12 ≥12 <12 ≠12甲、乙、丙、丁四人进行射箭测试,每人 次射箭成绩的平均数均是 环,方差分别是2s 甲= ,2s 乙= ,2s 丙= ,2s 丁= ,其中成绩最稳定的是( )甲 乙 丙 丁(镇江)下列运算正确的是( )- = ( ) = 2 =236⨯=4. 若反比例函数y =k x的图象过点(-2,1),则一次函数y =kx -k 的图象过( ) A. 第一、二、四象限 B. 第一、三、四象限C. 第二、三、四象限D. 第一、二、三象限*5. 已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为( )A. 21B. 15C. 6D. 以上答案都不对*6. 如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图。

那么关于该班40名同学一周参加体育锻炼时间的说法错误的是( )A. 极差是3B. 中位数为8C. 众数是8D. 锻炼时间超过8小时的有21人*7. 如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O′A′B′,点A 的对应点在直线y =34x 上一点,则点B 与其对应点B′间的距离为( ) A. 94B. 3C. 4D. 5*8. 如图,长方体底座中AB =12m ,BC =2m ,BB ′=3m ,一只蚂蚁从点A 出发,以2cm/s 的速度沿长方体表面爬到C ,至少需要( )A. 10.5minB. 6510minC. 2113min D. 10min**9.如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A. 6cmB. 4cmC. 2cmD. 1cm**10. 如图,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的边长为( )A. 23 B. 43 C.4 D. 8二、填空题11. 某市工商局今年4月份抽查民意商场5天的营业额,结果如下(单位:万元):2.5,2.8,2.7,2.4,2.6,则(1)样本平均数为___________万元;(2)根据样本平均数去估计民意商场4月份的平均日营业额为___________万元;月营业总额为___________万元。

【湘教版】八年级数学下期末一模试卷(带答案)

【湘教版】八年级数学下期末一模试卷(带答案)

一、选择题1.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变2.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学 80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁3.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,384.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大5.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,43) B .(0,1) C .(0,103) D .(0,2)6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( ) A .12m <B .12m >C .m 1≥D .1m <7.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1D .当1x >时,0y >8.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .9.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 10.下列计算正确的是( )A .3236362⨯==B 164=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(25235410-⨯++=11.已知平行四边形ABCD 的一边长为5,则对角线AC ,BD 的长可取下列数据中的( ) A .2和4B .3和4C .4和5D .5和612.如图,平面直角坐标系中,点A 在第一象限,点B 、C 的坐标分别为3,02⎛⎫⎪⎝⎭、1,02⎛⎫- ⎪⎝⎭.若ABC ∆是等边三角形,则点A 的坐标为( )A .1,32⎛⎫⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .13,2⎛⎫ ⎪⎝⎭D .()1,3二、填空题13.烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________.14.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 x45 45 42 S 2 1.82.31.8__.15.如图,矩形ABCO 的对角线AC 、OB 交于点1A ,直线AC 的解析式33y x =-+,过点1A 作11AO OC ⊥于1O ,过点1A 作11A B BC ⊥于1B ,得到第二个矩形111A B CO ,1A C 、11O B 交于点2A ,过点2A 作22A O OC ⊥于2O ,过点2A 作22A B BC ⊥于2B ,得到第三个矩形222A B CO ,…,依此类推,这样作的第n 个矩形对角线交点n A 的坐标为____________________.16.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③17.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.18.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).19.把四张形状大小完全相同宽为1cm的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为21cm,宽为4cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是_________.20.公园3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图” .如图,a ,小正方形ABCD的面积是9,则弦c长为_______.设49三、解答题21.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.22.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分): 甲 78 9 7 10 10 910 10 10乙 10 8 7 9 8 10 10 910 9)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分 2,则成绩较为整齐的是 队.23.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?24.如图1,在四边形ABCD 中,若,A C ∠∠均为直角,则称这样的四边形为“美妙四边形”.(1)概念理解:长方形__________________美妙四边形(填“是”或“不是”); (2)性质探究:如图l ,试证明:2222CD AB AD BC -=-;(3)概念运用:如图2,在等腰直角三角形ABC 中,,90AB AC A =∠=︒,点D 为BC 的中点,点E ,点F 分别在,AB AC 上,连接,DE DF ,如果四边形AEDF 是美妙四边形,试证明:AE AF AB +=.25.计算:10241|2|(2)23π-⎛⎫-+--+ ⎪⎝⎭. 26.如图,在△ABC 中,∠C=90°,若CD=1.5,BD=2.5; (1)∠2=∠B ,求AC 的长; (2)12∠=∠,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.2.C解析:C 【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定. 【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.3.B解析:B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.5.B解析:B 【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴, B 点坐标为(-2,0), D 是OB 的中点, ∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3), 设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1, 当x =0时,y =1 ∴E (0,1). 故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.6.A解析:A 【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围. 【详解】 解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上, ∴当-1<3时,由题意可知y 1>y 2, ∴y 随x 的增大而减小, ∴2m-1<0,解得m <12, 故选:A . 【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.C解析:C 【分析】根据一次函数的图象与性质逐项判断即可得. 【详解】一次函数31y x =-+中的30k =-<, y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C . 【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.8.D解析:D 【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得. 【详解】A、由图象知,(3)0pp>⎧⎨-->⎩,解得03p<<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;B、由图象知,(3)0pp>⎧⎨--=⎩,解得3p=,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;C、由图象知,(3)0pp<⎧⎨-->⎩,解得0p<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;D、由图象知,(3)0pp<⎧⎨--<⎩,不等式组无解,即它不可能是关于x的一次函数(3)y px p=--的图象,此项符合题意;故选:D.【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.9.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】解:A、∵AE CF=,∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.10.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 11.D解析:D【分析】由三角形三边关系可得三角形两边之和大于第三边,两边之差小于第三边.【详解】解:由于两条对角线的一半与平行四边形的一边组成一个三角形, 所以12(AC-BD )<5<12(AC+BD ), 由题中数据可得,AC 和BD 的长可取5和6,故选D .【点睛】本题考查了平行四边形对角线互相平分及三角形三边关系问题,能够熟练求解此类问题. 12.A解析:A【分析】先过点A 作AD ⊥OB ,根据△ABC 是等边三角形,求出AC=BC ,CD=BD ,∠ACB=60°,再根据点B 、C 的坐标,求出CB 的长,再根据勾股定理求出AD 的值,从而得出点A 的坐标.【详解】过点A 作AD ⊥OB ,∵△ABC是等边三角形,∴AC=BC,CD=BD,∠ACB=60°,∵点B的坐标为3,02⎛⎫⎪⎝⎭,点C的坐标为1,02⎛⎫- ⎪⎝⎭∴BC=2,OC=12∴CA=2,∴CD=1,∴2222=1=32CA CD--∵OD=CD-CO∴OD=1-12= 1 2∴点A的坐标是132⎛⎝.故选A.【点睛】此题考查了等边三角形的性质,用到的知识点是勾股定理,关键是作出辅助线,求出点A 的坐标.二、填空题13.90分【分析】根据加权平均数的计算方法即可得出答案【详解】解:这位厨师的最后得分为:(分)故答案为:90分【点睛】本题考查了加权平均数的计算掌握计算加权平均数的方法是解题的关键解析:90分【分析】根据加权平均数的计算方法即可得出答案.【详解】解:这位厨师的最后得分为:927+882+801=907+2+1⨯⨯⨯(分).故答案为:90分.【点睛】本题考查了加权平均数的计算,掌握计算加权平均数的方法是解题的关键.14.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷 解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.15.【分析】由矩形的性质和一次函数的性质先求出然后矩形的性质和三角形的中位线定理求出和根据规律即可得到和从而求出点的坐标【详解】解:根据题意∵直线的解析式为令x=0则;令y=0则∴由矩形的性质则点∴;同解析:11,22n n ⎛⎫- ⎪ ⎪⎝⎭【分析】由矩形的性质和一次函数的性质,先求出OA =1OC =,然后矩形的性质和三角形的中位线定理,求出1O C 和11A O ,根据规律,即可得到n O C 和n n A O ,从而求出点n A 的坐标.【详解】解:根据题意,∵直线AC 的解析式为y =+令x=0,则y =y=0,则1x =, ∴OA =1OC =,由矩形的性质,则点112AC AC =,∴11122O C OC ==,1112AO AO ==同理可求:221111()242O C O C ===,2221111()22A O AO ===; ……111()22n n n O C O C -==,11()22n n n n n A O A O ===, ∴111()122n n n nOO OC O C =-=-=-,∴点n A 的坐标为:112n ⎛- ⎝⎭;故答案为:112n ⎛- ⎝⎭.【点睛】本题考查了矩形的性质,一次函数的性质,三角形的中位线定理,坐标与图形的规律,解题的关键是熟练掌握所学的知识,正确的找到点的规律进行解题.16.乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由 解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b ,根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.17.【分析】由ASA 可证△ABQ ≌△DAP 可得AP =BQ 列出方程可求t 的值【详解】∵四边形ABCD 是正方形∴AD =AB ∠B =∠BAD =90°∵AQ ⊥DP ∴∠QAD +∠ADP =90°且∠DAQ +∠BAQ = 解析:83【分析】由“ASA”可证△ABQ ≌△DAP ,可得AP =BQ ,列出方程可求t 的值.【详解】∵四边形ABCD 是正方形∴AD =AB ,∠B =∠BAD =90°∵AQ ⊥DP∴∠QAD +∠ADP =90°,且∠DAQ +∠BAQ =90°,∴∠BAQ =∠ADP ,且∠B =∠BAD =90°,AD =AB∴△ABQ ≌△DAP (ASA )∴AP =BQ∴2t =8−t∴t =83, 故答案为:83. 【点睛】本题考查了全等三角形判定和性质,正方形的性质,一元一次方程的应用,证明△ABQ≌△DAP是本题的关键.18.18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.19.16cm【分析】根据题意分别列出关系式得出关于图②中两块阴影部分的长和宽再利用周长公式时行计算去括号合并即可得到结果【详解】解:设小长方形卡片的长为xcm小长方形卡片的宽为根据题意得:x=-2则图②解析:16cm【分析】根据题意分别列出关系式,得出关于图②中两块阴影部分的长和宽,再利用周长公式时行计算,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为xcm,小长方形卡片的宽为1cm,根据题意得: x2,则图②-2和2,宽分别为:2和4-x=6∴图②中两块阴影部分的周长和是:22+2)+2(2+6)=16-16(cm).故答案为:16cm.【点睛】本题主要考查了二次根式的应用,在解题时要根据题意结合图形得出两块阴影部分的长和宽是解题的关键.20.【分析】应用勾股定理和正方形的面积公式可求解【详解】解:∵小正方形的面积是9∴AD=CD=3∴a=b-3∵4∴∴∵∴∴故答案为:【点睛】本题运用了勾股定理和正方形的面积公式关键是运用了数形结合的数学【分析】应用勾股定理和正方形的面积公式可求解.【详解】解:∵小正方形ABCD的面积是9,∴AD=CD=3,∴a=b-3,∵49a=,∴94a=,∴214b=,∵222+=a b c,∴222 921+=44c⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,∴c=,故答案为:4. 【点睛】 本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.三、解答题21.(1)85;(2)最终候选人E 将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C 、E 两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C 的平均成绩是:952803905235⨯+⨯+⨯++=88(分), E 的平均成绩是:852*********⨯+⨯+⨯++=89(分), ∴88<89,∴最终候选人E 将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义. 22.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.23.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.24.(1)是;(2)见解析;(3)见解析【分析】(1)因为长方形的四个角都是直角,所以长方形是美妙四边形;(2)连接BD ,在Rt △ABD 和Rt △CBD 中,根据勾股定理可以解决;(3)连接AD ,利用等腰直角三角形的性质证明90ADB ∠=︒,45DAF EBD ∠=∠=︒,AD BD =,于是可证ADF BDE ∠=∠,继而证明用ASA 证明BED AFD ∆≅∆,根据全等三角形的性质得BE AF =,据此可得AE AF AB +=.【详解】解:(1)∵长方形的四个角都是直角,∴长方形是美妙四边形;故答案是:是;(2)如图1,连接BD ,在Rt △ABD 中,222BD AB AD =+,在Rt △CBD 中,222BD BC CD =+,∴2222CD CB AD AB +=+,∴2222CD AB AD BC -=-;(3)如图2,连接AD ,∵四边形AEDF 是美妙四边形,90A ∠=︒,∴90EDF ∠=︒,∵,90AB AC A =∠=︒,点D 为BC 的中点,∴90ADB ∠=︒,45DAF EBD ∠=∠=︒,AD BD =,∴ADF BDE ∠=∠,在Rt △ADF 和Rt △BDE 中,DAF DBE AD BDADF BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BED AFD ASA ∆≅∆BE AF ∴=,AE AF AE BE AB ∴+=+=【点睛】本题考查了四边形综合问题,等腰直角三角形的性质及全等三角形的判定和性质,勾股定理,作辅助线构造直角三角形或全等三角形是解题关键.25.321.【分析】利用二次根式的性质、绝对值的性质和负整数指数幂、零指数幂逐项计算即可求解.【详解】10241|2|(2)23π-⎛⎫-+--+ ⎪⎝⎭ 22212=+-+ 321=+.【点睛】本题考查实数的混合运算,掌握二次根式的性质、绝对值的性质和负整数指数幂是解题的关键.26.(1)2;(2)3.【分析】(1)根据∠2=∠B 可得AD=BD=2.5,再根据勾股定理即可求出AC 的长;(2)过D 作DE ⊥AB ,垂足为E ,由角平分线的性质可知CD=DE ,根据勾股定理可得出BE 的长,再判断出Rt △ACD ≌Rt △AED ,进而可得出AC=AE ,根据勾股定理即可解答.【详解】解:(1)∵∠2=∠B ,BD=2.5,∴AD=BD=2.5,在RtACD 中,222AC CD AD +=,∵CD=1.5,∴22222.5 1.52AC AD CD =-=-=;(2)过D 作DE ⊥AB ,垂足为E ,∵∠1=∠2,∴CD=DE=1.5,在Rt △BDE 中,2222= 2.5 1.5BD DE --,∵CD=DE ,AD=AD ,∴Rt △ACD ≌Rt △AED(HL),∴AC=AE ,∴AB=AE+BE=AC+2,∴AB 2=AC 2+BC 2,即(AC+2)2=AC 2+(1.5+2.5)2,解得AC=3.【点睛】本题主要考查的是角平分线的性质及勾股定理、直角三角形全等的判定定理与性质,熟知角平分线的性质是解答此题的关键,难度适中.。

湘教版八年级数学下册期末考试卷(附答案)

湘教版八年级数学下册期末考试卷(附答案)

湘教版八年级数学下册期末考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.语句“x 的18与x 的和不超过5”可以表示为( )A .58x x +≤B .58x x +≥C .855x ≤+D .58x x += 4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.计算()22b a a -⨯ 的结果为( ) A .b B .b - C . ab D .b a7.若a =7+2、b =2﹣7,则a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A.1cm B.2cm C.3cm D.4cm9.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为().A.70°B.65°C.50°D.25°10.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米二、填空题(本大题共6小题,每小题3分,共18分)1.若3,则x=__________x x2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿△为直角三角形时,BE的长为______。

湘教版八年级下册数学期末测试卷及含答案

湘教版八年级下册数学期末测试卷及含答案

湘教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2,S 3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A.S1=2 B.S2=3 C.S3=6 D.S1+S3=82、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD:5,CE=4,则00的半径是( )A.3B.4C.D.3、函数中,自变量x的取值范围是()A.x≤6B.x≥6C.x≤﹣6D.x≥﹣64、如图,数轴上A B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为().A. B. C. D.5、如图,在中,,D从A出发沿方向以向终点C匀速运动,过点D作交于点E,过点E 作交于点F,当四边形为菱形时,点D运动的时间为()A. B. C. D.6、点P(2,-1)关于y轴的对称点坐标是( )A.(2,1)B.(-1,2)C.(-2,1)D.(-2,-1)7、某校进行学生睡眠时间调查,将所得数据分成5组.已知第一组的频率是0.18,第二、三、四小组的频率和为0.62,故第五组的频率是()A.0.20B.0.09C.0.31D.不能确定8、若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2D.29、如图1,以直角三角形的各边为斜边分別向外作等腰直角三角形,再把较小的两张等腰直角三角形纸片按图2的方式放置在最大等腰直角三角形内。

若知道图中阴影部分的面积则一定能求出()A.直角三角形的面积B.最大等腰直角三角形的面积C.较小两个等腰直角三角形重叠的面积D.最大等腰直角三角形和直角三角形的面积之和10、如图是甲、乙两人追赶过程中路程和时间函数关系的图象,下列关于图象的叙述正确的个数是()(1)甲追乙;(2)甲的速度是4km/h;(3)乙出发5h与甲相遇;(4)乙共走20kmA.1个B.2个C.3个D.4个11、王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A. B. C.D.12、如图,在□ABCD中,边BC的垂直平分线EF分别交AD,BC于点肘,E,交删的延长线于点F.若点A是BF的中点,AB=5,□ABCD的周长为34,则FM的长为( )A.8B.6C.4D.213、在直角坐标系内,将点P(1,﹣2)向左平移2个单位长度,再向上平移3个单位长度,可以得到对应点P1的坐标为()A.(﹣1,1)B.(﹣1,﹣5)C.(3,1)D.(3,﹣5)14、正方形ABCD,正方形CEFG如图放置,点B,C,E在同一条直线上,点P 在BC边上,PA=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD +S正方形CGFE=2S△APF,其中正确的是()A.①②③B.①③④C.①②④⑤D.①③④⑤15、在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、若三角形的一边和该边上的高相等的三角形称为“和谐三角形”,如图,已知抛物线y=ax2经过A(﹣1,1),P是y轴正半轴上的动点,射线AP与抛物线交于另一点B,当△AOP是“和谐三角形”时,点B的坐标为________.17、已知:如图,点E为矩形ABCD内一点,且EB=EC,则EA________ED(填“>”“<”或“=”)18、小明利用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,接着活动学具成为图2所示的正方形,并测得,则图1中对角线长为________ .19、如图,E为平行四边形ABCD中,AD边上一点,且,AC和BE交于点F,则等于________.20、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=________°.21、如图△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为3,则△ACD 的面积为________.22、同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y= x+32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年数学八年级下册期末检测模拟试卷
(考试时间:120分钟,满分120分)
考号: 姓名: 得分:
一、选择题(每小题3分,共30分)
1、下列条件不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.有两条边对应相等 C.一条边和一个锐角对应相等 D.两个锐角对应相等
2、点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )
A 、(3,2)
B 、 (3,2--)
C 、 (2,3-)
D 、(2,3-)
3、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=5,BC=3,则EC 的长( ).
A 1
B 1.5
C 2
D 3
4、在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( ) .



5、如图,是张老师晚上出门散步时离家的距离y 与时间x 之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是
( )
6、对于函数y =-k 2x (k 是常数,k ≠0
)的图象,下列说法不正确的是( ) A .是一条直线 B .过点(
1
k ,-k ) C .y 随着x 增大而减小 D .经过一、三象限或二、四象限 7、我校为了了解八年级体能情况,随机选取
30名学生测试一分钟仰卧起坐次数,并绘制
C
D
E
A
B
了如图的所示直方图,则学生仰卧起坐次数在25~30之间的频率为( )
(A )0.1 (B )0.17 (C )0.33 (D )0.4 8、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是 ( )
A .
B .
C .
D 9、已知点P (-2,3)关于y 轴的对称点Q (a,b ),则a+b 的值是( ) A 、1 B 、-1 C 、5 D 、-5
10、在△ABC 中,AB=12cm ,AC=9cm ,BC=15cm ,则ABC S ∆等于( ) A. 2108cm B. 254cm C. 2180cm D. 290cm 二、填空题(每小题3分,共30分) 1、已知,如右图,AB =AD =5,∠B =150, CD ⊥AB 于C ,则CD = 。

2、直角三角形中,两锐角的角平分线相交所成的角的度数为 .
32
1
.在函数中,自变量的取值范围是。

y x x =
-
4、△ABC 中,AB =6,AC =4,∠A=45°,则△ABC 的面积为 .
5、如图,在▱ABCD 中,AD=8,点E 、F 分别 是BD 、CD 的中点,则EF= 。

6、一个正多边形的一个外角是15度,求这个多边形的全部对角线的条数是 。

7、在平面直角坐标系中,点P (1-a ,a )是第二象限内的点,则a 的取值范围是 。

8、已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则
5
a
b -的值为_____.。

9、若一个直角三角形的两边长分别是2、4,则第三边长为 。

10、已知△ABC 的面积为36,将△ABC 沿BC 平移到△A ´B
连结AC ´交A ’C 于D ,则△C ´DC 的面积为 三、解答题(共40分)
B
A
A '
)
(B
1、(本题5分)已知函数y=(2m+1)x+m -3 。

(1)、若这个函数的图象经过原点,求m 的值;
(2)若这个函数的图象不经过第二象限,求m 的取值范围。

2、(本题5分)如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE=AF 。

求证:△AC E ≌△ACF
3、(本题8分)一农民带上若干千克自产的土豆进城出售, 为了方便, 他带了一些零钱备用,按市场价售出一些后, 又降价出售, 售出的土豆千克数x 与他手中持有的钱数(含备用零钱)y 的关系, 如图所示, 结合图象回答下列问题: (1)农民自带的零钱是多少? (2)试求降价前y 与x 之间的关系式. (3)由表达式你能求出降价前每千克的土豆价 格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完, 这时他手中的钱(含备用零钱)是26元, 试问他一共带了多少千克土豆?
A D
F
E B
C
4、(本题5分)如图,AD 平分∠BAC ,DE ∥AC 交AB 于E , DF ∥AB 交AC 于F . 求证:四边形AEDF 是菱形;
5、(本题8分) 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N 。

(1) 求证:∠ADB =∠CDB ; (2) 若∠ADC =90︒,求证:四边形MPND 是正方形。

com
6、(本小题9分)如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;
(2)不解关于y x ,的方程组 请你直接写出它的解; (3)直线3l :y nx m =+是否也经过点P ?请说明理由.
O
x
y
P
第23题图
1l
2l
A
B
C D
N
M P。

相关文档
最新文档